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The goal of spin foam models is to provide a viable path integral formulation of

quantum gravity. Because of background independence, their underlying framework

has certain novel features that are not shared by path integral formulations of familiar

field theories in Minkowski space. As a simple viability test, these features were

recently examined through the lens of loop quantum cosmology (LQC). Results of

that analysis, reported in a brief communication [1], turned out to provide concrete

arguments in support of the spin foam paradigm. We now present detailed proofs

of those results. Since the quantum theory of LQC models is well understood, this

analysis also serves to shed new light on some long standing issues in the spin foam

and group field theory literature. In particular, it suggests an intriguing possibility

for addressing the question of why the cosmological constant is positive and small.

PACS numbers: 04.60.Kz,04.60Pp,98.80Qc,03.65.Sq

I. INTRODUCTION

Four different avenues to quantum gravity have been used to arrive at spin-foam models
(SFMs). The fact that ideas from seemingly unrelated directions converge to the same type
of structures and models has provided a strong impetus to the spin foam program over the
years [2].

The first avenue is the Hamiltonian approach to loop quantum gravity (LQG) [3–5].
By mimicking the procedure that led Feynman [6] to a sum over histories formulation of
quantum mechanics, Rovelli and Reisenberger [7] proposed a space-time formulation of LQG.
This work launched the spin-foam program. The second route stems from the fact that the
starting point in canonical LQG is a rewriting of classical general relativity that emphasizes
connections over metrics [8]. Therefore in the passage to quantum theory it is natural
to begin with the path integral formulation of appropriate gauge theories. A particularly
natural candidate is the topological B-F theory [9] because in 3 space-time dimensions it is
equivalent to Einstein gravity, and in higher dimensions general relativity can be regarded
as a constrained BF theory [10]. The well-controlled path integral formulation of the BF
theory provided the second avenue and led to the SFM of Barret and Crane [11]. The third
route comes from the Ponzano-Regge model of 3-dimensional gravity [12] that inspired Regge
calculus in higher dimensions [13–15]. Here one begins with a simplicial decomposition of
the space-time manifold, describes its discrete Riemannian geometry using edge lengths and
deficit angles and constructs a path integral in terms of them. If one uses holonomies and
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discrete areas of loop quantum gravity in place of edge lengths, one is again led to a spin
foam. These three routes are inspired by various aspects of general relativity. The fourth
avenue starts from approaches to quantum gravity in which gravity is to emerge from a more
fundamental theory based on abstract structures that, to begin with, have nothing to do
with space-time geometry. Examples are matrix models for 2-dimensional gravity and their
extension to 3-dimensions —the Boulatov model [16]— where the basic object is a field on
a group manifold rather than a matrix. The Boulatov model was further generalized to a
group field theory (GFT) tailored to 4-dimensional gravity [4, 17, 18]. The perturbative
expansion of this GFT turned out be very closely related to the vertex expansions in SFMs.
Thus the SFMs lie at a junction where four apparently distinct paths to quantum gravity
meet. Through contributions of many researchers it has now become an active research area
(see, e.g., [4, 10, 19]).

Let us begin with the first path and examine SFMs from the perspective of LQG. Recall
that spin network states are used in LQG to construct a convenient orthonormal basis in
the kinematical Hilbert space. A key challenge is to extract physical states from them by
imposing constraints. Formally this can be accomplished by the group averaging procedure
which also provides the physical inner product between the resulting states [20, 21]. From
the LQG perspective, the primary goal of SFMs is to construct a path integral that leads
to this physical Hilbert space.

Heuristically, the main idea behind this construction can be summarized as follows. Con-
sider a 4-manifold M bounded by two 3-surfaces, S1 and S2, and a simplicial decomposition
thereof. One can think of S1 as an ‘initial’ surface and S2 as a ‘final’ surface. One can fix a
spin network on each of these surfaces to specify an ‘initial’ and a ‘final’ state of the quantum
3-geometry. A quantum 4-geometry interpolating between the two can be constructed by
considering the dual triangulation of M and coloring its surfaces with half integers j and
edges with suitable intertwiners. The idea is to obtain the physical inner product between
the two states by summing first over all the colorings for a given triangulation, and then over
triangulations keeping the boundary states fixed. The second sum is often referred to as the
vertex expansion because the M-th term in the series corresponds to a dual triangulation
with M vertices. Since each triangulation with a coloring specifies a quantum geometry,
the sum is regarded as a path integral over physically appropriate 4-geometries. In ordi-
nary quantum mechanics and Minkowskian field theories where we have a fixed background
geometry, such a path integral provides the (dynamically determined) transition amplitude
for the first state, specified at initial time, to evolve to the second state at the final time. In
the background independent context of quantum gravity, one does not have access to a time
variable and dynamics is encoded in constraints. Therefore the notion of a transition in a
pre-specified time interval is not meaningful a priori. Rather, the sum over histories now
provides the physical inner product between solutions to the quantum constraints, extracted
from the two spin network states.

Over the last two years there have been significant advances in SFMs. While the structure
of the path integral is well-motivated by the interplay between general relativity and the
BF theory, its precise definition requires a key new ingredient —the vertex amplitude. The
first proposal for the vertex amplitude was made over ten years ago [11]. But it turned
out to have important limitations [22, 23]. New proposals have now been put forward
[24–27] and, for the physically interesting regime of the Barbero-Immirzi parameter, they
agree. Furthermore, one can regard these SFMs as providing an independent derivation of
the kinematics underlying LQG. The detailed agreement between LQG and the new SFMs
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[28, 29] is a striking development. There are also a number of results indicating that one
does recover general relativity in the appropriate limit [32, 33]. Finally, the vertex amplitude
is severely constrained by several general requirements which the new proposals meet.

However, so far, the vertex amplitude has not been systematically derived following proce-
dures used in well-understood field theories, or, starting from a well-understood Hamiltonian
dynamics. Therefore, although the convergence of ideas from several different directions is
impressive, a number of issues still remain. In particular, the convergence is not quite as
seamless as one would like; some rough edges still remain because of unresolved tensions.

For example, the final vertex expansion is a discrete sum, in which each term is itself
a sum over colorings for a fixed triangulation. A priori it is somewhat surprising that the
final answer can be written as a discrete sum. Would one not have to take some sort of
a continuum limit at the end? One does this in the standard Regge approach [30] which,
as we indicated above, is closely related to SFMs. Another route to SFMs emphasizes and
exploits the close resemblance to gauge theories. In non-topological gauge theories one also
has to take a continuum limit. Why not in SFMs? Is there perhaps a fundamental difference
because, while the standard path integral treatment of gauge theories is rooted in the smooth
Minkowskian geometry, SFMs must face the Planck scale discreteness squarely?

A second potential tension stems from the fact that the construction of the physical inner
product mimics that of the transition amplitude in Minkowskian quantum field theories.
As noted above, in a background independent theory, there is no a priori notion of time
evolution and dynamics is encoded in constraints. However, sometimes it is possible to ‘de-
parameterize’ the theory and solve the Hamiltonian constraint by introducing an emergent or
relational time a la Leibnitz. What would then be the interpretation of the spin-foam path
integral? Would it yield both the physical inner product and the transition amplitude?
Or, is there another irreconcilable difference from the framework used Minkowskian field
theories?

There is a also a tension between SFMs and GFTs. Although fields in GFTs live on
an abstract manifold constructed from a Lie group, as in familiar field theories the action
has a free part and an interaction term. The interaction term has a coupling constant, λ,
as coefficient. One can therefore carry out a Feynman expansion and express the partition
function, propagators, etc, as a perturbation series in λ. If one sets λ = 1, the resulting
series can be identified with the vertex expansion of SFMs. But if one adopts the viewpoint
that the GFT is fundamental and regards gravity as an emergent phenomenon, one is led to
allow λ to run under the renormalization group flow. What then is the meaning of setting
λ = 1? Or, do other values of λ have a role in SFMs that has simply remained unnoticed
thus far? Alternatively, one can put the burden on GFTs. They appear to be efficient and
useful calculational schemes. But if they are to have a direct physical significance on their
own, what then would the gravitational meaning of λ be?

Such questions are conceptually and technically difficult. However, they are important
precisely because SFMs appear to lie at a junction of several cross-roads and the recent
advances bring out their great potential. Loop quantum cosmology (LQC) provides a physi-
cally interesting yet technically simple context to explore such issues. In LQC the principles
of LQG are applied to simple cosmological models which have a high degree of symmetry.
Thanks to this symmetry, it has been possible to construct and analyze in detail quantum
theories in a number of cases [34–47]. Furthermore, LQC shares many of the conceptual
problems of LQG and SFMs. Therefore it provides a fertile ground to test various ideas
and conjectures in the full theory. In the Hamiltonian context, LQC has served this role
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successfully (for a recent review, see [48]). The goal of this paper is to first cast LQC in the
spin foam paradigm and then use the results to shed light on the paradigm itself.

In LQC one can arrive at a sum over histories starting from a fully controlled Hamiltonian
theory. We will find that this sum bears out the ideas and conjectures that drive the
spin foam paradigm. Specifically, we will show that: i) the physical inner product in the
timeless framework equals the transition amplitude in the theory that is deparameterized
using relational time; ii) this quantity admits a vertex expansion a la SFMs in which the
M-th term refers just to M volume transitions, without any reference to the time at which
the transition takes place; iii) the exact physical inner product is obtained by summing over
just the discrete geometries; no ‘continuum limit’ is involved; and, iv) the vertex expansion
can be interpreted as a perturbative expansion in the spirit of GFT, where, moreover, the
GFT coupling constant λ is closely related to the cosmological constant Λ. These results
were reported in the brief communication [1]. Here we provide the detailed arguments and
proofs. Because the Hilbert space theory is fully under control in this example, we will
be able to avoid formal manipulations and pin-point the one technical assumption that is
necessary to obtain the desired vertex expansion (see discussion at the end of section IIIA).
In addition, this analysis will shed light on some long standing issues in SFMs such as the
role of orientation in the spin foam histories [49], the somewhat puzzling fact that spin foam
amplitudes are real rather than complex [31], and the emergence of the cosine cosSEH of the
Einstein action —rather than eiSEH— in the classical limit [32, 33].

The paper is organized as follows. In section II we summarize the salient features of
LQC that are needed to arrive at a sum over histories formulation. Section III establishes
the main results in the timeless framework, generally used in SFMs. In particular, we show
that the physical inner product can be expressed as a vertex expansion. In section IV we
introduce a deparametrization using the relational time of LQC and obtain an equivalent but
distinct vertex expansion, more directly related to the transition amplitude. The existence
of distinct vertex expansions which sum to the same result suggests the possibility that there
may well be distinct but physically equivalent vertex amplitudes in SFMs, each leading to a
perturbative expansion that is tailored to a specific aspect of the physical problem. To avoid
repetition, we adopted a strategy that is opposite of that used in [1]: here we provide detailed
derivations in the timeless framework (section III) and leave out the details while discussing
analogous results in the deparameterized picture (section IV). Section V summarizes the
main results and discusses some generalizations and open issues. A number of technical
issues are discussed in three Appendices.

II. LQC: A BRIEF OVERVIEW

We will focus on the simplest LQC model that has been analyzed in detail [34–36, 39]:
the k=0, Λ=0 Friedmann model with a massless scalar field as a source. However, it should
not be difficult to extend this analysis to allow for a non-zero cosmological constant [40, 41]
or anisotropies [43, 44] or to the spatially compact k=1 case [37].

In the FRW models, one begins by fixing a (spatial) manifold S, topologically R
3, Carte-

sian coordinates xi thereon, and a fiducial metric qoab given by qoabdx
adxb = dx21 +dx22 +dx23.

