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Abstract

A model is proposed to demonstrate that classical general relativity can emerge

from loop quantum gravity, in a relational description of gravitational field in terms of

coordinates given by matter. Local Dirac observables and coherent states are defined

to explore physical content of the model. Expectation values of commutators between

the observables for the coherent states recover the four-dimensional diffeomorphism

algebra and the large-scale dynamics of the gravitational field relative to the matter

coordinates. Both results conform with general relativity up to calculable corrections

near singularities.
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1 Introduction

Loop quantum gravity [4][5][6] is a candidate quantum theory of gravity. The theory strives

to construct the deep quantum structure of spacetime, while holding on to background inde-

pendence that is the heart of general relativity. Following the approach of Dirac quantization

in the Arnowitt-Deser-Misner (ADM) formalism [4][5][6], the theory’s kinematical Hilbert

space, called knot space, is rigorously constructed and is shown to be almost unique. Knot

space describes spatial geometry in terms of quanta of areas and volumes, realizing the idea

that the geometry of space should be discrete with Planck-sized units.

Because of its novelty, the theory also faces new challenges [4][5][6]: based on the Planck-

scale discrete structure of the knot states, the recovery of the observed smooth geometry has

been a major issue for the theory; further, the background independence demands one to

solve the Hamiltonian constraint upon knot space to obtain a physical Hilbert space, and

also to construct diffeomorphism-invariant local Dirac observables. The difficulty in these

tasks makes the semi-classical limit of the theory hard to obtain, and thus it is unknown

whether loop quantum gravity describes the gravitational field at observed scales. However,

the tasks are completed in a symmetrically reduced setting in loop quantum cosmology

[31][30][28][29], minisuperspace models that carry the main features of loop quantum gravity.

Moreover, it has been shown that loop quantum cosmology has correct semi-classical limits,

with meaningful corrections in the regions where the classical theory breaks down [31][30].

Therefore, loop quantum cosmology provides a valuable guidance for the full theory.

Following this guidance, the model proposed in this thesis explores the semi-classical

limit of loop quantum gravity. The model shows that the above tasks can be accomplished

with a few explicitly specified assumptions. Further, the obtained semi-classical limit is

also shown to reproduce general relativity. The system considered by the model contains

both gravitational and matter fields, and both sectors are treated with the standard loop

quantization procedure to obtain the kinematical Hilbert space for the system. To go beyond

the kinematical level, three explicit assumptions are made: 1) that a modified Hamiltonian

constraint operator is valid; 2) that group averaging method solves the modified Hamiltonian
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constraint and gives the physical Hilbert space for the model; 3) that the matter back-

reactions on the gravitational dynamics can be ignored in this context.

The matter fields, with their negligible back reactions, provide internal spacetime coor-

dinates for the local observables in the model. Using matter coordinates to describe local

dynamics is a long existing idea in general relativity [19][18][17], the implementation of which

in the quantum theory leads to the local quantum observables [15][16][18][17]. The inter-

nal coordinates are provided by composite matter fields, and are also quantized. Since the

coordinate fields are part of the fully coupled system, the observables are thus defined in a

background independent manner and are diffeomorphism invariant.

Subsequently, the appropriate coherent states in the model are defined to minimize the

uncertainty of the gravitational local observables. The large scale physics is then obtained by

explicit calculations based on the observables and the coherent states. First of all, the matter

coordinates provide a natural correspondence between the expectation values of the observ-

ables and a classical emergent gravitational fields. In terms of the emergent gravitational

field, the quantum constraint algebra of the model reproduces the classical diffeomorphism

algebra up to quantum corrections. Further, the emergent gravitational field satisfies clas-

sical constraint equations up to quantum corrections. Moreover, the clock time derivatives

of the emergent fields are shown to be given by the temporal translations generated by the

quantum algebra. Finally, the equations of motion recover the classical gravitational dy-

namics of general relativity up to quantum corrections. All of the correction terms for the

semi-classical limits are small in large scales and nonsingular regions of spacetime. Therefore,

the model’s semi-classical limit reproduces general relativity, up to significant and calculable

corrections where the classical theory breaks down.

2 Loop Quantum Gravity

In the first part of the thesis, I briefly introduce the basics of the loop quantum gravity, and

describe how it couples to the matter fields. The purpose is mainly to explain the kinematics
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of the theory, which captures quantum geometry of space background independently, and

provides a foundation for the dynamics.

2.1 Classical Hamiltonian Formalism

Loop quantum gravity is the result of quantizing general relativity in a special Hamiltonian

formulation, which uses triad and connection fields to describe gravity [1][2][3].

The most common form of Hamiltonian general relativity uses metric and extrinsic

curvature of space as phase space variables [1][2][3]. Instead of using the spatial metric

qab(x), we can introduce triad fields {eai (x)}(x ≡ (x, y, z); a = x, y, z; i = 1, 2, 3) consisting

of three vector fields that are orthonormal according to the metric. In this correspon-

dence, each set of triad fields specifies a spatial metric by qab(x) = δije
i
a(x)ejb(x) uniquely

(eia(x)eaj (x) = δij). On the other hand, setting U i
j(x) to be a local SO(3) transformation,

eai (x) and e′ai (x) = U j
i (x)eaj (x) would determine the same qab(x). Thus the use of the triad

fields in place of the metric introduces an additional local SO(3) symmetry.

The triad fields also serve as a spatial frame in space, such that we can write every spatial

tensor using the triad fields as the basis. For instance, a vector field will be written as V i(x).

In this frame, the spatial Levi-Civita connection will be written in the form:

Γia(x) = −1

2
εijke

b
j

(
∂[ae

k
b] + δklδmse

c
l e
m
a ∂be

s
c

)
(x)

Moreover, the canonical conjugate momenta of eai (x) is the spatial extrinsic curvature field

Ki
a(x), whose explicit form is given by:

Ki
a(x) ≡ δijKabe

b
j(x) ; Kab(x) ≡ Lnqab(x)

where Ln denotes the Lie derivative with respect to the unit normal field n perpendicular

to the spatial slices (according to the spacetime metric). There’s no surprise that general

relativity can be written in terms of the triad fields serving as an alternative basis. However,
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this new point of view leads to the discovery of Ashtekar formalism [2][3], which reveals the

striking similarities between general relativity and Yang-Mills gauge theory.

The fundamental variables in Ashtekar formalism are related to the triad and spatial

extrinsic curvature fields, through a canonical transformation

Ea
i (x) ≡ det(e)eai (x)

Aia(x) ≡ Γia(x) + γKi
a(x)

(2.1)

where the real number γ is called Immirzi parameter, and classically different values for

the parameter correspond to different canonical transformations in (2.1). By construction,

the fields Ea
i (x) are densitized triad fields, and the field Aia(x) are SO(3) gauge fields. The

variables also satisfy the simple Poisson algebra, with the only non-vanishing bracket

{Aia(x), Eb
j (y)} = 8π(G/c3)γδbaδ

i
jδ(x, y) (2.2)

where G is the Newton’s constant. Using (2.2), the Hamiltonian general relativity can be

reformulated in terms of the new canonnical conjugate variables Aia(x) and Ea
i (x). Details

of the reformulation can be found in chapter 2 of [6] and chapter 3 of [12]. The resulting

theory has the Hamiltonian

Hg(N̄ , Λ̄, V̄ ) = Hg(N̄) +Gg(Λ̄) +Mg(V̄ ) (2.3)

where each of the three terms comes from smearing a constraint functional with an arbitrary

Lagrangian multiplier (with the bars to emphasize the non-dynamical nature) over the spatial
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manifold M

Hg(N̄) ≡
∫
M

d3xN̄(x)Hg(x) ≡
∫
M

d3xN̄(x)
Ea
i E

b
j√

detE

[
εijkF

k
ab + 2(1− γ2)Ki

[aK
j
b]

]
(x)

Gg(Λ̄) ≡
∫
M

d3xΛ̄i(x)Gg,i(x) ≡
∫
M

d3xΛ̄i
(
∂aE

a
i + εij

kAjaE
a
k

)
(x)

Mg(V̄ ) ≡
∫
M

d3xV̄ a(x)Mg,a(x) ≡
∫
M

d3xV̄ a(x)

(
Eb
iF

i
ab −

1− γ2

γ
Ki
aGg,i

)
(x)

(2.4)

where Ki
a is now considered a function of the canonical variables A and E, as determined

from (2.2) and (2.1). It is known that general relativity is a theory of pure constraints, and

in this formalism the solutions to the theory are given by the constraint equations

Hg(x) = Mg,a(x) = Gg,i(x) = 0 (2.5)

The smeared Hamiltonian constraint Hg(N̄), with any lapse function N̄(x), generates a dif-

feomorphism on the fields that satisfy the on-shell condition (2.5) in the directions perpen-

dicular to spatial slices. The smeared momentum constraint Mg(V̄ ), with any shift function

V̄ a(x), generates a spatial diffeomorphism. Together, the smeared Hamiltonian and mo-

mentum constraints generate spacetime diffeomorphisms. Additionally, the smeared Gauss

constraint Gg(Λ̄), with any Λ̄i, generates a local rotation of the triads. Clearly, the presence

of Gauss constraint is due to the additional local SO(3) symmetry introduced along with

the triad fields [5][4][6].

From here on, we replace the SO(3) symmetry group with SU(2) group, exploiting the

fact that SU(2) group is the universal covering of SO(3) group and thus has the same Lie

algebra. The constraints (2.4) and Poisson bracket (2.2) remain exactly the same under the

replacement, so the physical content of the theory is unchanged. Under such illumination,
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the similarities between general relativity and SU(2) Yang-Mills theory are revealed. The

two theories share the same preliminary phase space parameterized by the fields Ea
i (x) and

Aia(x), which represent (generalized) electric fields and magnetic potential fields in SU(2)

Yang-Mills theory. Further, they are both SU(2) symmetric and they share exactly the same

Gauss constraint. These similarities inspire the introduction of the loop representation from

gauge theories into quantum gravity, and result in significant parallelism of the two in their

quantization procedures. However, there is a major distinction between the theories that

causes drastic departures of their physical Hilbert spaces.

The difference lies in the background independence of general relativity. Treating space-

time as a dynamical entity instead of a fixed physical background, general relativity uniquely

possesses diffeomorphism symmetry. As a result, in contrast to the case of SU(2) Yang-Mills

theory, the value of an SU(2) invariant field at a spacetime coordinate point (x, t) is not an

observable, since it is not invariant under any diffeomorphism that moves the coordinate

point. Further, the Hamiltonian of the theory is composed of the constraints. That means

the evolution along a Hamiltonian flow is merely a gauge transformation, and any observable

must be constant along the flow. To incorporate these features, the central theme of the

quantization procedure toward loop quantum gravity is about achieving a quantum theory

that is devoid of any fixed physical background.

As a theory of pure symmetry, general relativity is governed by the algebra of diffeo-

morphism and local SU(2) group. Denote [Λ̄, Λ̄′] to be the SU(2) commutator, and set

[V̄ , V̄ ′]a ≡ V̄ b∂bV̄
′a − V̄ ′b∂bV̄

a. In terms of the generators Hg(N̄), Mg(V̄ ) and Gg(Λ̄) the



7

algebra is

{Gg(Λ̄), Gg(Λ̄
′)} = 8π(G/c3)γGg([Λ̄, Λ̄

′]); {Gg(Λ̄),Mg(V̄ )} = 8π(G/c3)γGg(LV̄ Λ̄)

{Mg(V̄ ),Mg(V̄
′)} = 8π(G/c3)γMg([V̄ , V̄

′])

{Gg(Λ̄), Hg(N̄)} = 0; {Mg(V̄ ), Hg(N̄)} = 8π(G/c3)γHg(LV̄ N̄)

{Hg(N̄), Hg(N̄
′)} = 8π(G/c3)γ

(
Mg(S̄) +Gg(S̄

aAa)
)

+
1− γ2

8π(G/c3)
γGg

(
[Ea∂aN̄ , E

b∂bN̄
′]

| detE|

)

(2.6)

where LV̄ denotes a Lie derivative and

S̄a = (N̄∂bN̄
′ − N̄ ′∂bN̄)

Eb
iE

ai

| detE| (2.7)

Note that instead of structure constants, the algebra has structure functionals depending on

the phase space variables.

2.2 Quantization in Loop Representation

Loop quantum gravity results from Dirac quantization of general relativity, in the Ashtekar

formalism based on loop variables [5][4][6]. Explicitly background independent, the theory

is non-perturbative, in contrast to the usual forms of particle theories. Originating in non-

perturbative quantization of Yang-Mills theory, the loop representation is introduced to

quantize gravitational fields in the theory. As a kinematical quantum space, knot space is

rigorously constructed to solve Gauss and momentum constraints. The knot states in the
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space describe spatial quantum geometry. The construction of the physical Hilbert space is

an ongoing project involving quantizing and solving Hamiltonian constraint in (dual) knot

space.

2.2.1 Cylindrical Functions

Based on the Ashtekar formalism given in the previous chapter, loop quantum gravity uses

the connection fields Aia(x) as configuration variables to construct quantum states. To employ

the loop representation we introduce a special basis, called cylindrical functions, for general

wave functionals of the connection fields [5][4][6].

Cylindrical functions are wave functionals that depend on the connection fields specifically

through holonomies. A holonomy is a group-valued functional of connection fields defined

with an oriented path ē ∈ M in the spatial manifold M . The bar indicates that ē is

embedded in M . Here, each holonomy will be SU(2) valued, and has an explicit spin j

matrix representation as

h(j)(ē)k̄l̄ [A] ≡ [P exp

∫
ē

dēbAib(x)τ
(j)
i ]k̄l̄ (2.8)

where k̄ denotes SU(2) indices in the spin j representation, and P denotes path ordering.

Under the transformations of the connection fields, a holonomy behaves simply under local

SU(2) transformations U k̄
l̄
(x):

h′
(j)

(ē)k̄l̄ = U k̄
ī (ē(1))h

(j)(ē)īj̄U
j̄

l̄
(ē(0)) ≡ Uh(j)(ē)k̄l̄ (2.9)

where ē(0) and ē(1) denote the beginning and end point of ē. Given a specific connection fields

Aib(x), a holonomy specifies the parallel transportation of a spinor across the path ē through

the linear map (2.8) . Moreover, if we consistently assign group values to all holonomies

along all paths in M , we uniquely specify a distributional connection field.1 Relying on this

1Every smooth connection field on M gives a consistent assignment to the values for all holonomies.
However, all possible consistent assignments of holonomy values, in general, correspond to non-smooth
connection fields that are distributional.
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fact, loop representation uses holonomies to build cylindrical functions for the basis.

Define a graph γ̄ in M to be a set {ēi} containing Ne oriented paths, called edges, meeting

at most at their end points. Again, the bars indicate that γ̄ is embedded in M . A cylindrical

function ψγ̄,f is specified by a graph γ̄ and a complex function f : SU(2)Ne → C. Also, each

cylindrical function is a wave functional of the connection fields through the relation

ψγ̄,f [A] ≡ f(h(ē1), h(ē2), h(ē3), ...., h(ēNe))[A] (2.10)

The vector space spanned by cylindrical functions is denoted by Cyl, and carries an (over)

complete representation of the wave functions. The space is endowed with inner products

given by

〈ψγ̄,f |ψ′γ̄′,f ′〉

≡
∫ ∏

ē∈γ̄
⋃
γ̄′

dh(ē)f
∗(h(ē1), h(ē2), h(ē3), ...., h(eNe))f

′(h(ē′1), h(ē′2), h(ē′3), ...., h(ē′N ′e))
(2.11)

where dh is the normalized Haar measure of SU(2). The space Cyl with its inner product

then serves as the primary space for the quantization to proceed.

