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Introduction to Loop Quantum Gravity Simone Mercuri

1. Preface

Loop Quantum Gravity (LQG) is a background independent and mathematically rigorous
canonical quantization of the gravitational field. The Organizers of the 5th International School
on Field Theory and Gravitation have asked me to give an understandable account of the main
techniques and results of this theory and I have been pleasedto fulfill their requests. I immediately
realized that the ideas of LQG were capturing the interest ofmany students, who asked me a lot of
clarifications about some mathematical tools and physical aspects of background independent the-
ories. I honestly think to have answered their questions andclarified many details, but, at the same
time, I had the impression that many of them were getting confused by the canonical formulation
of gravity and by the Dirac quantization procedure.

Generally speaking, my impression has been that the study ofcanonical quantization of gauge
theories and, especially, gravity presupposes the knowledge of some arguments which are often
not treated in details in the basic courses. I had the same experience when I started working on
quantum gravity during my PhD. Usually, the approach to General Relativity (GR) proposed in
the basic courses is based on the Lagrangian mechanics, while the canonical formulation of the
theory is only marginally described, without deepening into the general pictures of theories with
constraints. On the one hand, this is understandable from the perspective of academic and practical
purposes, but, on the other hand, the Hamiltonian, or better, the canonical formulation of gauge
theories and gravity remain an obscure argument among students. This is a common problem,
which cannot be neglected when one attempts to describe the problem of quantum gravity and,
more specifically, LQG.

Therefore, motivated by the questions asked me during coffee breaks and lunches, I have de-
cided to slightly shift the focus of this proceeding, givingto the readers the opportunity to begin
with quantum gravity from what I consider its natural starting point, namely the physical formula-
tion of the problem.

So, Section 2 is entirely devoted to describe some simple motivations which compel one to
formulate a quantum theory of gravity, digressing on the physical implications of such a theory on
the existing concepts of space and time. Section 3 contains some preliminary arguments, which I
consider as fundamental to understand the following discussion. They are quite simple and well
known arguments, nevertheless they have to be necessarily clear before going on to face the canon-
ical theory of gravity and the Ashtekar-Barbero formulation of GR. So, I collected in Section 3 an
extremely brief description of the causal structure of space-time, group theory, Dirac canonical for-
mulation of gauge theories, and the initial value formulation of theories with gauge freedom, using
a simple language and neglecting many complicated details.This should also serve as an easily
accessible account of the main definitions and concepts usedthroughout the paper. In Section 4 I
describe the canonical formulation of GR starting from the 3+1 splitting of space-time. The mathe-
matical procedure that allows to write the Einstein equations in the Hamiltonian form is described in
details; the Section concludes with a description of the initial value problem in gravity. Section 5 is
dedicated to the connections formulation of canonical GR, better known as Ashtekar–Barbero (AB)
formulation of gravity. This argument is particularly interesting in view of quantization, because by
using the so-called AB connections, the constraints of GR can be rewritten in a more suitable form
for quantization. Interestingly enough, the use of AB connections introduces a quantum ambiguity
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known as Barbero–Immirzi (BI) parameter, which affects theeigenvalues of geometrical quantum
operators. The physical interpretation of the BI parameterand its correlation with the topological
sector of the theory is at present an argument of active discussion. Recently, the idea that this pa-
rameter is in fact a field has attracted the interest of many researchers (me included!). I think that
this could represent an interesting bridge with particles physics and could have consequences in
Cosmology that deserve to be studied. For these reasons I invite the readers to refer to the original
papers to get more information. Finally, in Section 6, I facethe problem of quantization, starting
from a brief description of the Dirac procedure and the Wheeler-DeWitt (WDW) equation. The last
part of this Section is dedicated to the description of the main ideas of LQG, without entering in
the complicated details of the theory. As I have explained before, in this paper I prefer to focus on
introductory arguments to LQG, more than on the theory itself, which is beautifully described in
many books and reviews, written by the major experts in this field [1, 2, 3]. For this reason I refer
the readers for more details to the standard Literature on LQG, with the hope that this paper could
help them to face the argument more confidently.

At the end, I also added two appendices, one on differential forms, which are commonly used
in Literature, but sometimes little known among students; while the other is about the topological
sector of gauge theories, and aims to clarify some concepts which apply in canonical quantum
gravity as well.

Throughout the paper, I will use an extremely simple approach, sometimes neglecting some
interesting but slightly involved details. This obviouslywill affect the completeness and the rigor of
the discussion, but, I am sure, will be appreciated by beginners and the students of the International
School of Field Theory and Gravitation, who can find in this paper a simple description of many
arguments. My hope is to give them the possibility to get a “first order understanding” of the main
concepts of canonical quantum gravity, without being discouraged by the rigorous mathematical
formulation of the problem. I strongly suggest interested readers to delve into the “higher order
descriptions” of the more complete and rigorous books and reviews cited above.

2. What is Quantum Gravity?

The present knowledge in Physics is the result of the new and revolutionary ideas born in the
last century, which later led to the formulation of the two major physical theories describing the
four interactions: Quantum Mechanics (QM) and General Relativity (GR). They have, on the one
hand, opened the way to a great number of scientific discoveries and technical developments, but,
on the other hand, they destroyed the coherence of prerelativistic classical physics [2], since the
basic assumptions of each one of the two theories are contradicted by the other. QM is formulated
using a Newtonian absolute (fixed, non-dynamical) space-time. On the contrary GR describes the
dynamics of space-time itself, which is no more an external set of clocks and rods, but a physical
interacting field, namely the gravitational field. The basicphysical lesson of GR is contained in the
following simple sentence:Geometry tells matter how to move; matter tells geometry howto curve,
which expresses in a very suggestive way the fact that the theory describes both the dynamics of
space-time (or gravitational field) and the motion of the bodies subjected to the gravitational field.
But it also contains the seeds of an issue, namely the separation of the physical world in matter and
geometry.
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This dichotomy in Physics, together with the fact that on theone side we have the present
description of what is in general intended as matter, namelythe electromagnetic, weak and strong
interactions, unified in the language of Quantum Field Theory (QFT) and on the other side gravity
(or geometry) described by the pure classical theory of General Relativity, creates a sort of “sci-
entific discomfort” [4]. This is not only a philosophical problem, but assumes the distinguishing
features of a real scientific problem as soon as one considersmeasurements in which both quan-
tum and gravitational effects cannot be neglected. In fact,QM and GR are hugely successful in
their own range of applicability, but they seem to be subjected to a sort of “reciprocal exclusion
principle”. In particular, QM describes microscopic phenomena involving fundamental particles,
ignoring completely gravity, while GR describes macroscopic systems, whose quantum properties
are in general (safely) neglected. So far, no experimental evidences are available on systems in
which neither gravity nor quantum effects can be neglected,but we already know that our current
theories would not be able to describe such phenomena. This situation is usual in Physics and
it is, in general, the prelude to the formalization of a well stated scientific problem [4]. Specifi-
cally, the goal of obtaining quantitative predictions about the outcomes of certain measurements on
extremely energetic gravitational systems is often referred as theQuantum Gravity Problem.

It is clear from what said above that new elements could be necessary in order to make our
current theories able to face a certain class of physical phenomena. Then, it is natural to wonder
whether these new elements affect low energy processes. In other words, should we expect, even at
low energies, small QG corrections to the predictions of ourcurrent theories? It is worth stressing
that even a little deviation from the predictions of standard physics ascribable to any QG effects,
found in the experimental data of current and future experiments, would have an enormous impact
on the research. We recall as an example the Lamb shift, whichmotivated and stimulated the studies
about QED. From this perspective, it could be important to answer to the following question:
How far we are from an experimental evidence of a QG effect.We cannot give a completely
satisfying answer to it, nevertheless we can use a dimensional argument to state that the new effects
should modify the usual predictions with additional terms proportional to the factor(E/EPl)

n,
whereE is the typical energy scale of the experiments,EPl is the Planck energy (EPl ≡ (GN)

−1/2 ≈
1028eV), while n is a positive integer number. At this point one may be surprised by the compelling
necessity to quantize gravity felt by physicists, since at the LHC, the most powerful accelerator ever
projected, we can reach a very small energy if compared to thePlanck scale. Specifically, the ratio
between the Planck and the reachable energy is of the order ofELHC/EPl ≈ 10−15, that means we
are fifteen orders of magnitude below the scale at which we expect to see the quantum effects of the
gravitational field. Even though this fact is true, it is absolutely false that this is a good reason for
abandoning the program of constructing a consistent theoryof QG. The motivations are connected
with the fact that there exist in Nature particles of energies much larger than those we can produce
with the accelerators, moreover during its evolution our Universe experimented regimes in which
the energy available was (most likely) even larger of the Planck scale. Furthermore, even though
the factorE/EPl is extremely small at the present available energies and, consequently, the QG
effects cannot be directly experimented, it exists the concrete possibility that some astrophysical
phenomena can behave as magnifying glasses, being able to make them visible in near future
[5, 6]. In other words, the fact that QG effects are expected to be very tiny does not mean they are
absolutely untestable, clearly as one should expect the opportunities to make such tests are rather
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rare. We also emphasize that it could be not necessary to reach the Planck energy to see some QG
effects. In this respect, we recall that a class of extremelyenergetic phenomena calledGamma
Ray Bursts(GRB) could represent a really important laboratory to testQG predictions, in fact they
seem to be the natural candidates to verify whether the fundamental hypothesis about a discrete
structure of space-time will be confirmed by experiments. The peculiar features which make GRB
relevant for QG is the extremely wide range of the emitted energies and the cosmological distance
of the explosive events.

Concluding, as usual in Physics, from the pure empirical point of view, the new framework
possibly introduced by a consistent and complete QG theory could represent a tiny deviation from
what we already know, being only a further small modificationof those empirical laws which give
us a pictorial description of how Nature works. But from the theoretical point of view, it could
represent not only the completion of that revolution QM and GR introduced in the last century,
but also open the way to the discovery of complete new aspectsof Nature, exactly what QFT and
GR have been doing during the last one-hundred years. However, in spite of their great empirical
success, QM and GR have left us with a fragmented understanding of the physical world, this
requires a new synthesis, which is a major challenge in today’s fundamental Physics [2].

In this sense, Quantum Gravity can solve the dichotomy present in our current understanding
of physical phenomena and, moreover, it could give us predictions on those regimes in which the
quantum and gravity effects merge.

2.1 Why we need a Quantum Theory of Gravity?

Above we introduced the so called QG problem, which gains thestatus of a true scientific
problem as soon as one considers physical systems in which both the gravitational and the quantum
mechanical effects play an important role. Moreover, the failure of the existing theories as soon
as we push them near their extreme margins of applicability,suggests to quantize gravity. We also
digressed on the empirical content of such a problem, affirming that obtaining an experimental
evidence of a QG effect is extremely complicated, but not impossible; even though we expect a
very tiny modification of the existing laws describing the physical systems. Therefore, as often
occurs, one may object to the above pleaded motivations, saying that they are mainly suggested by
philosophical reasons. Namely, the hope of finding the way toconciliate the basic assumptions of
two very different and complementary theories is not reallyrequired by a scientific problem. Put
differently, this attempt has very little to share with Physics, simply because the physical effects
are so tiny to be actually undetectable. It could be really so!

For this reason, in this Section three well stated problems,which regards respectively QFT,
GR and the merging point of QFT and GR, are discussed in order to emphasize that QG is a true
physical problem. It, in fact, can provide information about the behavior of fundamental gravi-
tating quantum systems as, for example, a system of gravitating fermions, or extremely energetic
scattering processes, or the Universe itself in its initialexpansion.

The questions we present below are generally connected withthe fundamental structures of
the theories and mainly concern the problem of singularities. In fact, it is worth recalling that the
theory describing the gravitational interaction fails in giving a fully satisfactory description of the
observed Universe [7]. GR, indeed, leads inevitably to space-time singularities as a number of
theorems mainly due to Hawking and Penrose demonstrate. Thesingularities occur both at the
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beginning of the expansion of our Universe and in the collapse of gravitating objects to form Black
Holes [8]. Classical GR breaks completely down at these singularities, or rather it results to be
an incomplete theory, because it neither gives a description of the singularities themselves, nor
provides the boundary conditions for fields in the singular points. The appearance of singularities
in extremal situations reflects both on QFT and on GR itself, generating a more subtle question
when we trivially try to merge the two theories as we are goingto argue.

This failure of current theories represents a good reason topose a scientific problem and its
solution is widely believed to be in the formulation of a consistent and complete theory of QG.

It remains to treat in a more systematic way the problem regarding the empirical content of a
QG theory. This argument is postponed at the end of the Section, where we will trace the way to get
information about QG from the astrophysical phenomena named Gamma Ray Bursts, motivating
the belief that the necessary experimental evidences whichcould support the QG research are not
so far.

2.1.1 Planck scale collisions

The question is:1 What would happen if we managed to collide an electron-positron pair of
energyper particle of 1028eV? We are unable to give an answer to this question, because the
energy in the center of mass is greater than the Planck energy. So, what would happen in the
center of mass during such a collision is completely out of our understanding. But, according to
our present physical theories describing the collisions between fundamental particles, there should
be nothing peculiar in the setup of such an experiment. However, the same hugely successful
theories are not able to provide us with a consistent prediction for the outcome of this experiment.
The reason of this failure is related to the fact that, in suchan experiment, we cannot neglect the
gravitational properties of the involved particles at the moment of the collision. But, we do not have
any scientific information on how taking into account such aneffect in the framework of QFT. In
other words, when the gravitational field is so intense that space-time geometry evolves on a very
short time scale, QFT cannot be consistently applied any longer. Or, from another perspective,
we can say that when the gravitational effects are so strong to produce the emergence of space-
time singularities, field theory falls into troubles. Summarizing, we are able to extract numbers
(predictions) from QFT when the curved space-time is static(or slowly varying) and non-singular,
but we are not able to handle situations in which the gravitational field is so intense to give rise to
a fast varying and singular space-time [4].

The incompatibility between QM and GR in treating the proposed scattering problem can be
further analyzed. In this respect, we have to remember that GR governs consistently the space-
time and particles dynamics. In particular, given the Lagrangian for the matter, once the Einstein
equations have been solved, we can predict the trajectoriesof the particles. But, in the framework
of QFT, particles are asymptotic states of quantum operators and during the collision they do not
follow any classical trajectory. The whole dynamics of the collision is contained in the S-matrix,
which gives the evolution from the initial (|in〉) to the final (|out〉) state. During the interaction,
the intermediate state is a pure quantum superposition of all the possible states compatible with the
quantum numbers of the initial state; namely, we can associate to particles a semi-classical (fuzzy)

1Some of the ideas presented below are extracted from [4] and [2].
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trajectory only asymptotically, in other words much beforeor much later the collision. One could
try to apply the formalism of GR to the formally classical trajectories contained in the path-integral,
but the problem remains ill-defined and, generally speaking, it will be affected by divergences if the
energy of the particle are sufficiently high to generate a significant geometrodynamics. This fact is
suitable for a pictorial description. The path-integral formulation of QM consists in summing on all
the possible trajectories connecting the initial and final quantum state, with a weight proportional to
the exponential of the classical action. The major role in the sum is played by those trajectories near
the classical one, because the contribution of those “far away” from the classical one is suppressed
by the weight factor. If the gravitational field is weak, we can safely approximate the space-time
near the classical trajectory with the Minkowski flat space-time, and assume that the curvature
does not affect the trajectories which enter in the sum. But,if the gravitational field is intense,
then also those trajectories close enough to the classical one are affected by the curvature of the
space-time and this effect should be taken into account in the path-integral sum. The case of fast
varying or singular gravitational field is even worst, because in that case the trajectories could fall
into a singularity or oscillate very fast. This breaks down completely the formalism, by introducing
remarkable and uncontrollable effects into the sum.

2.1.2 Singularities

The study of singularities in GR is an absolutely fascinating argument. Here we give an ex-
tremely brief account of this huge argument, which represents one of the crucial point suggesting
that a quantum theory of gravity is, in fact, necessary. Nearsingularities classical GR becomes in-
consistent and incomplete, as we already stressed before and, differently from Newtonian gravity,
they represent an inevitable feature of the theory. Indeed,in Newtonian gravity ther = 0 singular-
ity, appearing in the complete collapse of a spherical non-rotating shell of dust (namely, when all
the matter reach simultaneously the origin), can be easily avoided slightly perturbing the spherical
symmetry of the collapsing shell, for example giving it a little rotation. On the contrary, in GR the
singular behavior of space-time cannot be avoided. All the solutions we have of Einstein equations
show a singular behavior. But, since all of them are characterized by symmetries, one may think
that, as it happens in Newtonian gravity, the relaxation of symmetries could allow to avoid singular
points. But the Hawking, Penroseet al. theorems demonstrate that this is not the case. Wald says
[9]:

Although the singularity theorems do not prove that the singularities of classical
General Relativity must involve unbounded large curvature, they strong suggest the
occurrence in Cosmology and gravitational collapse of conditions in which quantum
or other effects which invalidate classical General Relativity will play a dominant role.

So the singularity theorems do not use the natural and, in a certain sense, more physical notion
of unbounded density to characterize the space-time singularities, but the characterization of sin-
gularities is based on the notion of incompleteness of geodesics, which, however, contains some
unwanted features.

The use of such a notion to characterize space-time singularities is due to the necessity of a
diffeomorphisms invariant criterion. In this respect, it is worth noting that the singular points inr =
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0 of Schwarzschild or Robertson-Walker metrics, rigorously speaking, are not point of those space-
times, otherwise the metrics would not be well defined everywhere on the manifoldM. Moreover,
the criterion based on the bad behavior of higher order scalars constructed with the curvature tensor
does not work in some cases, so it is clear that a more satisfactory definition has to be introduced.

So far, the criterion of geodesics incompleteness seems to be the most appropriate. Its physical
meaning is suggested directly by its definition. Indeed, a geodesic is said to be incomplete when
it is inextendible in at least one direction; namely, it has afinite range for the affine parameter.
As a consequence, a particle falling along a time-like or null inextendible geodesic will end its
existence within a finite proper time (or it began its existence a finite proper time ago). So, even
though a completely satisfying notion of singularity lacks[9], we call “physically singular” all
those space-times having at least one incomplete geodesic.

At this point, the following famous theorem by Hawking and Penrose can be enunciated:2

Theorem 2.1. Singularity theorem of Hawking and Penrose (1970). Let us suppose that the space-
time(M,gµν) satisfies the following four hypothesis:

1. Rµνuµuν ≥ 0 for all time-like or null uµ ;

2. it exists at least one point for every time-like or null geodesics at which Rµνuµuν 6= 0;

3. no closed time-like curve exist;

4. at lest one of the following three conditions holds:
i) (M,gµν) possesses a compact achronal set without edge, i.e.(M,gµν) is a closed Universe,
ii) (M,gµν) possesses a trapped surface,
iii) there exists a point p∈ M such that the expansion of the future (or past) directed null
geodesics emanating from p becomes negative along each geodesic in this congruence.

Then(M,gµν) must contain at least one incomplete time-like or null geodesic.

The first three conditions of the above theorem are believed to be satisfied in our Universe. The first
one in particular can be simply showed to be shared by all those space-times satisfying the Einstein
equations and thestrong energy condition,3 which seems to be plausible for ordinary matter.

Finally, we can conclude that strong evidences suggest thatour Universe is singular; of course
we cannot know by which kind of singularity it is characterized, because the above theorem does
not give us any insight on this question.4 Nevertheless, it suggests that an extension toward QG is
necessary. It, in fact, demonstrates that the universally accepted theory of gravity cannot definitely
give us a complete and consistent description of the evolution of our Universe.

2See § 3.1 for definitions.
3Namely for every time-likeuµ we haveTµν uµ uν ≥ −T/2, whereTµν is the energy-momentum tensor of the

matter.
4The particular kind of singularity we obtain from the Einstein equations depends in general on the particular

symmetries of the model.
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2.1.3 Merging General Relativity and Quantum Field Theory

After having described the problem of singularities in GR, we want to address a number of
difficulties coming out when one attempts to quantize gravity using the usual formalism of QFT.
The main source of problems in extending the formalism of QFTto gravity is represented by the
double role played by the metric tensor. It, in fact, represents both the dynamical field describing
gravity and the tensor describing the causal structure of the background. The nature of these dif-
ficulties is not only conceptual, as for example the consideration that a quantum theory of gravity
would imply a quantum, namely discrete, structure of space-time itself. But, more practically, they
are correlated to the profound difference existing betweenGR and other classical field theories:
while in the latter the background is always considered as anexternal and fixed structure, the for-
mer is the theory describing the dynamics of the background itself. Therefore, we cannot assume a
given structure of space-timeab initio, but we have to invent a formalism that allows to quantize a
classical theory in a background independent way. This factmakes GR so peculiar that, so far, all
the attempts to quantize gravity have encountered fundamental difficulties; only in the last years
many of these obstacles have been overcome, leading to a consistent QG [1, 2, 3].

As is well known, the construction of a QFT on Minkowski space-time of a free or perturba-
tively interacting field is the only procedure we can control. In particular, given a small number of
axioms, the Wightman axioms, we can construct a consistent QFT. Let us begin the description of
the issues one would find in applying the usual formalism of QFT to gravity, by describing a very
simple and well known example, which best illustrates the dichotomy existing in the metric tensor.

One of the Wightman axioms contains the notion of micro-causality. In order to introduce this
concept let me consider a scalar field represented by the smeared operator-valued distribution

Φ( f ) =
∫

Rn+1
dn+1x Φ(x) f (x) , (2.1)

where f is a test function of rapid decrease. Suppose now that the supports of the test functionsf
and f ′ are space-like separated, then the micro-causality assumption is equivalent to require that:

[
Φ( f ) ,Φ

(
f ′
)]

= 0. (2.2)

Physically, the above condition assures that a measurementof the fieldΦ in the region of space-
time contained in the support of the functionf cannot be influenced by the measure of the same
field in the region contained in the support of the functionf ′.

The gravitational interaction is described by a self-interacting spin-2 field, so, it is natural to
expect, in analogy with the previous example, that the following commutation relation holds

[
g( f ) ,g

(
f ′
)]

= 0, (2.3)

where f and f ′ are two tensorial test functions with compact supports separated by a space-like
distance. But, strictly speaking, the above relation makesno sense. The reason being that we
cannot give a consistent meaning to the requirement that thesupports of the test functions be space-
like separated, unless we already know the state of the gravitational field, namely the metric tensor.
But, the commutation relation in line (2.3) must hold independently of the state of the gravitational
field.
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It is clear that the micro-causality condition is the quantum translation of the pure classical
concept of causality. Even though it contains information about measurements on quantum field,
its basic structure is, however, founded upon the existenceof a Minkowski space-time, with its
fixed light cone. In a quantum theory of gravity, the causality condition and, as a consequence, the
micro-causality axiom, is inextricably bound with the quantum dynamics of the gravitational field,
so it has to be, at least, modified or completely replaced by a new requirement.

In general, the other Wightman axioms are violated in gravity as well. The reason being that
the fundamental objects one has to postulate in order to write down the axioms, namely i) a differ-
entiable manifoldRn+1, on which a non-dynamical Minkowski metricη is defined, together with
its fixed future and past causal light conesJ+∪J−, ii) a symmetry group, which, in the Minkowski
space-time, is the ten parameters Poincaré groupP, together with its associated infinite dimen-
sional representation acting on the quantum statesU (P) and iii) an invariant vacuum state|Ω〉,
cannot be properly postulated. For a general space-time, infact, we do not have a symmetry group
and a unique invariant vacuum state. Consequently, it neither exists any obvious generalization of
the Wightman axioms, nor one can rigorously define any Fock-Hilbert space for the quantum states
of the theory. Therefore, the whole formalism falls into troubles.

A possible solution to these issues is the splitting of the metric tensor as would be suggested
by a perturbative approach:

gµν = ηµν + γµν . (2.4)

The basic assumption here is thatγµν represents the dynamical variable describing a self-interacting
spin-2 field, whileηµν describes the background metric, which, in general, could be any solution of
the classical Einstein equations. This method is of course mathematically correct. It provides some
interesting insights on the quantization of a spin-2 field ona fixed (in general curved) space-time
and could be useful to describe the interaction between gravitons and matter or the gravitational
waves. Nonetheless, it cannot be considered as a good starting point for a complete quantum
theory of gravity, because the metric separation (2.4) destroys the full general covariance of the
classical theory, namely its main constructing principle.More practically, the infinite perturbative
series becomes meaningless if the fluctuations become large. In other words, GR is, in general,
a non-renormalizable theory. One can hope that the perturbation theory turns out to be finite as a
consequence of possible (magic) cancellations of the divergences, but this hope is unjustified [11].
This means that the resulting theory cannot predict any physical result. We still can advance the
hypothesis that the super-symmetric extension of this theory has a chance to be a finite theory,
because, as is well known, the super-symmetric extension ofa classical field theory features, in
general, an higher degree of ultraviolet convergence due tofermionic cancellations [12]. But again
the resulting theory is non-renormalizable, even worst neither the eleven dimensional super-gravity
theory shows any hoped cancellation property [13] (see also[14] and references therein). Then,
although we do not have a complete proof of the failure of the QFT formalism in the case of gravity,
it is widely believed that the perturbative approach does not provide a completely consistent answer
to the problem of QG .

All these issues have been sometimes pushed to the extreme consequences by some authors,
who argued that classical GR is correct at the fundamental level. This position is, however, unten-
able for at least two reasons: The inevitability of singularities in classical GR; and the interaction

10



Introduction to Loop Quantum Gravity Simone Mercuri

of gravity with quantum matter systems, which is a source of troubles as we are going to show.
The question we want to answer is: what is the curvature of space-time associated to a given

quantum state of the matter? Let us suppose that the classical Einstein equation holds at the funda-
mental level, then the most natural candidate to get an answer to this question is:

Rµν −
1
2

gµνR=
〈
T̂µν
〉
. (2.5)

Where in the right hand side we have put the expectation valueof the energy-momentum tensor of
the matter in a given quantum state. Now suppose that the quantum state of the matter is such that
we have probability 1/2 for the localization of all the matter in a region of space-time denoted as
U1 and the same probability for the localization in another region U2, disjoint from the regionU1.
In other words, we are in the following situation:

|matter〉= 1√
2
|all matter inU1〉+

eiθ
√

2
|all matter inU2〉 , (2.6)

whereU1 andU2 are disjoint regions of space-time.
In this physical situation, the gravitational field, according to equation (2.5), would behave

like half of the matter were inU1 and the other half inU2. Now, if we resolve the quantum state by
measuring the position of matter, we will find all the matter either inU1 or in U2. Then, the grav-
itational field should modify in a discontinuous acausal manner, leading to serious difficulties [9].
The idea that this problem can find its consistent description in the framework of a quantum theory
of gravity is widely accepted. It could, hopefully, providean answer to the following question:
how does a quantum particle modify space-time? This question is, to a large extent, equivalent
to the previous one and contains the subtle problem regarding the interaction of the quanta of the
gravitational field with matter.

So, QG seems to be necessary as soon as we consider the interaction of quantum matter with
the gravitational field, but, to quantize gravity as a usual QFT, we have to face a large number
of conceptual and technical issues. This is a long standing problem, nevertheless, it does not
contain any indication about a fundamental incompatibility between QM and GR principles. In
fact, as stressed by Rovelli [2], it is important to distinguish between QM, which is a general
mechanical theory and QFT which can be considered as a particular application of the laws of QM
to a system with an infinite number of degrees of freedom. As wesaid above, GR is incompatible
with the formalism of QFT for the non-existence of a fixed background structure, but this does not
means that it is incompatible with QM at all [15]. So the rightquestion one should pose is the
following one: is it possible to construct a quantum theory of a system with an infinite number
of degrees of freedom, without assuming a fixed background causal structure? The answer is:
yes! It is possible, as the modern background independent theories of quantum General Relativity
demonstrate. However, more insights are necessary in orderto better face many issues, in particular
those connected with measurements and the consistent introduction of measuring devices in the
framework of such theories.

2.2 Space-time, background independence and relationalism in Physics

The question we want to discuss here represents another important “open issue” of the research
in QG and regards the fate of classical space-time.
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A very interesting feature of GR and QFT is that both are compatible with a classical descrip-
tion of space-time, although they do not share the same construction of such a classical space-time.
According to QFT, the strategy to sharply localize a point inspace-time requires a limiting proce-
dure on the mass of the devices localizing points; in GR, instead, the localization of a point is a
background independent procedure, based on the crossing oftwo geodesics. Below, I will describe
in more details these contrasting features.

The concept of classical space-time is appropriate in Physics as long as the proposed theories
allows to localize space-time points sharply. A fundamental requirement for a consistent physical
theory is the agreement between the limits enforced on possible measurements by the formalism
and the limits imposed, in principle, by the physical measurements procedure. An example to
illustrate this important point can be easily constructed by considering the measurement of the an-
gular momentum vector. In classical physics, the angular momentum of a particle can be sharply
measured. In other words, we can, in principle, measure eachone of the components of the an-
gular momentum vector of a particle simultaneously and withan infinite precision. But, modern
physics has radically changed our perspective by imposing some limitations to the measurements
allowed by the experimental procedures, namely, we cannot measure simultaneously all the com-
ponents of the angular momentum with an infinite precision. As a consequence, in the description
of such a system, the angular momentum has to be described by anon-classical formalism, which
incorporates the experimental limitations found.

This aspect deserves to be further discussed and clarified, because it is correlated with the fate
of the classical concept of space-time as described below. Fortunately, a good example exists in the
history of physics, which involved authoritative physicists as Einstein, Bohr, Landau and Rosen-
feld. A lively and fruitful debate, in fact, animated the scientific community during the period
immediately after the birth of quantum electrodynamics. The matter of the discussion regarded the
measurement of the electromagnetic field in the framework ofquantum electrodynamics, leading to
the formulation of the so-calledBohr-Rosenfeld criteriafor a consistent theory. Before discussing
this matter, we want to focus the attention of the reader on the importance of these kind of argu-
ments for theoretical physics. A simple example can clarifythis point: In this respect, we want to
stress that the study of the synchronization of distant clocks, once an absolute maximum velocity
for signals has been assumed, that led Einstein to special relativity.