The physical 3-metric qab is then determined by a scale factor a; qab = a2qoab. For the
Hamiltonian analysis one fixes a cubical fiducial cell V whose volume with respect to qoab is
Vo so that its physical volume is V = a3Vo. The quantity ν defined by V = 2πγℓ2Pl |ν| turns
out to be a convenient configuration variable, where γ is the Barbero-Immirzi parameter of
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LQG [39].1

The kinematical Hilbert space is a tensor productHkin = Hgrav
kin ⊗Hmatt

kin of the gravitational
and matter Hilbert spaces. Elements Ψ(ν) of Hgrav

kin are functions of ν with support on a
countable number of points and with finite norm ||Ψ||2 :=

∑
ν |Ψ(ν)|2. The matter Hilbert

space is the standard one: Hmatt
kin = L2(R, dφ). 2 Thus, the kinematic quantum states of the

model are functions Ψ(ν, φ) with finite norm ||Ψ||2 :=
∑

ν

∫
dφ |Ψ(ν, φ)|2. A (generalized)

orthonormal basis in Hkin is given by |ν, φ〉 with

〈ν ′, φ′ | ν, φ〉 = δν′ν δ(φ
′, φ) . (2.1)

To obtain the physical Hilbert space, one first notes that the quantum constraint can be
written as

−CΨ(ν, φ) ≡ ∂2φΨ(ν, φ) + ΘΨ(ν, φ) = 0 (2.2)

where Θ is a positive and self-adjoint operator on Hgrav
kin [50]. More explicitly, Θ is a second

order difference operator

(
ΘΨ

)
(ν) := −3πG

4ℓ2o

[ √
|ν(ν + 4ℓo)| (ν + 2ℓo) Ψ(ν + 4ℓo) − 2ν2Ψ(ν)

+
√
|ν(ν − 4ℓo)| (ν − 2ℓo) Ψ(ν − 4ℓo)

]
, (2.3)

where ℓo is related to the ‘area gap’ ∆ = 4
√
3πγ ℓ2Pl via ℓ

2
o = ∆. The form of Θ shows that

the space of solutions to the quantum constraint can be naturally decomposed into sectors
in which the wave functions have support on specific ‘ν-lattices’ [35]. For definiteness, we
will restrict ourselves to the lattice ν = 4nℓo where n is an integer. Details of the expression
of Θ will not be needed in most of our analysis.

The scalar field φ is monotonic on all classical solutions (also in the cases when k=1,
and Λ 6=0) and therefore serves as a relational time variable, a la Leibnitz, in the classical
theory. This interpretation carries over to the quantum theory. For, the form of the quantum
constraint (2.2) is similar to that of the Klein-Gordon equation, φ playing the role of time
and −Θ of the spatial Laplacian (or, the elliptic operator generalizing the Laplacian if we are
in a general static space-time). Therefore, in LQC, one can use φ as an internal time variable
with respect to which physical quantities such as the density, scalar curvature, anisotropies
in the Bianchi models [43, 44], and infinitely many modes of gravitational waves in the
Gowdy models [45–47], evolve.

In the spin foam literature, by contrast, one does not have access to such a preferred
time and therefore one chooses to work with the timeless formalism. Therefore let us first
forgo the emphasis on using φ as internal time and simply implement the group averaging
procedure which uses the constraint operator as a whole, without having to single out a

1 In LQG the basic geometric variable is an orthonormal triad and the physical metric qab is constructed from

it. If the triad has the same orientation as the fiducial one, given by the coordinates xi, the configuration

variable ν is positive and if the orientations are opposite, ν is negative. Physics of the model is insensitive

to the triad orientation and hence to the sign of ν. In particular the kinematic and physical quantum

states satisfy Ψ(ν, φ) = Ψ(−ν, φ).
2 One can also use a ‘polymer quantization’ of the scalar field at the kinematical level but the final physical

theory turns out to be the same.
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preferred time variable [20, 21]. This procedure plays an important role in sections III and
IV. Therefore it is useful to summarize it in some detail. One begins by fixing a dense
sub-space S of Hkin. In LQC, this is generally taken to be the Schwartz space of smooth
functions f(ν, φ) which fall off to zero at infinity faster than any polynomial. The first step
in the group averaging procedure is to extract a solution Ψf(ν, φ) to the quantum constraint
operator (2.2) from each f ∈ S. These solutions are not normalizable in Hkin because the
spectrum of the constraint C on Hkin is continuous. The second step of the group averaging
procedure provides an appropriate inner product between solutions Ψf (ν, φ).

Denote by ek(ν), with k ∈ (−∞,∞) a complete set of orthonormal eigenfunctions of Θ
on Hgrav

kin . We will denote the eigenvalues by ω2
k and, without loss of generality, assume that

ωk ≥ 0 [35, 36]. (Eigenfunctions and operator functions of Θ are discussed in Appendix C.)
Any f(ν, φ) ∈ S can be expanded as

f(ν, φ) =
∫
dk 1

2π

∫
dpφ f̃(k, pφ) e

ipφ φ ek(ν) . (2.4)

Here and in what follows the range of integrals will be from −∞ to ∞ unless otherwise

stated. Using this expansion, we can group-average any f(ν, φ) to obtain a distributional
solution (in S⋆) Ψf (ν, φ) to the quantum constraint:

Ψf(ν, φ) :=
∫
dα [eiαC 2|pφ| f(ν, φ)] =

∫
dk

∫
dpφ δ(p

2
φ − ω2

k) 2|pφ|f̃(k, p) eipφ φ ek(ν) , (2.5)

where, the operator 2|pφ| has been introduced just for later technical simplification. Had
we dropped it, we would have associated with f the solution (2|pφ|)−1Ψf and, in the end,
obtained a unitarily equivalent representation of the algebra of Dirac observables.

By carrying out the integral over pφ the expression of Ψf can be brought to the desired
form:

Ψf(ν, φ) =
∫
dk

[
f̃(k, ωk) e

iωkφ ek(ν) + f̃(k,−ωk) e
−iωkφ ek(ν)

]

=: Ψ+
f (ν, φ) + Ψ−

f (ν, φ) . (2.6)

By their very definition Ψ±
f (ν, φ) satisfy

Ψ±
f (ν, φ) = e±i

√
Θ(φ−φo) Ψ±

f (ν, φo) , (2.7)

whence they can be interpreted as ‘positive and negative frequency solutions’ to (2.2) with
respect to the relational time φ. Thus the group average of f is a solution Ψf to the quantum
constraint (2.2) which, furthermore, is naturally decomposed into positive and negative
frequency parts. Ψf is to be regarded as a distribution in S⋆ which acts on elements g ∈ S
via the kinematic inner product [20, 21]:

(Ψf |g〉 := 〈Ψf |g〉
=

∫
dk

∫
dpφ δ(p

2
φ − ω2

k) 2ωk
¯̃
f(k, pφ) g̃(k, pφ)

=
∫
dk [

¯̃
f(k, ωk) g̃(k, ωk) +

¯̃
f(k,−ωk) g̃(k,−ωk)] . (2.8)

Finally, the group averaged scalar product on solutions Ψf is given just by this action
[20, 21]. Thus, given any elements f, g in S, the scalar product between the corresponding
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group averaged states Ψf ,Ψg is given by

(Ψf , Ψg) := (Ψf |g〉 = (Ψg|f〉 . (2.9)

In section III we will obtain a vertex expansion for this scalar product.
A conceptually important observation is that, as in the Klein-Gordon case, there is a

superselection. A complete set of Dirac observables is given by the scalar field momentum
pφ = −i∂φ and the volume V |φo (or, equivalently, the energy density operator ρ|φo) at the
value φ = φo of the internal time. (The factor of |pφ| introduced above simplifies the explicit
expressions of V |φo and ρ|φo [35, 36, 39].) The action of these Dirac observables as well
as time evolution leaves the space of positive and negative frequency solutions invariant.
Therefore, as in the Klein-Gordon theory, we are led to work with either set. In LQC, one
generally works with the positive frequency ones. Then the physical Hilbert space Hphy of
LQC consists of positive frequency solutions Ψ+(ν, φ) to the quantum constraint (2.2), i.e.
solutions satisfying

−i∂φ Ψ+(ν, φ) =
√
ΘΨ+(ν, φ) ≡ HΨ+(ν, φ) (2.10)

with inner-product (2.9). This inner product can be re-expressed simply as:

(Ψ+, Φ+)phy =
∑

ν=4nℓo

Ψ̄+(ν, φo) Φ+(ν, φo) . (2.11)

and is independent of the value φo of φ at which the right side is evaluated.
While this construction of Hphy does not require us to think of φ as internal time in

quantum theory, this interpretation is natural in the light of final Eqs (2.10) and (2.11).
For, these equations suggest that we can think of ν as the sole configuration variable and
introduce ‘Schrödinger states’ Ψ(ν) through the physical inner product (2.11). These ‘evolve’
via (2.10). This is the ‘deparameterized’ description to which we will return in section IV. In

this picture, the restriction to positive frequency states has direct interpretation: pφ ≡
√
Θ

is now a positive operator on Hphy just as p0 is a positive operator on the traditional Klein-
Gordon Hilbert space.

III. THE TIMELESS FRAMEWORK

Recall that in the spin foam literature, one works with the timeless framework because
a natural deparametrization is not available in general. To mimic the general spin foam
constructions in LQC, in this section we will largely disregard the fact that the scalar field
can be used as relational time and that the final constraint has the form of the Schrödinger
equation. Instead, we will use the group averaging procedure for the full constraint

C = −∂2φ −Θ ≡ p2φ −Θ (3.1)

and incorporate the positive frequency condition in a second step. None of the steps in this
analysis refer the evolution in relational time mentioned above. Thus, the primary object
of interest will be the physical scalar product, rather than the transition amplitude for a
Schrödinger state Ψ(ν, φi) at an initial ‘time instant’ φi to evolve to another state Φ(ν, φf)
at a final ‘time instant’ φf .

In section II we considered general kinematic states f(ν, φ). In this section, by contrast,
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we will focus on the basis vectors |ν, φ〉 in Hkin which are the LQC analogs of spin networks
that are used to specify the boundary states in SFMs. Following the setup introduced in
section I let us then fix two kinematic states, |νi, φi〉 and |νf , φf〉. For notational simplicity,
we will denote the group averaged solutions to (2.2) they define by |[νi, φi]〉 and |[νf , φf ]〉.
The group averaged inner product between these states is given by

([νf , φf ], [νi, φi]) = 2
∫
dα 〈νf , φf | eiαC |pφ| |νi, φi〉 . (3.2)

Our goal is to express this scalar product as a vertex expansion a la SFMs and study
its properties. In section IIIA we will begin by rewriting it as a sum over histories a la
Feynman [6] and then rearrange the sum as a vertex expansion. In section IIIB we will
arrive at the same expansion using perturbation theory in a suitably defined interaction
picture. This procedure is reminiscent of the perturbation expansion used in GFTs. As
an important consistency check, in section IIIC we verify that this perturbative expansion
does satisfy the constraint order by order. Finally, in section IIID we observe that, in
this simple example, the coupling constant λ used in the expansion is intimately related to
the cosmological constant Λ. Although the precise relation we obtain is tied to LQC, the
observation illustrates in a concrete fashion how one may be able to provide a gravitational
interpretation to λ in GFTs and suggests an avenue for GFT to account for the smallness
of Λ.

A. Sum over Histories

Following Reisenberger and Rovelli [7], let us first focus on the amplitude

A(νf , φf ; νi, φi;α) = 2 〈νf , φf | eiαC |pφ| |νi, φi〉 (3.3)

which constitutes the integrand of (3.2). Mathematically one can choose to regard αC
as a Hamiltonian operator. Then A(νf , φf , νi, φi, α) can be interpreted as the probability
amplitude for an initial kinematic state |νi, φi〉 to evolve to a final kinematic state |νf , φf〉
in a unit ‘time interval’ and we can follow Feynman’s procedure [6] to express it as a sum
over histories. Technically, a key simplification comes from the fact that the constraint C is
a sum of two commuting pieces that act separately on Hmatt

kin and Hgrav
kin . Consequently, the

amplitude (3.3) factorizes as

A(νf , φf ; νi, φi;α) = Aφ(φf , φi;α)AG(νf , νi;α) (3.4)

with
Aφ(φf , φi;α) = 2 〈φf |eiαp

2
φ |pφ||φi〉, and AG(νf , νi;α) = 〈νf |e−iαΘ|νi〉 . (3.5)

It is easy to cast the first amplitude, Aφ, in the desired form using either a standard Feynman
expansion or simply evaluating it by inserting a complete eigen-basis of pφ. The result is:

Aφ(φf , φi;α) = 2
∫
dpφ e

iαp2φ eipφ(φf−φi) |pφ| (3.6)

The expansion of the gravitational amplitude AG is not as simple. We will first express
it as a sum over histories. In a second step, we will evaluate the total amplitude (3.3) by
integrating over α for each history separately. Although it is not a priori obvious, we will find
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that the amplitude associated to each history is manifestly finite and the total amplitude
can be written as a discrete sum that mimics the vertex expansion in SFMs.