Recall that general relativity is given by the three constraints (2.4). Following the Dirac

quantization approach, loop quantum gravity imposes the constraint equations (2.5) by

demanding the physical states to be annihilated by the quantized constraints. We denote S

the space obtained from imposing Gauss constraint on Cyl, and K the space obtained from

imposing momentum constraint on S. The currently unfinished step is the construction of

the physical Hilbert space H by imposing Hamiltonian constraint on K. In the following we

will briefly describe the well-established part of the procedure that successfully leads to S

and K.
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2.2.2 Space S of Spin Network States

The first constraint to be imposed is the Gauss constraint, which generates local SU(2)

transformations in the classical theory. The action of an arbitrary local SU(2) transformation

U(x) on Cyl is directly given by ÛU

ÛUψγ̄,f = ψγ̄,fU

fU(h(ē1), h(ē2), h(ē3), ...., h(ēNe)) ≡ f(Uh(ē1), Uh(ē2), Uh(ē3), ...., Uh(ēNe))

(2.12)

The quantized Gauss constraints are the generators of the finite transformations (2.12), thus

the states satisfying the constraints should be invariant under the transformations.

It turns out that the SU(2) invariant subspace of Cyl is spanned by the cylindrical

functions called spin network states [5][4][6]. Each spin network state is characterized by

the following information (fig.1): 1) a closed embedded graph γ̄ in M , with its Ne oriented

edges {ēi} connecting to its Nv nodes {v̄n} without any free end; 2) a non-trivial SU(2)

spin representation ji assigned to each edge; 3) a generalized Clebsch-Gordan coefficient

(intertwiner) in assigned to each node, with the exactly right indices to contract invariantly

with the matrix indices of the holonomies along the edges meeting at v̄n. The explicit form

of a spin network state Sγ̄,ji,in as a cylindrical function is

Sγ̄,ji,in ≡ ψγ̄,fji,in ≡ Inv

{
Nv⊗
n

in

Ne⊗
i

h(ji)(ēi)

}
(2.13)

where Inv{...} denotes the local SU(2) invariant tensorial product. Thus, (2.13) explicitly

shows the invariance of Sγ̄,ji,in under the transformations (2.12). Note that the closure of γ̄

is essential for the application of Inv{...}. With the inner products given by (2.11), the set

of all spin network states {Sγ̄,ji,in} provides a complete (but not over complete) orthonormal

basis for S which solves Gauss constraint [5][4][6].

Note that the orthonormal basis {Sγ̄,ji,in} contains spin network states that differ only
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by arbitrarily small changes of the embedded graphs. That means, in contrast to the case of

Fock space, there are orthogonal states in S that are arbitrarily close in their wave functional

values on continuous A fields. Because of this feature, the space is said to be inseparable.

Detailed comparisons have been made between Schroedinger and polymer representations in

the context of quantum mechanics [7][8]. It is shown that polymer representation, which is

inseparable in the same way as loop representation, leads to a quantum mechanics that is

unitarily inequivalent to Schroedinger theory. The cause of the inequivalence is the insepa-

rability of the Hilbert space obtained from the polymer representation. For the same reason,

we expect the quantum theory built upon S to be unitarily inequivalent to a theory built

upon Fock space representation.

2.2.3 Operators in S and Quantum Geometry

The natural elementary operators in S are constructed from the flux and holonomy variables,

respectively defined on oriented surfaces and paths embedded in M . Let S̄ be an oriented

surface in M , and let f i be an SU(2) valued test function on S̄. Then a flux operator is

given by [5][4][6]:

F̂f (S̄) ≡ 1

2

∫
S̄

f iÊa
i εabcdS̄

bc ≡
∫
S̄

f iÊa
i dS̄a = −i~8π(G/c3)γ

∫
S̄

f i
δ

δAia
dS̄a (2.14)

where dS̄bc denotes the oriented differential surface element; the last equality comes from

the fact that in the connection representation, Êi can be expressed as a functional derivative

(see (2.3)). Let ē be an oriented path in M , and let g l̄
k̄

be an SU(2) test function along ē.

Then a holonomy operator is given by [5][4][6]:

ˆh(j)(ē)g ≡ g l̄k̄[P ˆexp

∫
ē

dēbAib(x)τ
(j)
i ]k̄l̄ (2.15)

where dēb denotes the oriented differential path element; in the connection representation a

holonomy operator is just a multiplicative operator.
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Specifically, these elementary operators act on a cylindrical function of a single holonomy

in the following way

ĥ(j)(ē2)g · h(i)(ē1)g′ [A] = h(j)(ē2)gh
(i)(ē1)g′ [A]

F̂f (S̄) · h(i)(ē1)g[A] = i~Gsgn(S̄, ē1)f i(p̄)(τ
(i)
i )m̄n̄ g

l̄
k̄(h

(i)(ē1+
p̄

)k̄m̄)(h(i)(ē1−p̄
)n̄l̄ )[A]

(2.16)

where sgn(S̄, ē1) is equal to +1 if e1 intersect S̄ with the same orientation of S̄ at a point p̄,

−1 for the opposite case, and 0 otherwise. The paths ē1+
p̄

and ē1−p̄
result from dividing e1 into

two new edges from the point p̄ (fig.1(a)). Recall that spin network states are cylindrical

functions built from invariant products of holonomies, so (2.15) also determine the actions

of the operators on S.

The holonomy operator ĥ(j)(ē2)g acts on a spin network state in the straightforward way:

ĥ(j)(ē2)g · Sγ̄,ji,in [A] = (h(j)(ē2)gSγ̄,ji,in)[A] (2.17)

The result in (2.18) is a linear combination of spin network states that base on graphs

covering both γ̄ and ē2. Thus the action is in general graph-changing by the inclusion of a

new edge ē2. When γ̄ overlaps with ē2, the action (2.18) also changes the spin representations

by coupling ĥ(j)(ē2)g to the existing holonomies in Sγ̄,ji,in .

As a differential operator, F̂f (S̄) acts on a spin network state following (2.15) and Leibniz

rules. An important example is given by the case when γ̄ intersects with S̄ at one and only

one node v̄1. In this case we have

F̂f (S̄) · Sγ̄,ji,in [A] ≡
∑

ēi′ |v̄1∈ēi′

ι(S̄, ēi′)f
i(v̄1)Ĵi(ē1,i′) · Inv

{
Nv⊗
n

in

Ne⊗
i

h(ji)(ēi)

}
[A] (2.18)

where ι(S̄, ēi′) is equal to +1 or −1 when ēi′ is above or below S̄ in an infinitesimal neigh-

borhood of v̄1. The ēn,i′ (with v̄n ∈ ēi′) denotes the oriented path that start from v̄n and

overlaps completely with the edge ēi′ (fig.1(b)(c)). The action of Ĵi(ē) with an arbitrary path
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v̄3

v̄2

v̄2

v̄3 v̄3 v̄3

v̄2 v̄2

p̄

ē1

ē1+
p̄

ē3,1 ē2,1

ē1−̄
p

(a) (b) (c)

Figure 1: The upper figure pictures a generic part of an embedded graph, which is an
embedded edge ē1 connecting the two nodes v̄2 and v̄3. The lower figures demonstrate the
corresponding definitions of ē1+

p̄
, ē1−p̄

, ē3,1 and ē2,1. In this case, ē2,1 is the same as ē1.

ē on a cylindrical function is given by

Ĵi(ē) · ψγ̄,f [A] = ψγ̄,f ′ [A]

f ′(h(ē1), h(ē2), h(ē3), ...., h(ēNe))[A]

≡ i~G
∑
k

[δē,ēk · ∂Ri (ēk)− δē,ē−1
k
· ∂Li (ēk)]f(h(ē1), h(ē2), h(ē3), ...., h(ēNe))[A]

(2.19)

where ∂Li (ēk) and ∂Ri (ēk) denote the left and right Lie derivatives on h(ēk), with the ith
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generator. Applying it to Sγ̄,ji,in one obtains :

f i(ē(0))Ĵi(ē)Sγ̄,ji,in [A]

≡ Inv

{
i~G

∑
k

f i(ē(0))
[
δē,ēk · h(jk)(ēk)τ

(jk)
i − δē,ē−1

k
· τ (jk)
i h(jk)(ēk)

]
⊗

Nv⊗
n

in

Ne⊗
i 6=k

h(ji)(ēi)

}
[A]

(2.20)

where ē(0) and ē(1) stand for the origin and the end points of ē.

Combining flux and holonomy operators, one can construct operators that characterize

the geometry of space. In particular, the spatial area and volume operators have been rig-

orously constructed in loop quantum gravity. Moreover, their spectra have led to significant

understanding of the possible Planck-scale structure of space.

The area operator in loop quantum gravity is derived from regularizing the classical

expression in terms of the flux variables. The resulting operator for the area of a surface S̄

is [9]

ÂS̄|Sγ̄,ji,in〉 ≡
√
F̂i(S̄)F̂ i(S̄)|Sγ̄,ji,in〉 (2.21)

Remarkably, spin network states are eigenstates of ÂS̄ for any surface S̄. Actually, one can

easily check that

ÂS̄|Sγ̄,ji,in〉 = 8πl2pγ
∑
p̄

√
jip(jip + 1)|Sγ̄,ji,in〉 (2.22)

where we introduce Planck length through l2p ≡ ~(G/c3). The summation above goes over

all points p̄ where γ̄ intersects transversely with S̄, and jip represents the spin carried by the

edge eip containing the point p̄. From above, it is clear that the spectrum of area operators

in S is discretized, built from multiples of small quanta of order of l2p.

The volume operators in loop quantum gravity also result from the regularization of
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classical expressions using the flux variables, but with much more complicated technicalities.

Also, there are a variety of different regularization approaches that lead to different operator

forms for volume [10][11]. Here we will follow the one introduced in [11]. The volume

operators given by this approach act on |Sγ̄,ji,in〉 with a set of flux operators over the surfaces

intersecting γ̄ only at the nodes. With the help of (2.18), the explicit action boils down to

[11]:

V̂R̄|Sγ̄,ji,in〉 ≡
∑
v̄n∈R̄

√∣∣q̂v̄n∣∣|Sγ̄,ji,in〉

q̂v̄n|Sγ̄,ji,in〉 ≡
1

48

∑
v̄n∈ēi,v̄∈ēj ,v̄n∈ēk

sgn(ēn,i, ēn,j, ēn,k)ε
pqrĴp(ēn,i)Ĵq(ēn,j)Ĵr(ēn,k)|Sγ̄,ji,in〉

(2.23)

where Ĵ was defined in (2.19) and (2.20). It has been shown that the spectrum for the

volume operators are also discretized in S, built from multiples of small quanta of orders of

l3p. By (2.23) the volume operator for a region R̄ acts only on the nodes of a spin network

state contained in R̄. Further, each node-wise operation on the spin network state is given

by the sum of the triplets of the action (2.19) on the edges merging at the node. Therefore,

the volume operator replaces the intertwiner for each of the nodes in R̄ with a specific linear

combination of others, preserving both γ̄ and ji. Consequently, there is an volume and area

eigenbasis for S, consisting of states with definite γ̄ and ji. This diagonalizing basis has the

following interpretation: a certain quantum of volume is assigned to each node of the state,

and a certain quantum of area is assigned to each edge of the state. Through this basis, S

provides a concrete description of quantum spatial geometry – the networks carrying Planck

sized units of areas and volumes, associated with their edges and nodes.

Finally, notice that the action of an area operator ÂS̄ on a spin network state |Sγ̄,ji,in〉 is

solely determined by the edges of γ̄ intersecting transversely with S̄. Similarly, the action of

an volume operator V̂R̄ on the same state is solely determined by the nodes of γ̄ contained

in R̄. Such information is insensitive to the details about the embeddings of S̄, R̄, and γ̄;
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only the connectedness and transversality between {ēi, v̄n, S̄, R̄} are relevant in the quantum

geometry given by |Sγ̄,ji,in〉.

2.2.4 Knot space K

The next crucial step is to solve the momentum constraint. Since Mg(V̄ ) generates spatial

diffeomorphisms in general relativity [1][2][3], to solve the quantum momentum constraint is

to construct a quantum space invariant under spatial diffeomorphisms.

Set µ to be a diffeomorphism on the spatial manifold M , which transforms the connection

fields µ : A → A′. The action of µ̂ on cylindrical functions is induced naturally by the

transformation on the connection fields, through the requirement

µ̂ : ψγ̄,f → ψ′γ̄′,f ′

ψγ̄,f [A] ≡ ψ′γ̄′,f ′ [A
′]

for all A. From now on we introduce the abbreviation Γ̄ ≡ (γ̄, ji, in). Since Γ̄ is effectively

a graph γ̄ carrying the quantum numbers ji and in with its edges and nodes, it is called a

colored graph. Accordingly, we will denote a spin network state as |SΓ̄〉. It follows that the

spatial diffeomorphisms act on S and S∗ as

µ̂|SΓ̄〉 = |SµΓ̄〉 ; 〈SΓ̄|µ̂ = 〈Sµ−1Γ̄| (2.24)

where µΓ̄ denotes the colored graph obtained by applying a spatial diffeomorphism µ to the

colored graph Γ̄. With the inner product (2.11), there is no normalizable state in S that is

invariant under (2.23) [5][4][6]. However, normalizable solutions do exist in the algebraic dual

space S∗ [5][4][6], and they can be constructed by the group averaging procedure described

in the following [5][4][6].

The method of group averaging [22][23] is a constructive approach to obtain a physical

Hilbert space for a system that is constrained due to its symmetry. The procedure starts

from a unconstrained Hilbert space, which is analogous to the off-shell classical phase space.
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The states in this Hilbert space are in general non-invariant under the transformations of

the symmetry group. To construct invariant states, the procedure starts with a state in

the Hilbert space and averages over the transformations of that state by the symmetry

group. By construction, the results of the averaging will be invariant under the actions

of the symmetry group. When this procedure can be properly carried out, the resulting

elements form a physical Hilbert space which naturally inherits the inner product from the

original Hilbert space [22][23]. Also, in many cases, the self adjoint operators in the original

Hilbert space naturally induce physical observables in the physical Hilbert space [22][23].

The method is well understood for the cases of compact Lie groups, while there are many

unknowns when the group is non-compact, or not a Lie group. Nevertheless, individual

successful implementations of group averaging do exist for the latter cases. The construction

of knot space is one remarkable example.