2.2.1 Bronstein objection and the fate of space-time in QG

Here, we want to briefly describe the main points of the debatecome out in 30s, when a group
of really distinguished physicists argued that there was a conceptual disagreement between the un-
certainty limits predicted by quantum electrodynamics on acertain class of observations, and the
mathematical formalism that the same theory adopts for describing these measurements results.
Specifically, the key point of the debate was a physical consideration due to Landau and Peierls.
They argued that, according to quantum electrodynamics, the electric field in a generic pointP
can be measured sharply, namely with zero uncertainty, consequently a measurement procedure
allowing to measure it sharply must exist. Obviously, if thesituation were different then the the-
ory would be inconsistent. Eventually, the conclusion of Landau and Peierls was that quantum
electrodynamics must be rejected as physical theory, because such a zero uncertainty measurement
procedure is not possible in Nature, so quantum electrodynamics is inconsistent.
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The conclusion of Landau and Peierls was motivated by the following consideration: The
measurement procedure of the electric field in a generic point can be ideally performed by using an
electrically charged probe, which undergoes the effect of the electric field and accelerates, the out-
come consists in the experimental measurement of this acceleration. In principle one can measure
the mean value of the electric field in a small region of space,approaching the point asymptotically.
Classically, this procedure is perfectly consistent, but,quantum mechanically, it is affected by the
Heisenberg principle. In fact, the simultaneous measurements of the localization of the probe, say
∆X and of the variation of its momentum due to the effect of the electric field, say∆P must satisfy
the following uncertainty relation∆X∆P≥ h̄. Moreover, the acceleration of the probe introduces
another problem, related to the fact that an accelerated charge emits energy. So, the measurement
affects itself by modifying the momentum of the probe, namely the outcome of the experiment.

Such an analysis, in fact, leads to the conclusion that a sharp measurement of the electric
field is possible only in very special conditions. Indeed, inorder to avoid the two effects described
above, the characteristics of the probe has to be adjusted insuch a way that, by a limiting procedure,
it is possible to reduce the ratio between its electric charge density and its mass density to zero.

But, as noted by Landau and Peierls, the above requirement cannot be fulfilled, because, even
though in Nature it exists a great variety of particles with different charge/mass ratios, no one
can constitute the ideal probe, namely with a charge/mass ratio equal to zero. As a consequence,
quantum electrodynamics must be rejected and a consistent alternative should be sought.

Bohr and Rosenfeld opposed to this viewpoint, claiming the consistency of quantum electro-
dynamics. The point is that the generations of particles existing in Nature are not a prediction
of the theory, rather they are an outside input; in other words, given the particle content, the the-
ory predicts their mutual interactions. In this sense, the failure pointed out by Landau and Peierls
cannot be considered as an inconsistency of the theory, because it can be attributed to an external
fact. Therefore, it does not affect the logical structure ofthe physical theory. If we found particles
with a vanishing charge/mass ratio, then we would be able to measure sharply the electric field and
quantum electrodynamics would not absolutely be in contrast with such a discovery.

The same argument applied to the gravitational field has a remarkable consequence related
to the fate of the common accepted notion of space-time. In fact, as Bronstein pointed out, the
requirement that the charge/mass ratio vanishes for the probe used to measure the field cannot be
applied to the gravitational field. The reason being that thegravitational counterpart of the electric
charge is the gravitational mass. So, according to the equivalence principle, the ratio between the
“gravitational charge” and the inertial mass of the probe cannot be freely adjusted, being equal to
one for any particle existing in Nature. Hence, the equivalence principle seems to put a serious
restriction on the possibility to sharply measure the gravitational field.

This fact suggests that an unavoidable fundamental limit onthe measurements accuracy ex-
ists, affecting, as a consequence, the fundamental structure of space-time. Furthermore, this could
have important implications in the construction of QG, because, as is well known, QM imposes
limitations on the simultaneous measurement of conjugate pairs of fields, but, following Bohr and
Rosenfeld, no limitation on the accuracy of a measurement ofone single field occurs. The Bron-
stein’s argument suggests to consider the possibility thatordinary quantum mechanics could be
inadequate to describe the quantum theory of a geometric field. In this sense, either a modification
of the uncertainty relation comes out naturally from the theory, encoding this intrinsic limitation on
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the measurements of the gravitational field, or, more speculatively, a different quantum mechanics,
which reduces to the ordinary one in the appropriate limit, should be sought to face the problem of
QG.

2.2.2 Space-time in classical and quantum mechanics

In accordance to what said above, it is worth stressing once more that QG could radically
change the present concepts of space and time. It could be possible, in fact, that new and unpre-
dictable non-trivial outcomes of the theory oblige us to abandon any intuitive representation of
space and time. In this respect, it is important to understand how the notion of space and time
changes according to the postulates of different physical theories. This is the motivation of the
following discussion, where the different notions of spaceand time are briefly described.

In classical mechanics space-time is an external fixed and flat structure. In particular, space is
an Euclidean three-dimensional stage for the physical phenomena,R3, while time is represented
by the oriented one dimensional real axis,R. Space and time can be measured with an infinite
precision in classical mechanics. The common idea of space-time acquires a proper operative
meaning as soon as we imagine the existence of a dense array ofideal synchronized clocks beating
the flow of time, while perfect rods sharply measure the distances among clocks, giving in this way
an empirical meaning to the points of space-time.

Quantum mechanics is characterized by a novelty with respect to its classical counterpart; we
are referring to the uncertainty principle. This principleestablishes the impossibility to simulta-
neously measure with an infinite precision a pairs of conjugate variables. Spatial coordinates are
the conjugate variables to the momenta along the same axis and can be measured with an infinite
precision at the price of losing any information on the velocities. Therefore, a subtle question about
the evolution of the reference system arises. Indeed, as soon as we have realized that the role of
time in QM is identical to the one it plays in classical mechanics,5 we can imagine to construct
the same array of dense ideal clocks to give an operative meaning to the space-time points. But,
if the clocks had a finite mass, one should worry about their evolution, in fact, if we measure their
positions we lose information on their evolution. This factsuggests the possibility that the space
and time of quantum mechanics acquire an operative meaning only in the limit of infinite mass
clocks. This does not create any embarrassment, because quantum mechanics, as stressed at the
very beginning of this section, completely ignores gravity, then its logical consistency can safely
rely on the idealization of a physical reference frame constituted by infinitely heavy particles.

The study of the space-time of quantum field theory introduces even more interesting features,
which deserve to be deepened. As clarified above, the background of quantum mechanics is a
classical space-time; namely, we can, with a limiting procedure, measure sharply the position of
a particle in a space-time, pictorially represented by a dense array of infinite mass clocks. In
particular, in order to localize a finite mass particle, we consider an interaction between a probe
and the particle. The accuracy of the measure is proportional to the inverse of the energy carried by
the probe, namely, if the probe carries an energy, say, 1/∆X, we can localize a particle interacting

5With the difference that in some extrapolations of the theory, an uncertainty relation between time and energy
comes out. However, since time is not an observable in quantum mechanics but only an evolution parameter, the time-
energy uncertainty relation must be interpreted differently with respect the coordinates-momenta one, which, instead, is
a consequence of the fact that coordinates and momenta are conjugate observables in QM.
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with the probe with an accuracy of∆X. The reason being that the probe results to be confined to a
region of space-time of size∆X. This means that the sharp localization implies the injection into the
physical system of a greater and greater (in principle infinite) energy. Even though this procedure
does not create any problem in classical quantum mechanics,as soon as we consider a “relativistic
quantum mechanics” a subtle issue crops up. In fact, even though the 4-dimensional picture does
not modify the fundamental structure of space-time, still pictorially described by a dense array of
extremely massive clocks, it introduces the equivalence between mass and energy, which creates
a shortcoming in the above described measuring procedure. Indeed, as soon as the energy carried
by the probe becomes higher than the rest mass of the particlebeing measured, many copies of the
original particle are produced as a direct effect of the position measurement (injection of energy
into the system).6

In order to avoid any misunderstanding, we want to stress that the sharp localization of an
infinite mass particle is still possible, because in order toproduce copies of the same measured
particle an infinite energy is necessary, so, as in ordinary quantum mechanics, no problem exists in
the localization of space-time points.

Concluding, we can say that even though the space-time background of quantum field the-
ory is the same ideal dense array of clocks that we have already introduced in ordinary quantum
mechanics, in quantum field theory the accuracy of a measurement of the position of a particle is
however limited, the limit being imposed by the measuring procedure itself. In other words, the
coexistence of the Heisenberg uncertainty principle with Special Relativity prevents from obtaining
a sharp measurements of the position of a finite mass particle, even though the concept of classical
space-time is preserved. However, this appear to be no longer possible when gravity is present. On
one side, in fact, quantum mechanics obliges to consider an infinite mass point particle in order to
give sense to a sharp localization procedure, but, on the other side, this is incompatible with GR
for obvious reasons and the entire sharp localization procedure falls into troubles.

2.2.3 Space-time in General Relativity

General Relativity is the theory describing the dynamics ofspace-time. In this sense, even
the shortest discussion about GR requires to deepen into thebasic principles and the main ideas
which led Einstein to the formulation of his geometrical theory of the gravitational field. We are
not referring to the construction of the Einstein dynamicalequations, but to the more subtle and
complicate “struggle with the meaning of the coordinates.”

Generally speaking, in constructing the field equations of GR one has a number of hints, as, for
example, the fact that the static limit of the field equationsmust be the Newton law. More suggestive
is the fact that the mass of a particle is the source of the Newtonian gravitational field: In fact,
considering that the mass is a form of energy, as Einstein himself clarified, it is quite reasonable that
the energy-momentum tensor turns out to be the source of the relativistic field equations. Finally,
the concept that no privileged reference systems exist suggests that the equations must be covariant
under a class of general coordinates transformations. Einstein, some years before the publication
of his most famous paper, appeared in 1915, learned that the only possible combination of second

6From another perspective this is the reason why in place of relativistic quantum mechanics, a quantum field theory
is required to describe such phenomena, we need, in fact, a theoretical framework which does not require to fix the
number of particles of the system.
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order partial derivatives of the gravitational field (space-time metric), transforming covariantly
under general coordinates transformations, is the Riemanntensor. It became soon clear to his mind
how the equations of motion of GR had to look like. But the subtlest and most striking aspect of
GR, which Einstein dedicated himself to for a long period, regarded the philosophical content of
the theory: The real novelty introduced by GR is that the coordinates have no physical meaning,
independently from the value of the physical field and from the trajectories of the physical particles.

The Equations of GR are, in fact, generally covariant, or, inother words, ife a
µ (x) is a solution

of the field equations, then, given the general coordinates transformationy= y(x), alsoe′ a
ν (y),

e′ a
ν (y(x))

∂yν (x)
∂xµ = e a

µ (x) , (2.7)

is a solution of the field equations. Essentially, this meansthat the physical laws are the same in all
the reference frames, namely in all coordinates systems.

Now, in order to understand the meaning of general covariance, which will be useful for clari-
fying the structure of space-time of GR, we consider a regionof space-time, sayU , containing the
eventP, and, assigned inU the system of coordinatesX , let us indicate withxP its coordinates.
Let e a

µ (x) be a solution of the generally covariant field equations and assume that

R|P = R(xP) = 0, (2.8)

whereR(x) is the Ricci scalar. Suppose now that we decide to change our system of coordinates in
the regionU . Specifically, beY the new system of coordinates andy= F (x) the transformation
law from one system to the other. Thuse′ a

ν (y(x)), obtained frome a
µ (x) via the relation (2.7), is a

solution of the equations of motion too. In other words,e′ a
ν describes the same gravitational field

ase a
µ , but in theY system of coordinates. Moreover, the Ricci scalar still vanishes around the

point P:

R′∣∣
P = R′ (yP) = R

(
F−1(yP)

)
= R(xP) = 0. (2.9)

Let us now proceed considering the new gravitational fieldE a
ν defined as follows

E a
ν (x) = e′ a

ν (x) , (2.10)

namely as the primed field in the old system of coordinatesX . It is worth stressing that the
gravitational field described byE is different from the one described bye, in particular, although
the Ricci scalar constructed bye is zero around the pointP, namelyR(xP) = 0, we cannot draw the
same conclusion for the Ricci scalar of the fieldE. In fact we have:

R|P = R (xP) = R′ (xP) = R
(
F−1(xP)

)
. (2.11)

Namely, the Ricci scalar associated to the fieldE in the space-time pointP is given by the Ricci
scalar ofecalculated in the pointQ= F−1(xP) and for no any reason it must be zero.

It results that, if the gravitational fielde is a solution of the equations of motion,E is a solution
too. The reason is that the fieldE is described in the system of coordinatesX by the same function
describing the gravitational fielde in the system of coordinatesY ; since the field equations do not
change under a coordinates transformation, ife is a solution, so isE.
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This is in essence the content of the so calledEinstein’s hole argument. The conclusion of
the above described argument is that the generally covariant field equations are not deterministic,
because even thougheandE are both solutions of the same field equations, they do not determine
the physics at the same space-time pointP. For example, while the Ricci scalar associated to the
gravitational fielde is zero aroundP, the same scalar calculated using the fieldE is in general
different from zero around the same space-time point. Sincewe know that classical physics is
deterministic, we are at a crossroads: either the field equations cannot be generally covariant, or
fixing the space-time eventP has no physical meaning.

Einstein had the courage to take the right road: He, in fact, understood that there is no physical
meaning in fixing a particular space-time point on a generally covariant space-time. In this respect,
let us consider a solution of the Einstein equationse and two particles moving in this particular
gravitational field. The motion of the particles is described by their respective world lines,x1 (τ)
andx2(σ), which are determined by the gravitational field. Suppose, without any loss of generality,
that the world lines of the two particles intersect at the space-time eventP. Now consider the
gravitational fieldE = φ∗e, whereφ : M → M is a diffeomorphism; obviously the particles world
lines x1 (τ) and x2 (σ) are no longer solutions of the particles equations of motionin the new
gravitational field. In fact, the new particles world lines,determined by the gravitational fieldE,
can be easily calculated once the world lines associated with the gravitational fielde are known,
they are:

X1(τ) = [φx1] (τ) and X2(σ) = [φx2] (σ) . (2.12)

In other words, a diffeomorphism, acting both on the gravitational field and on particles world
lines, sends solutions to solutions. Furthermore, as a consequence of the active diffeomorphism,
the particles do not intersect anymore inP, but inQ= φ (P). So, the fixed pointP loses its absolute
meaning and the right physical entity is the point determined by the intersection of the world lines
of the particles. In this sense the theory does not predict the value of the gravitational field around
the space-time pointP, rather around the point determined by the intersection of two world lines.
Therefore, the issue contained in the hole argument is solved, the theory is deterministic because it
predicts the same value of the gravitational field around thesamephysical(namely determined via
a diffeomorphisms invariant construction) space-time point. The characteristics of the gravitational
field e around the intersection of the world linesx1(τ) andx2 (σ), as, for example, the flatness of
space-time around this point, are exactly mimed by the gravitational fieldE around the intersection
of the world linesX1(τ) andX2(σ). This means that the theory has a gauge invariance in the sense
of Dirac: Different solutions, correlated by gauge transformations, represent the same physical
situations (see § 3.3). The gauge group is the group of diffeomorphisms, which reflects the fact
that the localization of an event is not an absolute procedure, but is related to the particles and
fields themselves. We will see in paragraph 2.2.5 that the diffeomorphisms invariance has striking
consequences on the theory, which, indeed, can be considered as a partly relational theory.

Concluding, the space-time of GR is a classical structure, but it is not absolute as in classical
and quantum mechanics. In other words, it is certainly possible to localize sharply a point on a
generally covariant space-time, but the localization procedure requires the presence of particles
and fields. In particular the diffeomorphisms invariant procedure for the localization of an event is
based on the possibility to sharply recognize the points of intersection between the world lines of
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particles.

2.2.4 Space-time in Quantum Gravity

What we are going to say here must be intended by the reader as an attempt to loosely explain
why the idea that QG implies an absolute limit on the localization of events has a so long tradition in
the quantum gravity community. We cannot give a complete andconsistent description of quantum
space-time simply because the existing theories give us only a pictorial idea of how it should be;
so, here, I do not pretend neither to provide new insights into the quantum gravity problem, nor
to give a new pictorial description of quantum space-time. Nevertheless, I think that it could be
useful and interesting to investigate the operative meaning of the localization of events in a theory
that should incorporate both the general covariance and thequantum uncertainty principle.

In this respect, we want to summarize the conclusion obtained before:

1. in order to satisfy the principle of general covariance, the localization of space-time events
must be realized via a diffeomorphisms invariant procedure;

2. the quantum uncertainty does not allow to localize sharply a finite mass particle, because
this would require the injection into the system of a so largequantity of energy that it is
impossible to neglect the creation of copies of the analyzedparticle.

Let us now construct a physical diffeomorphisms invariant procedure of localization. In order
to localize an event, we need at least two interacting particles, moving along their world lines;
specifically, we consider a massive particle and a probe ableto interact with the particle itself. We
know from what stated above that the larger is the mass of the particle the greater is the accuracy of
the localization: The relation between the energy of the probe and the uncertainty in the localization
of the particle isE = (∆x)−1. The physical explanation of this formula is simple. In order to
determine the position of an object with a given accuracy∆x we have to use a probe, represented by
a massless particle interacting with the system under study, localized in a region at least comparable
with the accuracy we require for the experiment. The localization of the probe is proportional to
its Compton wavelength, so the accuracy of the experiment isproportional to the inverse of the
energy of the probe. It is well known that to reveal smaller and smaller structures in particles
physics we have to use higher and higher energy test particles. In this specific context, we have to
consider also the presence of the gravitational field, whichfixes a limit on the energy of the system.
Indeed, it is necessary that the Compton wavelength of the system is larger than its Schwarzschild
radius, this means that the energy during the interaction must be smaller than the Planck mass. We
consider in this pictorial context the ideal scattering process, which consists in a collision between
a massless probe and a particle of massM, the collision lasts for a time∆t. During this period of
time the system is considered frozen. We can compute the typical time of the interaction∆t by
a very simple argument: It is the time necessary to exchange information between the probe and
the particle, so it is at most equal to the distance∆x traveled by the signal during the interval∆t.

The energy contained in the gravitational field during the interaction isV ≈ ℓ2
PlEM
∆t , whereE is the

energy of the probe. During the collision the total energy ofthe system must be smaller than the
Planck massMPl = ℓ−1

Pl , thus we can write the following relation

ℓ2
PlEM

∆t
< MPl = ℓ−1

Pl . (2.13)
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Now, remembering that the spatial displacement between theprobe and the particle is at most equal
to the accuracy of the localization and that the best we can dois to increase the energy of the probe
up to the mass of the particle (in order to avoid the creation of copies of the particle under study),
by using the relation above we obtain:

ℓ2
Pl

(∆x)3 < MPl . (2.14)

From the expression above we deduce that

∆x > ℓPl , (2.15)

namely the best accuracy we can obtain in determining the position of a particle is larger than the
Planck length.

So space-time in Quantum Gravity is not classical. In other words, taking into account both
the general covariance and the quantum uncertainty principle, we cannot sharply localize an event.
An intrinsic limit given by the Planck length appears in the accuracy of a localization procedure.
As a consequence, all the intuitive concepts about space andtime must be abandoned in a Quantum
Gravity theory, the resulting space-time structure is genuinely non classical [2, 4]. More radically,
we could say that in Quantum Gravity space-time does not exist at all, in its place we have a fuzzy
quantum structure, which fits well with the pictorial representation Wheeler gave many years ago:
Quantum space-time should appear like a foam. The quantum foam is a state of the gravitational
field, which, at that stage, cannot be identified with a measurable structure in a proper sense. In fact,
what is generally intended as space-time fits better with itsclassical actualization. The quantum
foam, instead, cannot be considered as a space-time, for example the existence of a minimum length
suggests a fundamental discrete (non-continuous or, likely, non-commutative) structure. In order
to reintroduce the common concept of space-time in Quantum Gravity, namely as a measurement
of the time elapsing between two events and the spatial distances separating two disjoint events,
we have to give it a different status. We mean, considering itas an “actualization”, rather than
an “idealization”. One way to “actualize” it is through a relational procedure, which is the next
argument we want to discuss.

2.2.5 Relational versus Absolute space-time

The discussion about relational or absolute space-time could appear as a pure philosophi-
cal one, in stead it regards profoundly Physics and the debate is still open and stimulating (see
[16, 17, 18] and references therein). This debate is a long standing one and can be traced back
to the publication of the Newton’sPrincipia Mathematicain 1687. In his book Newton proposed
anabsolutenotion of space-time, according to which the geometry of space-time provides a fixed,
eternal and immutable background structure on which particles move. In striking contrast with the
ideas of Descartes, Leibniz, Huygens, and others who, in stead, espoused the so-calledrelational
philosophy, according to which space-time has to be intended as a set of “relations” among real
objects and events [30] (detailed discussions on this argument can be found in [19, 20, 21]). The
Newton’s absolute view won against relationalism, supported by the great empirical success New-
tonian mechanics had and, for a long period, no doubts were raised on which notion of space-time
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Physics should be based on. Nevertheless, the general covariance principle introduced by Einstein,
mathematically expressed via the invariance under diffeomorphisms, seems to destroy the New-
tonian absolute description of space-time. Essentially, in the Einstein’s theory, fixed space-time
is replaced by a dynamical structure on which the events are no longer points with assigned co-
ordinates, but interactions between physical particles: in other words relations. So, the relational
point of view deserves to be taken in serious consideration as directly suggested by the commonly
accepted theory describing space-time and gravitation.

The question we should answer is: to what extent GR is a relational theory. Obviously, to
answer to this question we have to capture the differences between Newton and Einstein mechanics,
as we are going to do, taking into account the “space-time limitations” we have.

Newton’s mechanics is based on the existence and physical definition of inertial reference
frames. They play a central role in all the classical theories. In particular, they allow to distinguish
between accelerating and uniformly moving point particles. In fact, once fixed an inertial reference
system, the distinction between what is accelerating and what is moving uniformly is a property
of the geometry of the absolute space-time (background), which is completely independent of the
configuration of the matter. In other words, in Newtonian physics there is a clear and absolute
distinction between inertial and non-inertial motion. Furthermore, this distinction does not depend
on something internal to the physical system, but only on theexternal geometrical properties of
space-time. Physically, we can distinguish between accelerated or uniformly moving particles, by
looking at the geometry of the reference frame glued to a generic particle: The presence of non-
inertial forces allows us to make the distinction. This viewpoint was challenged by Mach, who
proposed to eliminate absolute space-time as a cause of distinction between accelerating and non-
accelerating motion, replacing it with a dynamical procedure. According to Mach, the distinction
between accelerating and non-accelerating motion should be determined via the relations between
all the structures which compose the entire Universe.

Mach’s idea strongly influenced Einstein, who realized thatacceleration should be determined
with respect to a reference frame, dynamically determined by the configuration of the whole sys-
tem. As a consequence, it does not exist any privileged reference frame in the Universe, and
physical laws must be equivalent in all the frames. Since local reference frames are strictly con-
nected with the geometry of space-time, then space-time itself becomes a dynamical field, no more
fixed and immutable, but interacting with matter and affected by the matter content of the system.
The equivalence of any reference frame, mathematically expressed by the invariance of the theory
under general coordinates transformations, suggested thename General Relativity for such a the-
ory of space-time. It is worth noting that, even though Einstein was surely influenced by Mach, we
cannot naively conclude that GR is a Machian theory [2]. Nevertheless, we can say that GR is, by
construction, a partly relational theory as we are going to motivate.

Generally speaking, a physical theory postulates that a physical system is made up of a large
collection of mutually interacting elements. The form of the physical theory is based on the proper-
ties and the specific interactions of these physical entities. The physical properties of the elements
of a system, in an absolute theory, are referred to a fixed structure as, e.g., the Newtonian space-
time, while their mutual interactions determine their evolution with respect to the absolute timet.
Put differently, space-time plays the role of background towhich the dynamics is referred. The
same role is played by a regular lattice, often used in the framework of particle physics. In this
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case, the physical entities (particles or fields) are confined on the nodes of the lattice, which is fixed
a priori and not influenced by the presence of matter.

On the contrary, the main assumption of a relational theory is that no any background exists
at all; so the question is: to which structure is the dynamicsreferred? Looking for an answer, let
us firstly digress on some aspects of the relational point of view. The relational view presumes
that the fundamental properties of the elementary entitiesconsist entirely in relations between the
elementary entities themselves. Dynamics concerns with the changes of these relations. A good
pictorial description of a relational theory can be obtained by considering a graph [2], characterized
by some nodes representing the entities and their properties, and different classes of connections
between the nodes featuring mutual interactions between adjacent entities. The state of the system
is determined by the structure of the links between the nodes, whereas the dynamics modifies the
structure of the connections (relations) between different nodes. It is important not to confuse the
pictorial description of a relational graph with the commonimage everyone has of a regular lattice.
In this respect, it is worth noting that the pictorial description of a relational system is completely
abstract, while a regular lattice describes a precise physical situation, where a continuous space-
time is substituted by a fixed discrete structure to which we refer the fields dynamics.

In relational theories time loses its usual meaning. Evolution is, in general, incorporated in the
modification of the relations between the physical entitiesand, since time is the parameter of the
evolution itself, it acquires a relational meaning as well.The concept of relational time has a great
importance in QG as a large number of papers highlights (see [16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31] and references therein).

Having described what we mean by relationalism, let us now focus the attention on GR. GR is
a complicated theory describing all the manifestations of the gravitational interaction. In particular,
it describes gravitationally dominated subsystems of the Universe as, for example, black holes or
gravitationally bound systems. In some models describing subsystems of the Universe, a number
of conditions on the fields and metric are imposed at the boundaries. In this case, the question
whether or not GR is a relational theory is not interesting atall [30], because imposing the boundary
conditions is equivalent to introducing a background. Moreover, the existence of a region of space-
time which is external to the system we are modeling with our theory implies that the theory is not
“fundamental.” But GR is widely believed to be the theory describing the whole Universe as well.
In other words, GR is considered the best candidate for a cosmological theory.7 Hence, apart from
the specific dynamics, if we assume that GR is, in fact, a cosmological theory, the question whether
or not it provides a relational description of the dynamics of the Universe acquires a profound
meaning.

GR contains a lot of structures, which are fixeda priori, they are: dimensions, signature,
topology, and differential structure. All of them belong towhat is intended as “background”, in fact,
they can be varied from model to model, but they are fixed and are not subjected to dynamical laws.

7In order to avoid any misunderstanding, I stress that this isabsolutely not in contrast with the fact that the same
theory, with suitable boundary or asymptotic conditions, can describe, as well, subsystems of the Universe. In general,
it is reasonable to expect that some sort of modification can appear in the cosmological dynamical equations, as for
example a non-vanishing cosmological constant. Nevertheless, the foundations of the theory remains unaffected by the
specific dynamics, them being, in fact, related to the conceptual structure of the theory, which are pretty general, rather
than to the peculiar dynamics it generates.

21



Introduction to Loop Quantum Gravity Simone Mercuri

More precisely, they describe the manifoldM ; whereas, the metricgµν and tensor fieldsT(a) are
the dynamical entities of the theory. A space-time corresponds to a determination of the manifold,
metric and fields, namely

(
M ,gµν ;T(a)

)
. But, in order to define a physical space-time, we have

to take into account the gauge freedom of the theory, which, as described in paragraph 2.2.3, is
encoded in the invariance under the group of diffeomorphisms. Therefore, we define a physical
space-time as an equivalence class of manifolds, metrics, and fields under the action of the group
Di f f (M ). We denote this equivalence class as

{
M ,gµν ;T(a)

}
. Now, as already mentioned, the

points and open sets of the manifoldM are not preserved under the action of the diffeomorphisms
group. Diffeomorphisms send points to other points, in thissense the information encoded in the
physical space-time is a system of relations between the fields, rather than a collection of the values
fields take in the generic points of the manifold. Then, apartfrom the specification of topology,
signature, dimensions and differential structure, GR is a relational physical theory.

It remains to answer the question posed above. Rephrasing it, we can ask: which is the physical
entity replacing the Newton’s absolute space-time? The answer is now simple: it is the gravitational
field! In other words, it is the gravitational field that tellsobjects if they are accelerating or not.
This is the profound difference between Newton’s and Einstein’s mechanics. In the Newton’s
mechanics the whole dynamics is referred to an absolute structure external to the system, while in
the Einstein’s mechanics the dynamics is referred to the dynamical gravitational field, carrying out
the relational idea.

2.3 Possible phenomenological implications of QG

Generally speaking, a quantum theory of gravity is expectedto describe the dynamics of the
quantumspace-time foam[32, 33]. The specific description of the foam dynamics depends on the
theory describing the quantum effects of gravity, but its phenomenological implications are shared
by many different approaches to QG. In particular, a possible candidate for a quantum gravity
effect due to the foamy structure of space-time is an energy dependent electromagnetic dispersion
relation in vacuo. Specifically, the modified dispersion relation is supposedto be of the following
form

p2 = E2
(

1+ f

(
E

EQG

))
, (2.16)

whereEQG is an effective quantum gravity energy scale, naturally identifiable with the Planck
energy. Now, let us suppose for simplicity that the Hamiltonequations of motion are approximately
valid in the present scenario, then the velocity of the particle follows from equation (2.16) and, for
energies much lesser than the Planck scale, it turns out to be:

v=
∂E
∂ p

≈ 1−ξ
E

EQG
, (2.17)

whereξ is a positive or negative factor, which depends on the particular framework.
Before deepening into some phenomenological aspects, let us spend some words on how such

modified dispersion relations have independently emerged in different QG approaches. It is com-
monly believed that QG effects interest too high energies tobe experimented, until, some years
ago, the first suggestions that quantum-gravitational fluctuations might modify particles propaga-
tion in an observable way began to appear [34, 35]. As a consequence, different classes of physical
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phenomena began to be studied. In particular, the effect that a modification in the particles propa-
gation could have on the neutral kaon system [36, 37] was tested in laboratory experiments, fixing a
lower limits on some parameters analogous toEQG [38]. Other examples of quantum gravitational
effects more related to String Theory and LQG can be found in [39] (see also [40] for another string
motivated deformation) and [41, 42]. Deformed dispersion relations, consistent with the formula
above, arise also in other approaches as the “κ” quantum deformations of the Poincaré symmetry
[43, 44] or quantization of point particles on a discrete space-times [45].