1. The gravitational amplitude AG

As mentioned above, to apply the standard Feynman procedure we will regard e−iαΘ as
an ‘evolution operator’ with ‘Hamiltonian’ αΘ and a ‘time interval’ ∆τ = 1. We emphasize
that this ‘evolution’ is a just a convenient mathematical construct and does not correspond
to the physical evolution with respect to the relational time variables φ normally used
in LQC. Rather, since it is generated by the constraint C, physically it represents gauge
transformations (or time reparameterizations).

Let us divide the interval ∆τ = 1 into N parts each of length ǫ = 1/N and write the
gravitational amplitude AG(νf , νi;α) as

〈νf |e−iαΘ|νi〉 =
∑

ν̄N−1,...,ν̄1

〈νf |e−iǫαΘ|ν̄N−1〉〈ν̄N−1|e−iǫαΘ|ν̄N−2〉 ... 〈ν̄1|e−iǫαΘ|νi〉 (3.7)

where we have first split the exponential into N identical terms and then introduced a
decomposition of the identity operator at each intermediate ‘time’ τ = nǫ, n = 1, 2, .., N−1.
For notational simplicity, we will denote the matrix element 〈ν̄n|e−iǫαΘ|ν̄n−1〉 by Uν̄nν̄n−1 and
set νf = ν̄N and νi = ν̄0. We then have

AG(νf , νi;α) =
∑

ν̄N−1,...,ν̄1

Uν̄N ν̄N−1
Uν̄N−1ν̄N−2

. . . Uν̄1ν̄0 . (3.8)

The division of ∆τ provides a skeletonization of this ‘time interval’. An assignment σN =
(ν̄N , . . . , ν̄0) of volumes to the N + 1 time instants τ = ǫn can be regarded as a discrete
(gauge) history associated with this skeletonization since one can envision the universe going
from ν̄n−1 to ν̄n under a finite ‘evolution’. The matrix element is given by a sum of amplitudes
over these discrete histories with fixed endpoints,

AG(νf , νi;α) =
∑

σN

A(σN ) ≡
∑

σN

Uν̄N ν̄N−1
Uν̄N−1ν̄N−2

. . . Uν̄2ν̄1 Uν̄1ν̄0 . (3.9)

The next step in a standard path integral construction is to take the ‘continuum’ limit,
N → ∞, of the skeletonization. In particle mechanics at this stage one uses a continuous
basis (say the position basis |x〉) to carry out this expansion. By contrast, our basis |νn〉
is discrete. As a result, one can make rigorous sense of the N → ∞ limit by reorganizing
the well-defined sum (3.9) according to the number of volume transitions. The remainder
of section IIIA 1 is devoted to carrying out this step.

This task involves two key ideas. Let us first note that along a path σN , the volume ν̄
is allowed to remain constant along a number of time steps, then jump to another value,
where it could again remain constant for a certain number of time steps, and so on. The
first key idea is to group paths according to the number of volume transitions rather than
time steps. Let us then consider a path σM

N which involves M volume transitions (clearly,
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M ≤ N):

σM
N = ( νM , . . . , νM ; νM−1, . . . , νM−1; . . . . . . ;

N2︷ ︸︸ ︷
ν1, . . . , ν1; ν0, . . . , ν0︸ ︷︷ ︸

N1

) . (3.10)

Thus, the volume changes from νm−1 to νm at ‘time’ τ = Nmǫ and remains νm till time
τ = Nm+1 ǫ. Note that νm is distinct from ν̄m used in (3.9): While νm is the volume after
the m-th volume transition along the given discrete path, ν̄m is the volume at the end of
the m-th time interval, i.e., at τ = mǫ.

These discrete histories can be labeled more transparently by two ordered sequences

σM
N = { (νM , νM−1, . . . , ν1, ν0); (NM , NM−1, . . . , N2, N1) }, νm 6= νm−1, Nm > Nm−1.

(3.11)
where νM , . . . , ν0 denote the volumes that feature in the history σM

N and Nk denotes the
number of time steps after which the volume changes from νk−1 to νk. Note that while no
two consecutive volume values can be equal, a given volume value can repeat in the sequence;
νm can equal some νn if n 6= m ± 1. The probability amplitude for such a history σM

N is
given by:

A(σM
N ) = [UνMνM ]N−NM−1 UνMνM−1

. . . [Uν1ν1]
N2−N1−1 Uν1ν0 [Uν0ν0 ]

N1−1 . (3.12)

The second key idea is to perform the sum over all these amplitudes in three steps. First
we keep the ordered set of volumes (νM , . . . , ν0) fixed, but allow the volume transitions to
occur at any value τ = nǫ in the interval ∆τ , subject only to the constraint that the m-th
transition occurs before the (m+1)-th for all m. The sum of amplitudes over this group of
histories is given by

AN(νM , . . . , ν0;α) =

N−1∑

NM=M

NM−1∑

NM−1=M−1

. . .

N2−1∑

N1=1

A(σM
N ). (3.13)

Next we sum over all possible intermediate values of νm such that νm 6= νm−1, keeping
ν0 = νi, νM = νf to obtain the amplitude AN(M) associated with the set of all paths in
which there are precisely M volume transitions:

AN (M ;α) =
∑

νM−1,...,ν1
νm 6=νm+1

AN(νM , . . . , ν0;α) (3.14)

Finally the total amplitude AG(νf ; νi, α) is obtained by summing over all volume transitions
that are permissible within our initially fixed skeletonization with N time steps:

AG(νf , νi;α) =
N∑

M=0

AN(M ;α) (3.15)

This concludes the desired re-arrangement of the sum (3.9). The sum on the right side is
manifestly finite. Furthermore, since AG(νf , νi;α) = 〈νf |e−iαΘ|νi〉, the value of the amplitude
(3.15) does not depend on N at all; the skeletonization was introduced just to express this
well-defined amplitude as a sum over histories. Thus, while the range of M in the sum and
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the amplitude AN(M ;α) in (3.15) both depend on N , the sum does not.
Therefore we are well positioned to get rid of the skeletonization altogether by taking

the limit N goes to infinity. Note first that with our fixed skeletonization, the gravitational
amplitude is a finite sum of terms,

AG(νf , νi;α) = AN(0;α) + AN (1;α) + . . .+ AN(M ;α) + . . .+ AN(N ;α) (3.16)

each providing the contribution of all discrete paths that contain a fixed number of volume
transitions. Let us focus on the Mth term in the sum:

AN (M ;α) =
∑

νM−1,...,ν1
νm 6=νm+1

AN(νM , . . . , ν0;α) (3.17)

Now, in Appendix A we show that the limit limN→∞AN (νM , . . . , ν0;α) exists and is given
by

A(νM , . . . , ν0;α) := lim
N→∞

AN(νM , . . . , ν0;α)

=
∫ 1

0
dτM

∫ τM
0

dτM−1 . . .
∫ τ2
0
dτ1 A(νM , . . . , ν0; τM , . . . , τ1;α) (3.18)

where

A(νM , . . . , ν0; τM , . . . , τ1; α) := e−i(1−τM )αΘνMνM (−iαΘνMνM−1
) ×

. . . e−i(τ2−τ1)αΘν1ν1 (−iαΘν1ν0) e
−iτ1αΘν0ν0 . (3.19)

Note that the matrix elements Θνmνn = 〈νm|Θ|νn〉 of Θ in Hgrav
kin can be calculated easily

from (2.3) and vanish if (νm − νn) 6∈ {0,±4ℓ0}. Therefore, explicit evaluation of the limit is
rather straightforward. We will assume that the limit N → ∞ can be interchanged with the
sum over νM−1, . . . ν1. (This assumption is motivated by the fact that in the expression of
A(νM , . . . , ν0;α) most matrix elements of Θ vanish, and since the initial and final volumes
are fixed, the sums over intermediate volumes νM−1, . . . , ν1 extend over only a finite number
of non-zero terms.) Then it follows that

AG(M ;α) := lim
N→∞

AN (M ;α)

exists for each finite M . Note that the reference to the skeletonization disappears in this
limit. Thus, AG(M ;α) is the amplitude obtained by summing over all paths that contain
precisely M volume transitions within the ‘time interval’ ∆τ = 1, irrespective of precisely
when and at what values of volume they occurred. Finally, (3.16) implies that the total
gravitational amplitude can be written as an infinite sum:

AG(νf , νi;α) =

∞∑

M=0

AG(M ;α) (3.20)

While each partial amplitude AG(M ;α) is well-defined and finite, it does not ensure that
the infinite sum converges. A priori the infinite sum on the right hand side of (3.20) could
be, for example, only an asymptotic series to the well-defined left side. Also, our derivation
assumed that the limit N → ∞ commutes with the partial sums. Both these limitations will
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be overcome in section IIIB: We will see that AG(νf , νi;α) is indeed given by a convergent
sum (3.20).

The expression (3.18) still contains some integrals. These can be performed exactly. The
case when all of (νM , . . . , ν0) are distinct is straightforward and the result as given in [1].
The general case is a little more complicated and is analyzed in Appendix B. The final
result is:

A(νM , . . . , ν0;α) =ΘνMνM−1
ΘνM−1νM−2

. . .Θν2ν1Θν1ν0 ×
p∏

k=1

1

(nk − 1)!

(
∂

∂Θwkwk

)nk−1 p∑

m=1

e−iαΘwmwm∆τ

∏p
j 6=m(Θwmwm −Θwjwj

)
(3.21)

where, since the volumes can repeat along the discrete path, wm label the p distinct values
taken by the volume and nm the number of times that each value occurs in the sequence.
The nm satisfy n1 + . . .+ np =M + 1.

To summarize, we have written the gravitational part AG(νf , νi;α) of the amplitude as a
‘sum over histories’:

AG(νf , νi;α) =
∞∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

A(νM , . . . , ν0;α) (3.22)

with A(νM , . . . , ν0;α) given by (3.21). This expression consists of a sum overM , the number
of volume transitions, and a sum over the (finite number of) sequences ofM−1 intermediate
volumes that are consistent with the boundary conditions and the condition that νm 6= νm+1.
In section IIIA 2 we will use this sum to generate the ‘vertex expansion’ of the physical inner
product.

2. Vertex expansion of the physical inner product

Recall that the group-averaged scalar product can be expressed as

([νf , φf ], [νi, φi]) = 2
∫
dαAφ(νi, φi;α)AG(νf , νi;α) . (3.23)

The main assumption in our derivation —the only one that will be required also in section
IIIB— is that one can interchange the integration over α and the sum over M in the
expression of AG(νf , νi;α). Let us then use expressions (3.6) and (3.22) of Aφ and AG,
make the interchange and carry out the integral over α. The scalar product (3.23) is then
re-expressed as a sum of amplitudes associated with discrete paths (νM , . . . , ν0):

([νf , φf ], [νi, φi]) =
∞∑

M=0

[ ∑

νM−1,...,ν1
νm 6=νm+1

A(νM , . . . , ν0;φf , φi)
]
, (3.24)



13

where,

A(νM , . . . , ν0;φf , φi) = 2ΘνMνM−1
ΘνM−1νM−2

. . . Θν2ν1 Θν1ν0 × (3.25)
p∏

k=1

1

(nk − 1)!

(
∂

∂Θwkwk

)nk−1 p∑

m=1

∫
dpφ e

ipφ(φf−φi) |pφ|
δ(p2φ−Θwmwm∆τ)

∏p
j 6=m(Θwmwm−Θwjwj )

.