The symmetry group of concern here is the diffeomorphism group on the spatial manifold

M , denoted by diffM . Here we will use P̂ to denote ‘projectors’ that apply group-averaging

actions to the states in a Hilbert space. Notice that for every γ̄, there is a subgroup diffM ,γ̄

of diffM that leaves the graph invariant, maintaining the set of all the edges and their

orientations. There is also a subgroup TdiffM ,γ̄ of diffM ,γ̄ that acts trivially on γ̄. We define

the graph symmetry group GM,γ̄ ≡ diffM ,γ̄/TdiffM ,γ̄, and apply the averaging over GM,γ̄ to

any 〈SΓ̄| ∈ S∗ as

〈SΓ̄|P̂GM,γ̄ ≡
1

NGM,γ̄

∑
µ∈GM,γ̄

〈SΓ̄|µ̂ (2.25)

where NGM,γ̄ is the number of elements in GM,γ̄, which is finite. Subsequently, we further

apply the averaging over diffM/diffM ,γ̄, the group that changes the graph, to 〈SΓ̄|P̂GM,γ̄ as

〈SΓ̄|P̂diffM
≡ 〈SΓ̄|P̂GM,γ̄ P̂diffM /diffM,γ̄

≡
∑

µ∈diffM /diffM ,γ̄

〈SΓ̄|P̂GM,γ̄ µ̂ (2.26)

The result of 〈SΓ̄|P̂diffM
is a finite element in S∗, since 〈SΓ̄|P̂diffM

|SΓ̄′〉 receive contributions
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from the finite number of terms from (2.27) where µγ̄′ matches γ̄ completely. Further,

〈SΓ̄|P̂diffM
is diffM invariant by construction. Note that from (2.26) and (2.27), we have

〈SΓ̄|P̂diffM
= 〈SµΓ̄|P̂diffM

for any µ ∈ diffM . Since the resulting state is characterized by the

diffeomorphism class [Γ̄] of the embedded colored graph Γ̄, which is a knot structure, we will

write 〈SΓ̄|P̂diffM
≡ 〈s[Γ̄]| and call it a knot state. The inner product (2.12) induces a finite

inner product for knot states through

〈s[Γ̄]|s[Γ̄′]〉 ≡ 〈s[Γ̄]|SΓ̄′〉 = 〈SΓ̄|P̂diffM
|SΓ̄′〉 (2.27)

With the above inner product, the set of knot states {〈s[Γ̄]|} provides an orthonormal basis

for knot space K which solves both Gauss and momentum constraints.

2.2.5 Quantum Geometry in K

Intuitively, K is just S without detailed embedding information, and each knot state is an

equivalence class of diffeomorphic spin network states. Therefore, one would expect K to

inherit the quantum geometry in S that is also ignorant of the embedding details. However,

the inheritance is not as trivial as it might seem.

To start with, we study the actions of ÂS̄ and V̂R̄ on K. Recall that the action of ÂS̄

on |SΓ̄〉 takes place at the intersection between S̄ and Γ̄. Similarly, the action of V̂R̄ on

|SΓ̄〉 happens at the nodes of Γ̄ contained in R̄. Based on (2.24), the action of the area and

volume operators on a knot state 〈s[Γ̄]| is given by their actions on the components {〈SµΓ̄|}
with µ ∈ diffM . Consider the nodes of µΓ̄ contained in R̄, letting µ runs over all elements

in diffM . Since the diffeomorphisms move Γ̄ around freely, the number of nodes of µΓ̄ in R̄

(in general) changes with µ . Thus, V̂R̄ acts on different number of nodes for the different

members in {〈SµΓ̄|}, resulting in a new set of spin network states that are non-diffeomorphic.

A similar situation also happens to the area operator ÂS̄. Briefly speaking, ÂS̄ and V̂R̄ are

not operators in K, since their actions on a set of diffeomorphic spin network states would

result to another set of spin network states that are not diffeomorphic to each other.



19

Clearly, ÂS̄ and V̂R̄ are not operators in K because S̄ and R̄ does not transform under

diffM and break the symmetry. Therefore, a natural solution would be defining the ‘dy-

namical’ surfaces S ≡ S̄(Γ̄) and regions R ≡ R̄(Γ̄), which satisfy S̄(µΓ̄) = µ′µS̄(Γ̄) and

R̄(µΓ̄) = µ′µR̄(Γ̄) for any µ ∈ diffM , with some µ′ ∈ TdiffM ,µγ̄. By construction, S̄(Γ̄) and

Γ̄ have the same differential-topological relation as S̄(µΓ̄) and µΓ̄ do. R̄(Γ̄) also enjoys the

same feature. Then one can define the possible area operator ÂS and volume operator V̂R as

〈s[Γ̄]|ÂS ≡ 〈SΓ̄|ÂS̄(Γ̄)P̂diffM

〈s[Γ̄]|V̂R ≡ 〈SΓ̄|V̂R̄(Γ̄)P̂diffM

(2.28)

for any Γ̄ ∈ [Γ̄]. This shows that ÂS and V̂R are now operators in K. Generally, one can

promote any operator ÔΩ̄ in S∗ that is sensitive only to the differential-topological relation

between Ω̄ ∈ M and every Γ̄ into an operator ÔΩ in K. Accordingly, Ω ≡ Ω̄(Γ̄) satisfy

Ω̄(µ̂Γ̄) = µ′µΩ̄(Γ̄) for any µ ∈ diffM , and some µ′ ∈ TdiffM ,µγ̄.

〈s[Γ̄]|ÔΩ ≡ 〈SΓ̄|ÔΩ̄(Γ̄)P̂diffM
(2.29)

for any Γ̄ ∈ [Γ̄]. From (2.27) and (2.28), S, R and Ω above are equivalently determined by

the assignments S̄0 = S̄(Γ̄0), R̄0 = R̄(Γ̄0) and Ω̄0 = Ω̄(Γ̄0) given one specific representative

Γ̄0 from each [Γ̄0]. Note that the assignment of S̄0, R̄0 and Ω̄0 are completely arbitrary

so far. This arbitrariness indicates the degree of ambiguity that has to be fixed before we

can meaningfully describe spatial geometry in K. The ambiguity is due to the removal of

embedding information from knot states. Note that the definitions (2.20) and (2.22) do not

suffer any ambiguity, since S̄ and R̄ are embedded in a common background M with any

embedded graph γ̄, and the intersections between them are thus clearly given. In knot space

K, the background M is removed and the reference is missing.

Since S̄(Γ̄), R̄(Γ̄) and Ω̄(Γ̄) transform consistently with Γ̄, we might consider them as

genuine dynamical entities. Specifically, any subset of M specified by the values of dynamical



20

scalar fields will have the desired transformation property. This idea of using dynamical fields

to specify physical regions of spacetime has a long history and explored in abundant works

[15][16][18][17][19]. We will follow through this idea in this thesis and show that it is indeed

valid in our context.

In summary, the quantum geometry of K should be based on the area and volume

operators of dynamical surfaces S and regions R. Without the background, the relation

between S, R and every [Γ̄] has to be individually specified. Since the goal of this thesis is

to examine the semi-classical limit of loop quantum gravity, it is essential to describe locally

the spatial geometry. To this end, we will need to define S and R in a physically meaningful

way, so they truly define operators corresponding to variables in general relativity.

2.2.6 Hamiltonian Constraint and Physical Hilbert Space

The remaining constraint to be imposed to achieve the physical Hilbert space is the Hamil-

tonian constraint. Adhering to the quantum geometry of space, the Hamiltonian constraint

operator Ĥg(N̄) in loop quantum gravity, with lapse function N̄ , is built with a discrete

structure. The operator is defined as the limit limε→0 Ĥ
ε
g(N̄), while Ĥε

g(N̄) is the quantized,

regularized Hamiltonian constraint acting on S. The full construction procedure is highly

technical, for details please refer to [4][5][6].

The action of Ĥε
g(N̄) on a spin network state |SΓ̄〉 is given by a combination of a specific

set of flux and holonomy operators, whose embedded surfaces and paths intersect with γ̄ in

a particular way. The fiducial sizes of the surfaces and paths are ε2 and ε, and the expression

of Ĥε
g(N̄) in terms of the corresponding flux and holonomy operators gives a discretized

approximation for the classical constraint Hg(N̄), with ε indicating the fineness.

The removal of the regulator is a subtle issue, for limε→0 Ĥ
ε
g(N̄) does not exist in S.

The reason is that the embedded surfaces and paths for the flux and holonomy operators in

Ĥε
g(N̄) shrink with ε. Therefore the embedded colored-graphs for the resulting states also

change with ε. Since any two states in S based on distinct embedded colored-graphs have a

zero inner product, Ĥε1
g (N̄)|SΓ̄〉 will be orthogonal to Ĥε2

g (N̄)|SΓ̄〉 for ε2 < ε1, no matter how
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close the two values are. However, the two states Ĥε1
g (N̄)|SΓ̄〉 and Ĥε2

g (N̄)|SΓ̄〉 do belong to

the same diffeomorphism class, provided ε1 and ε2 are both sufficiently close to zero. That

means 〈s[Γ̄′]| limε→0 Ĥ
ε
g(N̄)|SΓ̄〉 for any SΓ̄ does exist, and thus limε→0 Ĥ

ε
g(N̄) converges acting

upon K ⊂ S∗.
Unlike the cases of Gauss and momentum constraints, there is a large degree of ambiguity

in quantizing the Hamiltonian constraint. This is due to the many ways one can regularize

the same classical constraint using flux and holonomy variables. Moreover, the different

versions of Hamiltonian constraint operators have been shown to be physically distinct.

While the quantization ambiguity remains an issue in loop quantum gravity, in this paper

we will build our model based on the most standard version described in [4][5][6], and will

involve only the most general features shared by all the other possibilities. To describe

the action of limε→0 Ĥ
ε
g(N̄) = Ĥg(N̄) upon K, we introduce the following notations (fig.2).

For each embedded graph γ̄, we label each node with an integer n, and each of the edges

connected to the node n by an integer pair (n, i).2 For γ̄, we denote the node n by v̄γ̄n,

and the oriented path starting from v̄γ̄n and overlapping exactly with the edge (n, i) by ēγ̄n,i.

Since the number of edges connected to a node varies depending on the node, the range of

i depends on n. Further, to each pair (v̄γ̄n, ē
γ̄
n,i) we assign an oriented path ēγ̄(n,i) that starts

from v̄γ̄n and lies in ēγ̄n,i without covering the other end point. Lastly, to each pair (ēγ̄n,i, ē
γ̄
n,j)

we assign an oriented closed path ēγ̄(n,i,j) containing the outgoing path ēγ̄(n,i), incoming path

(ēγ̄(n,j))
−1, and another smooth bridge path, such that it gives the boundary of an embedded

surface who has no other intersection with γ̄. Using these notations and setting κ ≡ 8πG/c3,

2Note that each edge has two labels since it contains two nodes.
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γ̄
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ēγ̄
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Figure 2: The left figure pictures an embedded graph γ̄, with one of its nodes labeled by n = 1
and the four edges connected to this node labeled by (1, j). The figures in (a) demonstrate
the corresponding definitions of v̄γ̄n, ēγ̄n,j and ēγ̄n,i,j, while the figures in (b) demonstrate the

corresponding definitions of ēγ̄(n,j) and ēγ̄(n,i,j).

the action of Ĥg(N̄) upon K is given by 〈s[Γ̄]|Ĥg(N̄)|SΓ̄′〉 for any s[Γ̄] and SΓ̄′ , with [4][5][6]

〈s[Γ̄]|Ĥg(N̄)|SΓ̄′〉

≡ 〈s[Γ̄]|
∑
v̄γ̄
′
n ∈γ̄′

Ĥ(v̄γ̄
′
n )

g N̄(v̄γ̄
′

n )|SΓ̄′〉

≡ 〈s[Γ̄]|ĤE
g (N̄)|SΓ̄′〉 − 〈s[Γ̄]|(i~κγ)−5 1

48

(1 + γ2)

2

∑
v̄γ̄
′
n ∈γ̄′

N̄(v̄γ̄
′

n )
∑
i,j,k=1

sgn
(
ēγ̄
′

(n,i), ē
γ̄′

(n,j), ē
γ̄′

(n,k)

)
×
(
ĥ−1(ēγ̄

′

(n,i))
)l̄
ī

[(
ĥ(ēγ̄

′

(n,i))
)j̄
l̄
,
[
ĤE
g (1), V̂

]] (
ĥ−1(ēγ̄

′

(n,j))
)p̄
j̄

[(
ĥ(ēγ̄

′

(n,j)

)k̄
p̄
,
[
ĤE
g (1), V̂

]]
×
(
ĥ−1(ēγ̄

′

(n,k)

)q̄
k̄

[(
ĥ(ēγ̄

′

(n,k)

)ī
q̄
, V̂

]
|SΓ̄′〉

(2.30)

where ĥ(ē) ≡ ĥ( 1
2

)(ē) is the holonomy operator with spin 1/2, and the Immirzi parameter γ
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is set to be any real number.3 Also, the action of ĤE
g (N̄) on any cylindrical function ψγ̄,f is

given by [4][5][6]

ĤE
g (N̄)|ψγ̄,f〉

≡ (i~κγ)−1 1

96

∑
v̄γ̄n∈γ̄

N̄(v̄γ̄n)
∑
i,j,k=1

sgn
(
ēγ̄(n,i), ē

γ̄
(n,j), ē

γ̄
(n,k)

)(
ĥ(ēγ̄(n,i,j))− ĥ−1(ēγ̄(n,i,j))

)ī
j̄

×
(
ĥ−1(ēγ̄(n,k))

)l̄
ī

[(
ĥ(ēγ̄(n,k))

)j̄
l̄
, V̂

]
|ψγ̄,f〉

(2.31)

where the total volume operator V̂ is defined as

V̂ |ψγ̄,f〉

≡
∑
v̄γ̄n∈γ̄

[
1

48

∑
i,j,k=1

sgn
(
ēγ̄(n,i), ē

γ̄
(n,j), ē

γ̄
(n,k)

)
εpqrĴp(ē

γ̄
n,i)Ĵq(ē

γ̄
n,j)Ĵr(ē

γ̄
n,k)

] 1
2

|ψγ̄,f〉
(2.32)

Notice that the embedding details for the assignments of ēγ̄(n,i) and ēγ̄(n,i,j) for any of the γ̄

are irrelevant for (2.29), since 〈s[Γ̄]| does not distinguish deformations within the same diffM

class. It is indeed remarkable that limε→0 Ĥ
ε
g(N̄) converges upon diffM invariant states. This

fact allows us to impose the Hamiltonian constraint upon knot space. However, Ĥg(N̄)

in general does not preserve K, for the same reason why the operators ÂS̄ and V̂R̄ fail to

do so. Recalled that ÂS̄ and V̂R̄ violate diffM symmetry because they are smeared over S̄

and R̄, which are not diffM invariant. Similarly, 〈s[Γ̄]|Ĥg(N̄)|SΓ̄′〉 would not be equal to

〈s[Γ̄]|Ĥg(N̄)|SµΓ̄′〉 if N̄(µv̄γ̄
′
n ) differs from N̄(v̄γ̄

′
n ). On the other hand, the only reason for the

violation is that N̄(x) is generally not diffM invariant. In fact, one can check that we have

〈s[Γ̄′]|Ĥ(v̄γ̄n)
g |SΓ̄〉 = 〈s[Γ̄′]|Ĥ(µv̄γ̄n)

g |SµΓ̄〉, and thus Ĥg(1) is an operator in K.

The physical Hilbert space for loop quantum gravity should consist of quantum states

annihilated by the Hamiltonian constraint operator with any lapse function, whose complex-

ity is demonstrated above. Currently, the search of such states remains a pressing challenge

3 Notice that part of the quantization ambiguity lies in the possible choices of the spin representation for
the holonomy operators in (2.28) through (2.30), which we pick to be 1

2 .
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for loop quantum gravity, and is tackled with a great variety of approaches [4][6][20][25].

Many proposals are pursued using the Hamiltonian constraint operators with different vari-

ations of (2.29). Aside from the canonical Hamiltonian approaches , solving the constraint

using path integral formalism in spin foam models also provides important insights from a

different point of view [6]. In our model, we will modify the Hamiltonian operator into a

graph preserving operator in K. The much simplified setting will allow us to apply group

averaging method, based on certain concrete assumptions, to construct the physical Hilbert

space for the model.

2.3 Loop Quantization with Matter Fields

The previous sections outlined loop quantization of gravitational fields, which is guided

by the background independence of general relativity. We saw that the procedure leads

to the knot space K whose elements are drastically different from Fock states in particle

theories. We encountered difficulty of describing local geometry in K. Tracing the causes of

these obstacles, we were led to the classical problem of finding local observables in general

relativity. However, in the quantum theory the problem is further sharpened by the need to

describe the superposition of background independent states.