Let us now deepen into the problem of finding a physical systemwhich can be used to test
such a deformed dispersion relation. According to (2.17), the deviation from the ordinary velocity
of the photon is extremely small for practical purpose, nevertheless it could give a sensible effect
if photons of different energies travel for a very long distance before being detected. In particular
photons of different energies emitted at the same time acquire a relative time delay over a distance
L of the order

∆t ≈ ξ L
∆E
EQG

. (2.18)

So, wider the spectrum of the emitted photons and larger the distance traveled, greater is the time-
delay effect. In this respect, the best candidates to observe such an effect are Gamma Ray Bursts
(GRB).

GRBs are, in fact, explosive events at cosmological distances. The typical spectrum of emis-
sion is in the range 0.1− 100 MeV, but it can extend up to the TeV scale. Moreover, a time
structure of the order of the millisecond is typically observed in the light curves. It should now be
clear why GRB are good candidates to study the effects of deformation in the dispersion relation.
By a simple calculation, in fact, it turns out that a GRB with atime structure of the order of the
milliseconds, emitting photons of energy of the order of fewMeVs and exploded at a distance of
≈ 1026m ≈ 1010 ly from the Earth, could test the QG structure up toEQG ≈ 1019GeV. Sensible
sensitivities can be already obtainable from the existing GRB’s data and we address the interested
readers to [5, 6] and in particular to [46, 47]. For completeness, we remark that a small mass for
the photon could produce the same time-delay effects in the arrival time of photons of different en-
ergies. But other existing experimental data fix a limit to the mass of the photon and, consequently,
to such an effect well below the expected time-delay associated to QG effects.

3. Preliminaries

This Section is dedicated to describe some fundamental arguments considered as preliminary,
in the sense that they represent the foundations which the forthcoming discussion is based on.
They are pretty general and unrelated arguments, very well described in many books, in which
many more details can be found. Here I collected the main results and definitions, according to
my own experience as student, inspired by my own notes taken during courses and referring to my
favorite textbooks. So the description is far from being complete, so I exhort the interested readers
to refer to the cited Literature for a more complete treatment.

As I said in the Preface, the focus of this paper is on the canonical formulation of GR. In
this respect, it is important to realize that in order to canonically formulate any theory, we have
to clarify the causal structure of space-time. This is a trivial task when we treat gauge theories
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on a flat Minkowski fixed background, but everything becomes more involved when the dynam-
ics of the theory directly concerns the geometrical structure of the space-time itself as in GR. In
fact, the identification of the gravitational field with the geometry of space-time implies that some
restrictions have to be imposed on its global (causal) structure in order to canonically formulate
the theory. In particular, we have to clearly understand under which conditions it is possible to
“split” space-time and describe the dynamics of the gravitational field as the time evolution of a
geometrical spatial quantity.8 It is important to understand that this is a necessary step toconsis-
tently define a canonical theory; we recall that, in fact, in classical mechanics, the Hamiltonian
can be considered as the momentum conjugate to the time coordinate. This should give an idea of
how much complicated the situation is in GR, since the invariance under diffeomorphisms prevents
from determining a preferred time coordinate and, in general, it does not exist any global system
of coordinates.

For this reason, we consider the study of the causal structure of space-time as the natural
starting point for the canonical formulation of gravity. Inparticular, the scope of the first part of
this Section is the introduction of the Geroch theorem, which clarifies under which hypotheses
a global time function can be assigned on a generic space-time. In this sense, the Geroch theo-
rem restricts the class of space-times whose dynamics can becanonically formulated, generating a
question about the resulting canonical quantum theory: Is canonical quantum gravity applicable to
a restricted class of space-times as well, or the classical conditions can be relaxed in the quantum
theory? Up to my understanding, this question cannot be rigorously answered until a complete
canonical quantum gravity theory has been formulated; nevertheless, since the canonical quantiza-
tion procedure is, generally speaking, a mathematical toolto face the problem of quantization, once
the procedure has been rigorously completed, it is reasonable to expect that the resulting quantum
theory will not be affected by purely classical restrictions. These are naturally relaxed by the quan-
tization itself in a very precise and suggestive sense: In a complete theory of QG there is no room
for space-time.

The discussion of the causal structure of space-time and thesubsequent canonical formulation
of gravity, open the way to another interesting argument, namely the initial value formulation of a
theory with gauge symmetries and, in particular, of GR. It should be clear that, in fact, once GR has
been rewritten as describing the “time” evolution of a 3-dimensional geometry, it is expectable that
an initial value problem can be consistently formulated, byassigning a complete set of initial data
on the initial spatial hypersurface. For physical theoriesformulated on a fixed Minkowski space-
time, the task of the initial value problem is to extract the (unique) evolution of the system starting
from a complete set of initial data, which are generally referred to the external fixed background.
In this sense, the case of GR is much more involved. We cannot,in fact, refer the evolution of the
initial data to a preferred background, rather, once assigned a particular starting configuration for
the metric and its time derivatives, the theory describes the evolution of the background itself. From
another perspective, we can say that the gauge symmetries ofGR, mathematically described by the
group of 4-diffs, complicates the formulation of a well posed initial value problem, not only from a
mathematical perspective, but also conceptually. Nevertheless, a suitably adapted procedure can be

8It is worth noting that the word time here does not refer to thequantity measured by using clocks, which would
imply that the space-time metric has already been completely determined.
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applied to GR in order to assign a well posed initial value problem and extract a unique evolution
from the Einstein equations, even though with some limitations.

In order to clearly describe these arguments, we start by briefly recalling some elements of
group theory, useful to introduce gauge theories, which will be considered as a useful example in
what follows. In particular, to make the general description of the canonical formulation of a gauge
theory more concrete, we will refer to the simple case of the electromagnetic field, which is a gauge
theory of the abelian groupU(1).

Finally, once the causal structure of space-time has been clarified and the generalities about
the electromagnetic theory described, we face the problem of the initial value formulation giving
a brief account of the main theorems used to study the problem. Also in facing this argument the
electromagnetic theory will be useful, providing a simple,but non-trivial example to show how
gauge symmetries enters in the formulation of an initial value problem for a classical system.

3.1 Causal Structure of space-time

The causal structure of flat Minkowski space-time is very simple and intuitive: Once a limit
on the propagation of a signal is fixed, we can associate to anyeventp in space-time a light cone.
The future is represented by a half cone, while the past is represented by the other half. The events
contained in the future half of the light cone can be reached by a matter particle leaving fromp,
all these events are generally referred aschronological futureof p. More generally, all the events
lying in the interior of the future light cone together with those on the cone itself represent the
causal future, physically representing all the events which can be, in principle, influenced by a
signal emitted fromp.

The causal structure on a generic manifoldM is only locally similar to that of flat space,
globally, in fact, the situation can be much more complicated. To give a complete and detailed
account of the problematics correlated to the study of the causal structure of a generic space-time
would require much time and space, so here we limit to give a brief sketch of this argument.
In fact, non-trivial topologies or space-time singularities, in general, complicate enormously the
treatment by introducing many subtleties, so we restrict the discussion by pointing out only those
definitions, theorems, and lemmas we consider useful for what will be said below. For a more
detailed description of the causal structure and the problem of singularities in GR, we address the
reader to the book of Wald [9] from which we extracted the maintheorems of this Section and to
the book of Hawking and Ellis [10] in which one can find complete demonstrations.

Let me begin giving a simple, but important

Definition 3.1. The space-time(M,gµν) is time orientable, if ∀p ∈ M it is possible to make a
continuous designation of future and past.

The simplicity of this definition stems from its intuitiveness, the importance, instead, is connected
with the necessity to distinguish a particular class of space-times: in what follows we will always
refer to time orientable space-times. It is easy to understand that, in general, a non-simply con-
nected space-time cannot be time orientable; from the physical viewpoint in a non-time orientable
space-time we cannot consistently distinguish between going “forward in time” or “backward in
time”. Time orientable space-times satisfy the property expressed by the following
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Lemma 3.1. Let (M,gµν) a time orientable space-time, then there exists a non-unique smooth
non-vanishing time-like vector field tµ on M.

The proof of this Lemma is based on the paracompactness ofM and we address the reader to [9] for
a complete proof. It is interesting to note that the above Lemma suggests a more useful definition
in order to designate time orientable space-times:

Definition 3.2. The space-time(M,gµν) is time orientable, if there exists on M a time-like, contin-
uous, non-vanishing vector field.

For the sake of completeness and self-consistency of the material presented in this work we recall
also the following well known definitions:

Definition 3.3. A differentiable curveγ(t) is said to be afuture directed time-like curve, if at each
p ∈ γ the tangent vector tµ is time-like and future directed.

It is simple to generalize this definition tofuture directed causal curve, it is sufficient to replace the
adjective “time-like” with “causal”. The next definition automatically follows

Definition 3.4. The set of events that can be reached by a future directed time-like curve starting
from p represents thechronological futureof p, namely

I+(p) = {q ∈ M : ∃λ (t) (future directed time-like curve) withλ (0) = p; λ (1) = q} .

Again the definition ofcausal futureis the same of that of chronological future except substituting
the words “future directed time-like curve” with “future directed causal curve”. Finally we remark
that

Definition 3.5. For any subset S⊂ M

I+(S) =
⋃

p∈S

I+(p).

It is worth noting that, even though in Minkowski space-timeI+(p) consists of the interior of
the future light cone, in an arbitrary space-time the situation could be more complicated, and the
usual properties of flat spaces are in general not applicableto arbitrary space-times (it is simple
to construct examples of pathological arbitrary space-times removing points from flat Minkowski
space). However, at least locally, the same properties remain valid as stated by the following

Theorem 3.1. Let (M,gµν) be an arbitrary space-time and let p∈ M. Then there exists a convex
normal neighborhood of p, i.e., an open set U with p∈ U such that∀q, r ∈ U there exists a
unique geodesicγ connecting q and r and staying entirely within U. Furthermore for any such
U, I+(p)|U consists of all points reached by future directed time-likegeodesics starting from p
and contained within U, where I+(p)|U denotes the chronological future of p in the space-time

(U,gµν ). In addition
·
I +(p)|U is generated by the future directed null geodesics in U emanating

from p.
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The fact that all general relativistic space-times have locally the same qualitative causal structure
as Minkowski space-time, does not exclude that globally remarkable differences can appear. As
a consequence, a general space-time can be notcausally well behaving. In order to clarify this
point consider, for instance, a space-time with topologyS1×R3, constructed identifying thet = 0
and t = 1 hyperplanes of Minkowski flat space. It is easy to realize that, in such a space-time,
an observer would not have any difficulty in altering past events; in fact, the integral curves with
tangent vectortµ = (∂/∂ t)µ will be closed and time-like. As a consequence, we have∀ p ∈ M,
I+(p) = I+(p) = M [9]. Although the previous example could seem rather artificial, we stress that
many general space-times with the property of allowing closed time-like curves exist, and they
occur in much less artificial examples than that described above.

From a physical perspective space-times with non-trivial closed causal curves cannot be con-
sidered physically realistic, because an observer could alter past events. From a mathematical point
of view, we have to ensure that time-like geodesics do not intersect themselves. But the problem
is slightly more complicated than it could appear at a first glance, the reason being that we have
also to consider physically unreasonable those space-times in which time-like geodesics come “ar-
bitrarily close” to intersect themselves (without doing it). They could, in fact, violate the causality
condition if a small perturbation of the metric occur. Then we characterize physical space-times as

Definition 3.6. A space-time(M,gµν) is said to bestrongly causalif ∀ p ∈ M and every neighbor-
hood U of p, there exists a neighborhood V of p contained in U, i.e., V⊂U such that no causal
curve intersects V more than once.

So, strongly causal space-time are characterized by the fact that causal curves cannot come arbi-
trarily close to themselves, but this is not sufficient to assure that one is not “on the verge” to violate
physical causality. For this reason it is in general reasonable to give a stronger notion of causality
as follows:

Definition 3.7. A space-time(M,gµν) is said to bestably causalif there exists a continuous non-
vanishing time-like vector field tµ such that the space time(M, g̃µν), where

g̃µν = gµν − tµtν (3.1)

possesses no closed time-like curve.

The definition of stable causality avoids that a strong causal space-time could violate causality
by perturbing the metric. A perturbation of the metric could, in fact, “open out” the light cone
so much that a causal curve can come arbitrarily close to itself. The light cones of space-time
(M, g̃µν) is strictly larger than that of(M,gµν), consequently if closed time-like curves do not exist
for (M, g̃µν), surely they will not exist for(M,gµν) too.

For our purposes, the content of the next theorem is particularly important.

Theorem 3.2. A space-time(M,gµν) is stably causal if and only if there exists a differentiable
function f on M such that∇µ f is a past directed time-like vector field.

Or, in other words, a stably causal space-time is equivalentto the existence of a global time func-
tion. For brevity, we do not prove this theorem here, but we address the reader to [9, 10] for the
details of the proof. Furthermore it is important to quote the result contained in the following
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Corollary 1. Stable causality implies strong causality.

This result is, in a certain sense, expectable and allows us to conclude that stable causality is the
appropriate notion to be sure that a space-time is not going to violate causality, which is a crucial
request for all physical reasonable space-times.

Above we gave the definition of causality, namely we studied the collection of eventsI+(S)
which can be influenced by a set of eventsS, now we want to study the collection of events “com-
pletely determined” by a set of eventsS. Above all, we have to give the following two definitions:

Definition 3.8. A set S is saidachronalif I +(S)∩S= 0.

Definition 3.9. Let S be an achronal set, thefuture domain of dependenceof S, D+(S), is the
collection of events p such that every past inextendible causal curve passing through p intersect S.

It is worth noting that the following relations holdS⊂ D+(S) and, S being achronal,D+(S)∩
I−(S) = 0. The physical importance of the future domain of dependence relies on the fact that,
since no signal can travel faster than light, then any signalreceived inp ∈ D+(S) must have been
registered onS, therefore giving suitable initial conditions onS, we should be able to predict what
will happen inP. Note that if p ∈ I+(S), but p /∈ D+(S) it is possible to reachp with a signal
not passing throughS. In general, the full domain of dependence of an achronal setS is defined as
D(S) =D+(S)∪D−(S), physically representing the complete set of events which can be completely
determined in future and past by fixing initial conditions onS.

Definition 3.10. A closed achronal setΣ of M such that D(Σ) = M is said aCauchy surface.

Now since the edge of an achronal setS is the set of pointp ∈Ssuch that every open neighborhood
U of p contains two pointq ∈ I+(S) andr ∈ I−(S) and a time-like curveλ (t) from r to q which
does not intersectS; then it follows that the edge of a Cauchy surface is empty. Therefore, by the
following

Theorem 3.3. Let S be a closed achronal set with edge(S) = 0, then S is a three-dimensional,
embedded, C0 submanifold of M,

we can conclude that the Cauchy surface is a 3-dimensional embeddedC0 submanifold ofM. More-
over sinceΣ is achronal, it represents an “instant of time” of the Universe [9]. As a consequence,
we give the following

Definition 3.11. (Wald [9]) A space-time(M,gµν) which possesses a Cauchy surface isglobally
hyperbolic.

So, in a global hyperbolic space-time, we can predict or retrodict the entire evolution of the Uni-
verse by assigning suitable initial condition on the CauchysurfaceΣ. Established the importance
of a globally hyperbolic space-time, we want to give a criterion to recognize them among general
space-times. In this respect, the first step is to introduce the so called Cauchy horizons:

Definition 3.12. Let S be an achronal set, the future Cauchy horizon of S, denoted by H+(S) is

H+(S) = D+(S)− I−
[
D+(S)

]
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and let us immediately quote the following

Proposition 3.1. Being H(S) =H+(S)∪H−(S) and being
•
D(S) the boundary of the future domain

of dependence, we have

H(S) =
•
D(S) .

From the above proposition follows the following

Corollary 2. If M is connected then a non-empty closed achronal setΣ is a Cauchy surface if and
only if H(S) = 0.

Proof. If H (S) = 0 then by the proposition follows
•
D(S) = 0, thusD(S) = int[D(S)] = D(S),

so D(S) is simultaneously closed and open, but the only sets both open and closed are the empty
set and the entire set, so we conclude D(S) = M.

This corollary allows us to enunciate the following theorem, which represent a useful criterion to
establish if a surface embedded in a manifold is a Cauchy surface:

Theorem 3.4. If Σ is a closed achronal edgeless set, thenΣ is a Cauchy surface if and only if every
inextendible null geodesic intersectsΣ and enters I+(S) and I−(S).

Now, it is easy to understand that, if a space-time is globally hyperbolic, then no closed time-
like curves can exist inM. Indeed, either a closed time-like (or causal) curve never intersects the
Cauchy surfaceΣ violating global hyperbolicity, or it intersectsΣ twice violating achronality. This
fact suggests that global hyperbolic space-times have a “well causal behaviour”, as stated by the
following

Theorem 3.5. (Geroch 1970 [48]).Let(M,gµν) be a globally hyperbolic space-time. Then(M,gµν)

is stably causal. Furthermore, a global time function, t, can be chosen such that each surface of
constant t is a Cauchy surface. Thus M can be foliated by Cauchy surfaces and the topology of M
isR×Σ, whereΣ denotes any Cauchy surface.

We refrain from giving the proof of this famous theorem addressing the interested reader to the
original reference, nevertheless we want to stress its importance in view of the canonical approach
and quantization of gravity. The Geroch’s theorem, in fact,allows to recast the gravitational action
in the canonical form operating a 3+ 1 foliation of space-time, extracting a continuous function,
which will play the role of evolution parameter. It will be clear that the dynamical degrees of
freedom of the gravitational field are entirely contained inthe geometry (metric modulo diffeo-
morphisms) of the 3-dimensional Cauchy surface. Pictorially, the evolution of the system can be
described registering the changes of the 3-geometry going from one Cauchy surface to the next
one, following the integral curve of the past directed time-like vector field∇µ t.

3.2 Compact groups and gauge theories

Let us now go on to describe some elements of group theory in view of the construction of
gauge theories. Group theory, in fact, represents one of themain tool in the mathematical for-
malization of physical interactions and, even the briefestaccount of their mathematical properties
would involve the interesting geometrical aspects of fiber bundles. These arguments, even though
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important to appreciate the general mathematical structure of this framework, would lead us away
from the scope of this paper. So, I refrain from introduce thegeneral framework of fiber bun-
dles, giving only a brief account of the group properties we need to construct a gauge theory on a
compact group.

3.2.1 Elements of group theory

Let us start from the following

Definition 3.13. LetG andG ′ be groups, thus a map f: G → G ′ is an homomorphism if∀g1,g2 ∈
G we have f(g1g2) = f (g1) f (g2). A homomorphism h: G → GL(V) is called arepresentationof
the groupG and V is called therepresentation space. The representation is said to be of dimension
N if the representation space is N-dimensional.

A gauge theory can be constructed by using any compact groupG, we recall that a group is said
compactif the parameters which describe the group take values in a compact set. In what follows,
we will focus our attention on the compact groupSU(N), which is represented by the special
group of the unitaryN×N matrices. Its fundamental representation isN dimensional, indeed, if
g∈ SU(N) is an element of the group, we have that its representationU = h(g) is a unitaryN×N
matrix, which acts on aN-dimensional complex space. Using the direct product, we can construct
many other representations, which are in general reducible, usually calledtensorial representation.
Consider, for example, the tensorial representation spaceV ⊗V; it is easy to imagine that the
elements of the group will act on the representation space asfollows UikU jl vkl = v′i j , which can
be, conversely, used as a definition for tensors valued on theLie algebra of a compact group. In
general this representation is reducible, as one can verifyconstructing group invariants. Another
possible representation is the conjugate one, which acts onthe spaceV as well as the fundamental
representation, so they turns out to have the same dimension. Usually, theN-dimensional conjugate
representation is denoted by the symbolN. Remarkably, the conjugate representation of the group
SU(2) is equivalent to the fundamental one.9

Before going further introducing the so called adjoint representation, we briefly describe
the parametrization of the groupSU(N). In order to understand which is the most convenient
parametrization for this group, we observe that the genericunitary matrixU can be rewritten as

U = eiλ , with λ = λ † , (3.2)

furthermore ifU ∈ SU(N)⇒ Trλ = 0, so the groupSU(N) can be parametrized by the hermitian
matrices with null trace and, as a consequence, is determined by N2−1 parameters. Specifically,
by defining a basis in the the space of theN×N hermitian matrices,H, formed by theN2 − 1
hermitian matricesλ a with a= 1,2...,N2−1, satisfying the orthogonality condition

Tr
(

λ aλ b
)
=

1
2

δ ab, (3.3)

we can rewrite the generic elementU ∈ SU(N) as

U = eigaλa
, where ga ∈R, λ a ∈ H, with Trλ a = 0. (3.4)

9Two representations are said equivalent if it exists a unitary mapW : h1 (g) → h2(g), such thatWh1(g)W† =

h2 (g) , ∀g.
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The λ a matrices are said generators of theSU(N) group. The fact that the commutator of two
hermitian matrices is an anti-hermitian matrix, allows to write

[
λ a,λ b

]
= i f abcλ c , (3.5)

which guarantees that (3.4) is a good parametrization for the groupSU(N). The structure constants
of the group,f abc, turn out to be real and antisymmetric in the exchange of their three indexes.

Let us now consider the action of aSU(N) operator infinitesimally close to the identity on
the representation space. This can be parametrized by the first order expansion of the general
parametrization (3.4), in symbols we have:eigaλa

= I + igaλ a. The elements of the group in the
connected component of the identity generate the algebra ofSU(N), which is fundamental for
the construction of gauge theories. In this respect, we wantto anticipate here that the canonical
constraints we are going to calculate below are the generators of small gauge transformations only,
i.e. they generate those gauge transformations in the connected component of the identity. In
other words, the behavior of the states of the theory under large gauge transformations, i.e. those
generated by the elements of the group characterized by a non-vanishing winding number (see
the Appendix B), cannot be deduced by the theory. This leads to an extremely interesting issue.
The observables of a gauge theory are, in fact, invariant under the full group, so they can be used
to super-select states of the theory belonging to gauge sectors characterized by different winding
numbers. From this perspective the global (and in general non-trivial) structure of the gauge group
enters in the physical outcomes of the theory.10

By considering the direct product between the fundamental and the conjugate representations,
we can construct the following representation, acting onN×N matrices as follows:

v
′
i j =UikU

∗
jl vkl where U ∈ SU(N), vkl ∈V ⊗V . (3.6)

The adjoint representation is reducible, to decompose it inits irreducible components, let us iden-
tify the generic elementvkl of the vector space as the “kl” entry of the matrixW, thus we have

W
′
=UWU+ . (3.7)

It is worth noting that the hermitian matrices form an invariant subspace,11 as one can easily verify.
The trace is an invariant too, so that we can reduce the representation considering the subspace
formed by the hermitian matrices with null trace.

The representation acting on theN×N hermitian matrices with null trace is calledadjoint
representationand has dimensionN2−1.

Let us now study the algebraic structure of the adjoint representation. We consider an infinites-
imal transformation, which acts on the hermitian tracelessmatrixV, we have:

V
′
=UVU+ = (I + igaλ a)V

(
I − igbλ b

)
=V + igb

[
λ b,V

]
. (3.8)

10This fact is not only of mathematical interest, in this respect note that the solution of the so-calledU(1)A puzzle in
QCD is directly correlated to the topological global aspects of the gauge group. For the sake of completeness, we also
stress that the extension of the theory to contain topologically non-trivial terms in the action has led to the necessityof
solving the so-called strongCP problem, which contains physical predictions going “beyond the Standard Model,” as,
for example, the existence of the axion.

11Considering only the hermitian matrices is not restrictivebecause a generic matrixA can be rewritten asA =

A1+ iA2, with A1 = A†
1 andA2 = A†

2
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Now, by expandingV on the basis, we obtain the transformation law of the component Va, namely:

V
′a =Va− f abcgbVc =

(
δ ac− f abcgb

)
Vc. (3.9)

The above expression (3.9) allows us to identify the generators of the adjoint representation, they
are, in fact, given by the matrices of components “bc” identified with(Qa)bc= f abc. It is straightfor-
ward to verify the universality of the commutation rules of the generators, in other words starting
from the Jacobi identity for theλ a matrices and using the commutation relations (3.5), one can
demonstrate that [

Qa,Qb
]
= f abcQc . (3.10)

In other words, the structure constants characterize the group independently from the represen-
tation, as their name suggests. It should appear obvious that the structure constants characterize
only the algebraic properties of the group, not the global ones, which cannot be deduced from the
algebra.

3.2.2 The gauge principle and physical interactions

We are now ready to introduceSU(N) Yang–Mills gauge theories. In this respect, let

Ψ(x) =




ψ1(x)
...

ψN(x)


 (3.11)

be a collection ofN Dirac spinor fields, the dynamics of which is described by theDirac Lagrangian

L [Ψ,Ψ] = Ψ(x)
(
iγµ∂µ −M

)
Ψ(x) , (3.12)

whereM is theN×N mass matrix.12 The Lagrangian above is symmetric under the action of the
SU(N) group, acting on the spinor fieldΨ and its conjugateΨ according to the following rules:

Ψ(x) → Ψ′(x) =U [g]Ψ(x) = eigaλa
Ψ(x) , (3.13)

Ψ(x) → Ψ′
(x) = Ψ(x)U†[g] = Ψ(x)e−igbλb

. (3.14)

wherega are theN2−1 constant parameters of the transformation. In other words, the collective
spinorΨ transforms in the vectorial representation of the groupSU(N).

The gauge principle states that the minimal coupling interaction between fermions and boson
gauge fields can be obtained by requiring the local gauge invariance of the Dirac Lagrangian.
In other words, we can directly extract the right minimal coupling by simply requiring that the
Lagrangian (3.12) is invariant under the following local transformations

Ψ(x) → Ψ′(x) =U [g(x)]Ψ(x) = eiga(x)λa
Ψ(x) , (3.15)

Ψ(x) → Ψ′
(x) = Ψ(x)U†[g(x)] = Ψ(x)e−igb(x)λb

. (3.16)

12The mass matrixM can be in general neither diagonal nor hermitian. In this case, in fact, it can be easily diag-
onalized by a chiral transformation. This procedure, even though completely safe in the classical theory, can produce
striking effects in the quantum theory, because of the chiral anomaly.
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It is worth noting that, in fact, the kinetic term in the Lagrangian (3.12) cannot be invariant under
such a transformation for a very simple reason: The derivative operator is defined through a limiting
procedure of objects transforming differently under the localSU(N) group, or, equivalently, we can
say that the ordinary derivative of a spinor does not transform in the vectorial representation of the
SU(N) group. More practically, one can note that the action of the derivative operator on the
transformed spinor fieldΨ′(x) generates a term which cannot be reabsorbed unless we introduce a
counter term.

So the invariance requirement induces to modify the Lagrangian by defining a new derivative
operator,Dµ , which transforms in the adjoint representation of theSU(N) group, so that

Dµψ →
(
Dµψ

)′
=U [g(x)]DµU†[g(x)]U [g(x)]Ψ =U [g(x)]DµΨ . (3.17)

This can be easily achieved by introducing a connection gauge field Aµ = Aa
µλ a, valued on the

groupSU(N) and transforming according to the following equation

Aµ → A′
µ =U [g(x)]AµU†[g(x)]− iU [g(x)]∂µU†[g(x)]

= eiga(x)λa
Ac

µλ ce−iga(x)λa − ieiga(x)λa
∂µe−iga(x)λa

. (3.18)

Consequently, for an infinitesimal gauge transformation wehave:

Aa
µ → A′a

µ = Aa
µ + i f abcgbAc

µ −∂µga = Aa
µ −Dµga , (3.19)

where the covariant derivative of the adjoint representation, Dµ , has been defined. In order to
rigorously introduce the mathematical concept of connections and study their properties, we should
digress on the geometry of fiber bundles, but this is far from the scope of this paper. So let us just
remark that the replacement

∂µΨ(x) → DµΨ(x) = ∂µΨ(x)+ iAµΨ , (3.20)

is a consequence of the fact that the global symmetry group has been promoted to be a local group
and this introduces a fiber bundle structure which motivatesthe introduction of connections.

Now, it is a simple exercise writing a Dirac Lagrangian whichfeatures the required properties
of symmetry, i.e.

L [Ψ,Ψ,A] = Ψ(x)
(
iγµDµ −M

)
Ψ(x)

= Ψ(x)
(
iγµ∂µ −M

)
Ψ(x)−Ai

µΨ(x)λ iΨ(x) = L [Ψ,Ψ]+Lint[Ψ,Ψ,A] , (3.21)

Remarkably, a new interaction term denoted byLint has appeared in the full Lagrangian, repre-
senting the minimal interaction of theSU(N) gauge connection and the spinor matter fields.