The right side is a sum of distributions, integrated over pφ. It is straightforward to perform
the integral and express A(νM , . . . , ν0; φf , φi) in terms of the matrix elements of Θ:

A(νM , . . . , ν0;φf , φi) = ΘνMνM−1
ΘνM−1νM−2

. . . Θν2ν1 Θν1ν0 × (3.26)
p∏

k=1

1

(nk − 1)!

( ∂

∂Θwkwk

)nk−1
p∑

m=1

ei
√

Θwmwm∆φ + e−i
√

Θwmwm∆φ

∏p
j 6=m(Θwmwm −Θwjwj

)

where ∆φ = φf − φi. Since by inspection each amplitude A(νM , . . . , ν0, φf , φi) is real, the
group averaged scalar product (3.24) is also real.

Finally, as explained in section II, the group averaging procedure yields a solution which
has both positive and negative frequency components while the physical Hilbert space con-
sists only of positive frequency solutions. Let us denote the positive frequency parts of the
group averaged ket |[ν, φ]〉 by |[ν, φ]+〉. Then, the physical scalar product between these
states in Hphy is given by a sum over amplitudes A(M), each associated with a fixed number
of volume transitions:

([νf , φf ]+, [νi, φi]+)phy =

∞∑

M=0

A(M) (3.27)

=

∞∑

M=0

[ ∑

νM−1,...,ν1
νm 6=νm+1

ΘνMνM−1
ΘνM−1νM−2

. . . Θν2ν1 Θν1ν0

×
p∏

k=1

1

(nk − 1)!

( ∂

∂Θwkwk

)nk−1
p∑

i=1

ei
√

Θwiwi∆φ

∏p
j 6=i(Θwiwi

−Θwjwj
)

]
.

(Note that the right side is in general complex, a point to which we will return in section
V.) This is the vertex expansion of the physical inner product we were seeking. It has
two key features. First, the integral over the parameter α was carried out and is not
divergent. This is a non-trivial and important result if we are interested in computing
the physical inner product perturbatively, i.e., order by order in the number of vertices.
Second, the summand involves only the matrix elements of Θ which are easy to compute.
As remarked earlier, significant simplification arises because Eq (2.3) implies that Θνmνn is
zero if νm − νn 6∈ {0,±4ℓ0}.

Let us summarize. We did not begin by postulating that the physical inner product is
given by a formal path integral. Rather, we started with the kinematical Hilbert space and
the group averaging procedure and derived a vertex expansion of the physical inner product.
Because the Hilbert space framework is fully under control, we could pin-point the one
assumption that is needed to arrive at (3.27): the sum over vertices and the integral over α
can be interchanged. In the full theory, one often performs formal manipulations which result
in divergent individual terms in the series under consideration. (For instance sometimes one
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starts by expanding the very first amplitude (3.3) in powers of α even though the α integral of
each term is then divergent [7, 19]). In our case, individual terms in the series are all finite,

and, as we will show in section IIIB, even the full series (3.22) representing the gravitational
amplitude is convergent. Nonetheless, at present the interchange of the α-integral and the
infinite sum over M has not been justified. If this gap can be filled, we would have a fully
rigorous argument that the well-defined physical inner product admits an exact, convergent
vertex expansion (3.27). (This assumption is needed only in the timeless framework because
the integration over α never appears in the deparameterized framework of section IV.) In
particular, there is no need to take a ‘continuum limit’.

B. Perturbation Series

We will now show that the expression (3.27) of the transition amplitude can also be
obtained using a specific perturbative expansion. Structurally, this second derivation of the
vertex expansion is reminiscent of the perturbative strategy used in group field theory (see,
e.g., [17, 18]).

Let us begin by considering the diagonal and off-diagonal parts D and K of the operator
Θ in the basis |ν = 4nℓo〉. Thus, matrix elements of D and K are given by:

Dν′ν = Θνν δν′ν , Kν′ν =

{
Θν′ν ν ′ 6= ν
0 ν ′ = ν

(3.28)

Clearly C = p2φ −D −K. The idea is to think of p2φ −D as the ‘main part’ of C and K as
a ‘perturbation’. To implement it, introduce a 1-parameter family of operators

Cλ = p2φ −Θλ := p2φ −D − λK (3.29)

as an intermediate mathematical step. The parameter λ will simply serve as a marker to
keep track of powers of K in the perturbative expansion and we will have to set λ = 1 at
the end of the calculation.

Our starting point is again the decomposition (3.4) of the amplitude A(νf , φf ; νi, φi;α)
into a scalar field and a gravitational part. The λ dependance appears in the gravitational
part:

A
(λ)
G (νf , νi, α) := 〈νf |e−iαΘλ |νi〉. (3.30)

Let us construct a perturbative expansion of this amplitude. Again we think of e−iαΘλ as
a mathematical ‘evolution operator’ defined by the ‘Hamiltonian’ αΘλ and a ‘time interval’
∆τ = 1. The ‘ unperturbed Hamiltonian’ is αD and the ‘perturbation’ is λαK. Following
the textbook procedure, let us define the ‘interaction Hamiltonian’ as

HI(τ) = eiαDτ αK e−iαDτ . (3.31)

Then the evolution in the interaction picture is dictated by the 1-parameter family of unitary
operators on Hgrav

kin

Ũλ(τ) = eiαDτe−iαΘλ τ , satisfying
dŨλ(τ)

dτ
= −iλHI(τ)Ũλ(τ) . (3.32)
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The solution of this equation is given by a time-ordered exponential:

Ũλ(τ) = T e−i
∫ τ

0
HI(τ)dτ

=
∞∑

M=0

λM
∫ τ

0
dτM

∫ τM
0

dτM−1 . . .
∫ τ2

0
dτ1 [−iHI(τM )] ... [−iHI(τ1)] . (3.33)

Next we use the relation e−iαΘλ = e−iαDŨλ(1), with Ũλ given by (3.33), take the matrix
element of eiαΘλ between initial and final states, |νi ≡ ν0〉 and |νf ≡ νM〉, and write out
explicitly the product of the HI ’s. The result is

A
(λ)
G (νf , νi, α) =

∞∑

M=0

λM
∫ 1

0
dτM ...

∫ τ2
0
dτ1

∑
νM−1, ..., ν1

[e−i(1−τM )αDνMνM ] ×

(−iαKνMνM−1
) . . . (−iαKν1ν0) [e

−iτ1αDν0ν0 ] .(3.34)

We can now replace D and K by their definition (3.28). Because K has no diagonal matrix
elements, only the terms with νm 6= νm+1 contribute and the sum reduces precisely to

A
(λ)
G (νf , νi, α) =

∞∑

M=0

λM
[ ∑

νM−1,...,ν1
νm 6=νm+1

A(νM , . . . , ν0;α)
]
, (3.35)

where A(νM , . . . , ν0;α) is given by (3.21) as in the sum over histories expansion of section
IIIA 1.

We can now construct the total amplitude by including the scalar field factor (3.6) and
performing the α integral as in section IIIA 2. Then the group averaged scalar product is
given by

([νf , φf ], [νi, φi])
(λ) =

∞∑

M=0

λM
[ ∑

νM−1,...,ν1
νm 6=νm+1

A(νM , . . . , ν0, φf , φi)
]

(3.36)

where A(νM , . . . , ν0, φf , φi) is given in (3.26). If we now set λ = 1, (3.36) reduces to (3.24)
obtained independently in section IIIA 2.

Finally, let us restrict ourselves to the positive frequency parts |[ν, φ]+〉 of [ν, φ]〉 which
provide elements of Hphy. Reasoning of section IIIA 2 tells us that the physical scalar
product ([νf , φf ]+, [vi, φi]+)phy is given by (3.27).

Thus, by formally regarding the volume changing, off-diagonal piece of the constraint
as a perturbation we have obtained an independent derivation of the vertex expansion for
([νf , φf ]+, [vi, φi]+)phy as a power series expansion in λ, the power of λ serving as a bookmark
that keeps track of the number of vertices in each term. In this sense this alternate derivation
is analogous to the vertex expansion obtained using group field theory. This derivation has
a technical advantage. Since HI is self-adjoint on Hgrav

kin , it follows that the expansion (3.33)

of Ũλ(τ) is convergent everywhere on Hgrav
kin [51]. This in turn implies that the right hand

side of (3.35) converges to the well-defined gravitational amplitude A
(λ)
G = 〈νf |e−iαΘλ |νi〉.

However, to arrive at the final vertex expansion starting from (3.35) we followed the same
procedure as in section IIIA 2. Therefore, this second derivation of the vertex amplitude
also assumes that one can interchange the integral over α with the (convergent but) infinite
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sum over M in (3.35).

C. Satisfaction of the constraint

The physical inner product between the basis states defines a 2-point function:

G(νf , φf ; νiφi) := ([νf , φf ]+, [νi, φi]+)phy (3.37)

and it follows from section II that it satisfies the constraint equation in each argument. Since
G(νf , φf ; νiφi) = Ḡ(νi, φi; νfφf), it suffices to focus just on one argument, say the final one.
Then we have:

[∂2φf
−Θf ]G(νf , φf ; νi, φi) = 0 (3.38)

where Θf acts as in (2.3) but on νf in place of ν. If one replaces Θ by Θλ, one obtains a
2-point function Gλ(νf , φf ; vi, φi) which, as we saw in section IIIB admits a perturbative
expansion:

Gλ(νf , φf ; vi, pi) =
∞∑

M=0

λM AM(νf , φf ; vi, φi), (3.39)

where AM is the amplitude defined in (3.27):

AM(νf , φf ; vi, φi) =
∑

νM−1,...,ν1
νm 6=νm+1

A+(νM , . . . ν0; φf , φi)

≡
∑

νM−1,...,ν1
νm 6=νm+1

ΘνMνM−1
ΘνM−1νM−2

. . . Θν2ν1 Θν1ν0 ×

p∏

k=1

1

(nk − 1)!

( ∂

∂Θwkwk

)nk−1
p∑

m=1

ei
√

Θwmwm∆φ

∏p
j 6=m(Θwmwm −Θwjwj

)
(3.40)

The suffix + in A+(νM , . . . , ν0; φf , φi) emphasizes that we have taken the positive frequency
part.

As a non-trivial check on this expansion we will now show that Gλ satisfies (3.38) order
by order. Since Θλ = D + λK, our task reduces to showing

(∂2φf
−Df)AM(νf , φf ; νiφi)−Kf AM−1(νf , φf ; νiφi) = 0 . (3.41)

We’ll show that the left hand side is zero path by path in the sense that for every path acted
on by the off-diagonal part there are two paths acted on the diagonal part that cancel it.
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Without loss of generality we assume that νf = wp in (3.40). Then we have

(∂2φf
−Df )A+(νf , νM−1, . . . , ν1, νi;φf , φi) = ΘνfνM−1

ΘνM−1νM−2
. . .Θν2ν1Θν1νi×[

p∏

k=1

1

(nk − 1)!

(
∂

∂Θwkwk

)nk−1 p∑

m=1

Θwmwme
i
√

Θwmwm∆φ

∏p
j 6=m(Θwmwm −Θwjwj

)
(3.42)

− Θwpwp

p∏

k=1

1

(nk − 1)!

(
∂

∂Θwkwk

)nk−1 p∑

m=1

ei
√

Θwmwm∆φ

∏p
j 6=m(Θwmwm −Θwjwj

)

]
.

If wp occurs with multiplicity np = 1, if νf is the only volume to take the value wp then
there are no derivatives in Θwpwp in the above equation and it simplifies to

(∂2φf
−Df )A+(νf , νM−1, . . . , ν1, νi;φf , φi) = ΘνfνM−1

ΘνM−1νM−2
. . .Θν2ν1Θν1νi×[

p−1∏

k=1

1

(nk − 1)!