In general relativity, the internal coordinates approach to define local observables has been

extensively studied [15][16][18][17][19]. The approach attempts to describe the gravitational

fields relatively to coordinates given by values of dynamical scalar fields. The scalar fields can

be a part of the gravitational field or a part of matter fields coupling to the gravitational field.

In this setting, background independence is respected because both the gravitational field and

the coordinate fields are dynamical entities in the full theory. Indeed, the approach is mere

reflection of the daily life reality: we can only measure one physical system by referring to

another. However, the precise mathematical prescription for the local observables defined by

internal coordinates is subtle, and often involves the intrinsic properties of spacetime. Among

the abundant works in this approach, different fields have been used as internal coordinates to

describe gravity. The most popular method in cosmology introduces four dust-matter scalar
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fields coupling to the gravitational field, with one of the fields identified as the clock and

the other three being the spatial coordinates [15][16][18]. In this method, the scalar fields’

degrees of freedom are absorbed to dynamically break diffeomorphism symmetry, resulting

in gravitational physical degrees of freedom that live on each matter coordinate point given

by the scalar fields. Consequently, when the matter back reactions are ignored, one expects

to obtain gauge fixed general relativity from those gravitational local observables.

In the hope of recovering full general relativity in semi-classical limit of our model, we will

introduce the dust-matter method in the loop representation. Loop quantization for a system

of gravity coupling to general matter fields is itself an extensive body of work [26][27][13].

It has been shown rigorously that loop quantization is applicable to such general systems,

and the quantization leads to a knot space including the matter degrees of freedom. In the

loop representation, the matter sector of knot states appears extremely different from Fock

states in particle theories. Beyond the Planck scale, a much studied speculation is that the

non-perturbative prescriptions of the knot states would be approximated by perturbative

quantum field theory on a smooth spacetime background. In our context, we will simply

focus on the basic setting of knot states including matter fields, and also the matter operators

acting on such states.

2.3.1 Classical Theory with Matter Fields

The system we consider in this thesis consists of the gravitational field, gauge fields, fermion

fields and scalar fields. The matter sector has the usual interactions mediated by gauge

fields, and is described by Yang-Mills theory minimally coupled to fermion and scalar fields.

Moreover, the gravity and matter sectors are fully coupled, so the theory for the whole system

is diffeomorphism invariant. As mentioned previously, Yang-Mills theory shares many critical

features with general relativity expressed in Ashtekar formalism. Such features enable a

single representation of knot space for the whole system. To facilitate loop quantization, the

matter sector will also employ a triad formalism in the classical theory.

Aside from diffeomorphism symmetry and local SU(2) symmetry from gravitational cou-
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pling, the system has additional local gauge symmetry of group G due to the matter inter-

actions. In the triad formalism we use half-densitized, Grassmann-valued spinor fields ξ ī
ī
(x)

and their conjugate momenta π ī
ī(x) to describe the fermions in the system, where ī and ī are

respectively the (spin 1
2
) SU(2) and G indices. The real scalar fields and their momenta will

be described by φi(x) and P i(x) . The matter gauge fields will be described by Ai
a(x), where

i and a are respectively the adjoint G and spatial coordinate indices. Finally, the magnetic

fields corresponding to Ai
a(x) will be denoted as Bi

a(x). Written in the terms of the specified

fields, the Hamiltonian constraint density for the matter sector contains the terms [13]

Hf (x) ≡ Ea
i

2
√

detE

[
iπT τ iDaξ +Da(π

T τiξ) +
i

2
Ki
aπ

T ξ + c.c.

]
(x)

Hs(x) ≡ P iPi

2κ
√

detE
(x) +

1

2

[
ηjkEa

jE
b
k√

detE
(Daφ

i)(Dbφi)/κ+
√

detEV (φiφ
i)/(~κ2)

]
(x)

HYM(x) ≡ ηjkEajEbk
2Q2 detE

[
EaiEb

i + BaiBb
i

]
(x)

(2.33)

Here κ ≡ 8πG/c3, Q is the Yang-Mills coupling constant, and the covariant differentiation

Da is taken with respect to the total connection field Aa + Aa. Also, ηjk are the spatial com-

ponents of the flat Lorenzian metric with signature (−,+,+,+). The generalized magnetic

field Bi
a is defined as:

Bi
a(x) ≡ 1

2
εa
bc(∂bA

i
c − ∂cAi

b + f i
jkAj

bA
k
c)(x)

where f i
jk is the structure constant of G. Including the gravitational part, the full Hamil-

tonian constraint for the system, with a lapse function N̄ , is given by the sum of all the

sectors H(N̄) = Hg(N̄) + Hf (N̄) + Hs(N̄) + HYM(N̄). Here the matte terms are obtained

from smearing (2.34) with N̄ .
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Aside from the Hamiltonian constraint, the SU(2) Gauss constraint and momentum

constraint also acquire new terms because of the inclusion of the matter fields [27][26],

although we refrain from listing them in this thesis. Further, there is also an additional

Gauss constraint coming from the gauge symmetry of the group G. The four constraints

thus govern the background independent theory of the whole system.

2.3.2 S and K with Matter Fields

The classical expressions above suggest that we may generalize the holonomies of SU(2)

group to those of SU(2) × G to incorporate the gauge fields. On the other hand, since the

generalized holonomies parallel transport ξ ī
ī
(x) and φi(x), the fermion and scalar fields should

play roles similar to intertwiners in the loop representation. The loop quantization procedure

does apply to the classical theory in this way [26][27][13]. The result is the generalized knot

space K that solves all but Hamiltonian constraints. Here we will give a brief description of

the knot states in K.

A spin network state for the system is a wave functional of the configuration fields,

constructed from the loop variables h(j)(ē), h(i)(ē), θ(d)(v̄) and h(k)(v̄). Here h(i)(ē) denotes

a G holonomy in the assigned representation i. The scalar fields are described by h(k)(x) ≡
exp(φ(x)jτ (k)

j), which are called point holonomies in their representation k. The fermion

fields are described by the irreducible tensors θ(d)(v̄), each given by a Grassmann monomial of

ξ ī
ī
(v̄) of degree d (for details refer to [13]). Constructed from the above variables, each of the

spin network states is specified by [26][27][13]: 1) an embedded graph4 γ̄; 2) an SU(2) spin

representation ji and a G group representation ji assigned to each edge; 3) two generalized

Clebsch-Gordan coefficients (intertwiners) in and in for SU(2) and G respectively, another

G group representation kn, and a degree dn of the Grassmann monomials assigned to each

node. Analogous to the pure gravitational case, the wave functional forms of the spin network

4Because of the presence of the matter fields, the graphs for the gauge invariant states no longer have to
be closed or connected.
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states are defined with cylindrical functions as

Sγ̄,(ji,in,dn),(ji,in,kn) ≡ ψγ̄,f(ji,in,dn),(ji,in,kn)

ψγ̄,f(ji,in,dn),(ji,in,kn)
[A,A, θ, φ]

≡ Inv

{
Nv⊗
n

in

Nv⊗
n

in

Nv⊗
n

θ(dn)(v̄n)
Nv⊗
n

h(kn)(v̄n)
Ne⊗
i

h(ji)(ēi)
Ne⊗
i

h(ji)(ēi)

}
[A,A, θ, φ]

(2.34)

where Inv{...} denotes the SU(2) ⊗ G invariant contraction. Thus by construction, the

spin network states are locally SU(2) ⊗ G invariant. The inner product of these states are

defined similarly to the previous case, using Haar and Berezin measures for the bosonic and

fermionic sectors. Using such an inner product, all spin net work states {Sγ̄,(ji,in,dn),(ji,in,kn)}
form a (non-orthogonal) basis for the space of the wave functionals satisfying both of the

Gauss constraints. One can construct an orthonormal basis for S, whose each element is a

linear combination of the spin network states differ only in fermionic sector. Therefore, an

orthonormal basis is given by {Sγ̄,(ji,in,kn),(ji,in,kn) ≡ SΓ̄}, obtained from recombining dn into

kn. Again, a knot state is obtained by group averaging the states in S over diffeomorphism

transformations

〈SΓ̄|P̂diff ≡ 〈s[Γ̄]| (2.35)

The set of knot states {s[Γ̄]} forms a orthonormal basis for the knot space K for the

system. By construction, K solves the SU(2) Gauss constraint, G Gauss constraint, and

momentum constraint.

2.3.3 Matter Operators in S and K

In addition to the gravitational flux and holonomy operators given previously, the opera-

tors in S also include matter operators that act on the spin network states. Similar to the



29

gravitational operators, the matter operators are also smeared with test functions g, f, g

and ḡ with appropriate group values. From the gauge fields, we have the holonomy oper-

ators ĥ
(j)

(ē)g, and the corresponding operators Ĵf(ē) that give the flux of the gauge fields

analogously to (2.19). From the fermionic monomials of degree one, we have the spinor oper-

ators θ̂(p̄)g ≡ θ̂(1)(p̄)g and their conjugate momenta operators η̂(p̄)ḡ ≡ iθ̂†(p̄)ḡ. Finally, from

the scalar fields we have the point holonomy operators ĥ(i)(p̄)g and the conjugate momenta

operators p̂f(p̄).

While the physics in the matter sector under loop quantization is an important subject

discussed in other works (see, for example, [14]), the goal of this paper is to explore the

semi-classical limit of the gravity sector, involving the matter sector only to provide coordi-

nates. Nevertheless, the framework of the matter sector in loop representation is essential for

obtaining a faithful extraction of the full theory, leaving out only the matter back reactions.

The important feature of the matter sector for our purpose, is that the fermion and scalar

operators act on the nodes.

Four matter scalar fields are required to coordinatize spacetime in the classical theory.

Moreover, the triads formalism introduces additional SU(2) components of the gravitational

field that need to be described in terms of matter frames. In the quantum theory, such

coordinates and frames would be provided by matter operators. Since loop quantum gravity

is based on flux and holonomy variables, the required coordinates and frame operators are:

1) four scalar operators for the spacetime coordinates; 2) three SU(2) vector operators and

their conjugates, for the description of flux variables; 3) two SU(2) spinor operators and

their conjugates for the description of holonomy variables.

Clearly, the requirement can be fulfilled provided enough species of fermion and scalar

fields exist. To obtain the coordinate and frame operators in K, we will define them with a

generic dynamical point p ≡ p̄(Γ̄) following the notion in section 2.2.5. From the ingredients

provided by the fundamental matter operators listed above, one can easily construct charge-

less scalar operators of the form φ̂(p), chargeless vector operators of the form Ĵ(p)i and their

conjugates, and chargeless spinor operators of the form Û(p)j̄ and their conjugates. For an
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explicit example, we can set:

φ̂(p) ≡ gijp̂ip̂j(p)

Ĵ(p)k ≡ η̂ ī
j̄(τ

k)j̄
ī
θ̂īī(p); ˆ̄J(p)k ≡ η̂ ī†

j̄
(τk)

j̄
ī
θ̂ī†

ī
(p) ; Û(p)k̄ ≡ (C ī,̄j

ī,j̄
)k̄θ̂īī θ̂

j̄
j̄
(p); ˆ̄U(p)k̄ ≡ (C ī,̄j

ī,j̄
)k̄θ̂

ī†
ī
θ̂j̄†

j̄
(p)

Here gij is the adjoint-G Killing-Cartan metric, and (C ī,̄j
ī,j̄

)k̄ = (C ī,̄j
ī,j̄

)k̄ is the Clebsch-Gordan

coefficient that projects the direct spinor products into a G scalar and SU(2) spinor represen-

tation. It should be clear that there are many other ways to obtain the chargeless scalar and

current operators, as long as the results have the the desired transformation properties. As

mentioned in 2.2.5, there is excessive freedom in the definition of p due to diffM symmetry.

However, as we will describe in detail, the symmetry between different choices of p would be

dynamically broken by the quantum state of the system through the coordinate and frame

operators, in an analogy with the classical case.

Lastly, the matter Hamiltonian constraint operator Ĥm(N̄) ≡ Ĥf (N̄)+Ĥs(N̄)+ĤYM(N̄)

has been also constructed in the loop representation [13]. Similar to the construction of

Ĥg(N̄), the quantization of Hm(N̄) starts from the regularization of (2.32) using the matter

loop variables, and results in the well-defined operator Ĥm(N̄) acting upon K after the

removal of the regulator. Following the notation used in (2.31)-(2.33) the action of Ĥm(N̄)

on a knot state has the form

〈s[Γ̄]|Ĥm(N̄)|SΓ̄′〉 ≡ 〈s[Γ̄]|
∑
v̄γ̄
′
n ∈γ̄′

Ĥ(v̄γ̄
′
n )

m N̄(v̄γ̄
′

n )|SΓ̄′〉 (2.36)
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where the implicit form of Ĥ
(v̄γ̄
′
n )

m is given by [13]

〈s[Γ̄]|Ĥ(v̄γ̄
′
n )

m |SΓ̄′〉

≡ 〈s[Γ̄′]|Ĥ(v̄γ̄n)
m

(
Ĵi(e

γ̄
n,i), ĥ(eγ̄(n,i))

j̄

l̄
, ĥ(ēγ̄(n,i,j))

j̄

l̄
, Ĵi(ē

γ̄
n,i), ĥ

(j)
(ēγ̄(n,i))

ī
j̄, ĥ

(j)
(ēγ̄(n,i,j))

ī
j̄,

θ̂(v̄γ̄n)īī , θ̂(ē
γ̄
(n,i)(1))

ī
ī , η̂(v̄γ̄n)ī

ī, η̂(ēγ̄(n,i)(1))
ī
ī, ĥ

(i)(v̄γ̄n)ī
j̄, ĥ

(i)(ēγ̄(n,i)(1))
ī
j̄, p̂i(v̄

γ̄
n), p̂i(ē

γ̄
(n,i)(1))

)
|SΓ̄〉

(2.37)

where ē(1) is again the target point of ē. We will skip the detailed expression is in this paper.

Nevertheless, from the operators involved, we know that the action of Ĥ
(v̄γ̄n)
m changes the

graph and representations (of both SU(2) and G) of the state. Just as the case of Ĥg(N̄),

we have 〈s[Γ̄′]|Ĥ(v̄γ̄n)
m |SΓ̄〉 = 〈s[Γ̄′]|Ĥ(µv̄γ̄n)

m |SµΓ̄〉. Therefore, Ĥm(N̄) does not preserve K only

because N̄ is generally not diffM invariant.

3 The Graph-Preserving Model

We start with the Hamiltonian constraint operator for our model, which is modified from

the standard self-adjoint form

Ĥ(N̄) ≡ 1

2
(Ĥg(N̄) + Ĥm(N̄)) +

1

2
(Ĥg(N̄) + Ĥm(N̄))†

where each term is described in (2.30)-(2.32) and (2.36)-(2.37). Recall that the standard

constraint operator does not preserve K due to the fact that N̄(x) is not diffM invariant.