So, by fulfilling the requirement of the gauge principle, we have been able to automatically
extract the correct minimal interaction between fermions and boson gauge fields. But, the gauge
principle does not give us any hint on how to construct a kinetic term for the new gauge field
Aµ . From the general theory of fiber bundles, we know that once a connection has been defined,
a natural curvature tensor can be constructed. Usually, in physics books, the curvature tensor is
defined as follows: [

Dµ ,Dµ
]

Ψ = iFµνΨ , (3.22)
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whereFµν = Fa
µνλ a is said curvature or strength tensor. By the above definitionit is easy to extract

the explicit expression of the curvature tensor as functionof the connection, i.e.

Fµν = ∂µAν −∂νAµ +
[
Aµ ,Aµ

]
. (3.23)

The curvature tensor satisfies the so-called Bianchi identity,

D[µFνρ ] = 0, (3.24)

which, remembering the definition (3.22), can be consideredas a consequence of the Jacobi identity
associated to the covariant derivative operatorDµ .

It is worth noting that if the gauge symmetry is represented by theU(1) group, the structure
constants vanish as a consequence of the vanishing of the commutator between the group generators
(Abelian group) and, in this specific case, the connection physically describes the electromagnetic
potential, while the curvature tensor is the electromagnetic field strength.

The curvature tensor transforms as a proper element of the adjoint representation (in contrast
with the connection), specifically we have:

Fµν → F ′
µν =U [g(x)]FµνU†[g(x)] . (3.25)

This fact, and the analogy with the electromagnetic field, suggests the expression of the action
for the field Aµ . Specifically, requiring that the dynamics be described by second order partial
differential equations of motion, a good action is:

S[A] =−1
2

∫
d4xTrFµνFµν =−1

4

∫
d4x∑

a
Fa

µνFaµν , (3.26)

where in the second equality we used the orthogonality condition (3.3). The trace acts on theN2−1
gauge internal indexes and makes the action invariant underthe action of theSU(N) group as can
be easily demonstrated.

As a final remark, note that we can add a term to the above actionwithout affecting the classical
equations of motion, i.e. the action

Sθ [A] =−1
4

∫
d4x∑

a
Fa

µνFaµν +
θ

64π2

∫
d4xε µνρσ ∑

b

Fb
µνFb

ρσ (3.27)

is dynamically equivalent toS[A], since theθ -term contribution to the classical equations of mo-
tion vanishes identically according to the Bianchi identity (3.24). Even though such a term does
not affect the classical theory, it produces striking effects in the non-perturbative quantum theory
(further details are given in Appendix B). Keep in mind the form of the actionSθ [A], since an
analog situation will characterize the Ashtekar–Barbero formulation of canonical gravity.

3.3 Gauge Symmetries and Constraints

Let us now start describing the canonical formulation of theories with gauge symmetries. This
argument is particularly important for us, since it is the classical starting point of the canonical
quantization of gauge systems. At the end of the section we will calculate the canonical Hamilto-
nian of the electromagnetic theory, which will serve as a description of the formalism in a simple
practical example.
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3.3.1 General formalism

Let us consider a physical system described by a Lagrangian

L = L(qi , q̇k) , (3.28)

where Latin indexes denotes the different generalized coordinates and velocities which determine
the classical motion of the system on the configuration space. The Lagrangian equations of motion
are

d
dt

(
∂L
∂ q̇i

)
=

∂L
∂qi

. (3.29)

By suitably defining the momenta and performing the so-called Legendre transformation, it is pos-
sible to refer the dynamics of a physical system to the generalized coordinates and their conjugate
momenta. In this respect, we define the momentumpk as

pk =
∂L
∂ q̇k

. (3.30)

The couple of canonical variables(qi , pk) are the coordinates of the so-called phase space. Usually,
in classical mechanics, we introduce the hypothesis that the momenta are independent functions of
the velocities. Even though this hypothesis is fulfilled in many interesting classical macroscopic
systems, it is too restrictive to be applied to more fundamental physical theories, e.g. those based
on the gauge principle.

In general, the Lagrangian could be singular, namely

det

[
∂ 2L

∂ q̇i∂ q̇k

]
= 0. (3.31)

If this is the case, the velocities cannot be all inverted as functions of the generalized coordinates
and momenta.13 As a consequence, the momenta are not all independent, rather some relations
among them crop up directly from their definitions. Specifically, we have

φm(qi , pk) = 0, m= 1,2, · · · ,M . (3.32)

These relations are calledprimary constraints, emphasizing that they result from the very definition
of the momenta. The submanifold in the phase space determined by the conditions (3.32) is called
primary constraint surface.

At this point, let us define the following function

H = ∑
k

pkq̇k−L(qi , q̇k(p j)) , (3.33)

and calculate its variation:

δH = ∑
i

δ pi q̇i +∑
k

pkδ q̇k−∑
j

(
δL(qi , q̇k)

δq j

)
δq j −∑

l

(
δL(qi , q̇k)

δ q̇l

)
δ q̇l

= ∑
k

q̇kδ pk−∑
j

(
δL(qi , q̇k)

δq j

)
δq j , (3.34)

13It is easy to show, starting from the equations of motion (3.29), that the vanishing of the above determinant implies
also that the accelerations at a generic time cannot be uniquely determined as functions of the positions and velocitiesat
the same time.
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this is called canonical Hamiltonian and its variation depends only on the positions and canonical
momenta. However, the Hamiltonian defined above is not uniquely determined because we can
add to it any linear combination of the primary constraints.In other words, the theory cannot
distinguish between the HamiltonianH defined above and the new HamiltonianH⋆=H+∑mcmφm.
Nevertheless, since the above equation has to hold for any variation, provided that the variation
preserves the conditions (3.32), we can obtain the following Hamiltonian equations of motion:

q̇i =
∂H
∂ pi

+∑
m

um
∂φm

∂ pi
, (3.35a)

−ṗk =
∂H
∂qk

+∑
m

um
∂φm

∂qk
, (3.35b)

which are in accordance with the general method of the calculus of variations applied to a system
with constraints. We stress that the symbolum denotes a completely arbitrary set of functions. Be-
fore going on, it is convenient to introduce a formalism thatallows to write the canonical equations
of motion in a compact way. We are referring to the Poisson brackets. Letf andg be two generic
functions of the canonical variables, then we define:

[ f ,g] = ∑
i

(
∂ f
∂qi

∂g
∂ pi

− ∂ f
∂ pi

∂g
∂qi

)
. (3.36)

It immediately follows that
[qi , pk] = δik , (3.37)

whereδik is the Kronecker symbol. Moreover, it is easy to demonstratethat the equations of motion
(3.35a) can be easily rewritten as

q̇i = [qi ,H]+∑
m

um[qi ,φm] , (3.38)

ṗk = [pk,H]+∑
m

um[pk,φm] . (3.39)

more generically, we have
ġ= [g,H]+∑

m
um [g,φm] , (3.40)

whereg is a generic functions of the canonical variables. The Poisson brackets are defined only for
those quantities that are functions of the canonical variables, nonetheless, the above definition for
the time derivative of the generic functiong can be rewritten more concisely as:

ġ= [g,HT ] , (3.41)

where the total HamiltonianHT is defined as

HT = H +∑
m

umφm . (3.42)

One may immediately wonder about the acceptability of this definition, because one of the term
that come out from Poisson bracket (3.41) is∑m [g,um]φm. This is badly defined because theum are
arbitrary functions not depending on the canonical variables. But, the correctness of this definition
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stems from the fact that the Poisson brackets multiply the vanishing functionsφm. So, we have
to carefully consider the fact that in dealing with the Poisson formulation of classical mechanics
in theories with constraints, these have to be imposed only after having calculated all the Poisson
brackets, otherwise we would affect the consistency of the construction. That is the reason why the
weakly vanishing symbol “≈” is widely used; it emphasizes the fact that the constraintshave to
be imposed at the end of the canonical analysis, limiting theevolution of the system to a restricted
region of the phase space.

As a consistency requirement, we have to impose another condition on the dynamics. Namely,
we have to require that the primary constraints surface be preserved by the Hamiltonian flow, i.e.

φ̇n = [φn,H]+∑
m

um [φn,φm]≈ 0. (3.43)

If the above equation is automatically satisfied, namely thetime derivative of the primary con-
straints vanishes on the primary constraints surface, thenno other consistency check is necessary.
But, in general, different cases may occur. In particular, if φ̇n 6= 0 for certain values ofn, then some
secondary constraintsχ(qi , pk) ≈ 0 have to be imposed, further restricting the available region of
the phase space. Obviously, the same consistency conditionin Eq. (3.43) has to be satisfied by the
secondary constraints, otherwise tertiary constraints have to be imposed and so on.

Since there is no fundamental difference between primary and secondary constraints, we col-
lect all of them in the same symbol, i.e.

φm(qi , pk)≈ 0, m= 1,2, · · · ,M+K , (3.44)

whereK is the number of secondary constraints. In general, the consistency equation contains
interesting information about the arbitrary functions entering in the Hamiltonian, so a closer look
at it is in order. We have:

[φn,H]+∑
m

um [φn,φm]≈ 0, (3.45)

generally, if det{[φn,φm]} 6= 0, we can extract a solution for theum by inverting the matrixCnm=

[φn,φm]; for convenience let us indicate this set of solutions asUm(qi , pk). Moreover, in order to
write the general solution of the equation above, we must addthe solution of the homogeneous
equation to the particular solutionsUm(qi , pk), namely

∑
m

Vm([φn,φm])≈ 0. (3.46)

In general, there can be a certain number of independent solution of the equation above, which are
denoted asVam. So that the most general solution of the consistency condition isun =Un+∑a vaVan,
where the components of the functionsum that can be fixed by the consistency conditions have
been separated from that which remains arbitrary. In terms of this new expression forum, the total
Hamiltonian can be rewritten as

HT = H +∑
m

Umφm+∑
a

vaφa = H ′+∑
a

vaφa , (3.47)

where we have definedH ′ = H +∑mUmφm andφa = Vamφm. The canonical equations of motion
can be calculated through the total Hamiltonian by using thePoisson brackets formalism. Obvi-
ously, even though some of the arbitrariness has been eliminated via the consistency condition,
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they still contain some arbitrary functions,va. Nevertheless, the canonical equations of motion are
equivalent, by construction, to the Lagrangian ones.

At this point, we have to introduce some useful terminology.We call first classall those
functions of the canonical variables which have weakly vanishing Poisson brackets with all the
constraints. By remembering that theφ ’s are the only independent quantities which are weakly
zero, then the functionS= S(qi , pk) is first class if

[S,φm] = ∑
n

cmnφn , ∀m= 1, · · · ,M+K . (3.48)

All the other functions of the canonical variables are said to besecond class. It is easy to demon-
strate that the Poisson brackets of two first class functionsis first class as well as the Hamiltonian
H ′ defined in (3.47). This terminology applies to constraints as well: We callfirst class constraints
the set ofφm with m≤ K+M such that

[φm,φn] = ∑
p

cmnpφp , ∀m= 1, · · · ,M+K , (3.49)

while the others are referred assecond class constraints.
Finally, we want to digress on the transformations induced by the first class constraints. In

order to do that, let us stress that in a theory with constraints, because of the presence of the
arbitrary functionsva, the evolution of the generalized coordinates and momenta are not uniquely
determined by the initial state. This means that there are many choices of the fundamental variables
that characterize the same physical state. In this respect,it is interesting to consider particular
values of phase space variables (let us call themg) at an initial time, e.g.g0 = g(t = 0), and look
at their values after an infinitesimal temporal lapseδ t. By using the Poisson brackets, we obtain:

g(δ t) = g0+ ġδ t = g0+[g,HT ]δ t = g0+δ t

([
g,H ′]+∑

a
va [g,φa]

)
. (3.50)

Imagine that we had initially taken different functionsv′a, then we would have obtained:

g′(δ t) = g0+ ġδ t = g0+[g,HT ]δ t = g0+δ t

([
g,H ′]+∑

a
v′a [g,φa]

)
. (3.51)

In other words, during the infinitesimal timeδ t, the difference∆va of the two functionsva andv′a
(i.e. ∆va = va−v′a) generates a difference betweeng andg′ given by

∆g(δ t) = δ t∆va [g,φa] = εa [g,φa] , (3.52)

whereεa is a small quantity, being proportional toδ t. So, according to the above rule, the variables
describing a particular physical configuration of the system can be arbitrarily changed without
affecting the state of the system. In other words, many different sets of canonical variables, related
each other by the above transformation, equivalently describe the same physical state. Hence, the
functionsφa result to be the generators of gauge transformations.

Concluding, we have found that first class primary constraints generate gauge transformations,
but it is, in general, expectable that also secondary first class constraints are generators of gauge
transformations, and this is, in fact, the case in many mechanical systems. It is commonly believed
that all the first class constraints generate gauge transformations, even though, this belief is not
supported by a rigorous proof and is sometimes referred as Dirac’s conjecture.
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3.3.2 Electromagnetic canonical theory

The electromagnetic theory provides a very simple, but non-trivial and practically interesting
example to operatively use the procedure just described. Inorder to be definite, we start from the
Lagrangian for the Maxwell’s theory, i.e.

L(A,∂A) =−1
4

∫
d3xFµνFµν . (3.53)

Here the fundamental variable is the electromagnetic potential Aµ , which, as is well known, is the
connection field associated to theU(1) gauge symmetry; namely, acting with a gauge transforma-
tion onAµ , we have that

Aµ → A′
µ = Aµ +∂µλ , (3.54)

whereλ is a generic function of the space-time points. According towhat said above, the gauge
symmetry will reveal its presence in the canonical theory through the appearance of first class con-
straints, associated with the generators of the gauge transformation. Hence, let us start the canonical
analysis of the electromagnetic theory by calculating the conjugate momenta to the variablesAµ .
Namely,

Eα =
∂L

∂Aα
=−∂ 0Aα +∂ αA0 = Fα0 , and P0 =

∂L
∂A0

= 0, (3.55)

are respectively the momenta conjugate toAα andA0 (the Greek indexes from the beginning of the
alphabet indicate purely spatial components, while the index 0 indicates the time component). The
resulting phase space is 8-dimensional with coordinates(Aα ,A0,Eα ,P0), and can be equipped with
the following symplectic structure:

[
Aα(t,x),E

β (t,x′)
]
= δ β

α δ (x,x′) ,
[
A0(t,x),P

0(t,x′)
]
= δ (x,x′) , (3.56)

the other brackets vanishing.
The fact that the right hand side of the momentumP0 does not contain any velocity implies

that the Lagrangian is singular, according to definition (3.28); moreover it generates a primary
constraint, i.e.

φ := P0 ≈ 0. (3.57)

Now, the canonical Hamiltonian can be calculated by performing the Legendre transformation,
obtaining:14

H =
∫

d3x

[
1
2

EαEα +
1
4

Fαβ Fαβ −Eα∂αA0

]
. (3.58)

So, the primary total Hamiltonian results to be:

HT =

∫
d3x

[
1
2

EαEα +
1
4

Fαβ Fαβ +A0∂αEα +uφ
]
, (3.59)

where we integrated by parts the third term. As a consistencycheck, we calculate the time deriva-
tive of the primary constraintP0, we have:

φ̇ = [φ ,H] =−∂αEα , (3.60)

14It is worth noting that the velocitẏAα can be rewritten as function of the momentum asȦα = Eα +∂αA0, where
we have taken into account the signature of the metric, i.e.−,+,+,+.
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so that a secondary constraint has to be imposed, namely

χ := ∂αEα ≈ 0. (3.61)

The next consistency check does not generate any tertiary constraint, indeed

χ̇ = [χ ,H] = 0. (3.62)

So, the theory generates one primary and one secondary constraint which form a set of first class
constraints, i.e.

[φ ,φ ] = 0, [φ ,χ ] = 0, [χ ,χ ] = 0. (3.63)

Now, in order to get the most general physically possible motion, we write the extended Hamilto-
nian containing the secondary constraint as well, we have:

HE =

∫
d3x

[
1
2

EαEα +
1
4

Fαβ Fαβ +A0∂αEα +uφ +vχ
]
. (3.64)

The equations of motion can be easily obtained by calculating the Poisson bracket of the canonical
variables with the extended Hamiltonian above; but, interestingly enough, given the structure ofHE,
some simplifications are possible. In this respect, let us firstly, calculate the equation of motion of
A0, obtaining

Ȧ0 = [A0,HE] = u. (3.65)

This reveals the nature of one of the ambiguities of the theory, which turns out to be the time
derivative ofA0. More importantly, the above equations states that the evolution ofA0 is completely
arbitrary. So, remembering the expression of the secondaryconstraintχ , we can reabsorb the
variableA0 in the definition of the arbitrary functionv. Moreover, the momentumP0 is constrained
to vanish along all the evolution and its presence in the Hamiltonian only ensures that the variable
A0 is an arbitrary function. So, in order to simplify the expression of the extended Hamiltonian and
reduce the number of unphysical degrees of freedom, we can drop both the variablesA0 andP0. It
is worth stressing that the dynamics of the physically relevant degrees of freedom is not affected
by this reduction. Finally, the total Hamiltonian turns outto be:

HT =

∫
d3x

[
1
2

EαEα +
1
4

Fαβ Fαβ +v∂αEα
]
, (3.66)

which can be used to calculate the canonical equations of motion, or to quantize the system by
implementing the Dirac procedure described in § 6.1. We remark that the only survived constraint
is the first class Gauss constraint∂αEα ≈ 0. A Gauss constraint appears in Yang–Mills gauge
theories of non-abelian groups as well; in that case the ordinary derivative is replaced by a covariant
derivative, so the connection field enters in the Gauss constraint, complicating its mathematical
structure (see, e.g. (B.1)).

It is interesting to note that the Gauss constraint, in fact,generates gauge transformations. Let
us, for example, consider the action of the smeared Gauss constraint, i.e.

G( f ) =
∫

d3x f(t,x)∂α Eα(t,x) , (3.67)

on the fundamental variableAα , we have:

δAα(t,x) = [Aα(t,x),G( f )] = ∂α f (t,x) , (3.68)

where the generic smearing functionf plays the role ofλ in (3.54).
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3.4 Initial Value Formulation

We conclude this section giving an account of the fundamental theorems for establishing a well
posed initial value formulation for gauge theories and GR. The results expressed by these theorems
are pretty general, but as we will show below, they can be easily applied to specific cases. As an
example, we will address the simple problem regarding the initial value formulation of Maxwell’s
electromagnetism. The case of electromagnetism is interesting because, being a gauge theory,
shares with GR the presence of first class constraints and, asa consequence, the necessity to make
a proper “gauge choice” in order to write the equations in a suitably form to face the initial value
problem.

3.4.1 Some important theorems

First of all we enunciate the following theorem without demonstrating it, addressing the reader
to [10] for a complete proof (a partial proof can be found in Wald’s book [9]):

Theorem 3.6. Let (M,gµν) be a globally hyperbolic space-time (or a globally hyperbolic region
of an arbitrary space-time) and let∇µ be any derivative operator. LetΣ be a smooth, space-like
Cauchy surface. Consider the system of n linear equations for n unknown functionsφ1, . . . ,φn of
the form

gµν∇µ∇νφi +∑
j

Aµ
i j ∇µφ j +∑

j

Bi j φ j +Ci = 0, (3.69)

namely a linear, diagonal, second order hyperbolic system.Then equation (3.69) has a well posed
initial value formulation onΣ. More precisely, given arbitrary smooth initial data,(φi ,nµ∇µφi) for
i = 1, . . . ,n onΣ, there exists a unique solution of equation (3.69) throughout M. Furthermore, the
solutions depend continuously on the initial data. Finally, a variation of the initial data outside of
a closed subset, S, ofΣ does not affect the solution in D(S).

It is worth noting that the theorem explicitly refers to linear systems of equations, moreover, al-
though there are few results concerning the initial value formulation for non-linear systems of
equations, an important result exists concerning the so called quasi-linear, diagonal second order
hyperbolic equations due to Leray (1952) and is contained inthe following theorem:

Theorem 3.7. Let(φ0)1, . . . ,(φ0)n be any solution of a quasi-linear hyperbolic system of equations
below

gµν(x;φ j ,∇µφ j)∇µ∇νφi = Fi(x;φ j ,∇µφ j) , (3.70)

on a manifold M and let(g0)
µν = gµν(x;(φ0) j ,∇µ(φ0) j). Suppose(M,(g0)µν) is globally hyper-

bolic (or alternatively consider a globally hyperbolic region of this space-time). LetΣ be a smooth
space-like Cauchy surface for(M,(g0)µν). Then, the initial value formulation of equation (3.70)
is well posed onΣ in the following sense: for initial data onΣ sufficiently close to the initial data
for (φ0)1, . . . ,(φ0)n, there exists an open neighborhood O ofΣ such that equation (3.70) has a
solutionφ1, . . . ,φn, in O and(O,gµν(x;φ j ,∇µφ j)) is globally hyperbolic. The solution is unique
in O and propagates causally in the sense that if the initial data for φ ′

1, . . . ,φ ′
n agree with that of

(φ0)1, . . . ,(φ0)n on a subset S ofΣ, then the solution agree on O∩D+(S). Finally the solutions
depend continuously on the initial data.
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As before we do not give the demonstration of the theorem, which can be find in [10], together with
some other interesting properties of the solutions. Let us remark that equation (3.70) differs from
(3.69), because the Lorentzian metric fieldgµν is now allowed to depend on the unknown variables
and their first derivatives, while the smooth functionsFi may have a non-linear dependence on
these variables. An interesting recent application of Leray’s theorem is the demonstration that a
well posed initial value formulation can be formulated for the scalar-gravity coupled system, as
showed in [49].

3.4.2 Initial value formulation for the electromagnetic field

The strategy we want to follow in order to show that the Maxwell system of equations has
a well posed initial value formulation should be now clear: It basically consists in recasting the
equations in a form which can be traced back to those in line (3.69).

So let us start recalling the expression of the Maxwell system of equations in Minkowski
space-time:

∂µ (∂ µAν −∂ νAµ) = 0. (3.71)

We can easily split the background, fixing a one parameter family of hypersurfacesΣt parametrized
by constant values of the inertial timet, in particular let us assume thatΣ0 = Σt=t0 be our initial
hypersurface. This procedure allows to emphasize a centralfeature of the Maxwell system of
equations, namely the appearance of the so called Gauss constraint, due to the fact that the time
component of the equation above does not contain any second time derivative term. Indeed,

∂αEα = 0, (3.72)

where
Eα = Fα0 = ∂ αA0−∂ 0Aα = ∂ αA0+ Ȧα , (3.73)

is the electric field. Thus equation (3.72) represents a constraint for the initial data(Aµ , Ȧν) on
Σ0. In other words, the choice of the initial data is not free, they must, in fact, satisfy the Gauss
constraint, otherwise they cannot generate solutions of the Maxwell’s equations. One could expect
that differentiating the Gauss constraint with respect to time, an equation containing a second time
derivative of the scalar potentialA0 can be obtained. But, as can be easily verified, the Bianchi
identity dF = 0 (whereF = dA is the curvature 2-form associated to the electromagnetic field A
andd is the exterior derivative operator) prevents from generating second order time derivatives of
A0. As a side remark, we stress that in the opposite case, the initial value problem would have a
simple solution, at least in the sense expressed by the Cauchy-Kowalewski theorem:

Theorem 3.8. (Cauchy-Kowalewski theorem):Let (t,x1, . . . ,xm−1) be coordinates ofRm. Con-
sider a system of n partial differential equations for n unknown functionsφ1, . . . ,φn in Rm, having
the following form

∂ 2φi

∂ t2 = Fi

(
t,xa;φ j ;

∂φ j

∂ t
;
∂φ j

∂xa ;
∂ 2φ j

∂ t∂xa ;
∂ 2φi

∂xa∂xb

)
, (3.74)

where each Fi is an analytic function of its variables. Let fi(xa) and gi(xa) be analytic functions.
Then there is an open neighborhood O of the initial hypersurface t= t0 such that within O there
exists a unique analytic solution of equation (3.74) such that φi(t0,xa) = fi(xa) and ∂φi

∂ t (t0,x
a) =

gi(xa).
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Unfortunately, this is not the case. The Maxwell system of equations (3.71) is under-determined,
being equivalent to the dynamical equations for the spatialcomponents of the electromagnetic field,
which contain second time derivatives, plus a constraint equation for four unknown functions. But
this feature is absolutely not unexpected. It simply reflects the presence of theU(1) gauge freedom.
In other words, the existing gauge freedom prevents the Maxwell equations from completely deter-
mining the potentialAµ , namely we should expect that they uniquely determine the potential up to
a gauge transformation. From this perspective, it is easy tounderstand that the system of Maxwell
equations admit a well posed initial value formulation onlyfor the physicalstates of the theory.
In fact, once realized how the gauge transformations enter into the game, the solution becomes
simple.

In order to clarify this point, let us fix the Lorentz gauge, i.e.

∂µAµ = 0, (3.75a)

which is particularly useful to treat this problem. The gauge choice allows to simplify the structure
of Eq. (3.71), i.e.

∂ν∂ νAµ = 0. (3.75b)

The system of equations are physically equivalent to (3.71). More precisely, solutions of the Eq.
(3.71) can differ from those obtainable by solving the system of equations in (3.75a) and (3.75b)
only by a gauge transformation. So, from a physical perspective, the dynamics is well described by
Eqs. (3.75a) and (3.75b), with the remarkable advantage that now we can use the result of theorem
(3.6).

Specifically, let us suppose that the initial data are chosenin such a way that they satisfy the
Lorentz gauge condition in Eq. (3.75a) on the initial hypersurfaceΣ0 (if they don’t we can operate
on them by a suitable gauge transformation), then, using equation (3.75b) and the Schwarz theorem,
we can write:

∂µ∂ µ (∂νAν) = ∂ν
(
∂µ∂ µAν)= 0. (3.76)

Hence, provided that equation∂µ∂ µAν = 0 is satisfied everywhere, according to theorem (3.6) also
the gauge condition will be satisfied everywhere if and only if ∂∂µAµ/∂ t = 0 on Σ0. It is worth
explaining the role played here by the Gauss constraint. At afirst glance the Gauss constraint seems
to have disappeared; actually, it has only been written in a different form. In fact, we have required
that∂∂µAµ/∂ t = 0 onΣ0, namely

0=
∂
∂ t

∂µAµ = ∂ 2
0 A0+∂α∂0Aα

= ∂ 2
0 A0+∂α

(
Eα −∂ αA0)= ∂αEα , (3.77)

where we used equation (3.75b). It is not surprising at all that the Gauss constraint turns out to be
encapsulated in the initial conditions, because the initial field configuration must satisfy not only
the gauge condition, but also the constraint. In particular, its role is to assure that, if equation
(3.75b) holds everywhere and, provided that∂αEα = 0 onΣ0, the Lorentz gauge condition remains
valid throughout all the evolution for the gauge transformed initial data.

It remains only to solve the dynamical equations (3.75b), with the given, suitably chosen,
initial data. But now the problem is simple, the equations have in fact the desired form, i.e. the
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form required to apply the result of theorem (3.6), which indeed establishes the existence of a well
posed initial data formulation. The last question is: can weconclude that the solutions are unique?
We can briefly answer to this question supposing that the original systems of Maxwell equations
(3.71) provides two solutions,S1 and S2, with the same initial conditions. By making a gauge
transformation, it is possible to recast them into the solution of the equation (3.75b) with the same
initial condition. But, since the solution of the system (3.75b) is unique, once assigned suitably
initial conditions, then we conclude thatS1 andS2 can differ at most by a gauge transformation.
In other words they represent the same physical field configuration. Concluding, physically the
solution is, in fact, unique.

4. Canonical General Relativity

As we have clarified above, the canonical constraints play a crucial role in the initial value
formulation of a theory with gauge freedom. Furthermore, once the canonical analysis has been
completed and the second class constraints eliminated through the Dirac prescription, the system
can be canonically quantized, by requiring that the operators corresponding to the first class con-
straints annihilates the state functional. The same procedure and considerations are, in general,
valid as far as we regard GR, which features a gauge symmetry correlated with the invariance un-
der diffeomorphisms. So in this section, in view of discussing the problem of quantum gravity, we
canonically reformulate GR, digressing on the main aspectsof its initial value formulation.

Specifically, starting from the description of the so-called 3+1 splitting procedure, we finally
arrive at the canonical equations of motion of GR, initiallystudied by Dirac [50] and then by
Arnowitt, Deser, and Misner [51, 52, 53, 54]. This will also allow us to address the initial value
problem, which will be only briefly sketched, emphasizing the role of gauge symmetries.

4.1 3+1 splitting of space-time

The splitting procedure is a tool which allows to sort an evolution parameter out of the co-
variant general relativistic space-time. It is worth stressing that covariance is not lost in this for-
mulation, even though it is no longer manifest as in the Lagrangian approach. As suggested by
Theorem (3.5), by using a gauge transformation, which we refer to as embedding diffeomorphism,
it is possible to “slice” a globally hyperbolic space-time,representing it as the evolution in “time”
of 3-dimensional space. As any gauge transformation, the embedding diffeomorphisms does not
affect the dynamical content of the theory. In other words, the canonical Hamiltonian equations
plus constraints (obviously!) are completely equivalent to the usual Einstein equations.

Technically, what we are going to do is the following: Starting from the Hilbert–Einstein
action,

SHE(g) =
1
2

∫

M

d4x
√−gR, (4.1)

whereR= gµρgνσ Rµνρσ is the Ricci scalar curvature (R σ
µνρ vσ =

[
∇µ ,∇ν

]
vρ being the Riemann

curvature tensor), we restrictM to be a globally hyperbolic space-time,M , so that, according to
Theorem (3.5),M =R×Σ3; Σ3 being a compact three-dimensional manifold without boundary.