(
∂

∂Θwkwk

)nk−1 p∑

m=1

(Θwmwm −Θwpwp)e
i
√

Θwiwi
∆φ

∏p
j 6=i(Θwmwm −Θwjwj

)

]

= ΘνfνM−1
A+(νM−1, . . . , ν1, νi;φf , φi) . (3.43)

Thus, on simple paths where the final volume occurs only once in the sequence, the action
of [∂2φf

− D] is to give the amplitude of the path without νf , times a matrix element of
Θ related to the transition from νM−1 to νf . In general, the value of the final volume can
be repeated in the discrete path; np 6= 1. In that case we need to push Θwpwp under the
derivatives but the final result is the same. Thus, in all cases we have

(∂2φf
−Df )A+(νf , νM−1, . . . , ν1, νi;φf , φi) = ΘνfνM−1

A+(νM−1, . . . , ν1, νi;φf , φi) . (3.44)

Finally, it is straightforward to evaluate the action of the off-diagonal part on AM−1 (see
(3.41)):

K A+(νf , νM−2, . . . , ν1, νi;φf , φi) =
∑

νM−1

Θνf νM−1
A+(νM−1, νM−2, . . . , ν1, νi;φf , φi) . (3.45)

Combining these results we see that Eq. (3.41) is satisfied. Thus the vertex expansion we
obtained is a solution to the quantum constraint equation. Further it is a good perturbative
solution in the sense that, if we only take paths in which the number of volume transitions
is less than some M⋆, then the constraint is satisfied to the M⋆ order in λ

[∂2φf
− (Df + λKf)]

M⋆∑

M=0

λM AM(νf , φf ; νi, φi) = O(λM
⋆+1) (3.46)

Also in this calculation the cancelations occur in a simple manner; the off-diagonal part
acting on paths withM−1 transitions gives a contribution for each path withM transitions
that could be obtained by a adding a single additional transition in the original path. These
contributions cancel with the action of the diagonal part on the paths with M transitions.

This calculation provides an explicit check on our perturbative expansion of the physical
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inner product. This is a concrete realization, in this simple example, of a central hope of
SFMs: to show that the physical inner product between spin networks, expressed as a vertex
expansion, does solve the Hamiltonian constraint of LQG order by order.

D. The ‘coupling constant’ λ and the cosmological constant Λ

So far we have regarded the GFT inspired perturbation theory as a calculational tool and
the coupling constant λ as a book-keeping device which merely keeps track of the number
of vertices in the vertex expansion. From this standpoint values of λ other than λ = 1 have
no physical significance. However, if one regards GFT as fundamental and gravity as an
emergent phenomenon, one is forced to change the viewpoint. From this new perspective,
the coupling constant λ is physical and can, for example, run under a renormalization group
flow. The question we raised in section I is: What would then be the physical meaning of λ
from the gravitational perspective? Surprisingly, in the LQC model under consideration, λ
can be regarded as (a function of) the cosmological constant Λ.

Let us begin by noting how the quantum constraint changes in presence of a cosmological
constant Λ:

−C(Λ) = ∂2φ +Θ(Λ) ≡ ∂2φ +Θ− πGγ2Λν2 . (3.47)

Thus, only the diagonal part of Θ is modified and it just acquires an additional term propor-
tional to Λ. In the GFT-like perturbation expansion, then, we are led to decompose Θλ(Λ)
as

Θλ(Λ) = D(Λ) + λK where D(Λ) = πG (
3

2ℓ2o
− γ2Λ) ν2 . (3.48)

It is now easy to check that Ψ(ν, φ) satisfies the constraint equation

[∂2φ +D(Λ) + λK] Ψ(ν, φ) = 0 (3.49)

with cosmological constant Λ if and only if Ψ̃(ν, φ̃) satisfies

[∂2
φ̃
+D(Λ̃) +K] Ψ̃(ν, φ̃) = 0 (3.50)

where

Λ̃ =
Λ

λ
+

3

2γ2ℓ2oλ
(λ− 1), φ̃ =

√
λφ, and Ψ̃(ν, φ̃) = Ψ(ν, φ) . (3.51)

Consequently the two theories are isomorphic.
Because of this isomorphism, the gravitational meaning of the coupling constant λ is

surprisingly simple. Consider the FRW model with cosmological constant Λ. Evaluating the
GFT-like perturbation theory at λ = λ0 would provide the spin foam-like vertex expansion
for the theory with cosmological constant Λ̃0 = Λ/λ0+(3/2γ2ℓ2oλ0) (λ0−1). Thus, evaluation
of the vertex expansion at λ 6= 1 in GFT can be interpreted as a specific shift in the value
of the cosmological constant in the Hamiltonian or the spin-foam formulations of LQC.

It is instructive to consider the reciprocal case and set Λ̃ = 0. Then the tilde theory yields
the spin-foam expansion with zero cosmological constant we obtained in section IIIA. The
un-tilde theory provides its re-interpretation from the GFT perspective. Now the cosmolog-
ical constant ‘runs with the coupling constant’ via Λ = 3(1−λ)/2γ2ℓ2o. In the weak coupling
limit λ ≈ 0, this theory has a positive but Planck scale cosmological constant Λ ≈ 3/2γ2ℓ2o.
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This is what one would expect from the ‘vacuum energy’ considerations in quantum field
theories in Minkowski space-time. If the coupling constant λ were to increase under some
renormalization group flow and approach the SFM value λ = 1, then Λ would decrease. If
we are just slightly away from the fixed point λ = 1, the cosmological constant Λ would
be small and positive. These heuristics suggest an avenue by which a fully developed GFT
could perhaps account for the smallness of the cosmological constant.

IV. DEPARAMETERIZED FRAMEWORK

In this section we will use the deparameterized framework which emphasizes the role
of φ as internal time. As explained in section II, now we can work in the Schrödinger
picture, regarding ν as the configuration variable and φ as time. The physical states are
now represented as functions Ψ(ν) with a finite norm,

||Ψ||2phy =
∑

ν=4nℓo

|Ψ(ν)|2 , (4.1)

and they evolve via Schrödinger equation:

−i∂φ Ψ(ν, φ) =
√
ΘΨ(ν, φ) ≡ HΨ(ν, φ) . (4.2)

In contrast to section III, in this section we will not be interested in the kinematical Hilbert
space or the group averaging procedure. The primary object of interest will rather be the
transition amplitude

A(νf , ϕ; νi, 0) = 〈νf | eiHϕ|νi〉 (4.3)

for the initial physical state |νi〉 at time φi = 0 to evolve to |νf〉 at time φf = ϕ. From
our discussion in section II, one would expect this amplitude to equal the physical scalar
product ([νf , ϕ]+, [νi, 0]+)phy = G(νf , ϕ; νi, 0) considered in section III. This is indeed the
case. For, the positive frequency solution Ψνi,φi

≡ [νi, φi]+ obtained by group averaging the
kinematic basis vector |νi, φi〉 is given by

Ψνi,φi
(ν, φ) =

∫
dk (ēk(νi) e

−iωkφi) eiωk(φ) ek(ν) (4.4)

(see Eq.(2.6)) so that the physical scalar product between positive frequency solutions
[νi, φi]+ and [νf , φf ]+ is given by

([νf , φf ]+, [νi, φi]+)phy =
∫
dk eiωk(φf−φi) ēk(νi) ek(vf ) (4.5)

(see Eq (2.9)). The right hand side is precisely the expression of the transition ampli-
tude 〈νf | eiHϕ|νi〉 =

∫
dk 〈νf | eiHϕ|k〉〈k|νi〉. Since ek(ν) = 〈ν|k〉, we have the equality:

G(νf , ϕ; νi, 0) = A(νf , ϕ; νi, 0). However, the interpretation now emphasizes the physical

time-evolution in φ generated by H whence A(νf , ϕ; νi, 0) has the interpretation of a physi-
cal transition amplitude. Therefore, we can literally follow —not just mimic— the procedure
Feynman used in non-relativistic quantum mechanics [6]. This will again lead to a vertex
expansion but one which, if terminated at any finite order, is distinct from that obtained in
section III.

In spite of important conceptual differences, the mathematical procedure used in this sec-
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tion is completely analogous to that used in section III. Furthermore, this deparameterized
framework was discussed in greater detail than the timeless framework in [1]. Therefore, in
this section we will present only the main steps.

A. Sum over histories

Following Feynman, let us divide the time interval (ϕ, 0) intoN equal parts, each of length
ǫ = ϕ/N , and express the transition amplitude A(νf , ϕ; νi, 0) as a sum over discretized paths
σN = (νf = νN , ν̄N−1, . . . , ν̄1, ν̄0 = νi):

A(νf , ϕ; νi, 0) =
∑

σN

A(σN ) with A(σN ) = Uν̄N ν̄N−1
Uν̄N−1ν̄N−2

. . . Uν̄2ν̄1 Uν̄1ν̄0 (4.6)

where now Uν̄n+1ν̄n ≡ 〈ν̄n+1|eiǫH |ν̄n〉. The structure of Eq (4.6) parallels that of Eq (3.9)
in section IIIA. However, the mathematical ‘time interval’ ∆τ = 1 in section IIIA is now
replaced by the physical time interval (ϕ, 0) and the mathematical ‘Hamiltonian’ αΘ by

the physical Hamiltonian H =
√
Θ. Furthermore we no longer split the amplitude into a

gravitational part and a scalar field part and the group averaging parameter α will never
appear in this section.

As in section IIIA, the next step is to make a convenient rearrangement of this sum,
emphasizing volume-transitions, rather than what happens at each point φn = nǫ of the
skeletonized time interval. Thus, we first recognize that the volume could remain constant
for a number of time steps and consider histories σM

N with precisely M volume transitions
(where M < N):

σM
N = { (νM , νM−1, . . . , ν1, ν0); (NM , NM−1, . . . , N2, N1) }, νm 6= νm−1, Nm > Nm−1.

(4.7)
where νM , . . . , ν0 denote the volumes that feature in the history σM

N and Nk denotes the
number of time steps after which the volume changes from νk−1 to νk. The probability
amplitude for such a history σM

N is given by:

A(σM
N ) = [UνMνM ]N−NM−1 UνMνM−1

. . . [Uν1ν1 ]
N2−N1−1 Uν1ν0 [Uν0ν0 ]

N1−1 . (4.8)

As in section IIIA, we carry out the sum over all these amplitudes in three steps. First
we keep the ordered set of volumes (νM , . . . , ν0) fixed, but allow the volume transitions to
occur at any value φ = nǫ in the interval I, subject only to the constraint that the m-th
transition occurs before the (m+1)-th for all m. The sum of amplitudes over this group of
histories is given by

AN(νM , . . . , ν0) =

N−1∑

NM=M

NM−1∑

NM−1=M−1

. . .

N2−1∑

N1=1

A(σM
N ) . (4.9)

Next we sum over all possible intermediate values of νm such that νm 6= νm−1, keeping
ν0 = νi, νM = νf , to obtain the amplitude A(M) associated with the set of all paths in



21

which there are precisely M volume transitions:

AN(M) =
∑

νM−1,...,ν1
νm 6=νm+1

AN(νM , . . . , ν0) (4.10)

Finally the total amplitude A(νf , φ; νi, 0) is obtained by summing over all volume transitions
that are permissible within our initially fixed skeletonization with N time steps:

A(νf , ϕ; νi, 0) =
N∑

M=0

AN (M) ≡
N∑

M=0

[ ∑

νM−1,...,ν1
νm 6=νm+1

AN(νM , . . . , ν0)
]
. (4.11)

As in section IIIA, since A(νf , ϕ; νi, 0) = 〈νf |eiHϕ|νi〉, the value of the amplitude (4.11)
does not depend on N at all; the skeletonization was introduced just to express this well-
defined amplitude as a sum over histories. Thus, while the range of M in the sum and
the amplitude AN(M) in (4.11) both depend on N , the sum does not. We can get rid of
the skeletonization altogether by taking the limit as N goes to infinity, to express the total
transition amplitude as a vertex expansion in the spirit of the timeless framework of spin-
foams. Reasoning analogous to that in Appendix A shows that the limit does exist. In this
limit the reference to the skeletonization of the time interval disappears and volume changes
can now occur at any time in the continuous interval (φi = 0, φf = ϕ). The contribution
AM from paths with precisely M volume changes has a well defined ‘continuous time’ limit
and the total amplitude is given by a discrete sum over M :

A(νf , ϕ; νi, 0) =

∞∑

M=0

AM(νf , ϕ; νi, 0) (4.12)

where the partial amplitudes AM are given by

AM(νf , ϕ; νi, 0) =
∑

νM−1,...,ν1
νm 6=νm+1

A(νf , νM−1, . . . ν1, νi, ϕ) (4.13)

=
∑

νM−1,...,ν1
νm 6=νm+1

HνMνM−1
HνM−1νM−2

. . . Hν2ν1Hν1ν0 ×

p∏

k=1

1

(nk − 1)!