In our model, we will replace the embedded lapse function N̄(x) with the dynamical lapse

function Np(pk) defined on a set of dynamical spatial points p ≡ {pk}, where the integer

k ranges to infinity.5 Using the notion introduced in section 2.2.5, the set of dynamical

nodes {pk} consists of pk ≡ p̄k(Γ̄) satisfying p̄k(µΓ̄) = µ′µp̄k(Γ̄) for any µ ∈ diffM and some

5The spatial manifold M contains uncountably many spatial points, but we use only countably infinite
set {pk} in correspondence to the discrete structure of K.
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µ′ ∈ TdiffM ,µγ̄. Naturally we require that for each Γ̄ and n, v̄γ̄n = p̄k(Γ̄) holds for exactly

one k value.6 Notice that there are infinitely many distinct sets of dynamical spatial points

satisfying the above, and we encountered exactly the same ambiguity resulting from the

background independence in section 2.2.5. Respecting the background independence, we

will consider all lapse functions Np based on all possible p. The Hamiltonian constraint

Ĥ?(Np) in K is defined by

〈s[Γ̄]|Ĥ?(Np) ≡ 〈s[Γ̄]|
[

1

2
(Ĥ?

g (Np) + Ĥ?
m(Np)) +

1

2
(Ĥ?

g (Np) + Ĥ?
m(Np))

†
]

(3.1)

where we have

〈s[Γ̄]|(Ĥ?
g (Np) + Ĥ?

m(Np)) ≡ 〈sΓ̄|
∑
v̄γ̄n∈γ̄

(Ĥ(v̄γ̄n)
g + Ĥ(v̄γ̄n)

m )Np(pk|p̄k(Γ̄)=v̄γ̄n
)P̂diff (3.2)

for any Γ̄ ∈ [Γ̄]. Thus Ĥ?(Np) is now an operator in knot space. It is important to note that

the classical counterpart Hg(N) of Ĥ?
g (Np) is different from Hg(N̄), which is the counterpart

of Ĥg(N̄). In the classical theory, we would expect {Hg(N),Mg(V̄ )} = 0, since N is now

dynamical and transforms as a scalar field under the diffeomorphisms generated by Mg(V̄ ).

On the other hand, the algebra (2.6) applies to Hg(N̄), with N̄ being a non-dynamical

Lagrangian multiplier.

Referring back to (2.30)-(2.32) and (2.36)-(2.37), we note that Ĥ?(Np) is graph changing

since Ĥ
(v̄γ̄n)
g and Ĥ

(v̄γ̄n)
m contains the holonomy operators based on ēγ̄(n,i,j) that is not contained

in γ̄. To obtain a graph preserving Hamiltonian constraint operator for the model, we now

replace ēγ̄(n,j) with the full path ēγ̄n,j that coincides with the edge (see fig.2). Also we replace

ēγ̄(n,i,j) with ēγ̄n,i,j, a closed oriented path covered by γ̄, with the outgoing ēγ̄n,i and incoming

ēγ̄n,j, which contains a minimal number of edges of γ̄.7 Applying the substitutions to Ĥ?(Np),

6Note that this is obviously true had we taken {p̄k(Γ̄)} for any Γ̄ to be the set of all points in M . Here
we define {p̄k(Γ̄)} to be a countably infinite subset of M , but insist on maintaining the condition.

7 If such a path is not unique, then eγ̄n,i,j represent averaging over all the minimal closed paths that satisfy
the requirements.
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z  

x  
y  

Figure 3: The lattice rectangular prism Ī3
Z ⊂ R3 with the vertices represented by the black

dots at the locations {Xn}, and the links represented by the lines between two adjacent
vertices. The lattice torus Ttorus for K can be obtained by identifying the opposite boundary
faces of Ī3

Z. As an illustration for chapter 8, the construction also assigns the location Xn of
a vertex to the corresponding vertex v∗n of the lattice torus as its coordinate value.

one obtains the graph preserving Hamiltonian constraint operator

Ĥ(Np) ≡
1

2
(Ĥg(Np) + Ĥm(Np)) +

1

2
(Ĥg(Np) + Ĥm(Np))

†

which is defined in the subspace KT of K based on a single network topology T .

Consider a lattice rectangular prism in R3 with a large number of vertices. Identifying the

correspondent boundary vertices in the opposite faces of the rectangular prism, one obtains

a lattice torus Ttorus with Nv nodes (fig.3). By construction, Ttorus has locally cubical lattice

topology with six neighboring nodes around each of its nodes. With the graph-preserving

Hamiltonian constraint operator, from now on we will consider only the subspace KTtorus ≡ K

for simplicity of the topology. To explicitly write down the action of Ĥ(Np) on K, we will

re-express the operator using the dynamical nodes and paths instead of the embedded ones.

Define a set of dynamical nodes {vm ≡ v̄m(Γ̄)}, with m ranges from 1 to Nv, satisfying

v̄m(Γ̄) = v̄γ̄n(m) such that n(m) is one-to-one. Corresponding to the given {vm}, define the
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dynamical paths {em,j ≡ ēm,j(Γ̄)} satisfying ēm,j(Γ̄) = ēγ̄n(m),k(j) and v̄m(Γ̄) = v̄γ̄n(m) such

that j(k) is one-to-one. The dynamical closed paths em,i,j = ēm,i,j(Γ̄) may then be defined

accordingly. Note that in this case the minimal loop ēn,i,j(Γ̄) covers exactly four edges because

of the local cubical structure. The action of Ĥg(Np) on any 〈s[Γ̄]| ∈ K can be re-expressed as

〈s[Γ̄]|Ĥg(Np)

≡ 〈SΓ̄|Ĥg(Γ̄)(Np)P̂diff

= 〈SΓ̄|ĤE
g(Γ̄)(Np) + (i~κγ)−5 (1 + γ2)

96

∑
vm

Np(pk|p̄k(Γ̄)=v̄m(Γ̄))
∑
i,j,k=1

sgn
(
ēm,i(Γ̄), ēm,j(Γ̄), ēm,k(Γ̄)

)
×
(
ĥ−1(ēm,i(Γ̄))

)l̄
ī

[(
ĥ(ēm,i(Γ̄))

)j̄
l̄
,
[
ĤE
g(Γ̄)(1), V̂(Γ̄)

]]
×
(
ĥ−1(ēm,j(Γ̄))

)p̄
j̄

[(
ĥ(ēm,j(Γ̄))

)k̄
p̄
,
[
ĤE
g(Γ̄)(1), V̂(Γ̄)

]]
×
(
ĥ−1(ēm,k(Γ̄)

)q̄
k̄

[(
ĥ(ēm,k(Γ̄)

)ī
q̄
, V̂(Γ̄)

]
P̂diff

(3.3)

for any Γ̄ ∈ [Γ̄], where we have

〈ψγ̄,f |ĤE
g(Γ̄)(Np)

≡ 〈ψγ̄,f |(i~κγ)−1 1

96

∑
vm

Np(pk|p̄k(Γ̄)=v̄m(Γ̄))
∑
i,j,k=1

sgn
(
ēm,i(Γ̄), ēm,j(Γ̄), ēm,k(Γ̄)

)
×
(
ĥ(ēm,i,j(Γ̄))− ĥ−1(ēm,i,j(Γ̄))

)ī
j̄

(
ĥ−1(ēm,k(Γ̄))

)l̄
ī
·
[(
ĥ(ēm,k(Γ̄))

)j̄
l̄
, V̂(Γ̄)

]

(3.4)
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Here, the total volume operator V̂(Γ̄) is defined as

〈ψγ̄,f |V̂(Γ̄)

≡ 〈ψγ̄,f |
∑
vm

[
1

48

∑
i,j,k=1

sgn
(
ēm,i(Γ̄), ēm,j(Γ̄), ēm,k(Γ̄)

)
εpqrĴp(ēm,i(Γ̄))Ĵq(ēm,j(Γ̄))Ĵr(ēm,k(Γ̄))

] 1
2

(3.5)

Note that the particular choices for {vm} and {em,j} are irrelevant in (3.3)-(3.5) since they

serve as dummy variables. The explicit form of Ĥm(Np) acting on s[Γ̄] has a similar structure

as above, and in brief we have

〈s[Γ̄]|Ĥm(Np)

≡ 〈SΓ̄|Ĥm(Γ̄)(Np)P̂diff

≡ 〈SΓ̄|
∑
vm

Np(pk|p̄k(Γ̄)=v̄m(Γ̄))

Ĥ(v̄m(Γ̄))
m

(
Ĵi(ēm,i(Γ̄)), ĥ(ēm,i(Γ̄))j̄

l̄
, ĥ(ēm,i,j(Γ̄))j̄

l̄
, Ĵi(ēm,i(Γ̄)), ĥ

(j)
(ēm,i(Γ̄))ī

j̄, ĥ
(j)

(ēm,i,j(Γ̄))ī
j̄

θ̂(v̄m(Γ̄))īī , θ̂(ēm,i(Γ̄)(1))
ī
ī , η̂(v̄m(Γ̄))ī

ī, η̂(ēm,i(Γ̄)(1))
ī
ī, ĥ

(i)(v̄m(Γ̄))ī
j̄, ĥ

(i)(ēm,i(Γ̄)(1))
ī
j̄,

p̂i(v̄m(Γ̄)), p̂i(ēm,i(Γ̄)(1))
)
P̂diff

(3.6)

for any Γ̄ ∈ [Γ̄].

Observe that in (3.3)-(3.6), the operators Ĥg(Γ̄)(Np) and Ĥm(Γ̄)(Np) act on 〈SΓ̄| using the

operators defined with the embedded paths and points that lie inside of Γ̄, without disturbing
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its topology. Consequentially, the states 〈s[Γ̄]|Ĥg(Np) and 〈s[Γ̄]|Ĥm(Np) will still be based on

Ttorus and belong to K. Therefore, we can construct our model upon K using the self-adjoint

Hamiltonian constraint given by

〈s[Γ̄]|Ĥ(Np) ≡ 〈SΓ̄|Ĥ(Γ̄)(Np)P̂diff ≡ 〈s[Γ̄]|
1

2
(Ĥg(Np) + Ĥm(Np)) +

1

2
(Ĥg(Np) + Ĥm(Np))

†

(3.7)

The physical Hilbert space for the model will be the space annihilated by Ĥ(Np) for all Np

based on all p.

4 Physical Hilbert Space

The idea of applying group averaging method to solve the Hamiltonian constraint in quantum

gravity is an ongoing project [24][25]. Specifically, the possibility of solving the standard

Hamiltonian constraint (2.31)-(2.33) in loop quantum with this method has been broadly

discussed. While difficulties due to the complexity of diffeomorphism group still await to be

overcome for the full theory [22][25], the procedure has been carried out rigorously in the

minisuperspace models [24][28][29]. The graph-changing operations are frozen out in Ĥ(Np)

for our model, and such simplicity allows one to solve the constraint with group averaging

method, based on few concrete assumptions. In the following, I apply this method to the

graph-preserving model in close analogy to Marolf’s approach [28][29] for the minisuperspace

models.

Consider the set of unitary operators {exp(iĤ(Np))} given by all lapse functions {Np}
based on all possible p. To solve the Hamiltonian constraint, we look for an object that is

invariant under the action of this set of operators. Following the experience in (2.2.4), we
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look for the group generated by {exp(iĤ(Np))}. Explicitly, we consider

{
kmax∏
k=1

exp(iĤ(Npk))

}/
=

K
≡
{
Û(g)

}
g∈G

(4.1)

where Npk for each k is a member of all lapse functions {Np} based on all possible p, and /=
K

means that we identify two expressions if they give the same operator in K. G denotes the

group faithfully represented by the set of unitary operators generated in this manner. Note

that in our model, exp(iĤ(Np1)) exp(iĤ(Np2)) is not equal to exp(iĤ(Np1 + Np2)). This

non-Abelean nature of G is due to the fact that the actions of Ĥ(Np) on two adjacent nodes

of a knot state do not commute, as a consequence of the graph-preserving modification.

Assuming the existence of a left and right invariant measure dg for the group G, then the

desired invariance can be achieved by the group averaging operator over G

P̂ ≡
∫
G

dgÛ(g) (4.2)

Recall that the group averaging operator P̂diff maps spin network states {|SΓ̄〉 ∈ S} into

knot states {〈SΓ̄|P̂diff ∈ S∗} that span K. In minisuperspace models, there are group

averaging operators P̂mini (corresponding to P̂ in our model) generated by the symmetrically

reduced Hamiltonian constraint operators. Like P̂diff , P̂mini maps the dual states of the

states in kinematical Hilbert space into the physical states that lie in the dual space. Here

we assume that the same applies to our model, that P̂ maps from knot states {〈s[Γ̄]| ∈ K}
into {P̂|s[Γ̄]〉 ∈ K∗} that span the physical Hilbert space.

Since P̂ is invariant under the action of G, so is the element P̂|ψ〉 ∈ K∗ with 〈ψ| ∈ K.

Further, the inner product between any two states |Ψ1〉 = P̂|ψ1〉 and |Ψ2〉 = P̂|ψ2〉 may be

defined as

〈Ψ1|Ψ2〉 ≡ 〈ψ1|Ψ2〉 = 〈ψ1|P̂|ψ2〉 (4.3)

To be clear, the assumptions being made here are: (1) the existence of the left and right

invariant measure dg; (2) the operator P̂ maps {〈s[Γ̄]| ∈ K} into {P̂|s[Γ̄]〉 ∈ K∗}. These are
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known to hold in minisuperspace models [24][28][29], but remain to be proven in the model.

Finally, under these assumptions we obtain the physical Hilbert space H that is spaned by

{P̂|s[Γ̄]〉}, which solves the Hamiltonian constraint Ĥ(Np).

5 Local Observables

Now we wish to find the local observables in the physical Hilbert space H that have classical

interpretations, in order to explore the semi-classical region of the model. In the classical

case, the values of matter fields can be treated as internal coordinates that enable the

description of local observables [15][18]. In the quantum theory, the same idea has been

applied in different approaches to a varying extent. In particular, a variety of minisuperspace

quantum cosmology models have successfully reproduced correct low energy limits with

observables defined by matter clocks [31][30].

In this model, we aim to construct the observables that are completely localized in space-

time in order to make connections to full general relativity. The strategy is to first identified

spatially local operators in K using three scalar matter operators to assign the positions,

then promote them into localized observables in H using another matter scalar operator to

assign the time. Note that the dimension of the semi-classical spacetime is thus put in by

hand in the model.