It is interesting to note that the restriction to globally hyperbolic space-times is a quite strong
requirement, especially in view of the formalization of a quantum theory of gravity. Being aware
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of this strong hypothesis, necessary to canonically quantize the theory, we expect that it could be
relaxed once a rigorous formulation of the quantum theory will be at hand, as suggested in [3].
So far, up to the author’s knowledge, no rigorous prescription exists that allows to get rid of this
hypothesis or consider different topologies directly in the quantum theory.15

However, once the hypotheses of the Geroch theorem are satisfied, we can foliateM by

Cauchy hypersurfacesΣ3
t

de f
= yt(σ), in other words∀ t ∈R,∃ a globally injective immersion (em-

beddings)yt : Σ3 → M, defined byyt(xi) = y(t,xi), wherexi ∈ σ are the coordinates over the
hypersurfacesΣ3. Hence,Σ3

t represents a foliation of the manifoldM parametrized by the con-
tinuous functiont. Now let us denote the unit normal vector to the hypersurfaces Σ3

t asnµ , so
that the four-dimensional metricgµν induces a three-dimensional Riemannian metrichµν on each
hypersurface:

hµν = gµν +nµnν . (4.2)

The above relation is often referred asfirst fundamental formof Σ3. Now, consider a vector field
tµ , called “deformation vector”, satisfying the the following relation tµ∇µt = 1. It generates a
1-parameter family of diffeomorphisms,φt : R× Σ3 → M, defined as(t,x) → yµ(t,x) := yµ

t (x),
called embedding diffeomorphisms. Geometrically, the deformation vector represents the “flow of
time” throughout space-time, in other words it is the tangent vector to the “time line”, namely the
directional derivative it generates corresponds to an increment in label timet. Remarkably, the label
time t does not correspond to physical time, the measurement of which would imply the knowledge
of the space-time metric; rather, it is a mere label denotingthe different Cauchy hypersurfaces.16

So, the embedding diffeomorphisms is completely arbitraryand can be usefully parametrized
by decomposing the deformation vector in its normal and tangential components with respect to
Σt . Specifically, by defining the “Lapse function”N and the “Shift vector”Nµ as

N =−nµ tµ =
(
nµ∇µt

)−1
, (4.3a)

Nµ = hµνtν , (4.3b)

we have:

tµ(y) =

(
∂yµ(t,x)

∂ t

)∣∣∣∣
y(t,x)=yt (x)

= N(y)nµ(y)+Nµ(y) . (4.4)

It is important to note that in order to generate a consistentfoliation the Lapse function has to be
monotonic.

At this point a brief digression is in order. It should be easyfor the reader familiar with
the canonical formalism to imagine that the lapse function and shift vector, being two completely
arbitrary functions which parametrize the time flow, will turn out to be Lagrange multipliers. As
regarding the 4-metric, four of its entries directly dependon them. So, only six out of the ten

15The case of Loop Quantum Gravity is quite different. In Loop Quantum Gravity, in fact, the continuum space-time
is replaced by a discrete genuinely quantum structure. Thisimplies that in this theory no room is left for (the classical
concept of) space-time, which, in this sense, is not restricted by the hypothesis of the Geroch’s theorem. In other words,
in Loop Quantum Gravity the quantization procedure itself relaxes the classical restrictions on the space-time structure.

16Note that if we do not fix the metric, the lapse of time, say∆t, dividing two different spatial hypersurfaces,Σ3
t

andΣ3
t+∆t , is completely general and correlated with the integral curve of tµ , which generates the embedding diffeomor-

phism. So it is not referable to any real physical measurement, being correlated to gauge transformations.
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component of the metric are dynamical variables. This fact nicely reflects in the canonical theory,
where the 3-metric, with its six components, turns out to be the fundamental dynamical variable.
In other words, a globally hyperbolic space-time represents the time evolution of a Riemannian
3-metric field on a 3-dimensional abstract manifold [9], while the other four components express
only the arbitrariness we have in choosing the reference system [55]. It is worth recalling that the
Einstein equations in vacuum

Rµν = 0 (4.5)

are, in fact, six equations (not ten!), because the Bianchi identity∇µRµ
ν = 1

2∂νR relates four of the
ten components of the Ricci tensor.

Let us now enter in the technical details of the canonical formulation of gravity, enunciating
the following

Lemma 4.1. Let(M,gµν) be a space-time and letΣ be a smooth space-like hypersurface in M. Let
hµν denote the induced metric onΣ and let Dµ denote the covariant derivative operator associated
with the metric hµν . Then the action of Dµ is given by the formula

DρTν1···νn
µ1···µm

= hν1
α1
· · ·hνn

αn
h β1

µ1 · · ·h βm
µm h σ

ρ ∇σ Tα1···αn
β1···βm

, (4.6)

where∇σ is the derivative operator associated with gµν .
Proof. It is simple to verify that Dµ satisfies the following properties: Linearity, Leibniz rule,

Commutativity with contraction, Torsion free (∀ f ∈ F ,
[
Dµ ,Dν

]
f = 0) and acts as a directional

derivative on scalar functions f . Moreover we have:

Dµhρσ = h α
ρ h β

σ h γ
µ ∇γ

(
gαβ +nαnβ

)
, (4.7)

because∇µgρσ = 0 and hµνnν = 0. Thus Dµ is the unique derivative operator associated with
hµν . �

Let us define thesecond fundamental formof Σ3, called extrinsic curvature:

Kµν = h ρ
µ h σ

ν ∇(ρnσ) =
1
2

h ρ
µ h σ

ν £nhρσ =
1
2
(£nh)µν , (4.8)

where the symbol£v denotes the Lie derivative with respect to the vector fieldvµ . The extrinsic
curvature is a spatial vector by definition and represents the parallel transport of the normal vector
along the hypersurfaceΣ, or the variation of the three-metric along the integral line of nµ . We
can easily rewrite the extrinsic curvature in order to make explicit the Lie time derivative of the
3-metric; namely

Kµν =
1
2
(£nh)µν =

1
2

h ρ
µ h σ

ν
(
nα ∇αhρσ +hρα∇σ nα +hασ ∇ρnα)

=
1

2N
h ρ

µ h σ
ν
(
Nnα∇αhρσ +hρα ∇σ (Nnα)+hασ ∇ρ(Nnα)

)

=
1

2N
h ρ

µ h σ
ν £(t−N)hρσ =

1
2N

(
ḣµν −2D(µNν)

)
, (4.9)

where we defineḋhµν = h ρ
µ h σ

ν £thρσ and we used equation (4.7).
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Once defined the covariant derivative operator (4.7), we candefine the curvature tensor of the
Cauchy surfaceΣ as usual:

(3)R σ
µνρ ωσ = DµDνωρ −DνDµωρ . (4.10)

Now using the prescription to express the covariant derivative on the 3-dimensional manifold as
projection of the 4-dimensional derivative operator we have:

DµDνωρ = Dµ

(
h σ

ν h τ
ρ ∇σ ωτ

)
= h α

ν h β
ρ h γ

µ ∇γ

(
h σ

α h τ
β ∇σ ωτ

)

= h σ
ν h τ

ρ h γ
µ ∇γ∇σ ωτ +h α

ν h β
ρ h γ

µ ∇γ

(
h σ

α h τ
β

)
∇σ ωτ

= h σ
ν h τ

ρ h γ
µ ∇γ∇σ ωτ +h τ

ρ Kν µnσ ∇σ ωτ +h σ
ν Kµρnτ ∇σ ωτ , (4.11)

where we used the expression of the 3-metric as function of the 4-metric and the normal vector
(4.2).

At last, we have all the elements to write down the relation between the 3-dimensional curva-
ture tensor as function of the 4-dimensional Riemann tensorand extrinsic curvature:

(3)R σ
µνρ ωσ = DµDνωρ −DνDµωρ = 2D[µDν ]ωρ

= 2h γ
[µ h σ

ν ] h τ
ρ ∇γ∇σ ωτ +2h τ

ρ K[ν µ ]n
σ ∇σ ωτ −2K[µ |ρ |K

σ
ν ] ωσ

= h γ
µ h β

ν h τ
ρ hσ

αR α
γβτ ωσ −KµρK σ

ν ωσ +KνρK σ
µ ωσ , (4.12)

where, in the second line, we usedh σ
ν Kµρnτ ∇σ ωτ = h σ

ν Kµρ∇σ (nτ ωτ)−h σ
ν Kµρωτ ∇σ nτ =KµρK τ

ν ωτ

andK[µν ] = 0. Now, considering thatωµ is a common factor, we can write down thefirst Gauss-
Codacci relation:

(3)R σ
µνρ = h γ

µ h β
ν h τ

ρ hσ
αR α

γβτ −KµρK σ
ν +KνρK σ

µ . (4.13)

With an analogous procedure, we can obtain thesecond Gauss-Codacci relationas well:

DµKµ
ν −DνKµ

µ = Rµρnρhµ
ν . (4.14)

At this point, once we have realized that

Rµνρσhµρhνσ = Rµνρσ (g
µρ +nµnρ)(gνσ +nνnσ ) = R+2Rνσnνnσ , (4.15)

we can write the Ricci scalar as

R= Rµνρσhµρhνσ −2Rνσnνnσ (4.16)

and from the first Gauss-Codacci relation we have:

R= (3)R+(Kµ
µ)

2−KµνKµν −2Rνσnνnσ . (4.17)

Moreover,

Rνσnνnσ = R ρ
νρσ nνnσ =−nν (∇ν∇ρ −∇ρ∇ν

)
nρ

= (Kµ
µ)

2−KµνKµν −∇µ
(
nµ∇ρnρ)+∇ρ

(
nµ∇µnρ) . (4.18)

47



Introduction to Loop Quantum Gravity Simone Mercuri

Therefore, being
√−g= N

√
h, from equations (4.17) and (4.18) we finally obtain the following

action for the gravitational field (having dropped the last term in the last line above, which being a
total divergence, does not affect the equations of motion):

S3+1(N,Nµ ,hµν) =
1
2

∫

R×σ

dtd3xN
√

h
(
(3)R+KµνKµν − (Kµ

µ)
2
)
. (4.19)

It is particularly useful to pull back spatial tensors to thehypersurfaceΣ3. This can be easily done
by suitably defining the projectorsXµ

α = (∂yµ(t,x)/∂xα )|yt (x)=y(t,x), wherexα are spatial coordi-
nates onΣ3. In this respect, let us define

hαβ = hµνXµ
α Xν

β = gµνXµ
α Xν

β , (4.20a)

Kαβ = KµνXµ
α Xν

β , (4.20b)

so that we can rewrite the extrinsic curvature as

Kαβ =
1

2N

(
ḣαβ −2D(αNβ)

)
, (4.21)

where only spatial indexes appear.
The Lagrangian contains the time derivatives of the 3-metric field through the terms depending

on the extrinsic curvature, while no time derivatives of thelapse function and the shift vectors
appear. Hence, the Lagrangian is singular, so we expect thatthe theory generates four primary
constraints as we are going to demonstrate.

The next step in the canonical analysis is the definition of the conjugate momenta. Once the
space-time has been split, we recall that the fundamental variables areN, Nα andhβγ , the conjugate
momenta of which respectively are

p(N) =
∂L3+1

∂ Ṅ
= 0, (4.22a)

p(N)
α =

∂L3+1

∂ Ṅα = 0, (4.22b)

pαβ =
∂L3+1

∂ ḣαβ
=

√
h
(

Kαβ −hαβ K
)
. (4.22c)

So, the phase space is twenty dimensional and coordinatizedby the setN,Nα ,hβγ , p
(N), p(N)

α , pβγ

and equipped with the following symplectic structure:
{

N(t,x), p(N)(t,x′)
}
= δ (x,x′) , (4.23a)

{
Nα(t,x), p(N)

β (t,x′)
}
= δ α

β δ (x,x′) , (4.23b)
{

hαβ (t,x), p
γδ (t,x′)

}
= δ γδ

αβ δ (x,x′) , (4.23c)

where the symbol{· · · , · · · } denotes the Poisson brackets, whileδ γδ
αβ = 1

2

(
δ γ

αδ δ
β −δ γ

β δ δ
α

)
.

From the definition of conjugate momenta, we immediately obtain four primary constraints as
expected, i.e.

C
(N) := p(N) ≈ 0, (4.24a)

C
(N)
α := p(N)

α ≈ 0. (4.24b)
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Now, we can perform the Legendre transformation. Because ofthe presence of primary con-
straints, we cannot re-express all the velocities as functions of the fundamental variables and their
conjugate momenta. This implies that the Hamiltonian, usually defined as

H = ∑
i

pi q̇i −L , (4.25)

whereqi andpk are the generalized coordinates on the phase space, is not uniquely determined as
function of the fundamental variables and momenta. In otherwords, because of the presence of the
primary constraints, the Hamiltonian is well defined only ona restricted region of the phase space
determined by the primary constraints. So that, in order to take into account the restriction of the
phase space implied by the four constraints (4.24), we have to introduce four Lagrange multipliers
λ andλ α , which have to be varied independently in the action. We have,

S3+1(N, pN,N
α , p(N)

β ,hγδ , p
αβ ) =

1
2

∫

R×σ

dtd3x
[
pαβ £thαβ + pNṄ+ p(N)

γ Ṅγ

−NH−NαHα −λC
(N)−λ β

C
(N)
β

]
, (4.26)

where the super-HamiltonianH and super-momentumHα are defined as:

H =
1√
h

[
pαβ pαβ − 1

2

(
hαβ pαβ

)2
]
−
√

h(3)R=
1
2

Gαβγδ pαβ pγδ −
√

h(3)R, (4.27a)

Hγ =−2Dδ pγδ . (4.27b)

Above we have introduced the so called super-metricGαβγδ = 1√
h

(
hαγhβδ +hαδ hβγ −hαβ hγδ

)
.

Finally, we write down the canonical Hamiltonian for the gravitational field,

Hcan=
∫

σ3

d3x
[
NH+NαHα +λC(N)+λ β

C
(N)
β

]
, (4.28)

and go on to discuss the dynamics.

4.2 Canonical constrained dynamics

This Section is devoted to the study of the constrained dynamics of the gravitational field.
Namely, starting from the split action (4.26), we are going to calculate the Hamiltonian equations
of motion. At the end, a discussion about the formulation of awell posed initial value problem
will follow, in correlation also with a well known issue of canonical quantum gravity, the so-called
problem of time. In GR, in fact, once suitable initial conditions have been assigned and the gauge
fixed, the time evolution is uniquely determined and dependscontinuously on the initial data; but, as
remarked more than once thet parameter appearing in the equations of motion does not represent
physical time, rather it is a label denoting the different Cauchy hypersurfaces. The fact that the
Hamiltonian is constrained to weakly vanish in General Relativity, implies that the observables,
which must commute with all the constraints, are “frozen”, namely they do not evolve. The concept
of time evolution can be reintroduced in such a “frozen” formalism through a physical procedure,
relating the evolution to the dynamics of other fields coupled to gravity. We consider this aspect of
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GR extremely natural, because the theory is describing the dynamics of the space-time itself and
not the dynamics of a field on a background. Moreover, from a quantum perspective, the frozen
formalism does not affect the interpretation of the outcomes of the theory, which describes the
actual quantum state of space-time and, eventually, the transition from one quantum configuration
to another. From this perspective, the classical idea of evolution in time has to be completely
abandoned, as the concept of classical trajectories has to be abandoned in describing the quantum
transitions of an electron in an atom.

Having in mind the above premise, let me start the canonical analysis by varying action (4.26)
with respect to the Lagrange multipliersλ andλ k, thus obtaining the primary constraints (4.24).
In order to guarantee that the dynamics of the system is consistent we have to require that the
constraints be preserved during the evolution, namely thatthe Poisson brackets of the constraints
with the Hamiltonian vanish. We have,

Ċ
(N)(t,x) =

{
Hcan,C

(N)(t,x)
}
= H(t,x) , (4.29a)

Ċ
(N)
α (t,x) =

{
Hcan,C

(N)
α (t,x)

}
= Hα(t,x) , (4.29b)

hence a set of secondary constraints have to be imposed, i.e.

H(t,x)≈ 0, (4.30a)

Hα(t,x) ≈ 0, (4.30b)

for all x ∈ Σ. The above weak equations are called super-Hamiltonian andsuper-momentum con-
straints and generate the following algebra

{
Hα (t,x) ,Hβ

(
t,x′
)}

= Hβ (t,x)∂α δ
(
x,x′
)
−Hα(t,x)∂β δ

(
x′,x
)
, (4.31a)

{
Hα (t,x) ,H

(
t,x′
)}

= H (t,x)∂α δ
(
x,x′
)
, (4.31b)

{
H (t,x) ,H

(
t,x′
)}

= Hβ (t,x)∂β δ
(
x,x′
)
−Hβ (t,x′

)
∂β δ

(
x′,x
)
. (4.31c)

The algebra above reveals that the super-Hamiltonian and super-momentum constraints are the
generators of diffeomorphisms: It is worth noting that differently from the usual Yang-Mills gauge
theories, the algebra of the constraints has structure functions instead of structure constants. Fur-
thermore, the above relations prevent from the emergence oftertiary constraints.

The fact that the Poisson brackets between the whole set of constraints weakly vanish indicates
that the super-Hamiltonian and super-momentum together with the primary constraints form a set
of first class constraints. Interestingly enough, this set can be easily reduced, by taking into account
that the primary constraints can be strongly satisfied by considering the lapse functionN and the
shift vectorNα themselves as Lagrange multipliers. In this respect, let usconsider the dynamical
equations forN andNα , i.e.

Ṅ(t,x) = λ (t,x) , (4.32a)

Ṅα(t,x) = λ α(t,x) , (4.32b)

so, as we can immediately understand, the evolution of the Lapse function and the Shift vector
is completely arbitrary, being their time derivatives related to the Lagrange multipliersλ andλ α ,
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which are unspecified functions. Henceforth, the system will be described on the phase space by
the remaining variableshαβ and pγδ , while the Lapse function and the Shift vector are treated as
Lagrange multipliers. This automatically solves the primary constraints (4.24), since the momenta
conjugated toN andNα vanish strongly. The dynamical equations forhαβ andpγδ can be directly
calculated from the reduced Hamiltonian

H =

∫

Σ3

d3x[NH+NαHα ] , (4.33)

obtaining:

ḣαβ =2N Gαβγδ pγδ +2∇(αNβ) , (4.34a)

ṗαβ =
1

2
√

h
Nhαβ

(
pγδ pγδ −

1
2

p2
)
− 2N√

h

(
pαγ p β

γ − 1
2

ppαβ
)
−N

√
h

(
(3)Rαβ − 1

2
(3)Rhαβ

)

+
√

h
(

∇α∇β N−hαβ ∇γ∇γN
)
−2pγ(α∇γNβ)+∇γ

(
Nγ pαβ

)
, (4.34b)

where we ignored all the boundary terms and used equation (4.30b). The system of equations
(4.30a), (4.30b), (4.34a) and (4.34b) is equivalent to the vacuum Einstein equationsRµν = 0. As
remarked above, the super-Hamiltonian and super-momentumconstraints are first class (see Eqs.
(4.31)) and reflect the gauge invariance of the theory. Provided that the spatial equations of motion
are satisfied, they, in fact, generate a diffeomorphisms flowon the phase space, according to the
following identifications:

{H(N), . . .}= £Nnµ (. . . ) , (4.35a)
{→

H(
→
N), . . .

}
= £Nµ (. . . ) , (4.35b)

where we used the following notation:

H(N) =

∫

σ

d3xN(t,x)H(t,x) and
→
H(

→
N) =

∫

σ

d3xNi(t,x)Hi(t,x) . (4.36)

In particular, the super-momentum or vectorial constraintis clearly correlated with spatial dif-
feomorphisms and can be satisfied by introducing the Wheelersuperspace.17 The super-Hamiltonian
or scalar constraint, instead, represents a serious obstacle toward the canonical quantization of the
gravitational field. As we remarked before, it generates diffeomorphisms along the normal vector to
the Cauchy hypersurfaces, provided that the spatial equations of motion are satisfied. Interestingly
enough, as noted by Wald and Kuchař, the scalar constraint is strictly analogous to the constraint
coming out when one tries to parametrize an original non-constrained theory on fixed background.
More specifically, an analogous constraint crops up when oneintroduces within the Lagrangian a
time function which labels the hypersurfacesΣt , starting from an initial hypersurfaceΣ0 and then
treats this “time function” as a dynamical variable [9, 56].But, as one can easily verify in the case

17The Wheeler superspace is the space of the 3-metrics modulo 3-diffeomorphisms. Namely, two metric fields
related by a spatial diffeomorphisms represent the same point on the Wheeler superspace.
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of the point particle in flat space-time [57], the parametrized theory is linear in the momentum con-
jugate to the time function, thus the theory can be easily deparametrized by solving the constraint
with respect to this momentum. The scalar constraint of GR is, in stead, quadratic in the momenta,
therefore such a deparametrization seems not to be possible, at least in pure gravity.18

In order to understand how many physical degrees of freedom are described by the theory, let
us count the number of independent variables. Obviously, the presence of first class constraints
associated with the gauge freedom of the theory, indicates that there is more than one set of canon-
ical variables which correspond to a particular physical state. In other words, a physical state is
well described by two or more different sets of canonical variables if they are correlated by a gauge
transformation. Or, we can rephrase saying, a physical state is represented by the class of equiva-
lence of canonical variables under the symmetries of the theory. Usually, in order to eliminate such
an ambiguity in the description of the physical system, a setof gauge conditions are imposed on
the canonical variables. The gauge conditions are chosenad hocand are, sometimes, suggested
by the mathematical or physical structure of the theory; butthey are not a consequence of the the-
ory. They are external conditions. Nevertheless, they are completely admissible, since they only
remove the unphysical degrees of freedom of the theory. Obviously, they have to fulfill some con-
sistency requirements: Firstly, they have to be accessible, i.e. it must exist a transformation which
maps the original set of variables to the set satisfying the gauge conditions; secondly, we have to
require that the gauge conditions be preserved by the symmetry flow. The two requirements above
imply that the number of gauge conditions has to be equal to the number of first class constraints
in order to completely fix the gauge. Moreover, the determinant of the matrix constructed by the
Poisson brackets between the gauge conditions and the first class constraints has to be different
from zero. Remarkably, this is exactly the definition of a setof second class constraints, which can
be in principle solved through the Dirac procedure [50]. At this point, the count of the number of
physical degrees of freedom is easy. We have to subtract to the number of canonical variables the
total number of second class constraints, or, according to what said before, the number of first class
constraints plus the number of gauge conditions plus the second class constraints not coming from
the gauge fixing. In other words, we have to subtract twice thenumber of first class constraints
plus the number of independent second class constraints to the number of canonical variables. It is
worth noting that in the present case the number of physical degrees of freedom in the phase space
is four, which correspond to the two polarization of the graviton in the configuration space.

Concluding, we can say that the symmetry group of GR is well implemented in the canonical
formalism, which is in this sense generally covariant, eventhough the covariance of the theory is
not manifest as in the Lagrangian formulation. We want also to stress the importance of the invari-
ance under diffeomorphisms, pointing out that every possible observable for this theory must be
invariant under this group of symmetries of the action. But the meaning of this statement goes over
the usual meaning it has in Yang-Mills gauge theories, because the request of 4-diffeomorphisms
invariance involves also the dynamics, therefore the definition of an observable is not only a kine-
matical problem, it necessarily implies to solve the dynamics. In other words in GR kinematics and

18As soon as matter fields are considered, a deparametrizationis, in fact, possible [58] (see also [28, 29, 31]). In
this framework, the evolution of the physical system can be interpreted in terms of relational variables [15, 26] and the
so-called problem of time can be solved, by referring the evolution to the dynamical “relations” between distinguished
fields.
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dynamics are inextricably bound. Quoting a famous sentenceby J. Stachel, we can say that in GR:
“There is no kinematics without dynamics”.

4.3 Initial value formulation for gravity

As we have shown above, the Hamiltonian of GR is not a true Hamiltonian, but a linear com-
bination of constraints. In particular, if we assume that the spatial components of the Einstein
equations are satisfied, then it generates a flow along the integral curve of the deformation vector,
namely a gauge flow.19 Nevertheless, the Cauchy problem can be well posed until theappearance
of a singularity affects the consistency of the theory itself.

In order to construct a parallel with the case of electromagnetism, it is worth recalling that
the Gauss constraint comes out from the time component of theMaxwell equations, which does
not contain second time derivatives. The same considerations are valid for Einstein equations in
vacuum. In fact, the equationsGµνnν = 0 do not contain second time derivatives of anyone of
the metric component, namely, as in the electromagnetic case, these equations depend only on the
initial data: In other words, they represent a restriction on the possible acceptable initial data set.
So, we expect that the canonical constraints be contained inthe equationsGµνnν = 0, indeed we
have:

Gµνnµnν =− H

2
√

h
= 0, (4.37a)

Gµνnµeν
i =

Hi

2
√

h
= 0. (4.37b)

Therefore, the constraints equations are actually equivalent to four of the Einstein dynamical equa-
tions; furthermore the Bianchi identity∇µGµν =∇µRµν −1/2∂ ν R= 0, together with the equations
of motion for the spatial components, implies that the constraints areinvolutive. Namely, provided
that the super-Hamiltonian and super-momentum constraints are satisfied on the initial Cauchy
surface and the equations of motion are satisfied everywhere, then also the constraints are satisfied
along the evolution. A very simple argument allows to show what just claimed. Assuming that
we have already solved the equations for the spatial components of the gravitational field, then the
Bianchi identity represents a relation between the time derivative of the normal components of the
Einstein tensorGµνnν and the non-time differentiated components ofGµν and their spatial deriva-
tives. Now, by pulling back equation∇µGµν = 0 on the solution for the spatial components of the
Einstein equations and realizing that the spatial part ofGµν vanishes, the Bianchi identity becomes
a linear homogeneous system of four first order partial equations for the four unknown functions
Gµνnν . Then, it follows that ifGµνnν vanish on the initial slice, they must vanish on any slice.

From the Lagrangian point of view the vanishing of four of theEinstein vacuum equations
could appear as an under-determination of the components ofthe metric field, instead it just reflects
the invariance of the theory under reparametrization, as wehave already explained before. In other
words, the apparent under-determination is not a physical one, exactly as in the electrodynamics
case. In fact, ifφ : M →M is a diffeomorphisms and(M,gµν) is a solution of the Einstein equations,
then(M,φ∗gµν) is a solution too. So, the metric contains four arbitrary components, corresponding

19It is worth stressing that the lapse function and the shift vector entering in the Hamiltonian are arbitrary functions
of the space-time points.
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to a free choice of reference system. So that the remaining components are exactly six, as the
number of the dynamical equations.

Now, in analogy with the electromagnetic case, we fix the gauge: since the gauge freedom of
GR regards the general coordinates transformation, then choosing a gauge means to fix a particular
system of coordinates. A suitable choice is the “harmonic” gauge, characterized by a system of
coordinates satisfying the following equations:

∇µ∇µyρ = 0. (4.38)

This choice does not affect the generality of the procedure.Specifically, in a neighborhood of a
portion of space-time covered by an original set of coordinates, sayxµ , we can proceed as follows:
Firstly, let us note that equation (4.38) has the form of equation (3.69), therefore, assuming as
initial data the old setxµ and its derivative∇µxν , we can uniquely solve equation (4.38) in a
neighborhood of the portion of space-time covered by the oldset of coordinates. Since∇µxν are
linearly independent, then also∇µyρ are linearly independent and consequently the setyρ will
provide a local coordinates system. The choice of the harmonic coordinates will result in the
following equation:

0= ∇µ∇µya =
1√−g

∂µ
(√−ggµν∂νya)= 1√−g

(
∂µ

√−ggµa)= ∂µgµa+
1
2

gµagρσ ∂agρσ .

(4.39)
Furthermore, we have that the Ricci tensorRµν can be written as

Rµν =−1
2

gρσ [−2∂σ ∂(νgµ)ρ +∂σ ∂ρgµν +∂µ∂νgρσ
]
+Fµν (g,∂g) . (4.40)

The above expression emphasizes that the Ricci tensor is, infact, linear in the second derivatives
of the metric tensor, whereFµν (g,∂g) contains the non-linear dependence on the metric and its
derivatives. So that, considering both Eq. (4.39) and (4.40), we can isolate, in the Einstein equa-
tions, the non-linear dependence on the metric and its derivatives, obtaining [59]:

(h)Rµν = Rµν +gρ(µ∂ν)∇σ ∇σ yρ =−1
2

gρσ ∂ρ∂σ gµν + F̃µν(g,∂g) = 0. (4.41)

Therefore, the Einstein equations in vacuum are equivalentto the system of equations (4.41) (gener-
ally referred as reduced Einstein equations) and (4.38). The reduced Einstein equations are suitable
to apply the result of the Leray’s theorem (3.7).

In this respect, lethαβ andKγδ be the metric and extrinsic curvature of the hypersurfaceΣ3

and let us assume that they satisfy the constraints (4.37). Then, after having chosen a suitable
system of coordinates over a portion of the hypersurfaceΣ3, assign as initial data for the metric
and its time derivative the set(h0

αβ , ḣ
0
αβ ), such that the extrinsic curvatureKαβ on Σ3 results from

this choice via equation (4.21). Since the Einstein equations involve all the ten components of the
metric field, we have to give the initial values ofg00 andg0α too. A very simple choice could be
g00 =−1, g0α = 0 and, as a consequenceKαβ = 1

2ḣαβ = 1
2ġαβ . Now the time derivative of the “0”

components of the metric tensor∂g0µ/∂ t remains undetermined by this choice, but they can be
fixed via the gauge fixing condition∇µ∇µya = 0 onΣ3. In the canonical formalism this means that
we initially choose the value of the Lapse functionN = −1 and Shift vectorNi = 0, then via the
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gauge fixing we assign the time evolution of these two geometrical objects. Interestingly enough,
by assigning the functional form of the Lapse and Shift one can completely fix the gauge, i.e. the
reference system.