(
∂

∂Hwkwk

)nk−1 p∑

m=1

eiHwmwmϕ

∏p
j 6=m(Hwmwm −Hwjwj

)
.

As one might expect, the final expression involves just the matrix elements of the Hamilto-
nian H =

√
Θ. These are calculated in Appendix C.

Thus, the total transition amplitude has been expressed as a vertex expansion (4.12) a
la SFMs. We provided several intermediate steps because, although the left hand sides are
equal, the final vertex expansions is different from that obtained in section IIIA: While
(4.12) features matrix elements of H =

√
Θ, (3.27) features matrix elements of Θ itself. The

existence of distinct but equivalent vertex expansions is quite surprising. In each case we
emphasized a distinct aspect of dynamics: the timeless framework and group averaging in
(3.27), and relational time and deparametrization in (4.12).
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B. Perturbation expansion

This vertex expansion can also be obtained as a perturbation series that mimics GFTs.
As in section III, the perturbative approach avoids skeletonization altogether and has the
advantage that it guarantees a convergent series. Furthermore, since this deparametrization
approach does not refer to an integral over α, the assumption of interchange of the integral
and the sum over M that was required in section IIIB is no longer necessary.

Let us now focus on the Hamiltonian operator H =
√
Θ (rather than on Θ used in

section IIIB) and decompose it into a diagonal part D and the remainder, non-diagonal
part K which is responsible for a volume change. Finally, let us set Hλ = D + λK where λ
will serve as a marker for powers of K, i.e., the number of volume changes in the expansion.
Then, by working in the appropriate interaction picture, we obtain:

Aλ(νf , ϕ; νi, 0) =

∞∑

M=0

λMAM(νf , ϕ; νi, 0) (4.14)

where AM is again given by (4.13). This power series in λ is reminiscent of what one finds in
GFTs. If we set λ = 1 at the end of this derivation, we recover the vertex expansion (4.12)
a la SFMs. For a discussion of the intermediate steps, see [1] and Appendix A.

C. Satisfaction of the Schrodinger Equation

Recall that in the deparametrization scheme, the Schrödinger equation (4.2) incorporates
both the quantum constraint and the positive frequency condition. By its very definition,
the exact transition amplitude A(νf , ϕ; vi, 0) satisfies this Schrödinger equation. As a check
on the perturbative expansion (4.14) we are led to ask whether the Schrödinger equation
would be satisfied in a well-controlled approximate sense if we were to truncate the series
on the right side of (4.14) at a finite value, say M⋆ of M . We will now show that this is
indeed the case.

Since Hλ = D+ λK, the schrödinger equation would be solved order by order in pertur-
bation series if for each M we have:

(i∂ϕ +Df)AM(νf , ϕ; vi, 0) +KfAM−1(νf , ϕ; vi, 0) = 0 . (4.15)

Using the expression of the partial amplitudes AM we are then led to ask if

∑

νM−2,...,ν1
νm 6=νm+1

[ ∑

νM−1
νM−1 6=νM−2

(−i∂ϕ +D)A(νf , νM−1, . . . , ν1, νi;ϕ) +KA(νf , νM−2, . . . , ν1, νi;ϕ)
]

(4.16)

vanishes for each M . Using the expression (4.13) of A(νf , vM−1, . . . ν1, νi;ϕ), one can
readily verify that this is indeed the case. As in section IIIC, the equation is satisfied
‘path by path’, i.e., already by the intermediate amplitudes A(νf , vM−1, . . . ν1, νi;ϕ) and
A(νf , vM−2, . . . ν1, νi;ϕ).

Thus we have shown that the vertex expansion resulting from the perturbation series
satisfies quantum dynamics in a well-controlled fashion: If we were to terminate the sum at



23

M =M⋆, we would have

(i∂ϕ +Df + λK)
[ M⋆∑

M

λMAM(νf , ϕ; vi, 0)
]
= O(λM

⋆+1) (4.17)

This brings out the precise sense in which a truncation to a finite order of the vertex
expansion incorporates the quantum dynamics of the deparameterized theory approximately.

V. DISCUSSION

Because LQC is well-developed in the Hamiltonian framework, it provides an interesting
avenue to probe various aspects of the spin foam paradigm. For definiteness we focused
on the Friedmann model with a massless scalar field as source. We used the group av-
eraging procedure that is available for general constrained systems as well as the natural
deparametrization, with φ as the emergent time variable, that is often employed in LQC.

Group averaging provides a Green’s function G(νf , φf ; νi, φi) representing the inner prod-
uct between physical states extracted from the kinematic kets |vf , φf〉 and |νi, φi〉. The
Schrödinger evolution of the deparameterized theory provides the transition amplitude
A(νf , φf ; νi, φi) for the physical state |νi〉 at the initial instant φi to evolve to the state
|νf〉 at the final instant of time φf . We saw in section IV that the two quantities are equal.
But they emphasize different physics. Following the general procedure invented by Feyn-
man to pass from a Hamiltonian theory to a sum over histories, we were able to obtain a
series expansion for each of these quantities —Eq (3.27) for G(νf , φf ; νi, φi) and Eq (4.12)
for A(νf , φf ; νi, φi)— that mimic the vertex expansion of SFMs. In section III, we had to
make one assumption in the derivation of the vertex expansion of G(νf , φf ; νi, φi): in the
passage from (3.35) to (3.36) we assumed that the integration over α of the group averaging
procedure commutes with an infinite sum in (3.35). Since the integration over α is by-passed
in the deparameterized framework this assumption was not necessary in our derivation of
the vertex expansion of A(νf , φf ; νi, φi) in section IV.

Detailed parallels between our construction and SFMs are as follows. The analog of the
manifoldM with boundaries Si, Sf in SFMs is the manifold V×I, where V is the elementary
cell in LQC and I, a closed interval in the real line (corresponding to τ ∈ [0, 1] in the timeless
framework and φ ∈ [φf , φi] in the deparameterized). The analog of a triangulation in spin-
foams is just a division of V × I into M parts by introducing M − 1 time slices. Just
as the triangulation in SFMs is determined by the number of 4-simplices, what matters in
LQC is the number M ; the precise location of slices is irrelevant. The analog of the dual-
triangulation in SFMs is just a ‘vertical’ line in V × I with M marked points or ‘vertices’
(not including the two end-points of I). Again, what matters is the number M ; the precise
location of vertices is irrelevant. Coloring of the dual-triangulation in SFMs corresponds to
an ordered assignment (νM , νM−1, . . . ν1, ν0) of volumes to edges bounded by these marked
points (subject only to the constraints νM = νf , ν0 = νi and νm 6= νm−1). Each vertex signals
a change in the physical volume along the quantum history. The probability amplitude
associated with the given coloring is given by A(νf , . . . , ν0;φf , φi) in the group averaging
procedure (see Eq (3.26)) and by A(νf , . . . , ν0;ϕ) in the deparametrization procedure (see Eq
(4.13)). A sum over colorings yields the partial amplitude associated with the triangulation
with M ‘vertices’. The Green’s function G(νf , φf ; νi, φi) and the total transition amplitude
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A(νf , ϕ; νi, 0) are given by a sum over these M-vertex amplitudes.
Thus, the physical inner product of the timeless framework and the transition ampli-

tude in the deparameterized framework can each be expressed as a discrete sum without
the need of a ‘continuum limit’: A countable number of vertices suffices; the number of
volume transitions does not have to become continuously infinite. This result supports the
view that LQG and SFMs are not quite analogous to quantum field theories on classical
space-times. Discrete quantum geometry at the Planck scale makes a key difference. In
sections III B and IVB we were able to obtain the same vertex sum using a perturbative
expansion, in a coupling constant λ, that is reminiscent of GFTs. In sections IIIC and
IVC we showed that this is a useful expansion in the sense that the Green’s function and
the transition amplitude satisfy the dynamical equations order by order in λ. Thus, if we
were to truncate the expansion to order M , the truncated Green’s function and transition
amplitude would satisfy the dynamical equations up to terms of the order O(λM+1). Finally
in section IIID we showed that the coupling constant λ inspired by GFTs is closely related
to the cosmological constant. This interpretation opens a possibility that a detailed study of
the renormalization group flow in GFT may be able to account for the very small, positive
value of the cosmological constant.

Taken together, these results provide considerable concrete support for the general
paradigms that underlie SFM and GFT.3 However, we emphasize that this analysis has
a key limitation: We did not begin with a SFM in full general relativity and then arrive
at the LQC model through a systematic symmetry reduction of the full vertex expansion.
Rather, we began with an already symmetry reduced model and recast the results in the
spin foam language. Reciprocally, a key strength of these results is that we did not have to
start by postulating that the physical inner product or the transition amplitude is given by
a formal path integral. Rather, a rigorously developed Hamiltonian theory guaranteed that
these quantities are well-defined. We simply recast their expressions as vertex expansions.

It is often the case that exactly soluble models not only provide support for or against
general paradigms but they can also uncover new issues whose significance had not been
realized before. The LQC analysis has brought to forefront three such issues.

First, it has revealed the advantage of adding matter fields. It is widely appreciated
that on physical grounds it is important to extend SFMs beyond vacuum general relativ-
ity. However what was not realized before is that, rather than complicating the analysis,
this generalization can in fact lead to interesting and significant technical simplifications.
This point is brought out vividly by a recent analysis of Rovelli and Vidotto [53]. They
considered a simple model on a finite dimensional Hilbert space where there is no analog
of the scalar field or the possibility of deparametrization. There, individual terms in the
vertex expansion turn out to be well defined only after a (natural) regularization. In our
example, the presence of the scalar field simplified the analysis (in the transition from (3.24)
to (3.26)) and individual terms in the vertex expansion are finite without the need of any
regularization. Furthermore, this simplification is not an artefact of our restriction to the
simplest cosmological model. For example, in the Bianchi I model the Hamiltonian theory
is also well-developed in the vacuum case [52]. However, work in progress by Campiglia,
Henderson, Nelson and Wilson-Ewing shows that technical problems illustrated by Rovelli

3 But it also brings out the fact that the term ‘third quantization’ that is sometimes used in GFTs is quite

misleading especially in the cosmological context where it is often used to signify a Fock space of universes

where the ‘single universe sector’ is described by the theory described here.
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and Vidotto arise also in this case, making it necessary to introduce a regularization. These
problems simply disappear if one also includes a scalar field.

Second, it came as a surprise that there are two distinct vertex expansions: Group
averaging provides one that mainly uses the matrix elements of Θ while the deparameterized
framework provides one that uses only the matrix elements of

√
Θ. This is not an artefact

of using the simplest cosmological model. Work in progress indicates that the situation is
similar in the anisotropic Bianchi models. Indeed, from a Hamiltonian perspective, it would
appear that distinct vertex expansions can arise whenever a well-defined deparametrization
is available. This raises an interesting and more general possibility. Can there exist distinct
spin foam models —constructed by using, say, distinct vertex amplitudes— for which the
complete vertex expansions yield the same answer? Finite truncations of these expansions
could be inequivalent, but each could be tailored to provide an excellent approximation to
the full answer for a specific physical question. One may then be able to choose which
truncated expansion to use to probe a specific physical effect.