For each set of dynamical nodes {vm} we will construct a set of self-adjoint, commuting

matter operators, containing the scalar operators {φ̂0(vm), φ̂1(vm), φ̂2(vm), φ̂3(vm)}, current

operators {V̂ i
I (vm), Û ī

Ī
(vm)} and conjugate current operators { ˆ̄V I

i (vm), ˆ̄U Ī
ī (vm)} (I = 1, 2, 3

for the vector currents; Ī = 1, 2 for the spinor currents). The three scalar operators

(φ̂1(vm), φ̂2(vm), φ̂3(vm)) ≡ φ̂(vm) will be the spatial coordinate operators, while the op-

erators {V̂ i
I (vm), Û ī

Ī
(vm)} and { ˆ̄V I

i (vm), ˆ̄U Ī
ī (vm)} will be the spatial frame operators, and

φ̂0(vm) will serve as the clock. In our model, we use the fermionic sector to construct the

spatial frame operators, and the bosonic sector to construct the spatial coordinate and clock

operators. Specifically, we will set the matter gauge group to be a direct product of NG
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unitary groups, so that G ≡ ⊗NG
N GN and kn = ( k1

n, k2
n, ...., kNGn ) in (2.35). Then, define

the spatial coordinate:

φ̂(vn) ≡
(
φ1( k̂

N
(vn)), φ2( k̂

N
(vn)), φ3( k̂

N
(vn))

)
which would be self-adjoint and diagonal in the knot states basis for any real functions

(φ1, φ2, φ3). Also, assuming there are Nf ≥ 5 species of fermions in the matter sector, we

denote each species by θ̂J (J = 1, 2, ..., Nf ). In this setting, we will use the examples given

in section 2.3.3 for the current operators:

Ĵ(vm)kI ≡ (η̂I)
ī
j̄(τ

k)j̄
ī
(θ̂I)

ī
ī(vm) ; Û(vm)k̄Ī ≡ (C ī,̄j

ī,j̄
)k̄(η̂Ī+3)īī(θ̂Ī+3)j̄

j̄
(vm)

In classical Hamiltonian general relativity, we obtain diffM invariant local variables by smear-

ing the field variables with delta functions of the spatial matter coordinates. Setting Ô(vm)

and Ô′(en,i) to be some gravitational operators in K, we accordingly smear them over all

the dynamical nodes with a regularized delta function δε(φ(v̄n)−X) to obtain the quantum

analogies. Separately, Ô(vm) will be smeared with δε(φ(v̄n)−X) that picks up the node with

coordinate value X, and Ô′(en,i) will be smeared with δε(φ(v̄n)−X) and δε(φ(v̄n)−(X+∆X))

that pick up the path connecting the coordinate values X and X + ∆X. Here we choose δε

to be a Gaussian distribution with width ε, which is finite in correspondence to the discrete

structure of K. Explicitly, for any s[Γ̄] ∈ K

〈s[Γ̄]|Ô(X) ≡ 〈SΓ̄|
∑
n

Ô(v̄n(Γ̄)) det(∆φ̂(v̄n(Γ̄)))δ̂ε(φ̂(v̄n(Γ̄))−X)P̂diff

〈s[Γ̄]|Ô′(eX,∆X) ≡ 〈SΓ̄|
∑
n,i

Ô(ēn,i(Γ̄)) det(∆φ̂(v̄n(Γ̄))) det(∆φ̂(v̄(n,i)(Γ̄)))

×δ̂ε(φ̂(v̄n(Γ̄))−X)δ̂ε(φ̂(v̄(n,i)(Γ̄))− (X + ∆X))P̂diff

(5.1)

where the dynamical nodes {v(n,i)} are defined by v̄(n,i)(Γ̄) ≡ ēn,i(Γ̄)(1) with ē(1) being the
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target point of ē. In correspondence to the classical expressions, where the smearing is

performed through integrations over a coordinate space, the discretized version (5.1) of

smearing is summed over the small coordinate volume elements. The coordinate volume

element operators are given by

〈ψγ̄,f | det(∆φ̂(v̄n(Γ̄)))

≡ 〈ψγ̄,f |
∑

(i,j,k)

sgn
(
ēn,i(Γ̄), ēn,j(Γ̄), ēn,k(Γ̄)

)
det(∆φ̂ēn,i(Γ̄),∆φ̂ēn,j(Γ̄),∆φ̂ēn,k(Γ̄))

(5.2)

Here, the coordinate difference operator ∆φ̂ēn,i(Γ̄) is given by

〈ψγ̄,f |∆φ̂ēn,i(Γ̄) ≡ 〈ψγ̄,f |[φ̂(v̄(n,i)(Γ̄))− φ̂(v̄n(Γ̄))]

It is crucial to note that the spatially localized operators obtained in (5.1) do not depend on

the choices of {vm} and {en,i} which serve as dummy variables. Instead, the operators are

localized by the spatial matter coordinates.

The classical gravitational fields in Ashtekar formalism are SU(2) tensors, and their

scalar products with appropriate SU(2) matter currents provide the invariant components.

In other words, the physical components of the gravitational fields can be described with

respect to the physical frames of the matter currents. In the model, we use {V̂ i
I (vm), Û ī

Ī
(vm)}

and { ˆ̄V I
i (vm), ˆ̄U Ī

ī (vm)} to extract the physical components. Explicitly, for any s[Γ̄] ∈ K

〈s[Γ̄]|Ĵ(en,j)I ≡ 〈SΓ̄|V̂ (v̄n(Γ̄))iI Ĵ(ēn,j(Γ̄))iP̂diff

〈s[Γ̄]|ĥ(en,k)
Ī
J̄ ≡ 〈SΓ̄| ˆ̄U(v̄(n,k)(Γ̄))Īī ĥ(ēn,k(Γ̄))īj̄Û(v̄n(Γ̄))j̄

J̄
P̂diff

(5.3)

Using (5.1), we obtain the spatially localized operators as Ĵ(eX,∆X)I and ĥ(eX,∆X)Ī
J̄
. Notice

that while these operators are well defined in K, how well they describe the physics depends

on how well the matter coordinates behave.

The next step is to promote the spatially localized operators into fully localized observ-
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ables in H by using the clock field operator. Each state in H represents a quantum spacetime,

and each state in K gives a spatial quantum geometry. Therefore, the temporal localization in

our model is equivalent to a foliation of a quantum spacetime |Ψ〉 ∈ H into the spatial slices

{〈ψT | ∈ K} labeled by the clock time T . Correspondingly, a localized observable Ô(X,T )

will first project a state |Ψ〉 ∈ H into a state |ψT 〉 ≡ Π̂T |Ψ〉 ∈ K∗, which is the dual state of

〈ψT | ∈ K. Then, it will act upon |ψT 〉 by the spatially localized operator Ô(X). Finally, it

will apply the group averaging operator P̂ to bring the result back into H. With the clock

operator φ̂0(vn) that has continuous spectrum in K, the localized observables described above

have the explicit forms:

Ô(X,T ) ≡ P̂Ô(X)Π̂T (5.4)

where Π̂T is the operator that projects onto the eigenstates of φ̂0(vn) with the eigenvalues

lying within a range ε around T . In our model, the action of Π̂T on Ψ ∈ H is given by

〈s[Γ̄]|Π̂T |Ψ〉 ≡ 〈SΓ̄|Π̂T (Γ̄)P̂diff |Ψ〉 ≡ 〈SΓ̄|sym
{∏

n

ν̂φ0(v̄n(Γ̄))δ̂ε(φ̂0(v̄n(Γ̄))− T )

}
P̂diff |Ψ〉

(5.5)

for any s[Γ̄] ∈ K and Γ̄ ∈ [Γ̄], where ν̂φ0(vn) is the Hamiltonian speed of the clock

〈SΓ̄|ν̂φ0(v̄n(Γ̄)) ≡ 〈SΓ̄|
i

~

[
φ̂0(v̄n(Γ̄)), Ĥ(Γ̄)(1)

]
(5.6)

Also, since in general the operators ν̂φ0(v̄n(Γ̄)) with different n do not commute, we fix the

ordering ambiguity by applying the symmetrization sym{...} in the ordering of n. Clearly,

the choice of {vn} is again irrelevant. The classical counterpart of ν̂φ0(v̄n(Γ̄)) is νφ0(x) ≡
{φ0(x), H(N̄ = 1)}. When all fields are on-shell, H(N̄ = 1) generates diffeomorphisms

given by unit normal flows orthogonal to spatial slices, which transform φ0(x) ≡ φ0(x, 0)

into φ0(x, t). Therefore, when all the constraints are satisfied, νφ0(x) is simply the speed

∂tφ
0(x, t)|t=0 of the clock with respect to the proper time carried by the flow.

Finally, the localized gravitational observables are constructed by promoting Ĵ(eX,∆X)I

and ĥ(eX,∆X)Ī
J̄

using (5.4) into Ĵ(eX,∆X , T )I and ĥ(eX,∆X , T )Ī
J̄
.
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6 Matter Coordinate Conditions

In order to give sensible descriptions of the physics, the localized observables must refer to

reasonably well-behaved internal coordinates. This requirement is to be met by the choices

of the scalar fields, current frames, and the quantum state together.

6.1 Conditions on the Clock

As mentioned in the previous chapter, the purpose of the clock field φ̂0 is to physically define

a slicing for a quantum spacetime. To explore the dynamics in the model, φ̂0 has to provide

a slicing that reveals the causal evolution of the system. In classical general relativity, such

a clock specifies an ADM foliation, in which each slice provides the full information of the

whole spacetime. In other words, the field values on a slice at any clock time can be used to

reconstruct the whole spacetime.

In the setting of our model, the two spatial slices given by two distinct clock times T1 and

T2 are described by Π̂T1|Ψ〉 and Π̂T2|Ψ〉. Analogous to the condition above in the classical

case, the two spatial slices defined by the ideal clock φ̂0 should contain the same information

about the space time |Ψ〉, up to some quantum fluctuations. In other words, the group

average operator should be able to recover the spacetime from either of the slices

P̂Π̂T1|Ψ〉+O(~) = P̂Π̂T2|Ψ〉+O(~) = |Ψ〉 (6.1)

Notice that the condition involves not only φ̂0 , but also |Ψ〉. This agrees with the classical

theory in which the proper clocks are chosen according to the state of the whole system.
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Using the definition (5.4), the condition (6.1) implies

P̂Ô1(X)Ô2(X)Π̂T1|Ψ〉

= P̂Ô1(X)Ô2(X)Π̂T1P̂Π̂T1|Ψ〉+O(~)

= P̂Ô1(X)Π̂T1P̂Ô2(X)Π̂T1|Ψ〉+O(~)

= Ô1(X,T1)Ô2(X,T1)|Ψ〉+O(~)

(6.2)

More generally, denoting Φ(O1, O2, ...., ON) as an ordered function of N linear operators, we

have

P̂Φ(Ô1(X), Ô2(X), ...., ÔN(X))Π̂T1|Ψ〉]

= Φ(Ô1(X,T1), Ô2(X,T1), ...., ÔN(X,T1))|Ψ〉+O(~)
(6.3)

In the context of this thesis, we will need to consider the interactions applied to the clock.

For later use in describing this interaction, we introduce the operator Φ̂int(vn):

〈s[Γ̄]|Φ̂int(vn) ≡ 〈SΓ̄|
i

~
ν̂−1
φ0 (v̄n(Γ̄))

[
ν̂φ0(v̄n(Γ̄)), Ĥ(Γ̄)(1)

]
P̂diff (6.4)

where ν̂φ0(v̄n(Γ̄)) and ν̂−1
φ0 (v̄n(Γ̄)) are the Hamiltonian speed defined in (5.6) and its inverse.

Note that Φ̂int(vn) contains mainly the ‘acceleration’ of the clock, which is given by the

commutator in (6.4).

6.2 Conditions on the Rulers and Frames

In addition to a good clock, we need good spatial coordinates and frames to physically spec-

ify positions and directions at a given clock time. In classical general relativity, ideal spatial

coordinates for a certain foliation should provide local diffeomorphisms between R3 and the

space. In other words, the coordinatization should be locally one to one and preserve smooth-

ness and adjacentness. In loop quantum gravity, the states of spatial slices are described by

knot states with discrete structure. Therefore, in the model the matter spatial coordinates
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should locally provide a ‘discretized diffeomorphism’ between the quantum space and a set

of coordinate values.

Before imposing the spatial coordinate conditions in the model, we need to show how

the coordinatization can occur in the first place. To start with, we observe that by applying

to Π̂T1|Ψ〉 all arbitrary functions Φ(Ĵ(eX,∆X)I , ĥ(eX,∆X)Ī
J̄
, ĥ†(eX,∆X)Ī

J̄
) of the set of spatially

localized operators, one obtains a set of states constituting a linear subspace of K∗. This

subspace {Φ(Ĵ(eX,∆X)I , ĥ(eX,∆X)Ī
J̄
, ĥ†(eX,∆X)Ī

J̄
)Π̂T1|Ψ〉} ≡ K∗Ψ,T1

will be called the relevant

subspace for Π̂T1|Ψ〉. Recall that there are a great many distinct sets of dynamical nodes

and dynamical edges compatible with them. This ambiguity is a manifestation of diffM

symmetry in the quantum theory, which involves the superpositions of the knot states that

are defined background independently. Here we impose a requirement on the state |Ψ〉 such

that the corresponding K∗Ψ,T1
dynamically break the symmetry, picking up a preferred {v∗n}

and {e∗n,i} by being an approximate eigenspace of {φ̂(v∗n)} and {φ̂(v∗(n,i))}, where we again

define v∗(n,i)(Γ̄) ≡ ē∗n,i(Γ̄)(1). In other words, we require |Ψ〉 to satisfy

det(∆φ̂(v∗n))δ̂ε(φ̂(v∗n)−Xm)|ψ〉 = δm,n|ψ〉+O(~)

det(∆φ̂(v∗n)) det(∆φ̂(v∗(n,i)))δ̂
ε(φ̂(v∗n)−X)δ̂ε(φ̂(v∗(n,i))−Xm −∆Xm,j)|ψ〉 = δm,nδi,j|ψ〉+O(~)

(6.5)

for any |ψ〉 ∈ K∗Ψ,T1
. The appearance of det(∆φ̂(v∗n)) is needed for the same reason explained

after (5.1). When this is satisfied, the Xm is assigned to v∗m and the coordinate gap ∆Xm,j

is assigned to e∗m,j. Since φ̂(v∗n) is diagonal in the orthonormal basis of knot states, the
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condition (6.5) is equivalent to

〈s[Γ̄]|ψ〉 det(∆φ̂(v∗n))δ̂ε(φ̂(v∗n)−Xm)|s[Γ̄]〉 = 〈s[Γ̄]|ψ〉δm,n|s[Γ̄]〉+O(~)

〈s[Γ̄]|ψ〉 det(∆φ̂(v∗(n,i)))δ̂
ε(φ̂(v∗n)−X)δ̂ε(φ̂(v∗(n,i))− (Xm + ∆Xm,j))|s[Γ̄]〉 = 〈s[Γ̄]|ψ〉δm,nδi,j|ψ〉

+O(~)

(6.6)

for any dual knot state |s[Γ̄]〉 and any |ψ〉 ∈ K∗Ψ,T1
.8 According to (6.6), the condition (6.5)

is also equivalent to the requirement that

〈s[Γ̄]|ψ〉 k̂
N

(vn)|s[Γ̄]〉 ≡ 〈s[Γ̄]|ψ〉 kN[Γ̄](vn)|s[Γ̄]〉 ;

(
φ1( kN[Γ̄](v

∗
n)), φ2( kN[Γ̄](v

∗
n)), φ3( kN[Γ̄](v

∗
n))
)

= Xn +O(~)

(
φ1( kN[Γ̄](v

∗
(n,i))), φ

2( kN[Γ̄](v
∗
(n,i))), φ

3( kN[Γ̄](v
∗
(n,i)))

)
= Xn + ∆Xn,i +O(~)

(6.7)

for any dual knot state |s[Γ̄]〉 and any |ψ〉 ∈ K∗Ψ,T1
. From (6.7) we immediately see that

{v∗(m,i)} = {v∗n} and {(Xm + ∆Xm,i)} = {Xn}. The physical meaning of (6.5)-(6.7) is cru-

cial: since the matter spatial coordinates are what we refer to in spatial measurements, the

preferred dynamical nodes {v∗n} represent the physical spatial points we observe. Consequen-

tially, there is also a set of preferred dynamical spatial points p∗ ≡ {p∗m} agreeing with {v∗n},
such that p̄∗m(Γ̄) = v̄∗m(Γ̄) for m ≤ Nv. It should be emphasized that {v∗n} and p∗ are induced

by K∗Ψ,T1
, so they depend on the spatial quantum state Π̂T1|Ψ〉. For this reason, as one can

see in (6.6) that v̄∗n(Γ̄) can be arbitrary for |s[Γ̄]〉 that is orthogonal to K∗Ψ,T1
.

The spatial coordinate condition can now be imposed on the map (v∗n, e
∗
n,i)→ (Xn,∆Xn,i).