Now, let us suppose that the chosen initial conditions are sufficiently near that of flat space-
time, then, according to theorem (3.7), we can solve equations (4.41) in a neighborhood of that
portion ofΣ3 covered by the original set of coordinates. Moreover,Σ3 will be a Cauchy surface of
the globally hyperbolic space-time generated by the solution.

Furthermore, it is possible to demonstrate that a solution of equations (4.41) will be a solution
of the vacuum Einstein equations in a neighborhood of a portion of space-time where the condition
(4.38) holds. This concludes this brief digression about the initial value problem in gravity. The
interested reader can find the demonstration of the last statement in [9].

Concluding we can say that we can give a prescription to demonstrate that it exists, at least
locally, a solution of the Einstein equations, moreover thesolution depends continuously on the
initial data and the space-time it generates is globally hyperbolic. This demonstration is based on
the assumption that the set of initial data is near to that of flat space, but this requirement can be
relaxed using a trick. The idea is that any curved space if observed from a sufficiently small scale
appears nearly flat, so the trick consists simply in rescaling the initial data metric function via a
coordinate transformation if they did not appear sufficiently flat (for details see [9]).

5. Ashtekar Canonical Gravity

As is well known, the program of canonical quantization is not a rigid algorithm and can be
slightly adapted to the theory one is going to construct. In fact, the general program of quantization
of classical systems requires to make choices in different steps of the quantization procedure, as
is briefly described in the next section. Generally speaking, one could say that the achievement of
the desired result, namely the construction of a rigorous quantum theory, depends on the choices
made in the different steps of the canonical procedure. The structure of the theory could result
remarkably simplified if a smart choice of variables were done, allowing to consistently reduce
the difficulties one has to face in the quantization procedure. In other words, a smart choice of
fundamental variables could make the theory manageable in view of quantization.

To be more specific, the introduction of the Ashtekar self-dual SL(2,C) connections [60] al-
lows to reduce the phase space of GR to that of a Yang–Mills gauge theory, which can be non-
perturbatively quantized by formulating the theory using holonomies and fluxes as fundamental
variables.20 But, let me follow the natural order of things, clarifying one thing at the time.

It is possible to demonstrate, in fact, that by introducing the Ashtekar self-dualSL(2,C) con-
nections in the framework of canonical GR, a Gauss constraint, which incorporates the generators
of the local Lorentz boosts and rotations in a complex combination, appears besides the vectorial
and scalar constraints, both connected with the diffeomorphisms gauge invariance of the theory.
Simultaneously, the high non-linearity of the Arnowitt–Deser–Misner (ADM) canonical formula-
tion of GR disappears: the new canonical constraints dependpolynomially on the fundamental

20The loop formalism does not work properly in Yang–Mills gauge theories, remarkably, the reason of this failure
can be traced back to the basic assumption of a continuum space-time. This fact suggests that it may work well in QG,
where a discrete space-time naturally emerges.
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variables, both in vacuum and in the presence of matter [61].21 By using the Ashtekar formulation
of GR, a background independent quantum theory of gravity was later formulated [62]. But the
use of complex fundamental variables generates a serious difficulty connected with the implemen-
tation of thereality conditionsin the quantum theory, which are strictly necessary to ensure that
the evolution of the system is real. This difficulty has not been overcome so far and, basically, it
can be considered the technical motivation which led to the adoption of the real Ashtekar-Barbero
(AB) connections [63, 64] as fundamental variables, instead of the complex ones. The link existing
between real and complex variables can be clarified by observing that both are obtainable from the
ADM canonical pair via a contact transformation. In particular, a suitable canonical transformation
allows to introduce a finite complex number,β 6= 0, namely the Barbero–Immirzi (BI) parame-
ter, in the definition of the new variables, so that they correspond to the (anti)self-dual ones when
β =± i and to the real ones for any real value ofβ .

Geometrically, the main difference between these two sets of possible new variables for GR is
the following: while the complex connections are the projection over the 3-space of the self-dual
part of the Ricci spin connections, the real ones are non-trivially related to them, complicating their
reconstruction [65]. In fact, the realSU(2) valued connections contain only half of the necessary
information for reconstructing the Lorentz valued connections of GR [3], motivating also the ne-
cessity of fixing the temporal gauge in order to avoid the appearance of second class constraints.22

By fixing the temporal gauge, the accessible part of the phasespace is determined by first class
constraints only [66] and the system can be quantized through the Dirac procedure. The result is a
non-perturbative background independent quantum theory of gravity calledLoop Quantum Gravity
(LQG) [1, 2, 3, 67].23

Since the BI parameter has been introduced via a canonical transformation, one can naively
believe that different values ofβ correspond to unitary equivalent quantum theories. Strangely
enough, this is not the case. In fact,β enters in the spectrum of the main geometrical observables
of the theory, e.g. the spectra of the area and volume operators, revealing that a one parameter
family of non-equivalent quantum theories exists. As argued by Rovelli and Thiemann [76], two
dynamically equivalentSO(3)-valued connections exist and, as a consequence, an ambiguity ap-
pears in the theory, which is essentially expressed by the presence of the BI parameter.

Immirzi suggested that the appearance of the BI parameter inthe quantum theory was a con-
sequence of the temporal gauge fixing [77], so that it would have disappeared in a fully Lorentz

21It is worth noting that the standard ADM formulation of GR requires that the metric field is non-degenerate,
since it contains the three-dimensional Ricci scalar, which is constructed by the Ricci tensor saturating the indexes
with the inverse metric field. In the Ashtekar formulation the same requirement is not mandatory, since the constraints
are polynomial. So, we can say that the Ashtekar self-dual formulation of Gravity represents a possible extension of
GR allowing the presence of degenerate metrics. Whether or not this extension has any physical relevance, up to my
knowledge, is not completely understood yet.

22The temporal gauge fixing consists in rotating the local basis by using a suitable Wigner boost so that, at every
instant of “time”, its zeroth component is parallel to the normal vector to the instantaneous Cauchy hypersurfaceΣ3

t .
This condition reduces the localSO(3,1) gauge group to the subgroup of spatial rotations,SO(3), by fixing the boost
component of the Lorentz symmetry.

23LQG besides providing interesting physical predictions asthe quantization of areas and volumes [2] (see also
[68, 69]), has been able to cure the inevitable singular behavior of classical GR in symmetric spacetimes [70, 71, 72].
Furthermore, the recently obtained results about the graviton propagator have strengthened the physical content of the
theory, providing new insights into its non-singular behavior [73, 74, 75].
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covariant theory. But this expectation was not completely confirmed by the so-calledCovariant
Loop Quantum Gravity(CLQG), which is a fully Lorentz covariant quantum theory ofgravity,
constructedà la Dirac relaxing the time gauge condition [78].24 This approach, in fact, revealed a
correlation between the choice of the fundamental variables and the appearance of the BI ambiguity
in the quantum theory. In other words, in CLQG different choices of the fundamental variables are
possible. In particular, for a geometrically well motivated specific choice of variables the resulting
area spectrum no longer depends on the BI parameter [80]. But, choosing different fundamental
variables considered as a direct generalization of the AB connections, the resulting area spectrum
turns out to depend on the BI ambiguity again [81], reproducing the result of the gauge fixed theory
(see also the interesting paper [82]).

Recently, it has been proposed the idea that the BI parameteris, in fact, analogous to theθ -
angle of the topological sector of Yang–Mills gauge theories [83, 84] (for a brief description of the
topological sector of Yang–Mills gauge theories see Appendix B). This idea, initially proposed by
Gambini, Obregon and Pullin [85], has been lately reconsidered in relation to the proposal to gen-
eralize the action for gravity to contain a topological term[84, 86, 87]. This argument will be better
described below in 5.3, but it is worth anticipating that thepresence of a topological term, called
Nieh–Yan density [88], which further generalize the so-called Holst modification [89], allows, in
fact, to construct a precise analogy between the BI parameter and theθ -angle. Furthermore, by
clarifying the large structure of the gauge group involved in gravity through the Nieh-Yan density,
it is possible to demonstrate its supposed topological origin and, as a consequence, the existence of
non-unitary equivalent quantum theories associated to different values ofβ .

Having briefly outlined the AB formulation of GR and some recent aspects concerning the
interpretation of the BI parameter, let me now enter in more technical details, starting from the
tetrad formulation of gravity and the consequent generalization of the 3+1 splitting procedure.

5.1 3+1 splitting again

Let us introduce a one to one mape : M4 → TM4
x , which sends tensor fields onM4 in tensor

fields in the Minkowskian tangent spaceTM4
x . The fieldse a

µ are commonly called tetrads or
vierbein (or, more physically, gravitational field! [2]) and represent a local reference system for
space-time. They satisfy the following relations with the metric field:

gµν = ηabe
a

µ e b
ν , e a

µ eµ
b = δ a

b , e a
µ eν

a = δ ν
µ , (5.1)

where Greek and Latin indexes run from 0 to 3, and transform respectively under general coordi-
nates transformations and local Lorentz transformations.The symbolηab denotes the metric tensor
in the local Minkowski frame. So, the tetrad fields incorporate all the metric properties ofM. It
is worth noting that the converse is not true. In fact, there are infinitely many choices of the local
basis which reproduce the same metric tensor: This is clearly a consequence of the local Lorentz
gauge invariance, manifestly present in this formalism. This is also the reason why there are more
components ine a

µ than in the metricgµν , the difference being exactly six, that is the number of

24It is worth remarking that the complicated form of the Dirac brackets, necessary to solve the second class con-
straints (see [50, 79]), prevents the fully Lorentz covariant theory from being rigorously formalized.
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degrees of freedom of the groupSO(3,1) representing the number of independent parameters of a
Lorentz transformation in the tangent space-time.

As we briefly described in § 3.2.1, the presence of a local gauge freedom requires the intro-
duction of a covariant derivativeDµ transforming in the adjoint representation of the gauge group.
This implies the introduction of a Lorentz valued connection (often referred as spin connection),
here denoted asωab(x) and satisfying the following propertyωab(x) = −ωba(x). The covariant
derivative operatorDµ acts on Lorentz valued tensor fields as follows:

DµT a1...am
ν1...νn

= ∂µT a1...am
ν1...νn

−
n

∑
k=1

Γρ
µνk

T a1...am
ν1...νk−1ρνk+1...νn

+
m

∑
l=1

ωal
bµT a1...al−1bal+1...am

ν1...νn

= ∇µT a1...am
ν1...νn

+
m

∑
l=1

ωal
bµT a1...al−1bal+1...am

ν1...νn , (5.2)

whereΓρ
µν denotes the affine connection. Now, requiring the compatibility of the above defined

covariant derivative operator with the tetrad basis, we canextrapolate the expression of the spin
connection as function of the local basis vectors:

Dµe a
ν = 0 =⇒ ωa

bµ = e a
ρ ∇µeρ

b, (5.3)

where∇µ as usual satisfies the metric compatibility condition, i.e.∇µgρσ = 0.
As we are going to show, the same conclusion can be derived from the solution of the second

Cartan structure equation, which will be extensively used below. In this respect, from the expres-
sion given above for the four dimensional spin connection asfunction of the tetrad fields, it is easy
to derive the following equation:

∇[µe a
ρ ] =−ω ab

[µ eρ ]b . (5.4)

If the torsion-less condition holds, namely

∇µ∇ν f = ∇ν∇µ f , (5.5)

and remembering that the∇ operator is compatible with the metric, we can easily deduce

∂[µe a
ρ ] =−ω ab

[µ eρ ]b , (5.6)

which recalling the definition of exterior derivative of n-forms can be rewritten as:

dea+ωa
b∧eb = 0. (5.7)

The above equation is called homogeneous second Cartan structure equation and completely de-
termines the spin connection as function of the gravitational field.25 It is worth noting that in the
case of non-vanishing torsion, the affine connectionΓρ

µν has also an antisymmetric part, then the
second Cartan structure equation generalizes to:

dea+ωa
b∧eb = Ta , (5.8)

25For the reader’s convenience, we collected a description ofthe forms formalism in Appendix A, where he/she can
also find the Hilbert-Palatini and matter actions translated in the forms language.
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where the torsion 2-formTa is defined as

Ta
µν = e a

ρ
(
Γρ

µν −Γρ
ν µ
)
. (5.9)

In this more general case, the solution of the second Cartan structure equation provides the full spin
connection as a sum of its torsion-less componentωab[e] plus a contortion termKab, namely

Ωab[e, . . . ] = ωab[e]+Kab[e, . . . ] , (5.10)

where the dots indicate that the contortion component can depend on matter fields as in the case of
spinors coupled to gravity.

The spin connection 1-form generates, in the usual way, the curvature 2-formRa
b through the

following identification (in what follows let us use the compact notationd(ω)(. . . )≡ d(. . . )+ω ∧
(. . . )):

d(ω) ◦d(ω)va = Ra
b∧vb . (5.11)

Explicitly we have
Ra

b = dωa
b+ωa

c∧ωc
b , (5.12)

which is called first Cartan structure equation. The curvature tensor satisfies the Bianchi identity

d(ω)Ra
b = 0, (5.13)

which is a consequence of the Jacobi identity applied to the covariant exterior derivatives opera-
tor, i.e. d(ω) ◦ d(ω) ◦ d(ω) = 0. Another identity can be obtained applying the exterior covariant
derivative operator on the left and right hand sides of the second Cartan structure equation (5.8),
i.e.

Ra
b∧eb = dTa+ωa

b∧Tb , (5.14)

which in the torsion-less case reduces to the Bianchi cyclicidentity:

Ra
b∧eb = 0. (5.15)

It is possible to rewrite the action for gravity in the tetradformalism by using the relations
given in (5.1), specifically we have

S[e] =
1
2

∫
d4xdet[e]eµ

aeν
bR ab

µν , (5.16)

which can be used as starting point to canonically reformulate the gravitational theory. Actually,
the canonical formulation of tetrad gravity can be straightforwardly deduced from the canonical
theory described in Sections 4.1 and 4.2, by taking into account the presence of an additional local
symmetry in this new framework.

So, in order to construct the canonical theory, let us assumethat the space-time is a globally
hyperbolic metric manifold(M = R× Σ3,gµν = ηabe a

µ e b
ν ). Let hµν = gµν + nµnν and Kµν =

1/2£nhµν be respectively the first and second fundamental form of the Cauchy hypersurfaceΣ3, so
that, by using the tetrad fields, we can write:

hµν = ηabe
a

µ e b
ν +nµnν =−e 0

µ e 0
ν +δi j e

i
µ e j

ν +nµnν . (5.17)
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The expression of the first fundamental form above suggests avery simple gauge choice to elimi-
nateab initio some non-dynamical degrees of freedom. Specifically, by operating a Wigner boost
it is possible to rotate the local basis in such a way that the componente 0

µ results to coincide with
the normal vectornµ . This gauge choice, called temporal gauge, reduces the local gauge symmetry
to the group of spatial rotations, since the boost componentof the original Lorentz group is obliged
to vanish by having chosen the direction of one of the component of the local basis.26

By implementing the temporal gauge and projecting the 3-metric on the hypersurface, we have

hαβ = δi j e
i

α e j
β , (5.18)

where Greek indexesα ,β ,γ . . . run over 1,2,3, while Latin indexesi, j,k, . . . are related to the
SO(3) (or, via an isomorphism, to theSU(2)) local symmetry. Note that the orthogonality condition
nµ hµν = 0 is automatically fulfilled according to the properties of the tetrad basis. This allows us
to easily write the components of the tetrad fields and their inverse in the coordinates system(t,x),
we have

e a
µ =

(
N Nαe i

α
0 e i

α

)
and eν

b =




1
N

0

−Nβ

N
eβ

j


 , (5.19)

as beforeN denotes the Lapse function, whileNα the Shift vector. This identification of some of
the components of the local basis with the Lapse and Shift is possible by considering that the line
element

ds2 = e a
µ eaνdxµ dxν =−N2dt2+hαβ (N

αdt+dxα)(Nβ dt+dxβ ) , (5.20)

corresponds to the ADM decomposition of the 4-metric. It is important to note that the 3-metric
(5.18) is invariant under a localSO(3) rotations of the tetrad basis, namely the dreibein carries three
degrees of freedom more with respect to the three-metrichαβ . As a consequence also the number
of constraints of the canonical theory written in tetradic formalism must increase. In particular,
we should have three (first class) constraints more in order to reabsorb the local gauge degrees of
freedom connected with theSO(3) symmetry.

In this respect, consider the second fundamental form. Define the 1-formK i
α on Σ3 and con-

tract the internal index with the tetrads, i.e.

Kαβ = δikK i
α ek

β . (5.21)

Now, it is easy to realize that the symmetric part of the tensor Kαβ is the extrinsic curvature,
namely

K(αβ) = Kαβ , (5.22)

while its antisymmetric part, corresponding to the antisymmetric part of the extrinsic curvature,
which is naturally symmetric, has to vanish. Then the 1-formK i

α must satisfies the following
constraint:

K[αβ ] = K i
[αeβ ]i ≈ 0. (5.23)

26It is worth stressing that the fixation of the temporal gauge remarkably simplifies the canonical theory. Neverthe-
less, we have to say that, the temporal gauge is not a mandatory choice to construct the canonical theory. In fact, we can
canonically formulate the theory as well without fixing the gauge, but the technical difficulties one would have to face
in solving the second class constraints are far from the scope of this paper.
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K[αβ ] is a 3×3 antisymmetric matrix constrained to vanish, so it reabsorbs exactly the three degrees
of freedom more that we have introduced with the choice of thetetrads as elementary variables.27

As a next step, let me introduce the weighted triad fields

Eα
i = eeα

i , (5.24)

wheree= det[e i
α ].

28 We can rewrite the constraint (5.23) as

Ri j = eeα
i eβ

j Kαβ = eeα
i eβ

j K k
[α eβ ]k = Kα [iE

α
j] ≈ 0. (5.25)

At this point we are ready for changing variables, specifically we can easily rewrite the canon-
ical ADM variables as:

hαβ = det(Eδ
l )δi j E

i
α E j

β , (5.26a)

pαβ = 2δ (α
δ Eβ)iE k

γ E[γ
iK

δ ]
k . (5.26b)

The new couple of fundamental variables can be introduced inthe scalar and vectorial constraints
too, we obtain

Hα =−2Dβ

[
K i

α Eβ
i −δ β

α K i
γ Eγ

i

]
, (5.27a)

H =
1

(det[E i
α ])1/2

Eα
iE

β
j

(
K j

α K i
β −K i

α K j
β

)
−
(
det[E i

α ]
)1/2 (3)R(E) , (5.27b)

where the Ricci scalar curvature(3)R(E) is considered as function of the weighted tetrads. At this
point, it is important to demonstrate that the canonical dynamics, described by the new variables
on the extended phase space,29 is equivalent to that described by the usual ADM variables. In this
respect, we can easily demonstrate that once the extended phase space is equipped with the natural
symplectic structure

{
E i

γ (t,x),Kδ
j(t,y)

}
= δ i

jδ δ
γ δ (x−y) , (5.28a)

{
E i

γ (t,x),E j
δ (t,y)

}
=
{

Kγ
i(t,x),K

δ
j(t,y)

}
= 0, (5.28b)

the constraint

R(α) =

∫

σ

d3xα ikKα iE
α
j , (5.29)

27The reader may wonder about the legitimacy of the weakly vanishing symbol in (5.23). In this respect, we have
to say thatK i

α has been generically defined, but only when it satisfies the condition expressed by (5.23), it can be safely
related to the extrinsic curvature. Since the final goal willbe to change variables and describe the canonical dynamics
through the canonical couple(K i

α ,E
β
k ), the second being defined below, such a canonical system describes ordinary

gravity when Eq. (5.23) is satisfied. In other words, condition (5.23) plays exactly the role of a constraint (weak
equation) limiting the physically relevant evolution to a restricted region of the enlarged phase space.

28Notice that the inverse of the weighted triad is divided by the determinant ofe i
α .

29The adjective “extended” refers to the fact that the phase space associated to the new couple of variables has six
dimensions more with respect to the ADM one.
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whereα ik is an arbitrary antisymmetric matrix function, generatesSO(3) rotations. In fact, calcu-
lating the Poisson algebra generated by the rotational constraint, we obtain:

{
R(α),R(α ′)

}
= R

([
α ,α ′]) , (5.30)

which is exactly the algebra of spatialSO(3) rotations. Any Poisson bracket between the rotational
constraint and the ADM canonical variables vanishes, simply because the latter are manifestly
rotations invariant. The 3-metric tensorhαβ , being a function only of the weighted tetrad fields
(see relation (5.26a)), simply satisfies the following relation:

{
hαβ (t,x),hγδ (t,y)

}
= 0. (5.31)

The case of the canonical momenta is more complicated, finally we have [3]:

{
pαβ (t,x), pγδ (t,y)

}
=−

√
h

8

[
hαγ

R
βδ +hαδ

R
βγ +hβγ

R
αδ +hβδ

R
αγ
]
(t,x) δ (x,y) . (5.32)

Namely, the above brackets vanish as soon as the rotation constraint is satisfied. In other words,
as soon asR(α) = 0, the ADM canonical variables, written as functions of the extended phase
space variables,(K i

α ,E
γ
k), generate the usual Poisson brackets (4.23c). At last, withfew algebraic

passages, we also obtain {
pαβ (t,x),hγδ (t,y)

}
= δ α

(γδ β
δ )δ (x,y) . (5.33)

Summarizing, the new extended phase space elementary variablesE i
α andKα

i reduces through the
definitions in lines (5.26a) and (5.26b) to the ADM ones, moreover their Poisson brackets mimic the
ADM ones as soon as the rotational constraint is satisfied. Sowe can conclude that the Hamiltonian
system described by the action

S3+1(E,K) =
1
2

∫

R×σ

dtd3x

(
Kα

i

·
E i

α −NH−NαHα +Oik
Rik

)
,

once solved the rotational constraint,Rik = 0, is equivalent to that described by the ADM action
(4.33).

The constraints (5.23), (5.27a) and (5.27b) are first class,as can be demonstrated with some
algebra. They reflect the gauge structure of the theory, indeed they are correlated to the auto-
morphisms of the tangent bundle, namely theSO(3) rotational symmetry, and to the space-time
diffeomorphisms.30

5.2 Canonical transformations and new variables for gravity

Let us begin noting that, given the symplectic structure (5.28), the transformationsEα
j →

Eα
j/β andK j

α → βK j
α are canonical, in fact they do not change the symplectic structure. The

30It should be clear from what stated above that this statementdoes not mean that the flow generated by the “new”
super-Hamiltonian and super-momentum constraints on the extended phase space is a diffeomorphisms. Rather, once
the rotational constraint is satisfied, i.e. on the constraint surface determined by the conditionRi j = 0, it still exists a
representation of the diffeomorphisms group. There, in fact, the Hamiltonian flow of the rotational invariant variables
hαβ andpαβ is equivalent to that generated on the ADM phase space.
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parameterβ is called Barbero–Immirzi (BI) parameter and is, in general, a complex number. It is
worth noting that the rotational constraint remains invariant under this rescaling, so we can rewrite
it as

Rk = εki jR
i j = εki j

(β)K i
α

(β)Eα j ≈ 0, (5.34)

where we used the properties of the total antisymmetric symbol εki j and we indicated as(β)K i
α and

(β)Eα
i the canonical variables rescaled by the BI parameter.
Let us now introduce the connection associated with theSO(3) symmetry (or equivalently

SU(2)). Namely, we introduce the connection 1-formΓi j
α , in order to covariantly deriveSO(3)

valued tensors. In particular, let us define the connection via its action on the generic tensorT i1...im
α1...αn

containing both vectorial andSO(3) indexes, i.e.

Dβ T i1...im
α1...αn

= ∂β T i1...im
α1...αn

−
n

∑
k=1

Γγ
βαk

T i1...im
α1...αk−1γαk+1...αn

+
m

∑
l=1

Γil
jβ T i1...il−1 ji l+1...im

α1...αn .

(5.35)
It can be verified by direct analysis that the generalized covariant derivative above,Dβ , sends each
smoothSO(3) valued tensor field of type(p,q) to a smoothSO(3) valued tensor of type(p,q+1)
onΣ. As usual, we require that the covariant derivative operator is compatible with the tetrad basis,
i.e. it annihilates the fielde i

α , namely we have

Dβ e i
α = 0 =⇒ Γi j

α = eβ i∇αe j
β . (5.36)

The curvature 2-form,R i j
αβ , is defined by considering the commutators of two covariant deriva-

tives on anSO(3)-valued scalar, i.e.

R i
αβ jv

j =
[
Dα ,Dβ

]
vi −→ R ik

αβ = 2∂[α Γik
β ]+Γi

j[α Γ jk
β ] . (5.37)

The following relation holds:

DαEβ
j = ∇α

(
eeβ

j

)
−Γk

jαeeβ
k = eDαeβ

j = 0, (5.38)

where we have taken into account the compatibility condition (5.36). Consequently we have,

DαEα
j = 0, (5.39)

moreover, being∂αEα
j = ∂α

(
eeα

j

)
= ∇αEα

j , we finally obtain the following important relation:

DαEα
j = ∂αEα

j −Γk
jαEα

k = ∂αEα
j + ε l

jk Γk
αEα

j = 0, (5.40)

where we definedΓk
α

de f
= −1/2εk

i j Γ
i j

α . It is worth noting that the above definedΓi
α as function

of the dreibeins fields can be recasted as function of the weighted triadsEα
j , we give below the

expression:31

Γi
α =

1
2

ε i
jkEβk

[
∂β E j

α −∂αE j
β +Eγ jEα l∂β E l

γ

]

+
1
4

ε i
jkEβk

[
2E j

α
∂β
(
det[E i

γ ]
)

det[E i
γ ]

−E j
β

∂α
(
det[E i

γ ]
)

det[E i
γ ]

]
, (5.41)

31The expression of the 3-dimensional spin connection as function of the densitized triad is the one that we should
use in (5.27b) to rewrite the Ricci scalar as function of theEα

i . This can be easily done considering thatR(E) =
Eα

i Eβ
k

det[E]R
ik

αβ [Γ(E)], whereR ik
αβ [Γ(E)] is the curvature tensor associated with the connectionΓ and defined in (5.37).
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which can be calculated simply by substituting the definition (5.24) in the expression (5.36) for the
spatial spin connection. We also note thatΓk

α is not affected by the rescalingEα
j → (β)Eα

j =Eα
j/β

of the weighted tetrad fields. By using the strong equation (5.40), we can now replace the rotational
constraint (5.25) with a Gauss constraint,Gk, of anSO(3) or SU(2) Yang-Mills gauge theory, as
follows

Gk = DαEα
k +Rk = ∂α

(β)Eα
k+ ε j

ki Γi
α
(β)Eα

j + ε j
ki

(β)K i
α

(β)Eα
j

= ∂α
(β)Eα

k+ ε j
ki

(β)
A

i
α
(β)Eα

j ≈ 0, (5.42)

where the Ashtekar-Barbero connection, defined as(β)A i
α = Γi

α +βK i
α , has been introduced. For

β =± i we obtain the original definition of the Ashtekar self-dual variables for gravity.
Again a change of variables is in order. Specifically, we can replace the canonical couple

(K i
α ,E

β
k ) with the new couple((β)A i

α ,
(β)Eβ

k ) and, once checked that the replacement does not
affect the symplectic structure (canonical transformation),32 i.e.

{
(β)E i

γ (t,x), (β)Aδ
j(t,y)

}
= δ i

jδ δ
γ δ (x,y) , (5.43a)

{
(β)E i

γ (t,x), (β)E j
δ (t,y)

}
=
{
(β)Aγ

i(t,x),
(β)Aδ

j(t,y)
}
= 0, (5.43b)

we can go on to rewrite the canonical constraints as functions of the new variables.
So, let us define the curvature of the new connections

F
k
αβ = 2∂[α (β)

A
k

β ]+ εk
i j
(β)

A
i

α
(β)

A
j

β , (5.44)

satisfying the following relation

F
k
αβ = Rk

αβ +2D[α
(β)K k

β ] + εk
i j
(β)K i

α
(β)K j

β . (5.45)

As a useful formula, we rewrite the 3-dimensional Bianchi cyclic identity,R i j
[αβ eγ ] j = 0, as

ε ij
kR

k
[αβ Eγ ] j = 0, (5.46)

which, after some algebra and considering the definition (5.24), can be further reduced to

Rj
αβ Eβ

j = 0. (5.47)

By using the definition (5.44) and the equations (5.45) and (5.47), the canonical constraints can be
rewrite as follows:

Hα = (β)Eγ
i F

i
αγ − (β)K i

αGi , (5.48a)

H =
β 2

(det[E i
α ])1/2

(β)Eα
i

(β)Eγ
j

[
ε i j

kF
k
αγ −2

(
β 2+1

)
K i
[αK j

γ ]

]
+

β 2

(det[E i
α ])1/2

(β)Eγ
j DγG j .

(5.48b)

32The only non-trivial check is that the Poisson bracket
{
(β )Aγ

i(t,x),
(β )Aδ

j(t,y)
}

in fact vanishes. This is a non-

trivial result, mainly based on the fact that
{

Γi
α (E),K

j
β

}
= 0.
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It is interesting to note that both the scalar and vectorial constraints (5.48) involve the Gauss con-
straint. Obviously, since the new expressions of the canonical constraints (5.42) and (5.48) are the
consequence of a well defined canonical transformation, thestructure of their Poisson brackets is
unaffected. In other words, they still represent a set of first class constraints, correlated with the
gauge symmetry of the system; they limit the dynamics of the system to a restricted region of the
extended phase space. The same dynamics can be obtained directly working with the following set
of first class constraints:

Gi = DαEα
i = ∂αEα

i + ε k
i j

(β)
A

j
α Eα

k ≈ 0, (5.49a)

Cα = Eβ
i F

i
αβ ≈ 0, (5.49b)

C=
1

(det[E i
α ])1/2

Eα
i Eβ

j

[
ε i j

kF
k
αβ −2

(
β 2+1

)
K i
[αK j

β ]

]
≈ 0, (5.49c)

which are dynamically equivalent to the previous ones.
It is worth noting that the Gauss law (5.49a) and the vector constraint (5.49b) do not depend on

the BI parameterβ , while the scalar constraint (5.49c) isβ -dependent, implying that the physical
predictions of the quantum theory will in general depend on the Immirzi parameter. A weird fact
is that even physical quantities not directly depending on the Hamiltonian, for example the area
operator come out to beβ -dependent.