The third issue concerns three related questions in the spin foam literature: i) Should the
physical inner products between states associated with spin networks be real rather than
complex [31]? ii) In the classical limit, should one recover cosS in place of the usual term
eiS, where S is the Einstein Hilbert action [32, 33]? iii) Should the choice of orientation
play a role in the sum of histories [49]? In the LQC example we studied in this paper, these
three questions are intimately related. The inner product between the physical states [ν, φ]+
determined by the kinematic basis vectors —which are the analogs of spin networks in this
example— are in general complex (see Eq (3.27)). However, if we had dropped the positive
frequency requirement, the group averaged inner products would have been real (see Eq
(3.24)). The situation with action is analogous. And, as we show in the next paragraph,
the positive frequency condition also selects a time-orientation.

Since this is an important issue, we will discuss it in some detail. Let us begin with
the classical theory. The phase space is 4-dimensional and there is a single constraint:
C(ν, b;φ, pφ) := Gp2φ−3π (ℓ2Plν

2) b2 = 0. Dynamics has two conceptually interesting features.
First, given a solution (ν(t), φ(t)) to the constraint and dynamical equations, (−ν(t), φ(t))
is also a solution (where t denotes proper time). They define the same space-time metric
and scalar field; only the parity of the spatial triad is reversed. Therefore (ν(t), φ(t)) →
(−ν(t), φ(t)) is regarded as a gauge transformation. The second feature arises from the
fact that the constraint surface has two ‘branches’, pφ > 0 and pφ < 0, joined at points
pφ = 0 which represent Minkowski space-time. As is usual in quantum cosmology, let us
ignore the trivial flat solution. Then each of the two portions Γ̄± of the constraint surface
defined by the sign of pφ is left invariant by dynamics. Furthermore, there is a symmetry:
Given a dynamical trajectory (ν(t), φ(t)) in Γ̄+, there is a trajectory (ν(t),−φ(t)) which
lies in Γ̄−. This represents a redundancy in the description in the sense that we recover all
physical space-time geometries gab(t) even if we restrict only to one of the two branches Γ̄±.
In particular, the dynamical trajectories on Γ̄+, for example, include solutions which start
with a big-bang and expand out to infinity as well as those which start out with infinite
volume and end their lives in a big crunch. The difference is in only in time orientation: If
we regard φ as an internal or relational time variable and reconstruct space-time geometries
from phase space trajectories, space-times obtained from a trajectory on Γ̄+ defines the
same geometry as the one obtained from the corresponding trajectory on Γ̄− but with
opposite time orientation. As in the Klein-Gordon theory of a free relativistic particle,
this redundancy is removed by restricting oneself either to the pφ > 0 sector or to the
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pφ < 0 sector. In the quantum theory, then, the physical Hilbert space is given by solutions
Ψ(ν, φ) to the quantum constraint (2.2) which in addition have only positive (or negative)
frequency so that the operator pφ is positive (or negative) definite. (They are also invariant
under parity, Ψ(ν, φ) = Ψ(−ν, φ)). Thus, the LQC example suggests that in general SFMs
one should fix the time-orientation, lending independent support to the new ideas proposed
in [49]. Reality of the physical inner products between spin network states [31] and the
emergence of cosS in place of eiS [32, 33] can be traced back to the fact that in most of the
SFM literature one sums over both orientations. However, our analysis provides only a hint
rather than an iron-clad argument because all our discussion is tied to LQC models where
symmetry reduction occurs prior to quantization.

We conclude with an observation. We have recast LQC as a sum over histories. However,
this is different from a Feynman path integral in which the integrand is expressed as eiS,
for a suitable action S. This step was not necessary for the goals of this paper. However, it
is of considerable interest, especially in the cosmological context, for certain physical issues
such as the emergence of the classical universe and semi-classical corrections to the classical
theory. Such a path integral formulation of LQC does exist [54] and will be discussed
elsewhere.4
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Appendix A: Limit in Eq (3.18)

It is convenient to rewrite AN (νM , . . . , ν0;α) defined in (3.13) in the following way:

AN (νM , . . . , ν0;α) = UνMνM−1
. . . Uν1ν0 [UνMνM ]N [UνMνM . . . Uν0ν0 ]

−1 ×
N−1∑

NM=M

NM−1∑

NM−1=M−1

. . .

N2−1∑

N1=1

[
UνM−1νM−1

UνMνM

]NM

. . .

[
Uν0ν0

Uν1ν1

]N1

. (A1)

Our aim is to calculate the limit N → ∞ of (A1) and show that is given by A(νM , . . . , ν0;α),
of Eq (3.18) which we rewrite as

A(νM , . . . , ν0;α) = (−iα)M ΘνMνM−1
. . .Θν1ν0 e

−iαΘνMνM ×
∫ 1

0
dτM

∫ τM
0

dτM−1 . . .
∫ τ2

0
dτ1 eτM bM . . . eτ1b1 (A2)

where
bm := −iα(Θνm−1νm−1 −Θνmνm). (A3)

4 A path integral formulation of polymer quantum mechanics was carried out independently by Husain and

Winkler [55].
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We start by calculating the N ≫ 1 behavior of the terms appearing in (A1). These are:

Uνm+1νm = −iα
N

Θνm+1νm +O(N−2), (A4)

[UνMνM ]N = eN logUνMνM

= eN(−i α
N
ΘνMνM

+O(N−2))

= e−iαΘνMνM +O(N−1), (A5)

[UνMνM . . . Uν0ν0]
−1 = 1 +O(N−1), (A6)

[
Uνm−1νm−1

Uνmνm

]Nm

= eNm(logUνm−1νm−1−logUνmνm)

= eNm(bm/N+O(N−2))

= e
Nm
N

bm +O(NmN
−2), (A7)

with bm given in (A3). In (A5) and (A7) we have used the fact that the multivalued nature
of the log function does not affect the final result: eN(log x+2πik) = eN log x where k ∈ Z reflects
the multiple values that log can take.

We now substitute expressions (A4) to (A7) in (A1) to obtain

AN (νM , . . . , ν0;α) =
[
(−iα)MΘνMνM−1

. . .Θν1ν0e
−iαΘνMνMN−M +O(N−M−1)

]
×

M∏

m=1

[
Nm+1−1∑

Nm=m

e
Nm
N

bm +O(NmN
−2)

]
(A8)

where the product denotes the M nested sums in (A1). Each sum in (A8) has two

terms. The first one gives a contribution of
∑

Nm
e

Nm
N

bm ∼ O(N) while the second one is∑
Nm

O(NmN
−2) ∼ O(1). The M sums then give a contribution of order [O(N)+O(1)]M ∼

O(NM) + O(NM−1). By combining this with the first factor of (A8), we find that the
non-vanishing contribution comes from the first terms of the sums:

AN (νM , . . . , ν0;α) =(−iα)M ΘνMνM−1
. . . Θν1ν0 e

−iαΘνMνM ×

N−M
M∏

m=1

[
Nm+1−1∑

Nm=m

e
Nm
N

bm

]
+O(N−1). (A9)

Eq (A9) has all the pre-factors appearing in (A2). It then remains to show that N−M

times the sums in (A9) limits to the integrals in (A2). But this is rather obvious, as the
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sums can be seen as Riemann sums for the integrals. Specifically,

lim
N→∞

N−M
M∏

m=1

[
Nm+1−1∑

Nm=m

e
Nm
N

bm

]

= lim
N→∞

N−M

N∑

NM=0

NM∑

NM−1=0

. . .

N2∑

N1=0

e
NM
N

bM . . . e
N1
N

b1

=
∫ 1

0
dτM

∫ τM
0

dτM−1 . . .
∫ τ2
0
dτ1 eτM bM . . . eτ1b1 (A10)

where, in the second line, we have slightly changed the limits on the sums, introducing an
O(N−1)-term which vanishes in the limit. This concludes the proof of the limit (3.18).

Appendix B: General Integrals in Eq (3.18)

The integrals over τ appearing in the amplitude for a single discrete path (3.18) can be
evaluated for a general sequence of volumes (νM , ..., ν0) with the result given by (3.21). In
this appendix we will perform these integrals first for the case where all νi are distinct and
then for the general case. The amplitude for a single discrete path given by (3.18) and (3.19)
is

A(νM , . . . , ν0, α) =
∫ ∆τ

0
dτM

∫ τM
0

dτM−1 . . .
∫ τ2
0
dτ1e

−i(∆τ−τM )αΘνMνM (−iαΘνMνM1
) ×

e−i(τM−τM−1)αΘνM−1νM−1 . . . e−i(τ2−τ1)αΘν1ν1 (−iαΘν1ν0) e
iτ1αΘν0ν0 (B1)

This expression can be written in terms of the following integral.

I(xM , . . . , x0,∆τ) =
∫ ∆τ

0
dτM

∫ τM
0

dτM−1 . . .
∫ τ2

0
dτ1(i)

M ei(∆τ−τM )xM ei(τM−τM−1)xM−1 (B2)

...ei(τ2−τ1)x1eiτ1x0

We will first evaluate this integral for the case where all xi are distinct. By induction on
M —the number of vertices or the number of times that x changes value— we will show
that when the xi are all distinct the integral is given by

I(xM , . . . , x0,∆τ) =
M∑

i=0

eixi∆τ

∏M
j 6=i(xi − xj)

(B3)

This is true by inspection for M = 0. If we assume that (B3) holds for M we can evaluate
the integral with M + 1 vertices.

I(xM+1, xM , . . . , x0,∆τ) =
∫ ∆τ

0
dτM+1 ie

i(∆τ−τM+1)xM+1I(xM , . . . , x0, τM+1) (B4)

=
∫ ∆τ

0
dτM+1 ie

i(∆τ−τM+1)xM+1
∑M

i=0
eixiτM+1

∏M
j 6=i(xi−xj)

=
M∑

i=0

eixi∆τ

∏M+1
j 6=i (xi − xj)

− ei∆τxM+1

M∑

i=0

1
∏M+1

j 6=i (xi − xj)

In the first step we recognized that the M + 1-th integral contains the M-th and then, in
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the second step, we inserted the assumed result for the M − th integral. In the second step
the integral over τM+1 is carried out. Finally using the identity

M+1∑

i=1

1
∏M+1

j 6=i (xi − xj)
= 0 (B5)

The integral can be written as

I(xM+1, xM , . . . , x0,∆τ) =
M+1∑

i=0

eixi∆τ

∏M+1
j 6=i (xi − xj)

(B6)

Therefore if (B3) holds for M it also holds for M + 1, thus by induction it holds for all
M ≥ 0.

If the xi are not distinct, if there exist i, j such that xi = xj , then the proof follows
in a similar way. The key element is that the integral I(xM , ..., x0) is independent of the
order of the xi’s. This can be seen by rewriting the integral in terms of the time intervals
∆τi = τi+1 − τi where τ0 = 0 and τm+1 = ∆τ .

I(x0, x1, ...xM ,∆τ) =
∫ ∆τ

0
d∆τMd∆τM−1..d∆τ0 δ(∆τm + ...+∆τ0 −∆τ) (B7)

(i)Mei∆τMxMei∆τM−1xM−1 ...ei∆τ1x1ei∆τ0x0

It is clear that this is symmetric under the interchange of xi with xj for all i, j, so the integral
is independent of the order of the sequence xi. Since the integral is independent of the order
of the values xi it should be characterized by the distinct values, labeled by yi and their
multiplicity ni. Where n1 + . . .+ np =M + 1. Given a set of values xi we will evaluate the
integral for the case where they are organized such that any xi sharing the same value are
grouped together. Doing so the integral simplifies to

I(yp, np, . . . , y1, n1,∆τ) =
∫ ∆τ

0
dτM

∫ τM
0

dτM−1 . . .
∫ τ2
0
dτ1(i)

Mei(∆τ−τn1+...+np−1)yp (B8)

ei(τn1+...+np−1−τn1+...+np−2)yp−1 ...ei(τn1+n2−τn1 )y2eiτn1y1

By induction on p, the number of distinct values, we show that this integral is given by

I(yp, np, ..., y1, n1,∆τ) =
1

(np − 1)!

(
∂

∂yp

)np−1

. . .
1

(n1 − 1)!

(
∂

∂y1

)n1−1 p∑

i=1

eiyi∆τ

∏p
j 6=i(yi − yj)

(B9)

=

p∏

k=1

1

(nk − 1)!