8Condition (6.6) implies that the coordinate gaps between adjacent nodes are comparable to the width ε
of δε, such that there is only one dynamical node corresponding to each coordinate value. This set-up is only
for simplicity. Coarse grained versions of (6.6) can be imposed when ε is much bigger than the coordinate
gaps, without effecting the following arguments about the semi-classical behavior of the model.
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Recall that K is based on the lattice torus Ttorus. Analogous to the coordinate maps for a

torus manifold, the map (v∗n, e
∗
n,i)→ (Xn,∆Xn,i) in large scale should appear to be smooth

around most of the physical spatial points. On the other hand, since there is no global

diffeomorphism between R3 and a 3-torus, we expect the map to appear discontinuous at

some specific set of the points {v∗nb} ⊂ {v∗n}. To approximate local diffeomorphisms between

the physical spatial points and R3, the model imposes the spatial coordinate conditions

as the following. For every e∗n.i with ē∗n.i(Γ̄) ∩ {v̄∗nb(Γ̄)} = ∅, we demand |∆Xn′,i′ | ≤ d,

where d represents a small coordinate gap, such that the map appears continuous in large

scales everywhere except {v∗nb}. For any m the set {∆Xm,i}|ē∗m.i(Γ̄)∩{v̄∗nb (Γ̄)}=∅ should define

a parallelepiped in R3 up to an error of O(d), such that the map appears smooth in large

scale everywhere except {v∗nb}. Notice that once (6.7) is satisfied the coordinate conditions

can be achieved easily through a suitable redefinition of the scalar functions (φ1, φ2, φ3).

In (5.3), we defined the physical SU(2) components of the tensorial observables with

respect to the matter current frames. Obviously, valid frames for this purpose should be

physically orthonormal to each other. Explicitly, we require that for any |ψ〉 ∈ K∗Ψ,T1

(Ôj
i V̂

i
I

ˆ̄V I
j )(Xn)|ψ〉 = Ôi

i(Xn)|ψ〉+O(~)

(Ô′
j̄

ī Û
ī
Ī

ˆ̄U Ī
j̄ )(Xn)|ψ〉 = Ô′

ī

ī(Xn)|ψ〉+O(~)

(εijk ˆ̄V I
i

ˆ̄V J
j

ˆ̄V K
k )(Xn)|ψ〉 = εIJK |ψ〉+O(~)

(6.8)

for any gravitational operators Ôj
i (vn) and Ô′

j̄

ī (vn). Matter frames that satisfy these condi-

tions are orthonormal in terms of the spatial geometry given by the gravitational sector of

the state |ψ〉.
With the help of the appropriate matter spatial coordinates and frames, any operators

acting on the space K∗Ψ,T1
can be re-expressed in terms of the spatially local operators. It is

through these new expressions we will decipher the physical meanings of the abstract knot

states. From now on, we denote X and (X,∆X) to be variables taking values from {Xn}
and {(Xn,∆Xn,i)} respectively.
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To start with, we assign physical lapse functions referring to the spatial coordinates. For

every function N (X), there is a correspondent lapse function NNp∗ with NNp∗ (p
∗
m) ≡ N (Xm)

for m ≤ Nv. Therefore, given any function N (X), one can mimic the Hamiltonian constraint

operator with the lapse function NNp∗ using the spatially local operators.

Ĥg(N )

≡ ĤE
g (N )− (i~κγ)−5 1
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(1 + γ2)

2

∑
X

N (X)
∑

∆X,∆Y,∆Z

sgn (eX,∆X , eX,∆Y , eX,∆Z)

×
(
ĥ−1(eX,∆X)

)L̄
Ī

[(
ĥ(eX,∆X)

)J̄
L̄
,
[
ĤE
g (1), V̂

]] (
ĥ−1(eX,∆Y )

)P̄
J̄

[(
ĥ(eX,∆Y )

)K̄
P̄
,
[
ĤE
g (1), V̂

]]
×
(
ĥ−1(eX,∆Z)

)Q̄
K̄

[(
ĥ(eX,∆Z)

)Ī
Q̄
, V̂
]

(6.9)

where ĤE
g (N ) is

ĤE
g (N )

≡ (i~κγ)−1 1

96

∑
X

N (X)
∑

∆X,∆Y,∆Z

sgn (eX,∆X , eX,∆Y , eX,∆Z)
(
ĥ(eX,∆X,∆Y )− ĥ−1(eX,∆X,∆Y )

)Ī
J̄

×
(
ĥ−1(eX,∆Z)

)L̄
Ī
·
[(
ĥ(eX,∆Z)

)J̄
L̄
, V̂
]

(6.10)

and

V̂ =
∑
X

[
1

48

∑
∆X,∆Y,∆Z

sgn (eX,∆X , eX,∆Y , eX,∆Z) ε̂PQRĴ(eX,∆X)P Ĵ(eX,∆Y )QĴ(eX,∆Z)R

] 1
2

(6.11)
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Clearly, the operators Ĥg(N
N
p∗ ) and Ĥg(N ) are different operators in the full space K. How-

ever, thank to the coordinate and frame conditions (6.5) and (6.8), for any |ψ〉 ∈ K∗Ψ,T1
we

have

Ĥg(N
N
p∗ )|ψ〉 = Ĥg(N )|ψ〉+O(~) (6.12)

Therefore, Ĥg(N
N
p∗ ) and Ĥg(N ) act equally on any Π̂T1|Ψ〉 ∈ K∗Ψ,T1

up to quantum fluctuation.

Set α̂(eY,∆Y ) to be the operator obtained from localizing α̂(en,i), which is defined by the

following. Each knot states 〈s[Γ̄]| ∈ K is an eigenstate of α̂(en,i) with an eigenvalue +1 or

−1. The knot state is assigned the eigenvalue +1 if the embedded edge of Γ̄ overlapping

with ēn,i(Γ̄) has the same orientation as ēn,i(Γ̄), and the eigenvalue −1 if the orientations

are opposite. When acting on any |ψ〉 ∈ K∗Ψ,T1
, the spatially local operators also satisfy the

equations:

Ĵ†(eX,∆X)I |ψ〉 = Ĵ(eX,∆X)I |ψ〉+O(~)

[
Ĵ(eX,∆X)I , ĥ(eY,∆Y )ĪJ̄

]
|ψ〉 = δX,Y δ∆X,∆Y il

2
pγ(τI)

K̄
J̄ ĥ(eY,∆Y )ĪK̄ |ψ〉

−δX,Y+∆Y δ−∆X,∆Y il
2
pγ(τI)

Ī
K̄ ĥ(eY,∆Y )K̄J̄ |ψ〉+O(l2p~)

[
Ĵ(eX,∆X)I , ĥ

†(eY,∆Y )ĪJ̄

]
|ψ〉 = δX,Y δ∆X,∆Y il

2
pγ(τ ∗I )K̄J̄ ĥ

†(eY,∆Y )ĪK̄ |ψ〉

−δX,Y+∆Y δ−∆X,∆Y il
2
pγ(τ ∗I )ĪK̄ ĥ

†(eY,∆Y )K̄J̄ |ψ〉+O(l2p~)

[
ĥ(eX,∆X)K̄L̄ , ĥ(eY,∆Y )ĪJ̄

]
|ψ〉 = 0 +O(l2p~)

[
ĥ(eX,∆X)K̄L̄ , ĥ

†(eY,∆Y )ĪJ̄

]
|ψ〉 = 0 +O(l2p~)

[
Ĵ(eX,∆X)I , Ĵ(eY,∆Y )J

]
|ψ〉 = δX,Y δ∆X,∆Y il

2
pγεIJ

K Ĵ(eY,∆Y )Kα̂(eY,∆Y )|ψ〉+O(l2p~)

(6.13)
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Again, it should be emphasized that the equations in (6.13) are not equations of the

operators alone. The equalities are derived from the conditions (6.6) and (6.7) satisfied by

the state Π̂T1 |Ψ〉, so they arise from the physical conditions of the system.

7 Coherent States

We have required the state |Ψ〉 to satisfy quantum coordinate conditions, such that the set

of local observables {Ĵ(eX,∆X , T )I} and {ĥ(eX,∆X , T )Ī
J̄
} are expected to give a meaningful

description on the gravitational sector, with T around the moment T1 . Since our goal is to

obtain the semi-classical limit, specific conditions of coherence should be imposed on |Ψ〉.
As in the case of quantum cosmology, we need semi-classical conditions on the gravitational

local observables and the momentum of the clock. Therefore, the state |Ψ〉 is required to

satisfy

Ĵ(eX,∆X , T1)I |Ψ〉 =
(
〈Ψ|Ĵ(eX,∆X , T1)I |Ψ〉

)
|Ψ〉+O(~)

ĥ(eX,∆X , T1)ĪJ̄ |Ψ〉 =
(
〈Ψ|ĥ(eX,∆X , T1)ĪJ̄ |Ψ〉

)
|Ψ〉+O(~)

ν̂φ0(X,T1)|Ψ〉 = (〈Ψ|ν̂φ0(X,T1)|Ψ〉) |Ψ〉+O(~)

(7.1)

Additionally, we also expect the expectation values to appear continuous in terms of the

spatial coordinates for a semi-classical state. Therefore, for any two ē∗n,i(Γ̄) and ē∗m,j(Γ̄) that
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share a common node and form a smooth path, we will impose:

〈Ψ|Ĵ(eXn,∆Xi , T1)I |Ψ〉 = 〈Ψ|Ĵ(eXm,∆Xj , T1)I |Ψ〉+O(d)

〈Ψ|ĥ(eXn,∆Xi , T1)ĪJ̄ |Ψ〉 = 〈Ψ|ĥ(eXm,∆Xj , T1)ĪJ̄ |Ψ〉+O(d)

〈Ψ|ν̂φ0(Xn, T1)|Ψ〉 = 〈Ψ|ν̂φ0(Xm, T1)|Ψ〉+O(d)

(7.2)

In this thesis, we will assume the existence of the states that satisfy (7.1) and (7.2) without

explicitly constructing them. Because of the appearance of ~ or l2p in every result of (6.13),

this assumption is rather mild. Note that the coherence conditions are defined with respect

to the observer who carries the clock φ0. The conditions say that the quantum spacetime

|Ψ〉 has a sharply defined spatial geometry and extrinsic curvature on the spatial slice at

clock time T1. Therefore, the quantum spacetime |Ψ〉 is expected to be semi-classical around

that moment.

8 Emergent Gravitational Fields

To make contacts with classical general relativity, the expectation values in (7.1) need to

be interpreted in terms of classical fields. The matter coordinates provide a natural way

to make such a translation from the discrete structure of knot states into the continuous

configuration of classical fields.

For an explicit example, we will first pick a simple spatial matter coordinate system.

Recall that the lattice torus Ttorus can be constructed by identifying the opposite boundary

faces of a lattice rectangular prism Ī3
Z ⊂ R3, which consists of the vertices {V̄n = Xn} and

links {l̄i}. Here the bars indicate the embedding in R3. Such construction naturally gives a

coordinate map v∗n → V̄n = Xn that satisfies the spatial coordinate conditions (fig.3). Also,

the approximated spatial coordinate space is naturally a rectangle region Ī3 ⊃ Ī3
Z inside of

R3. In this case, the set {v∗nb} where the map is discontinuous is the set that is mapped into
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the boundary of Ī3.

Once a matter spatial coordinates are chosen, our model identifies every e∗n.i satisfying

ē∗n.i(Γ̄) ∩ {v̄∗nb(Γ̄)} = ∅ with an embedded path in R3 under the guidance of the matter

coordinate values. Specifically under our choice of coordinates, each such e∗n.i is identified

with the oriented path ēXn,∆Xn,i that goes from the vertex Xn to the vertex Xn + ∆Xn,i,

which overlaps completely with the link l̄i′ connecting the two vertices. Subsequently, the

model choose a cubical cell decomposition dual to Ī3
Z, dividing Ī3 into a set of cubical cells

{c̄Xn}. Each cell c̄Xn uniquely contains a vertex Xn, and the boundaries of all the cells

consist of a set of smooth faces {s̄i} whose each element s̄i′ intersects transversely with an

unique link l̄i′ among {l̄i}. Suppose l̄i′ links Xn and Xn + ∆Xn,i, and denote S̄Xn,∆Xn,i ⊂ Ī3

to be the oriented surface overlapping completely with s̄i′ that is dual to l̄i′ and has the

same orientation as ēXn,∆Xn,i . The picture motivates an interpretation of the expectation

values in (7.1) as being given by smearing a smooth gravitational fields defined in Ī3 over the

corresponding elements from {ēX,∆X} and {S̄X,∆X}. Explicitly, we pick a fitting algorithm

that maps the expectation values {〈Ĵ(eX,∆X , T )I〉, 〈ĥ(eX,∆X , T )Ī
J̄
〉} and {〈ν̂φ(X,T )〉} to the

values of the smooth fields {Ea
I (X,T ), AJb (X,T )} and {νφ(X,T )} defined in Ī3. The model

requires the fitting algorithm to obey the following rules:9

νφ0(X,T ) ≡ 〈ν̂φ0(X,T )〉

∫
S̄X,∆X

Ea
I (T )dsa ≡ 〈Ĵ(eX,∆X , T )I〉

P exp[

∫
ēX,∆X

AJb (T )(τJ)deb]K̄L̄ ≡ 〈ĥ(eX,∆X , T )〉K̄L̄

(8.1)

Due to the lattice torus topology, the continuous condition (7.2) would imply boundary

conditions on the emergent fields in the coordinate space Ī3. Denote the three pairs of

9 Note that such an algorithm is guaranteed to exist, since we are fitting the smooth fields with infinite
degrees of freedom to the finitely many data points given by the expectation values of the local observables.
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boundary faces of Ī3 as (∂I+
x , ∂I

−
x ), (∂I+

y , ∂I
−
y ), and (∂I+

z , ∂I
−
z ), the continuous condition

(7.2) on the lattice torus implies:

νφ0(X,T1)|∂I+
x,y,z

= νφ0(X,T1)|∂I−x,y,z +O(d)

Ea
I (X,T1)|∂I+

x,y,z
= Ea

I (X,T1)|∂I−x,y,z +O(d)

AJb (X,T1)|∂I+
x,y,z

= AJb (X,T1)|∂I−x,y,z +O(d)

(8.2)

The choices of Ī3
Z ⊂ R3, the cell decomposition {s̄i}, and the fitting algorithm described

above are restricted but non-unique. However, any chosen set gives a valid correspondence

between |Ψ〉 and the smooth fields.

It is important to check that the emergent gravitational fields transform correctly un-

der changes of spatial coordinates and frames. First, we consider two observers using the

same clock and current frames, but two different spatial coordinates given by φ̂(v∗n) and

φ̂′(v∗n).10 Suppose that at T1, the two spatial coordinate systems v∗n → Xn ∈ Ī3
Z and

v∗n → X ′n ∈ Ī ′
3
Z satisfy the spatial coordinate conditions, and are approximately continu-

ous except at {v∗nb} and {v∗nb′}. For the coordinate gaps, we arbitrarily set d ≥ d′. Any

e∗n.i satisfying ē∗n.i(Γ̄) ∩ {v̄∗nb(Γ̄)} = ∅ and ē∗n.i(Γ̄) ∩ {v̄∗nb′(Γ̄)} = ∅ would be mapped into an

embedded path in each of the two coordinate spaces Ī3 and Ī ′
3
. The two embedded paths

in the two coordinate spaces are respectively ēXn,∆Xn,i and ēX′n,∆X′n,i . Also, the cell decom-

position of Ī3 dual to Ī3
Z, and of Ī ′

3
dual Ī ′

3
Z induce surfaces {S̄Xn,∆Xn,i} and {S̄X′n,∆X′n,i}

in the two coordinate spaces. By construction, the transformation (ēXn,∆Xn,i , S̄Xn,∆Xn,i) →
(ēX′n,∆X′n,i , S̄X′n,∆X′n,i) is contravariant under the coordinate transformation X → X ′, up to an

error of order d. On the other hand, we have 〈Ĵ(eXn,∆Xn,i , T1)I〉 = 〈Ĵ(eX′n,∆X′n,i , T1)I〉+O(~)

10 It would be interesting to consider the case where the two spatial coordinate operators are based on
different preferred dynamical nodes. In such a case the two observers has different notions of physical spatial
points. Here we would focus on the simpler case with their agreement on {v∗n}.
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and 〈ĥ(eXn,∆Xn,i , T1)K̄
L̄
〉 = 〈ĥ(eX′n,∆X′n,i , T1)K̄

L̄
〉+O(~). Thus from (8.1), we conclude that the

emergent gravitational fields transform as they do in the classical theory under a change of

matter spatial coordinates, up to an error which is suppressed when both ~ and d are small.