As a final remark, the valuesβ = ± i corresponding to the complex Ashtekar (anti)self-dual
variables are pretty special: The constraints become polynomial, provided that we can someway
reabsorb the determinant of the densitized triad in the denominator of the scalar constraint, e.g., by
defining a densitized Lapse function [61].

5.3 Holst action as Lagrangian formulation of Ashtekar gravity

So far, we have never introduced the action which correspondto the AB constraints calculated
previously. We dedicate this last part of the section to thisargument, describing also a recent
proposal for a possible generalization of the so-called Holst action.

The Holst action represents an important contribute in understanding the geometrical content
of the Ashtekar-Barbero formalism. In [89], Holst showed that the AB canonical constraints of
GR [63, 64] can be derived by splitting a generalized Hilbert-Palatini action. The Hilbert-Palatini
action in tetrad formalism is:33

S[e,ω ] =
1
2

∫
ea∧eb∧⋆Rab(ω) . (5.50)

The Riemann tensor is a function of the spin-connection,ω , which is considered as a separate
distinct variables with respect to the gravitational 1-form ea = ea

µdxµ . In other words, the action
as to be varied with respect to both the gravitational field and the spin connections to write down
the full set of equations of motion. Specifically, by varyingthe action with respect toω and e
respectively, we obtain

dea+ωa
b∧eb = 0, (5.51a)

εa
bcde

b∧Rcd(ω) = 0. (5.51b)

33Let us use differential forms in order to be more concise in formulating this argument. Some details are given in
Appendix A.
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The first one of the above equations is the second Cartan structure equation (5.8), containing the
information about the relation between the spin connectionand the gravitational field. This can be
easily solved and the solution can be put in (5.51b), which are the Einstein equations in vacuum.

It is worth noting that the presence of matter, in general, affects the Einstein equations by
generating a source in the right hand side of (5.51b). Remarkably spinor fields, which interact with
gravity through both the gravitational field and the spin connection, generate also a source for the
second Cartan structure equation, namely they represent a source for torsion [86].

We claim that the Holst action

S(e,ω) = SHP(e,ω)+SHol (e,ω) =
1
2

∫
ea∧eb∧

(
⋆Rab− 1

β
Rab
)
, (5.52)

whereβ is the BI parameter, is the starting point to formulate canonical gravity in the AB variables.
The Holst action is made up of two parts, the first one is the usual Hilbert-Einstein action, while
the second one is an “on (half-)shell” vanishing term. Classically, the Holst action is dynamically
equivalent to the HP one, indeed, by varying it with respect to the spin connection we get the
unmodified second Cartan structure equation, while the variation with respect to the gravitational
field gives

εa
bcdeb∧Rcd(ω)− 1

β
eb∧Rab(ω) = 0. (5.53)

But as previously demonstrated, the homogeneous second Cartan structure equation (5.51a) implies
the cyclic Bianchi identity (5.15), which ensures that the Einstein dynamics is preserved from the
Holst modification.

We note that in the Holst formulation the BI parameter turns out to be a multiplicative con-
stant in front of a on (half-)shell vanishing term, this clarifies why it does not affect the classical
dynamics, while it has important effects in the quantum regime as remarked previously. This be-
havior is reminiscent of the parameter characterizing the topological sector of Yang–Mills gauge
theories (see action (3.27) and the comment below; see also Appendix B). If theθ -angle and
the BI parameterβ have an analogous origin, then it must exist a classical framework where the
analogy between the two parameters can be made manifest. In the pure gravitational case, in fact,
the argument proposed fails to be completely convincing. The Holst modification, in fact, is not
a topological density. It does not reduce to a total divergence, rather it is an on-shell identically
vanishing term. But the action (5.52) can be further generalized to include in the picture also the
interesting case of torsional space-times. In particular,in [86, 87], by introducing spinor matter
fields, an interesting hint was given to complete the Holst picture; specifically, the presence of
spinors can generate the necessary torsion contribution togeneralize the Holst modification and
construct a topological term. In other words, by using a non-minimal coupling between spinors
and gravity,34 it has been, indirectly, demonstrated that the EC action canbe generalized without
modifying the classical dynamics by adding the Nieh–Yan topological density [88], i.e.

SGrav= SHP [e,ω ]+SNY [e,ω ] =
1
2

∫
ea∧eb∧⋆Rab+

1
2β

∫ (
Ta∧Ta−ea∧eb∧Rab

)
.

34See [90] for the extension to supergravity theories.
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By remembering the definition of the torsion 2-formTa = dea+ωa
b∧eb, the NY term can be easily

rewritten as a total divergence, i.e.
∫ (

Ta∧Ta−ea∧eb∧Rab
)
=

∫
d(ea∧Ta) . (5.54)

The modification is now a true topological term related to theChern–Pontryagin classes [91]. This
generalization is quite natural [92, 93] and has been the starting point to construct a precise analogy
between the BI parameter and theθ -angle of Yang–Mills gauge theories, presented in [83], as well
as other recent works [94, 95]. The structure of the large gauge group, which is supposed to be at
the base of the proposed interpretation of the BI parameter is quite subtle; a possible framework is
described in [84].

Finally, we want to briefly digress on an interesting possibility which has lately attracted much
interest. The analogy existing between theθ -angle of Yang–Mills gauge theories and the BI pa-
rameter in gravity suggest a further generalization, namely the idea that the BI parameter is actually
a field [96, 94, 97]. Initially, this idea was considered justas a possible generalization of the theory,
but recently it has been demonstrated that promoting the BI parameter to be a field could be neces-
sary in order to reabsorb a divergence coming from the chiralanomaly on space-time with torsion
[93]. This proposal has an interesting outcome, indeed, once the BI field is coupled to gravity via
the Nieh–Yan density, it generates a torsion contribution in the second Cartan structure equation. In
the case of pure gravity interacting with the BI field, the neteffect of the presence of such a torsion
contribution is the appearance of a kinetic term for the BI field, which turns out to behave like a
decoupled pseudo-scalar field. A more interesting dynamicsappears as soon as we consider the
presence of fermion fields. Indeed, the BI field couples to thefermion axial current and, through
the chiral anomaly, it interacs with boson fields as well [93,95, 98]. As it happens for the QCD
axion, instantonic effects can provide an extremely small mass to the BI field, which can be easily
evaluated [93, 95], allowing one to extract some interesting cosmological implications [99].

We conclude this section saying that the nature of the BI parameter is still debated; it is, in
fact, still argument of active discussion from both the purely classical and quantum perspective. The
idea that it is the expectation value of a super-weakly interacting pseudo-scalar field is particularly
fascinating and rich from the theoretical point of view.

6. Quantization Program

Previously in this paper, precisely in § 2.1, we discussed some general and very well known
arguments which motivates the attempts to formulate a consistent QG. Remarkably, the necessity
of a quantum theory of gravity was pointed out by Einstein himself in 1916: More than ninety years
later a fully consistent and complete formulation of a quantum gravity theory still lacks.

On the one hand, it appeared immediately obvious from the pioneering works of Dirac, Wheeler,
and DeWitt, that the problem of quantizing gravity was much more conceptually involved than
other analogous problems regarding the other interactions. This led to the idea that the problem
of QG could not be solved separately from the other interactions, namely, that it was inextrica-
bly bound to the issue of unification. So, for many years, the problem of quantizing pure gravity
marginally interested physicists, more attracted by the attempt of unifying the other interactions or,
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more recently, by the idea of supersymmetry and extra-dimensions. Another interesting aspect that
is worth mentioning is the belief that the main question to answer to construct a consistent quantum
gravity was the disappearance of time. In other words, initially it seemed that the so calledfrozen
formalismwas the main obstacle to obtain a physically consistent formulation of QG. But the pe-
culiar role played by time in ordinary quantum mechanics is mainly correlated with the, let’s say,
evolutionary interpretation of physical theories that we have been used to by classical mechanics.
The presence of an evolutionary parameter is neither a fundamental request of the quantization
procedure, nor a fundamental ingredient for the physical interpretation of the theory. A quantum
theory without time can be, in fact, perfectly consistent.

On the other hand, the physical situation a theoretical physicist is called to face in constructing
a quantum theory of gravity should appear as the best he/she can imagine. At present, in fact, there
is no strong experimental constraint on the quantum gravityregimes. Naively, one could expect
that a rich variety of different consistent theories has been formulated so far, on the contrary, we
do not have anyone. Most likely the reason is the double nature of GR, namely it is the field theory
describing gravity and, simultaneously, it is the theory describing the structure of space-time. Any
quantum gravity theory, in fact, has to put together three fundamental dynamical elements, i.e.
geometry, gravity and quantum laws. In this perspective, the ordinary quantum theory of field
cannot provide any insightful hint as one of the fundamentalingredients lacks, i.e. the dynamical
nature of the space-time geometry.

We know, in fact, that as soon as we treat quantum gravity perturbatively, namely neglecting
the full dynamics of space-time, as one would do following the prescriptions of quantum field
theory, the result we get is a non-renormalizable theory. So, it seems pretty natural to incorporate
the full dynamics of space-time in the theory through a non-perturbative approach. But one may
wonder if a non-perturbative quantum theory of gravity can actually be a consistent theory. This
question is often suggested by a naive analogy based on the behavior at high energy of the Fermi
theory for the weak interaction. As is well known, the Fermi model contains a point-like four
fermions interaction, which is non-renormalizable. Fermi’s model works well at low energy, but
it is doomed to fail at high energies. A striking progress wasdone in this sense by completely
reformulating the theory through the introduction of the massive bosonsW± andZ0 carrying the
weak interaction.

It is often argued that an analogous procedure has to be applied to GR, since its perturbative
non-renormalizability points in a direction similar to that of the Fermi model of weak interaction.
Nevertheless, this argumentation completely fails in getting an essential difference between the
weak and the gravitational interaction, namely the fact that perturbative expansions presuppose that
the space-time is a smooth continuum at all the energy scales. But, there is no reason to believe
that the classical concept of continuum space-time has to survive at scales of the order of the Plank
energy. That is why a non-perturbative approach, able to incorporate the complete dynamics of the
geometry of space-time, may safely describe quantum general relativity.

Furthermore, the failure of the standard perturbation expansion in gravity may well reflect the
fact that GR is characterized by a non-trivial fixed point of the renormalization group flow. This
extremely fascinating aspect of perturbative QG has been well described during this school by
Roberto Percacci, who, in his two lectures, has pointed out that there is a growing evidence that
this is exactly the case. Furthermore the requirement that the fixed point should continue to exist
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also in presence of matter fields constrains the possible couplings in an interesting physical way
[100].

In general, it is expectable that a consistent quantum theory of gravity is able to remove sin-
gularities, replacing them with a well defined quantum stateof the gravitational field. Initially, this
was just a hope, but now encouraging results exist. They are mainly due to the general quantization
program of Loop Quantum Gravity, which faces the problem of quantum gravity merging together
the three main ingredients said above. They are still partial results, in the sense that it is possi-
ble to remove singularities at least in symmetric space-times, both of cosmological origin, as the
Big Bang singularity [71, 101, 102, 103, 104, 105, 106, 107] and those resulting from a complete
gravitational collapse [72, 108, 109]. Of course, a theoremestablishing a general result about the
avoidance of singularities in LQG still lacks.

However, the existing results make us confident that a suitable background independent quan-
tization of the gravitational field can solve the problem of classical singularities; the program of
canonical quantization of gravity has exactly this task. But, it is a matter of fact, that so far the
complicated structure of the canonical constraints has prevented from making progresses in the full
theory.

Below, we describe the main features of canonical quantization, starting from a brief account
of the prescriptions of the Dirac quantization procedure, then we digress on the old Wheeler-DeWitt
quantum gravity and finally we go on to briefly introduce some aspects of Loop Quantum Gravity.

6.1 Dirac quantization procedure

The Dirac quantization procedure is a set of prescriptions aiming to consistently face the quan-
tization of constrained physical system. One useful example to understand how the Dirac procedure
works is the quantization of the electromagnetic field, which, as remarked in § 3.2.1 is a gauge the-
ory of the compactU(1) group.

Canonical quantum electrodynamics is usually constructedby imposing a gauge condition
on the electromagnetic potential, as initially suggested by Fermi. Specifically, the quantization
usually chosen is the so-called Lorentz gauge∂µAµ = 0. By imposing the gauge in the action, the
definition of the momenta conjugated to the electromagneticpotential do not generate any primary
constraint. So, the theory can be quantized and the gauge condition weakly imposed on the Fock
quantum states, reducing the physical degrees of freedom tothe two polarizations of the photon.
Another possibility is to consider the full canonical classical theory. As we have calculated in §
3.3 a first class Gauss constraint appears and can be treated by fixing the gauge. A possible choice
is the Coloumb gauge∂αAα = 0. The dynamical variables(Aα ,Eβ ) have to satisfy both the gauge
fixing condition and the Gauss constraint. As we said in Sec. 4.2, the general conditions that a
consistent gauge fixing has to satisfy imply that the Gauss constraint and the gauge condition form
a set of second class constraints. Thus, the degrees of freedom in configuration space are exactly
reduced to those corresponding to the two polarizations of the photon field. Finally, once the non-
physical degrees of freedom have been eliminated, the system can be quantized by promoting the
canonical variables to operators, satisfying the relations derived from promoting the Dirac brackets
to quantum commutators.

This procedure works well if applied to linear physical systems, but it presents some com-
plicated issues when applied to non-linear systems as, for example, gravity or Yang-MillsSU(N)
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gauge theories forN ≥ 2. The reason is connected with the existence of the so calledGribov am-
biguities, which are produced by the complicated geometrical aspects of the complete phase space
associated with the dynamics of gauge theories. In fact, in general, the geometry of the constraints
surface and gauge orbits could be such that the gauge fixing surface cuts some of the orbits more
than once and it does not intersect at all some of the others [79]. So the gauge fixing surface works
properly only locally, in general, it is impossible to find a global suitable gauge condition. This
fact is generally referred as the Gribov obstruction and represents a shared characteristic of all the
non-abelian gauge theories. Also gravity is affected by this problem, indeed, studying the classical
canonical aspects of the theory, we pointed out that the attempts to solve the Cauchy problem in
GR reveals the non-existence of global gauge conditions. Infact, it is possible to find a solution of
the Cauchy problem at most locally.

For these reasons it is important to develop a theory of first class constraints without being
obliged to fix the gauge. The way, suggested by Dirac, is to impose the first class constraints after
the quantization, namely directly on the quantum states. Inother words, the idea is to set up a
Schrödinger-like equation by promoting the first class Hamiltonian to a quantum operator acting
on the states of the theory. The classical first class constraints, in stead, are imposed on the state
functional as supplementary conditions, i.e.

ĈI |ψ〉= 0. (6.1)

The action of the first class Hamiltonian and the first class constraints on the state functional is
dictated by the upgrade of the classical Dirac brackets to quantum commutators.

In this way, every quantum state remains unchanged under a transformation generated by the
constraints, namely we are reintroducing the gauge invariance at a quantum level. In fact the
condition above implies, as a consequence, that the quantumstates are invariant under finite gauge
transformations in the sector connected with the identity,35 i.e.

exp
{

iαIĈI

}
|ψ〉= |ψ〉 . (6.2)

We are assuming that the set of classical constraintsCI is first class, i.e.

{CI ,CJ}= f K
IJ CK , (6.3)

if this relation is preserved by the quantization we have
[
ĈI ,ĈJ

]
= ih̄ f̂ K

IJ ĈK , (6.4)

but in general it is possible that the first class conditions above show the presence of additional
terms of quantum mechanical origin, i.e. we could have

[
ĈI ,ĈJ

]
= ih̄ f̂ K

IJ ĈK + h̄2ÂIJ . (6.5)

35The properties of the physical states under “large gauge transformation”, that is those not connected with the iden-
tity, are not contained in the action principle, indeed no constraints are generated by them. So, requiring the invariance
of the physical states under this larger class of transformation would be an extra assumption. See Appendix B for more
details.

70



Introduction to Loop Quantum Gravity Simone Mercuri

If this is the case the physical states, namely the states invariant under finite gauge transformation
connected with the identity, must satisfy the additional condition

ÂIJ |ψ〉= 0, (6.6)

which has not a classical analogue and in general restrict the phase space too much. In particular
if the operatorÂIJ is invertible, it would imply that the space of the physical states is empty. So,
on the one hand, we cannot impose such a condition without drastically affecting the content of
the theory. But, on the other hand, if we do not pose that condition the operatorŝCI are not first
class any longer; so, they no longer generate gauge transformations. In other words, the gauge
invariance is broken at a quantum level, i.e. the quantization of the system has produced a gauge
anomaly. Summarizing, if quantum effects break down gauge invariance, then it is meaningless to
search for gauge invariant physical states, i.e. we cannot impose equation (6.1). We can finally say
that if a gauge anomaly is present the Dirac quantization method cannot be applied and a different
quantization procedure, e.g. BRST, must be considered, with the hope that it could improve the
situation in view of a consistent quantum theory.

6.2 Wheeler-DeWitt equation

The Wheeler-DeWitt equation is essentially the result of the Dirac quantization procedure as
applied to gravity. There is one peculiar aspect that makes this argument interesting, namely the
fact that the first class Hamiltonian of GR is a combination ofconstraints; so that the equivalent
of the Schrödinger equation does not exist in quantum gravity. This aspect is well known and, as
remarked previously, it is often referred as the problem of time.36 Nevertheless, the quantization
can be formally performed, by following the standard procedure.

Firstly, let us define the smeared ADM variables,

Q(h) =
∫

Σ

d3xhαβ Qαβ , (6.7a)

P( f ) =
∫

Σ

d3x pαβ fαβ , (6.7b)

whereQαβ and fγδ are smooth tensor valued function, whilehαβ and pγδ are the canonical vari-
ables defined in § 4.1. As is well known the wave function depends only on half of the elementary
variables, since in this case a natural separation between configuration variables and momenta ex-
ists, then the “polarization of the symplectic manifold” ispretty natural, i.e. the wave function
will depend onQ(h). Now, once a suitable quantum configuration spaceC has been introduced,
it has to be equipped with the structure of a Hilbert space. This consists in choosing a suitable
measuredµ0, in such a way thatC becomes naturally anL2 space. Obviously, the present Hilbert
space does not know about the dynamics, so it will be referredas kinematic Hilbert space. Now
the quantization proceeds in the usual way, namely requiring that the operator representation of
the elementary variables, i.e.̂Q(h) andP̂( f ), acting as linear operator on a common dense domain

36It is worth stressing that the observables of the theory haveto be gauge invariant, namely they must commute with
all the constraints. This implies that the observables of the gravitational field commute with the Hamiltonian, which
leaves them invariant rather than generating their time evolution as in ordinary quantum mechanics (frozen formalism).
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of the kinematic Hilbert spaceH (L2,dµ0) generate an irreducible representation of the canonical
commutation relation. In other words, we require that

[
Q̂(h), P̂( f )

]
= ih̄ ̂{Q(h),P( f )} . (6.8)

As usual,Q̂(h) operates by multiplication when valuated on the quantum configuration space, i.e.

〈h|Q̂(h) |ψ〉= Q(h)〈h|ψ〉= Q(h)Ψ(h) , (6.9)

while P̂( f ) acts as a functional derivative operator, i.e.

〈h| P̂( f ) |ψ〉= h̄
i

∫
d3x fαβ

δ
δhαβ

〈h|ψ〉= h̄
i

∫
d3x fαβ

δ
δhαβ

Ψ(h) . (6.10)

Now, the naive quantization of the system follows from the translation of the classical constraints
to quantum operators, in accordance with the prescription above, i.e.

~H(~N)≈ 0 =⇒ Ĥ(~N)Ψ [Q(h)] = 0, (6.11)

H(N)≈ 0 =⇒ Ĥ(N)Ψ [Q(h)] = 0. (6.12)

But this procedure presents a lot of shortcomings, some of them are of a general nature, while
others are specific for the gravitational case [3]; we summarize in what follows the main ones.

• We know that in the construction of the quantum phase space functions we can arbitrarily
add to the elementary variables terms proportional to the constanth̄ without affecting the
classical limit of the theory. This ambiguity in the choice of the phase space function is
known asfactor ordering ambiguity. Divergences can arise in gauge theories where a bad
factor ordering is fixed, a simple example is provided by QED.In fact, only after the choice
of a suitable factor ordering, the Hamiltonian operator results well defined, being otherwise
divergent and nowhere defined.

• In general the divergences of an operator are of a worse kind and can be reabsorbed only after
a regularization and renormalization procedure. It is worth noting that the renormalization is
connected with the free possibility of adding localized terms to the quantum operators.

• It is important choose the factor ordering in such a way that the quantum operators be self-
adjoint. This is a crucial step in theories with true Hamiltonian, aiming to guarantee that
the eigenvalues of the operator be real. It could be neglected in theories with a constrained
Hamiltonian like gravity, on condition that the eigenvaluezero is contained in the spectrum.
Working with self-adjoint operators is however advantageous.

• The Hamiltonian quantum operator of GR depends neither polynomially nor analytically
on the metric field. This fact poses a serious problem, because in general operator valued
distributions multiplied at the same point gives divergentresults; so, a regularization proce-
dure is required. Even worse the presence of distribution inthe denominator poses a more
difficult problem of formal definition. Anyway, we can try to seek formal solutions of the
Wheeler-DeWitt operator, being aware of the fact that a regularization procedure is however
required.
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• Let us suppose to neglect initially the amount of technical issues and bad definitions of the
Wheeler-DeWitt approach, hopefully solvable after a suitable regularization and renormal-
ization procedure. Let us suppose that we succeed in finding asolution of this equation,
then a conceptual and interpretative issue arises. Indeed,we do not know, in general, how to
interpret the result. This fact is strictly connected with the problem of time and, even though
a quantum mechanics without time can be constructed, then a further amount of work is
required to correctly interpret the result of quantization. A possible solution to this inter-
pretative problem is the relational evolution. Namely, a Schrödinger-like equation can be
constructed in place of the Wheeler-DeWitt one, showing that the presence of time in the
quantum equations reflect on the classical theory generating matter fields [29]. The other
way around is to couple matter to gravity, e.g. a free scalar field or a dust of particles and
extract a relational time variables related to the momentumof the scalar field, by using, e.g.,
the Brown-Kuchǎr procedure [58, 31]. It is worth noting that in this kind of approaches the
evolution parameter is not external with respect to the physical system, as, e.g., in back-
ground dependent theories; here the evolution is referred to an “internal time”, as one would
expect in a background independent framework.

• Finally we stress that a central issue should be faced and regards the presence of gauge
anomalies. In GR, indeed, the problem is particularly complicate, because the group structure
constants are replaced by structure function depending on the metric field. So, in computing
equation (6.4) it is possible that an anomalous factor comesout.

All the above described issues have led to seek for a better formalization of the problem. In
particular, since the choice of the elementary variables isdictated only by the convenience and
simplicity of the resulting constraints, the use of Ashtekar–Barbero variables turned out to be ex-
tremely useful in facing some of these problems. In fact, a consistent anomaly free quantization
is possible and has given interesting results. For example,the spectra of regularized self-adjoint
operators related to geometrical quantities are exactly inline with the results one would expect
from a quantum General Relativity theory.

6.3 The program of Loop Quantum Gravity

As we showed in Section 5, canonical GR in the Ashtekar–Barbero formulation is character-
ized by the following set of first class constraints:

Gi = ∂αPα
k+ ε j

ki A
i

αPα
j ≈ 0, (6.13)

Cα = Pγ
i F

i
αγ ≈ 0, (6.14)

C =
1

(det[P i
α ])1/2

Pα
i Pγ

j

[
ε i j

kF
k
αγ −2

(
β 2+1

)
K i
[αK j

γ ]

]
≈ 0, (6.15)

where, to simplify the notation, we definedPγ
i = (β)Eγ

i and we dropped the upper leftβ in the
connection, i.e.A i

α = βK i
α +Γi

α . For convenience we rewrite here the symplectic structure as well

{
A

i
α(t,x),P

γ
k (t,x

′)
}
= δ i

kδ γ
α δ (x,x′) ,

{
A

i
α(t,x),A

k
γ (t,x

′)
}
= 0,

{
Pα

i (t,x),Pγ
k (t,x

′)
}
= 0.
(6.16)
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The above formulation of the classical canonical GR is the starting point of LQG. Remarkably, the
AB formulation, allowing to rewrite GR as a theory of connections, provides a sort ofkinematical
unificationwith the other forces. Other interactions are, in fact, successfully described by Yang–
Mills gauge theories, namely as theories of connections valued on compact groups of theSU(N)

family. Nevertheless, it has to be emphasized that, from a dynamical perspective, a profound
different can be immediately recognized: In Yang–Mills theories the metric of space-time plays a
central role, e.g. in the n-point functions, while in QG no background metric is assumeda priori;
better to say that in QG there is no space-time at all.

According to the Dirac prescriptions previously described, the theory can be quantized by
suitably defining a quantum representation of the canonicalalgebra and then imposing the operator
translation of the canonical constraints on the state functional, Ψ(A ), representing the states of the
theory. A possible choice for the representation is the one suggested by the old Wheeler–DeWitt
approach described before, which, even though formally correct, cannot be made rigorous.

The program of Loop Quantum Gravity goes, in fact, in a different direction. The idea is
to use a different set of fundamental variables,which are more suitable for quantization. In this
respect, let us introduce the holonomies,hγ [A ], of the connectionA i

α and the fluxes,P[Σ, f ], of
the momentumPγ

k respectively as

hγ [A ] = P exp



−

∫

γ

A
i

ατi
dxα

ds
ds



 , (6.17a)

and

P[S, f ] =
∫

S

Pα
i f iεαβγ

dxβ

ds1

dxγ

ds2
ds1ds2 . (6.17b)

Above, the 2× 2 matricesτi =
1
2σi are the generators of theSU(2) group, σi being the Pauli

matrices; whilef i is anSU(2) valued smearing function. The symbolγ denotes the parametric
oriented curve on which the holonomy is valued; whileS represent a 2-dimensional surface inΣ3.
It is easy to demonstrate that the holonomy has the followingproperties:

hγ1◦γ2 [A ] = hγ1 [A ]hγ2 [A ] and hγ−1 [A ] = h−1
γ [A ] , (6.18)

whereγ1 ◦ γ2 corresponds to join together the end point ofγ1 and the initial point ofγ2, while γ−1

denotes a change in the orientation of the curve. Notice thatthe holonomy (6.17a) is an element of
the groupSU(2).

Our purpose is to describe the canonical dynamics of the gravitational system by using the
new variables defined above. The first step in this program is the evaluation of the Poisson brackets
between the new configuration observableshγ [A ] and momentaP[S, f ]. Specifically, the Poisson
brackets between two configuration variables vanish, while, considering that any edgeγ with γ ∩
S 6= /0 can be trivially written as the union of elementary edges which either lie in S, or intersect S
in exactly one of their end-points, then, for each of these elementary edgesγ which intersect S at a
point p, we have:

{he [A ] ,P(Σ, f )}=−κ(S,γ)×
{

hγ [A ]τi f i(p) if p is the source ofγ
− f i(p)τihγ [A ] if p is the target ofγ

, (6.19)
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where

κ(S,γ) =

{
0 if γ ∩Σ = /0 or γ ∩Σ = γ
±1 if γ ∩Σ 6= /0

. (6.20)

Notice that the Poisson brackets between two momenta is non-trivial; the reason being related to
the fact that new variables are still distributional quantities even though they are smeared, since the
smearing is made respectively on one and two dimensional functions for holonomies and fluxes, so
that a particular care has to be taken in handling with Poisson brackets involving two momenta.

According to the usual procedure, the quantum fundamental operators in the auxiliary Hilbert
space will be required to satisfy the algebra originating from the commutation relations. So, one
of the main issue one has to face is to find a consistent representation for the quantum algebra. It
is worth saying that the properties of the resulting quantumgeometry can be extracted through the
momentum operatorŝP[Σ, f ] in that representation. The momentum operator, in fact, is related to
the classical orthonormal basis via the definitionPα

i = β−1Eα
i . Surprisingly enough, the diffeomor-

phisms invariance requirement sort out a unique representation of the quantum algebra. This result
is often referred as LOST theorem by the acronym of Lewandowski, Okolow, Sahlmann, and Thie-
mann [110] (an independent result with the same physical content has been given by Fleischhack
[111])

After this brief introduction, a schematic description of how the Dirac procedure applies to
gravity in the LQG program is in order.

• Holonomies of the connection are chosen as configuration variables. In particular, the auxil-
iary Hilbert space can be constructed and consists of a set offunctionals of the holonomies,
square integrable in the Ashtekar–Lewandowski measure.

• The Gauss and vectorial constraints have a natural action onthe states of the theory. In
particular, the space of solutions of the Gauss and vectorial constraints is well understood.

• The situation becomes much more involved as far as the scalarconstraint is considered. The
main problem is that the scalar constraint is highly non-linear. Some strategies have been
developed to deal with the scalar constraint, particularlythrough the Thiemann’s “master
constraint program” [112], but many unsolved issues are still present in the theory. Nev-
ertheless, well defined version of the scalar constraint (insymmetric systems) have been
constructed, leading to striking results, which answer some long-standing question about
(quantum) gravity.

• At the present stage of the development of the theory, physical observables are known only
in some special cases.

In order to be more specific, let us give a brief account of these steps by introducing the so-called
spin-networks representation.