(
∂

∂yk

)nk−1 p∑

i=1

eiyi∆τ

∏p
j 6=i(yi − yj)

For p = 1 (B8) can be easily evaluated giving

I(y1, n1) =
∫ ∆τ

0
dτn1−1 . . .

∫ τ2
0
dτ1(i)

n1−1eiy1∆τ = (i∆τ)n1−1

(n1−1)!
eiy1∆τ (B10)

=

(
∂

∂y1

)n1−1
1

(n1 − 1)!
eiyi∆τ
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If we assume that (B9) holds for p distinct values then we can evaluate it for p+ 1 distinct
values as follows.

I(yp+1, np+1, yp, np . . . , y1, n1,∆τ) =
∫ ∆τ

0
dτM . . .

∫ τM−np+1+2

0 dτM−np+1+1 (B11)

(i)np+1−1ei(∆τ−τM−np+1+1)yp+1I(yp, np, . . . , y1, n1, τM−np+1+1)

Plugging in the assumed result for p distinct values and performing the integrals over τ we
obtain

I(yp+1, np+1, . . . , y1, n1,∆τ) =

p∏

k=1

1

(nk − 1)!

(
∂

∂yk

)nk−1 p∑

i=1

1∏p
j 6=i(yi − yj)

(B12)

[
eiyi∆τ

(yi − yp+1)np+1
−

np+1∑

m=0

eiyp+1∆τ

(yi − yp+1)m
(i∆τ)np+1−m

(np+1 −m)!

]

We recognize that the term in brackets can be written as derivatives with respect to yp+1 of
a simple function.

I(yp+1, np+1, yp, np . . . , y1, n1,∆τ) =

p∏

k=1

1

(nk − 1)!

(
∂

∂yk

)nk−1 p∑

i=1

1∏p
j 6=i(yi − yj)

(B13)

[
1

(np+1 − 1)!

(
∂

∂yp+1

)np+1−1(
eiyi∆τ

yi − yp+1
− eiyp+1∆τ

yi − yp+1

)]

Finally simplifying the expression and using eqn (B5) we obtain

I(yp+1, np+1, . . . , y1, n1,∆τ) =

p+1∏

k=1

1

(nk − 1)!

(
∂

∂yk

)nk−1 p+1∑

i=1

eiyi∆τ

∏p
j 6=i(yi − yj)

(B14)

Thus if (B9) holds for p then it also holds for p + 1, so it is true for all p ≥ 0. Using this
result we find that the contribution due to each discrete path is

A(νM , . . . , ν0, α) = (ΘνMνM−1
)(ΘνM−1νM−2

) . . . (Θν2ν1)(Θν1ν0) (B15)
p∏

k=1

1

(nk − 1)!

(
∂

∂Θwkwk

)nk−1 p∑

i=1

e−iαΘwiwi
∆τ

∏p
j 6=i(Θwiwi

−Θwjwj
)

where wi label the distinct values taken by ν along the path and ni the multiplicity of each
value.

Appendix C: Eigenstates and Operator functions of Θ

In the timeless framework of section III, the vertex expansion mostly featured matrix
elements Θνmνn = 〈νm|Θ|νn〉. These are easy to evaluate directly from the definition (2.3) of
Θ. In the deparameterized framework of section IV, on the other hand, the vertex expansion
involves matrix elements of

√
Θ. To evaluate these one needs the spectral decomposition of

Θ. In the first part of this Appendix we construct eigenstates of Θ and discuss their relevant
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properties. In the second part we use these eigenstates to evaluate the matrix elements
functions of Θ, including

√
Θ.

1. Eigenstates of Θ

Recall that Θ is a positive, self-adjoint operator on Hgrav
kin . By its definition (2.3), it follows

that Θ preserves each of the three sub-spaces in the decomposition Hgrav
kin = H− ⊕H0 ⊕H+,

spanned by functions with support on ν < 0, ν = 0 and ν > 0 respectively. In particular,
|ν = 0〉 is the unique eigenvector of Θ, with eigenvalue 0; H0 is 1-dimensional. Our first
task is to solve the eigenvalue equation for a general eigenvalue ω2

k:

Θ ek(ν) = ω2
k ek(ν) . (C1)

This task becomes simpler in the representation in which states are functions χ(b) of the
variable b conjugate to ν: 5

χ(b) :=

√
ℓo
π

∑

ν=4nℓo

e
i
2
νb Ψ(ν)√

|ν|
. (C2)

In this representation, the eigenvalue equation (C1) takes the form of a simple differential
equation

(
Θχk

)
(b) = −12πG

(
sin ℓob

ℓo
∂b

)2

χk(b) = ω2
k χk(b), (C3)

whose solutions are

χk(b) = A(k) eik log(tan ℓob
2

) with ω2
k = 12πGk2 , (C4)

where A(k) is a normalization factor and k ∈ (−∞,∞). k = 0 yields a discrete eigenvalue
ωk = 0 and in the ν representation the eigenvector can be expressed simply as e0(ν) = δ0,ν .
Eigenvectors with non-zero eigenvalues can also be expressed in the ν representation by
applying the inverse transformation of (C2) to (C4):

ek(ν) = A(k)

√
ℓo|ν|
π

∫ π/ℓo
0

db e−
i
2
νb eik log(tan ℓob

2
) where k 6= 0 . (C5)

Let us note two properties of these eigenvectors. First, ek and e−k have the same eigen-
value and so the ω2

k-eigenspace is two-dimensional. Second, the vectors ek(ν) we have ob-
tained have support on both ν > 0 and ν < 0. However, since Θ preserves the sub-spaces
H±, it is natural to seek linear combinations e±k (ν) of ek(ν) and e−k(ν) which lie in these
sub-spaces. In particular, this will simplify the problem of normalization of eigenfunctions.

Let us begin by rewriting the integral in (C5) as a contour integral in the complex plane.

5 Our normalization is different from that in [39]. The wave function Ψ̃(ν) in [39] is related to the one here

by Ψ(ν) =
√

ℓo

π|ν| Ψ̃(ν).
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Recalling that ν = 4ℓo n and setting z = eibℓo we obtain

ℓo
π

∫ π/ℓo
0

db e−2ibneik log(tan ℓob
2

) = e−πk/2

πi

∫
Cz

−2n−1
(
1−z
1+z

)ik
dz =: J(k, n), (C6)

where C is the unit semicircle in counterclockwise direction in the upper half, ℑz > 0, of the
complex plane. As remarked earlier, ek(ν) = A(k)

√
ℓo|ν|/π J(k, ν/4ℓo) has support on both

positive and negative values of ν = 4ℓo n. Now, the second independent eigenfunction e−k(ν)
with the same eigenvalue ω2

k can be represented in a similar fashion by setting z = −eibℓo .
The result is a contour-integral along the unit semicircle in counterclockwise direction in
the lower half, ℑz < 0 of the complex plane. By combining the two integrals, we obtain a
closed integral along the unit circle:

1

2πi

∮
z−2n−1

(
1− z

1 + z

)ik

dz =
1

2

(
eπk/2J(k, n) + e−πk/2J(−k, n)

)
=: I(k, n) . (C7)

Being a linear combination of ek(ν) and e−k(ν), this I(k, n) gives also an eigenfunction of
Θ with eigenvalue ω2

k. Moreover, using elementary complex analysis, one finds that it has

support only on positive n:

I(k, n) =

{
1

(2n)!
d2n

ds2n

∣∣∣
s=0

(
1−s
1+s

)ik
n ≥ 0

0 n < 0.
(C8)

Repeating the argument but taking z = e−ibℓo and z = −e−ibℓo one obtains

1

2

(
e−πk/2J(k, n) + eπk/2J(−k, n)

)
=

1

2πi

∮
z2n−1

(
1− z

1 + z

)ik

dz = I(k,−n) (C9)

which has support only on negative n. Thus, the basis we are looking for is given by

e±k (ν) :=
1

2

(
e±πk/2ek(ν) + e∓πk/2e−k(ν)

)
= A(k)

√
π|ν|
ℓo

I(k,± ν

4ℓo
) . (C10)

By construction, e±k ∈ H±.
Next, let us calculate the normalization of these vectors. It is convenient to introduce

kets |k±〉 such that 〈ν|k±〉 = e±k (ν). Then, it is clear that 〈k′ ± |k∓〉 = 0. To calculate
the nontrivial inner product, 〈k′ ± |k±〉, let us return to the b representation. There, the
functions describing the states |k±〉 are

χ±
k (b) =

A(k)

2

(
e±πk/2eik log(tan ℓob

2
) + e∓πk/2e−ik log(tan ℓob

2
)
)

(C11)

and their inner product is given by [39]

〈k′ ± |k±〉 =
∫ π/ℓo
0

db |A(k)|2 χ±
k′(b) |2i∂b|χ±

k (b) (C12)

where |2i∂b| is the absolute value of the volume operator ν̂ = 2i∂b. Simplification occurs
because e±k (ν) have support only on positive/negative ν values. Because of this property,
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one can replace |∂b| in (C12) by ±∂b. The calculation now reduces to a straightforward
integration. The result is

〈k′ ± |k±〉 = |A(k)|2 2πk sinh(πk) δ(k′, k). (C13)

Using this with (C10) we can find the normalization of the eigenvectors ek(ν), which turn
out to be

〈k′|k〉 = |A(k)|2 4πk coth(πk) δ(k′, k). (C14)

Thus, by choosing A(k) =
√

tanh(πk)/(4πk), we get the standard continuum normaliza-
tion for the vectors ek(ν).

2. Matrix Elements for f(Θ)

We will now use the eigenbasis | ± k〉 of Θ to calculate the matrix elements
〈4nℓo|f(Θ)|4mℓo〉, of the operators of the form f(Θ), for a measurable function f . Through-
out this section, the normalization factor A(k) is chosen to be unity. From the normalization
condition (C13) with A(k) = 1, we have the following decomposition of the identity:

I =
∫∞

0
dk

2πk sinh(πk)
(|k+〉〈k + | + |k−〉〈k − |) . (C15)

which can be inserted in 〈4nℓo|f(Θ̂)|4mℓo〉. If m and n have different signs, the result is
zero. It suffices to consider the case where both are positive. By writing 〈4nℓo|k+〉 in terms
of derivatives (see equations (C10) and (C8)), one obtains

〈4nℓon|f(Θ̂)|4nℓom〉 = 2
√
mn

(2n)!(2m)!

d2m

ds2m
d2n

dt2n

∣∣∣∣
s=t=0

Ff(Θ)

(
1 + s

1− s

1− t

1 + t

)
(C16)

with Ff(Θ) the ‘generating function’ given by6

Ff(Θ)(x) =
∫∞

0
dk f(12πGk2)xik

k sinh(πk)
. (C17)

We now give the generating function for
√
Θ. It is also useful (at least to check normalization

factors) to write down the generating functions for operators whose matrix elements are

6 For a general f , integral as defined may diverge. However the divergent terms (e.g., those which are

x-independent) do not contribute to the expression of the matrix element and can therefore be discarded.

This ‘finite part extraction’ is implicit in going from (C17) to (C18), (C19) and (C20) .
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known, namely Θ and the identity I. These generating functions are given by,

FI(x) = −2

(
log(1 + x) + log Γ(1/2 + i

log x

2π
)

)
(C18)

F√
Θ(x) =

√
12πG

(
2ix

1 + x
− 1

π
ψ(1/2 + i

log x

2π
)

)
(C19)

FΘ(x) = 12πG

(
2x

(1 + x)2
− 1

2π2
ψ′(1/2 + i

log x

2π
)

)
(C20)

where Γ(z) is the gamma function, and ψ(z) = Γ′(z)/Γ(z) the polygamma function.
In obtaining these functions, it is useful to observe the following relations among them:

F√
Θ(x) = −i

√
12πGx

d

dx
FI(x) (C21)

FΘ(x) = −i
√
12πGx

d

dx
F√

Θ(x), (C22)

which can be derived from (C17).
We will conclude by noting that the matrix elements for the evolution operator U(ϕ) =

eiϕ
√
Θ are easy to find: From (C17) one sees that FU(ϕ)(x) = FI(e

√
12πGϕx).
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