In order to be as clear as possible, let us start by defining an abstract graph,Γ, which is intended
as a collection of pathsγ ∈ Σ meeting at most at their end-points. Given a graphΓ, we denote by
1,2, · · · ,N its edgesγ , i.e. Γ =

⋃N
k=1 γk. We call cylindrical functions of generalized connectionsa

functional of the holonomies valued on the edges of the graphto complex numbers,

F : SU(2)N → C , (6.21)

75



Introduction to Loop Quantum Gravity Simone Mercuri

defined as
ψΓ,F [A ] = F

(
hγ1 [A ] , · · · ,hγN [A ]

)
. (6.22)

As a simple example, consider a closed loopγ and the functional

Wγ [A ] = ψγ ,tr [A ] = tr
{

hγ [A ]
}
, (6.23)

this is often referred as Wilson loop and belongs to the spaceof cylindrical functions, i.e.Wγ [A ] ∈
CylΓ.

Let us now denote asF the linear space of all functionalsψΓ, f [A] for all Γ and f . The space
F can be equipped with a scalar product through the following procedure. Define a new stateµAL

as
µAL (ψΓ,F) =

∫
∏
γ⊂Γ

dhγ F
(
hγ1, . . . ,hγN

)
, (6.24)

wheredhe is the normalized Haar measure ofSU(2). The stateµAL(ψΓ,F) is normalized, i.e.,
µAL (1) = 1, because the Haar measure is normalized, and positive, i.e.

µAL
(
ψΓ,F ψΓ,F

)
=

∫
∏
γ⊂Γ

dhγF∗ (hγ1, . . . ,hγN

)
F
(
hγ1, . . . ,hγN

)
≥ 0. (6.25)

As a consequence, a scalar product onF can be defined as

〈
ψΓ,F |ψΓ′,F ′

〉
= µAL

(
ψΓ,F ψΓ′,F ′

)
=

∫
∏

e⊂Γ∪Γ′
dheF

∗ (he1, . . . ,heN)F ′ (he1, . . . ,heN) . (6.26)

UsuallyµAL is called Ashtekar-Lewandowski measure. The above scalar product gives to the kine-
matical state space the structure of an auxiliary Hilbert space. Furthermore, the kinematical scalar
product is invariant under the automorphisms of the local bundle and 3-diffeomorphisms, so that
the kinematical state space carries aunitary representation of localSU(2) and 3-diffeomorphisms.

At this point, the states of the theory, represented by the functionalsψΓ,F ∈ F , have to be re-
stricted by imposing the constraints. In particular, by imposing the Gauss and vectorial constraints,
the state of the theory will be invariant under the localSU(2) symmetry, correlated with the (double
cover of the) group of spatial rotations, and under the 3-diffs. But, in order to rigorously implement
in the quantum theory the following formal equations

ĜiψΓ,F [A ] = 0, (6.27a)

ĈαψΓ,F [A ] = 0, (6.27b)

it is necessary to find a quantum operator representation of the classical elementary variables.
In this respect, the introduction of a suitable basis for thekinematical states space is particularly
useful. Without entering in the details, we can just use the result of the Peter–Weyl theorem, stating
that a basis on the Hilbert space ofL2 functions onSU(2) is given by the matrix elements of the
irreducible representations of the group. We indicate the matrix elements in thej-representation as
R( j)m

n, wherem,n, . . . denote the matrix elements of the specific representation. Therefore, a basis
for each graphΓ is simply obtained by “tensoring” the basis above, i.e.

ψΓ,F [A ] = ∑
j1··· jN

f m1···mN,n1···nN
j1··· jN R( j1)

m1n1

(
hγ1 [A ]

)
· · ·R( jN)

mNnN

(
hγN [A ]

)
. (6.28)
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The symbol j labels the irreducible representation ofSU(2), which can be characterized by half-
integer spins, pictorially associated to each edge of the graphΓ. The coefficients of the expansion
f j1··· jN are restricted by the gauge invariance. We can easily construct a simple example for one of
the elements of the sum above by considering a graphΓ made up of three edgesγ1,γ2,γ3, to which
we respectively associate the representations 1, 1

2,
1
2 of the groupSU(2), then we have:

ψ(γ1∪γ2∪γ3)[A ] = R(1) (hγ1 [A ]
)i j

R(1/2) (hγ2 [A ]
)

ABR(1/2) (hγ3 [A ]
)

CD σAC
i σBD

j , (6.29)

wherei, j = 1,2,3 are vector indexes, whileA,B,C,D = 1,2 are spinor indexes, andσAC
i are the

2× 2 Pauli matrices. It is easy to check that the expression above is gauge invariant, in fact, the
Pauli matrices are invariant tensors in the tensor product representation 1⊗1/2⊗1/2 acting on the
nodes of the graphΓ = γ1∪ γ2∪ γ3. Generally, we can write a gauge invariant state function as

ψΓ[A ] =

(
⊗

l

R( jl ) (hel [A ])

)
·
(
⊗

n

in

)
,

where the invariant tensorsin assigned on the nodes of the graph are called intertwiners between
the representationsj1, · · · , jN associated to the edges joining in a node. The graphΓ, the labels
jk “coloring” the links, and the intertwinersin “coloring” the nodes completely define a state; in
particular, a state defined by the triplet(Γ, jk, in) is calledspin-network.

Now, in order to physically characterize the states of the theory, represented by spin-networks,
we construct some geometrical operators acting on them, defining their action on the single holon-
omy (the action on the complete state can be extracted by composition). The first operator we
wish to define is the momentum operator. It is easily correlated to the triad, which has a precise
geometrical interpretation as stressed above. The momentum Pα

i naturally acts on the holonomies
as a functional derivative, i.e.

P̂[S, f ] =
h̄
i

∫

S

dsβ dsγ εαβγ f k δ
δA k

α
, (6.30)

where we introduced the Planck constanth̄ (it is worth recalling that we set 8πG = 1 andc = 1
from the very beginning). To compute the result of the actionof the momentum operator on the
holonomy, let us firstly note that

δ
δA i

α(y)
hγ [A ] =

∫
dsδ (x(s),y)

dxα

ds
hγ1 [A ]τihγ2 [A ] , (6.31)

namely, the action of the functional derivative “cuts” the link γ at the pointy where the derivative
operator acts, inserting anSU(2) generators in the middle of the holonomies valued on the two
resulting pieces of the original holonomy. Given that, we easily get

P̂[S, f ]hγ [A ] =
h̄
i

∫
ds1ds2ds3εαβγ

dxα

ds1

dxβ

ds2

dxγ

ds3 δ
(
x(s3),y(s1,s2)

)
f ihγ1 [A ]τihγ2 [A ] . (6.32)

Notice that the integration is made in 3-dimensions so that the δ distribution can be safely in-
tegrated, moreover its presence ensures that the above integral vanishes if the linkγ does not
intersect the surfaceS. The points of intersection between links and surfaces are usually called
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punctures. By using the scalar product defined before, one can show that, in fact, the triad operator
is self-adjoint.

After having established the action of the triad operator onthe holonomy, we can now define
an interesting quantum operator, namely the area operatorÂ. Let me initially refer to a single
holonomy in the fundamental representation. Neglecting some (very important) subtleties, we
have that:

P̂i [S] P̂
i [S]hγ [A ] =−h̄2hγ1 [A ]τ iτihγ2 [A ] =

3
4

h̄2hγ [A ] .

Considering a general irreducible representation ofSU(2), the action of the square of the momen-
tum operator on the holonomy turns out to be

P̂i [S] P̂
i [S]R( j) (hγ [A ]

)
=−h̄2 j ( j +1)R( j) (hγ [A ]

)
,

where we assumed that the surfaceS is punctured only once. For a generic surfaceS in space
the situation is slightly more complicated and can be reduced to the previous simple case by the
following procedure. Divide the surfaceS in N cells and consider the full area as a limit,AS =

limN→∞ AN
S , where

AN
S = β 2

N

∑
I=1

√
|Pi(SI )Pi(SI )| , (6.33)

Pi(SI ) being the flux through theI -th cell. The factorβ stems from the definition of the classical
momentum,Pα

i = (β)Eα
i = Eα

i /β , remembering that the area operator has to be defined with the
geometrical triadEα

i . So that, the quantum area operator then simply becomesÂS= limN→∞ ÂN
S .

Considering the result obtained above, the area operator turns out to be diagonal in the basis
of spin-networks and reintroducing the physical constant,its spectrum is given by

ÂS|ψ〉= βℓ2
Pl∑

p

√
jp( jp+1) |ψ〉 , (6.34)

whereℓPl is the Planck length. Notice that the cellular decomposition is made in such a way that,
in the limit N → ∞, each cell is punctured at most in a single point.

An analog procedure allows to define the kinematic volume operatorV̂. The classical volume
of a region,R, of space can be written as

V(R) =

∫

R

d3x

√
1
3!

∣∣∣εαβγε i jkEα
i Eβ

j Eγ
k

∣∣∣ , (6.35)

which corresponds to a complicated quantum operator. In particular, to calculate the spectrum
of the volume operator, a cellular decomposition analog to that performed in the case of the area
operator results to be very useful. Specifically, the volumeoperator

V̂ = lim
N→∞

β 3/2ℓ3
Pl

∫

R

d3x

√
1
3!

∣∣∣εαβγε i jkP̂α
i P̂β

j P̂γ
k

∣∣∣ , (6.36)

can be evaluated and its spectrum results to be discrete depending on the quantum numbers coloring
the nodes of the graph. It is worth noting that the Gauss constraint obliges the flux operator at a
node to vanish, so that the volume of a three-valent node vanishes as well.

78



Introduction to Loop Quantum Gravity Simone Mercuri

The fact that the quanta of area depend on the quantum numbersassociated with the links
or edges of the graph, while the quanta of volume depend on thequantum numbers of the nodes,
suggests a natural physical interpretation of a graph. Specifically, any node of a graph represent
a chunk of volume of the quantum space-time, while links describe the quantum properties of the
surfaces between two volumes. This means that quantum space-time at a kinematical level is made
up of quanta of volume separated by quanta of area.

It remains to describe how the canonical constraints can be implemented on the quantum
states of the theory. This argument deserves to be carefullyanalyzed and is far from the scopes
of this paper. Nevertheless, it is important to say that the Gauss and vectorial constraints can be
implemented and solved at the present stage of the development of the theory. They, in fact, have a
pretty natural action on spin-networks, but serious difficulties appear as soon as the scalar constraint
is regarded. Here I want to digress on the general procedure used to deal with such a problem.

As we said before, the spaceF can be equipped with the structure of an auxiliary Hilbert
space by defining a normalized positive defined kinematical scalar product. Our final purpose is to
define a physical scalar product, namely between states which satisfy the constraints. In order to
give a general brief description of the problem, let us referto a general constraint̂C and define the
following projection operator

S
Ĉ
=

∫
δNei

∫
d3xNĈ . (6.37)

This operator allows to formally define a physical inner product (for details and rigorous procedures
see [1]). The idea is thatS

Ĉ
is formally equivalent to a delta function of the constraintoperatorĈ ,

so it can select the states of the theory that satisfy the constraint, i.e.
(〈

ψΓ,F |ψΓ′,F ′
〉)

Phys=
〈

ψΓ,F |δ
(
Ĉ

)
|ψΓ′,F ′

〉
. (6.38)

So, formally, the physical inner product corresponds to thefollowing expression

〈
ψΓ,F |SĈ

|ψΓ′,F ′
〉
=

〈
ψΓ,F

∣∣∣∣
∫

δNei
∫

d3xNĈ

∣∣∣∣ψΓ′,F ′

〉
=
(〈

ψΓ,F |ψΓ′,F ′
〉)

Phys. (6.39)

which can be made rigorous through the group averaging procedure.
Concluding, we stress that an important result obtained in the framework of LQG is the dis-

creteness of the eigenvalues of geometric operators. But, simultaneously, this fact introduces an
interesting issue. In fact, in the classical theory, to associate a precise physical meaning to geomet-
rical quantities as the area and volume of a region of space-time, one has to define the surfaces and
regions operationally, e.g., by using matter fields. Once this is done, one can simply calculate val-
ues of these observables using the geometrical formulas. Ananalogous situation characterizes the
quantum theory. For instance, the area of the isolated horizon is a Dirac observable in the classical
theory and the application of the quantum geometry area formula to this surface leads to physical
results [1]. In this situation, the operators and their eigenvalues correspond to the proper lengths,
areas an volumes of physical relevant objects.

Finally, answering to a question asked more than once duringthe School, it is important to
emphasize that no tension exists between the discreteness of the eigenvalues of geometrical opera-
tors and Lorentz invariance. A simple example from quantum mechanics should clarify this point.
Consider, e.g., the angular momentum operator in ordinary quantum mechanics, its eigenvalues are
discrete and this is perfectly compatible with the rotational invariance of the theory.
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A. Differential forms

In this appendix, we have collected the main definitions and formulas useful to deal with dif-
ferential forms. This language has become pretty common in the recent Literature and sometimes
confuses students used to the index notation. We should say that in a theory like GR, where the
coordinates do not have any physical meaning, differentialforms represent the most natural math-
ematical formalism, even though, in some problems, the index notation is preferable. So, often one
has the necessity to switch from one formalism to the other, going from forms to indexes and vice
versa. This has induced me to collect some formulas in few pages, with the hope they will be useful
to the readers as they has been for me.

As a disclaimer, I stress that many different notations are used in the Literature, anyone valid
and motivated by precise choices. The definitions and formulas below are in accordance with
a notation commonly used in Physics and refers to an arbitrary number of dimensions (unless
differently specified) and to any signature of then-dimensional manifold.

Let M be ann-dimensional manifold with signatures.37 Denote the

(
n
p

)
-dimensional space

of p-forms on the cotangent bundle asΛp(T∗Mn). Let ea = ea
µdxµ be a 1-form transforming under

the vectorial representation of the local symmetry groupSO(n− s,s). The canonical basis for
Λp(T∗Mn) is naturally induced by the local basisea, through the wedge product. Specifically, a
basis forp-forms inn dimensions is given by the collection of all the possible linearly independent
p-forms which can be formed by wedging then vectorsea. For example, the natural basis for

3-forms in four dimensions is made up of the

(
4
3

)
3-forms given below:

e012= e0∧e1∧e2 , e013= e0∧e1∧e3 , e023= e0∧e2∧e3 , e123= e1∧e2∧e3 . (A.1)

Any p-form η ∈ Λp
∗(TMn) can be expanded on the canonical basis according to the following

definition

η =
1
p!

η[a1···ap]e
a1 ∧ ·· ·∧eap , (A.2)

where the square brackets denote anti-symmetrization. Ann-form can be naturally integrated on the
n-dimensional manifoldM, by considering that it contains the natural volume elementaccording
to the following definition

ea1 ∧ ·· ·∧ean = e a1
[µ1

· · ·e an
µn]

dxµ1 ∧ ·· ·∧dxµn = (−1)sεa1···andV , (A.3)

wheredV =
√

|g|dx1 · · ·dxn denotes the volume element andεa1...an the totally antisymmetric sym-
bol, with the condition thatεa1...an = 1 for ai < ai+1.

We introduce now the internal or scalar product between differential p-forms and vectorsv
defined on the tangent bundleTM. Let ω ∈ Λp(T∗Mn) andv = vaẽa ∈ TM, where the vector
fields ẽa = eµ

a∂µ are a local basis onTM. By definition we haveea
y ẽb = δ a

b . The following
prescription allows to evaluate any differential form in particular directions represented by vector

37Namely,s corresponds to the number of minus signs in the metric.
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fields, obtaining a(p−1)-form, according to the following prescription:

ω(v) =
1
p!

ωa1···apv
b [ea1 ∧ ·· ·∧eap]yeb

=
1
p!

p

∑
i=1

(−1)p−iδ ai
b ωa1···ai ···apv

bea1 ∧ ·· ·∧eai−1 ∧eai+1 ∧ ·· ·∧eap

=
1

(p−1)!
(−1)p−1ωba1···ap−1v

bea1 ∧ ·· ·∧eap−1 , (A.4)

where in the last line we moved the index saturated with the components of the vectorv on the left
by using the antisymmetry of the indexes ofω and renamed the others. By using the above formula
we can extract the components of ap-form by evaluating it onp vectors of the local basis, i.e.

η(ea1, · · · ,eap) = (−1)
p
2 (p+1)η[a1···ap] , ∀η ∈ Λp(T∗Mn) , (A.5)

namely, the p-formη is a smooth map that at any pointx∈ M associates an antisymmetric tensor
of type(0, p).

Let us now introduce the exterior or wedge product “∧ ” between two generic differential
forms. The wedge product is a map∧ : Λp(T∗Mn)×Λq(T∗Mn)→Λp+q(T∗Mn) (p+q≤ n) defined
as

ω ∧η =
1

p!q!
ω[a1···ap]η[b1···bq]e

a1 ∧eap ∧eb1 ∧ebq

=
1

(p+q)!

(
(p+q)!

p!q!
ω[a1···ap

ηap+1···ap+q]

)
ea1 ∧eap ∧eap+1 ∧eap+q , (A.6)

so that the components of the resulting(p+q)-form are

ω ∧η(ea1, · · · ,eap+q) =
(p+q)!

p!q!
ω[a1···ap

ηap+1···ap+q] . (A.7)

Another useful operator we want to introduce is the so-called Hodge dual, usually denoted by the
symbol “⋆ ”. The Hodge dual is a map⋆ : Λp(T∗Mn)→ Λn−p(T∗Mn), acting on the canonical basis
according to the following prescription

⋆ (ea1 ∧ ·· ·∧eap) =
1

(n− p)!
ε a1···ap

ap+1···an eap+1 ∧ ·· ·∧ean

=
1

(n− p)!
(−1)p(n−p)εa1···ap

ap+1···ane
ap+1 ∧ ·· ·∧ean . (A.8)

Notice that the above definition slightly differs from the standard one, but it results particularly
convenient for a reason that will be clear soon. In fact, an interesting consequence of the definition
above is that the wedge product of ap-form with its Hodge dual generates the volume element
according to the following formula:

⋆ (ea1 ∧ ·· ·∧eap)∧
(
eb1 ∧ ·· ·∧ebp

)
= p!δ a1···ap

[b1···bp]
dV (A.9)

wheredV is the natural volume element on then-dimensional manifold defined above. It is worth
noting that no dependence on the signature or dimensions appear in the formula above, so that it
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will be particularly convenient to rewrite actions in termsof differential forms. Notice, also, that
operating twice with the Hodge dual one obtains the initial form apart for a possible sign factor, i.e.

⋆ ⋆ (ea1 ∧ ·· ·∧eap) = (−1)s+p(n−p)ea1 ∧ ·· ·∧eap . (A.10)

By using the definitions (A.2) and (A.8), we can easily extract the expression of the dual of a
genericp-form. Specifically,

⋆ω =
1
p!

ωa1···ap⋆(e
a1 ∧ ·· ·∧eap)=

1
(n− p)!

(
1
p!
(−1)p(n−p)ωa1···apεa1···ap

ap+1···an

)
eap+1∧·· ·∧ean .

(A.11)
In other words, the dual of a genericp-form is the(n− p)-form of components

⋆ω(ea1, · · ·ean−p) =
1
p!
(−1)p(n−p)ωa1···apεa1···ap

ap+1···an (A.12)

So letω andη ∈ Λp
∗(TMn) be twop-form, we have by the formula above that:

⋆ω ∧η =
1
p!

ωa1···apηa1···apdV . (A.13)

Hence, apart for the factor 1/p!, the wedge product in (A.13) corresponds to the scalar product
between the components of the twop-forms multiplied by the natural volume element. This can be
rewritten as:

⋆ω ∧η =
1
p!

(
ω(ea1, · · · ,eap),η(ea1, · · · ,eap)

)
dV , (A.14)

where the symbol(. . . , . . . ) denotes the internal product. We remark that wedging thep-form with
the canonical basis the factorial ofp disappears.

The exterior derivative operatord is a map fromΛp(T∗Mn) to Λp+1(T∗Mn) defined as

Λp+1(T∗Mn) ∋ η = dω =
1

(p+1)!

(
(p+1)∂[bωa1···ap]

)
eb∧ea1 ∧ ·· ·∧eap , ω ∈ Λp(T∗Mn) ,

(A.15)
where, as usual, we contained in parentheses the componentsof the resulting(p+ 1)-form. By
the definition given above we can immediately extract an important property of the exterior deriva-
tives, i.e.d◦d = 0, namely the composition of two derivative operators is thevanishing operator.
Moreover, assuming thatω ∈ Λp

∗(TMn) andη ∈ Λq
∗(TMn), it is very easy to show the following

formula
d(ω ∧η) = (dω)∧η +(−1)pω ∧dη . (A.16)

In general, the presence of a local symmetry requires the definition of a covariant derivative. In
this framework a localSO(s,n−s) symmetry is present, therefore we have to define a new exterior
derivative operator acting onSO(s,n−s) valuedp-forms which generatesSO(s,n−s) valued(p+
1)-forms. Namely, by using the language introduced in § 3.2.1,the derivative operator has to
transform in the adjoint representation of the local symmetry group. In this respect, let us introduce
a SO(s,n−s) valued connection 1-formωab and define the new derivative operatord(ω) as

d(ω) · · ·= d · · ·+ω ∧ ·· · . (A.17)
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We claim that the above derivative operator has exactly the property required, as can be easily
demonstrated. In order to operatively define the covariant derivative operator, we firstly specify its
action on the basis 1-formea, we have

d(ω)ea = dea+ωa
b∧eb , (A.18)

which, as can be easily recognized, is the definition of the torsion 2-formTa. Specifically,

Ta := d(ω)ea = dea+ωa
b∧eb . (A.19)

So, in the presence of torsion the covariant exterior derivative operator fails in annihilating the basis
element. Sometimes, the equationd(ω)ea = Ta is referred as second Cartan structure equation. It
is worth noting that the composition of two covariant exterior derivative does not trivially vanish,
rather we have

d(ω) ◦d(ω)ea = Ra
b∧eb , (A.20)

which allows to extract the following expression for the curvature 2-form

Rab = dωab+ωa
c∧ωcb, (A.21)

known as first Cartan structure equation. It is worth remarking that if

Rab = 0 =⇒ ωa
b =

(
Λ−1)a

cdΛc
b , (A.22)

namely the connection is a pure gauge,Λab = −Λba being a representation of the local symmetry
group. Then, one can demonstrate that by assuming

Rab = 0 =⇒ dea = 0 iff Ta = 0, (A.23)

which implies thatea = dxa, wherexa are functions of the original set of coordinates. Moreover,
we haveea

µ = ∂µxa, so that the components of the local basis simply represent the soldering forms
in flat space between two local arbitrary accelerated reference frames, with the origin placed at the
same point of the tangent bundle.

Two useful identities can be easily derived from the above definitions, i.e.

d(ω)Ra
b = 0, (A.24a)

d(ω)Ta
b = Ra

b∧eb , (A.24b)

respectively known as first and second Bianchi identity.

We refer now to a specific case: we assume thatn = 4 ands= 1, which means that we
are referring to a 4-dimensional pseudo-Riemannian manifold M4, which is locally isomorphic to
Minkowski space-time with signature(−,+,+,+), so the local symmetry group isSO(3,1). In
this framework the Hilbert-Palatini action for General Relativity can be rewritten as

S(e,ω) =
1
2

∫
ea∧eb∧⋆Rab. (A.25)
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Remembering definition (A.2) and formula (A.9) we can easilywrite:

S(e,ω) =
1
2

∫
ea∧eb∧⋆Rab =

1
2

∫
1
2

Rab
cdea∧eb∧⋆

(
ec∧ed

)
=

1
2

∫
d4xdet(e)R(ω) , (A.26)

where we useddV = det(e)d4x.
An analog procedure allows to rewrite also the Dirac action in the formalism of differential

forms. But before doing that, we need to define the action of the exterior covariant derivative on a
spinor field, which is a 0-form transforming under the spinorrepresentation of theSO(3,1) local
group. We do not enter in the details about the construction of the spinor bundle, we only say
that the exterior covariant derivative operator acts on thespinor fieldsψ andψ according to the
following rules

Dψ = dψ − i
4

ωabΣabψ , (A.27a)

Dψ = dψ +
i
4

ψΣabωab, (A.27b)

where
Σab =

i
2

[
γa,γb

]
(A.28)

are the generators of the Lorentz group. Now we claim that theDirac action can be written as

S(ψ ,ψ) =
i
2

∫
⋆ea

[
ψγaDψ −Dψγaψ +

i
2

meaψψ
]
. (A.29)

Remembering that, according to our notation,⋆ea∧eb = δ b
a dV, the demonstration follows imme-

diately.
As a final remark, we recall that particular care has to be usedin rewriting the physical actions

in other possible signatures. For example, many books on quantum field theory use the signature
(+,−,−,−), which is preferred by particle physicists. The change of signature can change the sign
in front the action according to the change occurring in the equations of motion. As an example try
to write the action of a scalar field in both signatures and note a difference in the sign in front of
the kinetic term.

B. Large gauge transformations in Yang-Mills gauge theories

Let theSU(N) valued connectionAα =∑I AI
αλ I and its associated electric fieldEγ =∑K Eγ

Kλ K

(whereI ,J,K, · · · are internal indexes running on 1,2, · · · ,N2−1) be a couple of conjugate variables
in the framework of a canonical formulation of Yang-Mills gauge theories (see § 3.3). The evolution
of the system is limited to a restricted region of the phase space by the first class Gauss constraint,
expressed by the following weak equation:

GI := DαEα
I = ∂αEα

I + f K
IJ AJ

αEα
K ≈ 0. (B.1)

According to the Dirac quantization procedure [50, 79], thestate functional describing the quantum
physical system must satisfy the Gauss constraint (B.1), namely we have to require that

ĜI Φ(A) =−iDα
δ

δAI
α

Φ(A) = 0, (B.2)
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where the usual quantum representation of the operators hasbeen assumed.

The Gauss constraint in Eq.(B.1) formalizes the request of gauge invariance of the quantum
state describing the physical system, namely it is equivalent to requiring that the state functional
be invariant under the small component of the gauge groupG= SU(N), as can be easily realized.
Since the global structure of the gauge group is non-trivial, in view of quantization, it is particularly
interesting to study the behavior of the state functional under the large gauge transformations. A
non-trivial global structure of the gauge group, in fact, can produce striking effects in the non-
perturbative theory, as, e.g.,P andCPviolations, physically motivating this extension of the theory.

In this respect, letĜ be the generator of the large gauge transformations, actingon the state
functionalΦ(A). Considering that the Hamiltonian operator,̂H , is invariant under the full gauge
group (or, more formally, it commutes with the operatorĜ ), we can construct a set of eigenstates
for the quantum theory by diagonalizing simultaneouslŷH andĜ . In other words, the following
equation

Ĝ Φw(A) = Φw(A
g) = eiθwΦw(A) , where Ag = gAg−1+gdg−1 , (B.3)

is a super-selection rule for the states of the theory, whichare now labeled by thewinding number
w= w(g), according to their behavior under the action of the large gauge transformation operator.
The constantθ introduced in Eq. (B.3) is an angular parameter, which indicates how much the
state functional “rotates” under the action of the large gauge transformations operator. Specifically,
it represents a quantization ambiguity connected with the non-trivial global structure of the gauge
group.

Eq.(B.3) implies that the wave functionals either have to satisfy suitableθ -dependent boundary
conditions passing from one “slab” to the next in the configuration space; or, a fully gauge invariant
state functional can be constructed, transferring theθ dependence in the momentum operator. In
this respect, we recall that the so-calledChern-Simons functional,

Y (A) =
1

8π2

∫
tr

(
F ∧A− 1

3
A∧A∧A

)
, (B.4)

is characterized by the following remarkable property:

Y (Ag) = Y (A)+w(g) . (B.5)

In other words, the Chern–Simons functional under a large gauge transformations turns out to be
modified by a quantity exactly corresponding to the winding number, expressed by the Maurer–
Cartan integral

w(g) =
1

24π2

∫
tr(g−1dg)∧ (g−1dg)∧ (g−1dg) . (B.6)

This directly implies that the new state functional,

Φ′(A) = e−iθY (A)Φw(A) , (B.7)

will be invariant under the full gauge group, as can be easilydemonstrated. In other words we have

Ĝ Φ′(A) = Φ′(A) . (B.8)
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So, by using the rescaling (B.7), we have obtained a new fullygauge invariant quantum state
functional, at the price of modifying the momentum operator, namely, theθ -dependence has been
transferred from the boundary conditions to the momentum operator, which becomes:

E′αΦ′(A) = e−iθY (A)EαeiθY (A)Φ′(A) =−i

[
δ

δAα
− iθ

8π2 εαβγFβγ

]
Φ′(A) . (B.9)

The above modification in the conjugate momentum reflects on the Hamiltonian operator, i.e.

H ′ =
∫

d3xtr

[
1
2

(
Eα − θ

8π2 εαβγFβγ

)(
Eα − θ

8π2 ε βγ
α Fβγ

)
+

1
4

Fαβ Fαβ
]
, (B.10)

generating a pseudo-vectorial term which prevents the new HamiltonianH ′ from being invariant
under the CP discrete symmetry.

The new Hamiltonian corresponds to a topological modification of the classical action, con-
sisting in the presence of an additional term belonging to the Pontryagin class, i.e.

Snew(A) =−1
4

∫
tr⋆F ∧F +

θ
8π2

∫
trF ∧F . (B.11)

Theθ parameter appears as a multiplicative constant in front of the modification. It is worth men-
tioning that the new term does not affect the classical equations of motion, as we have already
noticed in § 3.2.1, but modifies the vacuum to vacuum amplitude in the path-integral formulation
of the quantum theory. In other words, it allows to take into account possible tunneling phenom-
ena between distinct vacua characterized by different winding numbers, violating the CP discrete
symmetry.
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