Next, we consider two observers using the same spatial coordinates but two different

frames, each satisfying the conditions (6.8). At the clock time T1, the transformation matrices

between the two frames are given by

〈Ψ| ˆ̄V I
i V̂

′i
J ′(X,T1)|Ψ〉 ≡ RI

J ′(X,T1) +O(~)

〈Ψ| ˆ̄V ′I′i V̂ i
J(X,T1)|Ψ〉 ≡ R†I′

J (X,T1) +O(~)

〈Ψ| ˆ̄U Ī
ī Û

′ ī
J̄ ′(X,T1)|Ψ〉 ≡ U ĪJ̄ ′(X,T1) +O(~)

〈Ψ| ˆ̄U ′Ī′ī Û ī
J̄(X,T1)|Ψ〉 ≡ U †Ī′

J̄
(X,T1) +O(~)

(8.3)

It follows from (6.8) and (8.3) thatR−1 = R† and U−1 = U †. Therefore the clock time T1, the

observables’ expectation values for the two observers are related by SU(2) transformations

RI
I′(X,T1)〈Ĵ(SX,∆X , T1)I〉 = 〈Ĵ(SX,∆X , T1)I′〉+O(~) +O(d3)

U †K̄′
K̄

(X + ∆X,T1)〈ĥ(eX,∆X , T1)K̄L̄ 〉U L̄L̄′(X,T1) = 〈ĥ(eX,∆X , T1)K̄
′

L̄′ +O(~) +O(d2)

(8.4)

Again, combining (8.4) with (8.1), we conclude that the emergent gravitational fields trans-

form as they do in the classical theory under a change of matter frames, up to an error which

is suppressed when both ~ and d are small.

Altogether, we have the transformation between the two emergent gravitational fields,
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given by two different sets of matter coordinates and frames, of the form

Ea′

I′√
detE ′

(X ′, T1) =
∂Xa′

∂Xa
RI
I′

Ea
I√

detE
(X,T1) +O(~) +O(d)

(Aa′(X
′, T1))K̄

′

L̄′ =
∂Xa

∂Xa′
(U †AaU(X,T1) + iU †∂aU(X,T1))K̄

′

L̄′ +O(~) +O(d)

(8.5)

which has the correct semi-classical limit.

The emergent gravitational fields describe the large scale limit of the physical quantum

geometry we have been searching for in section 2.2.5. Corresponding to each set of {en,i}
and {vn}, we construct a set of dynamical surfaces {Sn,i} and regions {Rn} satisfying the

following conditions. For any Γ̄, the embedded surface S̄n,i(Γ̄) transversely intersects once

with only ēn,i(Γ̄) among {ēm,j(Γ̄)}, in the same orientation. The embedded region R̄n(Γ̄)

contains only v̄n(Γ̄) among {v̄m(Γ̄)}. Using (5.1) and (5.4), one obtains the local area

and volume operators {Â(SX,∆X , T )} and {V̂ (RX , T )}. Moreover, the expectation values

of the localized geometric observables {Â(SX,∆X , T1)} and {V̂ (RX , T1)} measures the areas

and volumes of {S∗n,i} and {R∗n} corresponding to {e∗n,i} and {v∗n}. The sets {S∗n,i} and

{R∗n} represent the sets of physical surfaces and regions for the state |Ψ〉 at T1 under the

matter spatial coordinates. Further, the coordinate map v∗n → V̄n = Xn naturally identify

the physical surfaces and regions with {S̄Xn,∆Xn,i} and {c̄Xn} in the coordinate space Ī3.

Finally, the quantum geometry given by the action of {Â(SX,∆X , T1)} and {V̂ (RX , T1)} on

|Ψ〉 is coherent, and has a large scale limit conforming with the emergent gravitational fields

∫
⋃
n,i S̄Xn,∆Xn,i

√
δIJEa

IE
b
J(T1)dS̄adS̄b =

∑
n,i

〈Â(SXn,∆Xn,i , T1)〉+O(~)

∫
⋃
n c̄Xn

√
1

3!
εIJKεabcEa

IE
b
JE

c
K(T1)dX3 =

∑
n

〈V̂ (RXn , T1)〉+O(~)

(8.6)
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where the left hand sides are exactly the classical expressions of the area and volume in

terms of the emergent densitized triad fields.

9 Emergent Constraints and Diffeomorphism Algebra

Now we move on to explore the consequences of the symmetry of |Ψ〉, or equivalently the

symmetry of P̂. In particular our goal is to see, in large scales and up to the matter back

reactions, what equations are imposed by the symmetry on the emergent gravitational fields.

The right invariance of P̂ implies that the physical state |Ψ〉 satisfies

〈Ψ|P̂ ˆexp
(
iĤ(εNp)

)
Π̂T1 |Ψ〉 = 〈Ψ|P̂Π̂T1|Ψ〉 (9.1)

where Np and the real number ε are arbitrary. Denoting Ô� ≡ Ô + Ô† and taking ε to be

small, we have

〈Ψ|P̂Ĥ(Np)Π̂T1|Ψ〉 = 〈Ψ|P̂Ĥ �
g(Np)Π̂T1 |Ψ〉+ 〈Ψ|P̂Ĥ �

m(Np)Π̂T1|Ψ〉 = 0 (9.2)

Specifically, we can set the lapse function to be Np = NNp∗ corresponding to an arbitrary

N (X). Then it follows from (6.12) that

〈Ψ|P̂Ĥ�
g(N

N
p∗ )Π̂T1|Ψ〉+ 〈Ψ|P̂Ĥ �

m(NNp∗ )Π̂T1|Ψ〉

= 〈Ψ|P̂Ĥ�
g(N )Π̂T1|Ψ〉+ 〈Ψ|P̂Ĥ �

m(NNp∗ )Π̂T1|Ψ〉+O(~)

≡ 〈Ψ|P̂Ĥ�
g(N )Π̂T1|Ψ〉+O(~) + εm

= 0

(9.3)

for any N (X), where we denote the contribution from the matter sector as εm . Recall

that Ĥg(N ) is an ordered series of spatially local operators. To indicate this we write

Ĥg(N ) ≡ Hg(N , Ĵ , ĥ), where Ĵ and ĥ denote the collection of all the spatially local operators.
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Moreover, the condition (6.3) for the clock gives

〈Ψ|P̂Ĥ�
g(N )Π̂T1|Ψ〉+ εm

≡ 〈Ψ|P̂H�
g(N , Ĵ , ĥ)Π̂T1|Ψ〉+ εm

= 〈Ψ|H�
g(N , Ĵ(T1), ĥ(T1))|Ψ〉+O(~) + εm

= 0

(9.4)

The coherence conditions (7.1) says that the local observables in (9.4) can be replaced by

their expectation values, with errors of orders of ~:

〈Ψ|H�
g(N , Ĵ(T1), ĥ(T1))|Ψ〉+O(~) + εm = 〈Ψ|H�

g(N , 〈Ĵ(T1)〉, 〈ĥ(T1)〉)|Ψ〉+O(~) + εm = 0

(9.5)

Under the correspondence (8.1), we now rewrite (9.5) in terms of the emergent gravitational

fields.

〈Ψ|H�
g(N , 〈Ĵ(T1)〉, 〈ĥ(T1)〉)|Ψ〉+O(~) + εm = Hg(N )

∣∣
EaI (T1),AJb (T1)

+O(d4) +O(~) + εm = 0

(9.6)

where Hg(N ) is exactly the classical Hamiltonian constraint given by (2.4), written in terms

of the emergent gravitational fields and matter coordinates

Hg(N )
∣∣
EaI (T1),AJb (T1)

=

∫
Ī3

d3XN (X)
Ea
IE

b
J√

detE

[
εIJKF

K
ab + 2(1− γ2)KI

[aK
J
b]

]
(X,T1)

It follows that up to the corrections coming from the discretization of space, quantum fluctua-

tions, and matter back reactions, the emergent gravitational fields of |Ψ〉 satisfy gravitational

Hamiltonian constraint.
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We now move on to show that Gauss and momentum constraints also emerge correctly

in the semi-classical limit. The invariance of P̂ again implies

〈Ψ|P̂ ˆexp
(
iĤ(εNp)

)
ˆexp
(
Ĥ(iε′Mp)

)
ˆexp
(
Ĥ(−iεNp)

)
Π̂T1 |Ψ〉 = 〈ψ|P̂Π̂T1 |Ψ〉 (9.7)

Setting ε and ε′ to be small, we have

〈Ψ|P̂[Ĥ(Mp), Ĥ(Np)]Π̂T1|Ψ〉 = 0 (9.8)

for any Mp and Np. Setting the lapse functions to be MM
p∗ and NNp∗ with arbitrary M(X)

and N (X), we have

〈Ψ|P̂ i
~

[Ĥ(MM
p∗ ), Ĥ(NNp∗ )]Π̂T1|Ψ〉

≡ 〈Ψ|P̂ i
~

[Ĥ �
g(M

M
p∗ ), Ĥ �

g(N
N
p∗ )]Π̂T1|Ψ〉+ ε′m

= 〈Ψ|P̂ i
~

[Ĥ�
g(M), Ĥ�

g(N )]Π̂T1 |Ψ〉+O(~) + ε′m

= 0

(9.9)

Here we have singled out the gravity-gravity term of the commutator and denoted the terms

involving Ĥm as ε′m. The commutator [Ĥ�
g(M), Ĥ�

g(N )] is then carried out using (6.13):

〈Ψ|P̂ i
~

[Ĥ�
g(M), Ĥ�

g(N )]Π̂T1 |Ψ〉+O(~) + ε′m

≡ 〈Ψ|P̂Cg(M,N , Ĵ , ĥ)Π̂T1|Ψ〉+ 〈Ψ|P̂Cg,α(M,N , Ĵ , ĥ, α̂)Π̂T1|Ψ〉+O(~) + ε′m

= 〈Ψ|Cg(M,N , Ĵ(T1), ĥ(T1))|Ψ〉+ 〈Ψ|Cg,α(M,N , Ĵ(T1), ĥ(T1), α̂(T1))|Ψ〉+O(~) + ε′m

= 0

(9.10)

where we separate the result into two terms according to the presence of α̂. Among the two

terms involving Ĉg(M) ≡ Cg(M,N , Ĵ , ĥ) and Ĉg,α(M,N ) ≡ Cg,α(M,N , Ĵ , ĥ, α̂), only the
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latter contains α̂. Similar to the previous case, the semi-classical limit of (9.10) in terms of

the emergent gravitational fields is obtained as

〈Ψ|Cg(M,N , 〈Ĵ(T1)〉, 〈ĥ(T1)〉)|Ψ〉+ 〈Ψ|Cg,α(M,N , 〈Ĵ(T1)〉, 〈ĥ(T1)〉, 〈α̂(T1)〉)|Ψ〉+O(~) + ε′m

= {Hg(M), Hg(N )}
∣∣
EaI (T1),AJb (T1)

+O(d4) +O(~) + ε′m

= 0

(9.11)

Note that the expectation of α̂ for |Ψ〉 is of order of one, since its spectrum contains only

+1 and −1. Given that, the term Cg,α only contributes as O(d4). Thus the leading order

contribution only involves the expectation values that can be translated into the emergent

gravitational fields. Since M and N are arbitrary, it follows from (2.6) that the emer-

gent gravitational fields also satisfy gravitational Gauss and momentum constraints, up to

the corrections due to the discretization of space, quantum fluctuations, and matter back

reaction.

The above calculations suggest that the operator Ĥ�
g(N ) is the quantum counterpart of

Hg(N ). According to the classical case, Ĥ�
g is then expected to generate the translations on

only the gravitational fields, in the direction perpendicular to the spatial slices specified by

the clock. Moreover, the calculations also suggest that Ĉg(M,N ) is the quantum counterpart

of {Hg(M), Hg(N )}, which generates combinations of spatial diffeomorphisms and local

SU(2) transformations on only the gravitational fields, with respect to the matter spatial

coordinates and frames. As a first step to validate this interpretation, we list the results of
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the semi-classical limits of the commutators

〈Ψ|P̂ i
~

[
Ĥ�
g(M), Ĥ�

g(N )
]

Π̂T1|Ψ〉

= {Hg(M), Hg(N )}
∣∣
EaI (T1),AJb (T1)

+O(~) +O(d4)

〈Ψ|P̂ i
~

[
Ĥ�
g(M), Ĉg(N ,N ′)

]
Π̂T1|Ψ〉

= {Hg(M), {Hg(N ), Hg(N ′)}}
∣∣
EaI (T1),AJb (T1)

+O(~) +O(d4)

〈Ψ|P̂ i
~

[
Ĉg(M,N ), Ĉg(M′,N ′)

]
Π̂T1|Ψ〉

= {{Hg(M), Hg(N )}, {Hg(M′), Hg(N ′)}}
∣∣
EaI (T1),AJb (T1)

+O(~) +O(d4)

(9.12)

More generally, it can be shown that

〈Ψ|P̂
(
i

~

)n−1 [
Φ̂n, ....

[
Φ̂3,
[
Φ̂2, Φ̂1

]]
...
]

Π̂T1|Ψ〉

= {Φn, .... {Φ3, {Φ2,Φ1}} ...}
∣∣
EaI (T1),AJb (T1)

+O(~) +O(d4)

(9.13)

where each pair (Φ̂i,Φi) can be set to be either the pair (Ĥ�
g(Mi), Hg(Mi)), or the pair

(Ĉg(Mi,Ni), {Hg(Mi), Hg(Ni)}). In this sense the four-dimensional diffeomorphism algebra

for pure gravitational fields emerges in the semi-classical limit for |Ψ〉, up to the corrections.

The quantum spacetime |Ψ〉, including the gravitational and matter sectors, is invariant

under the actions of four-dimensional diffeomorphisms acting on both sectors. On the other

hand, the generators identified in (9.12) are expected to generate the four-dimensional dif-

feomorphisms of the gravitational sector relative to the matter sector, and act nontrivially

on the quantum spacetime |Ψ〉. It is these relative transformations that give the physics we

observe.
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10 Emergent Dynamics

The Gauss constraint, momentum constraint and (modified) Hamiltonian constraint opera-

tors are simply zero operators in the physical Hilbert space H. In this sense, the fundamental

diffeomorphism symmetry becomes silent after providing the structure of the physical Hilbert

space. Just as in classical general relativity, the physics in H should to be instead given by

relations between the dynamical fields. In the model, the relation between gravitational

field and the matter coordinate fields are expressed by the local observables Ô(X,T ). The

values {〈Ψ|Ô(X,T )|Ψ〉} with different (X,T ) are expected to be related through certain

quantum transformations. Moreover, semi-classical limits of such transformations have clear

classical counterparts that have to be agreed with; specifically, the transformations from

〈Ψ|Ô(X,T )|Ψ〉 to 〈Ψ|Ô(X,T + ∆T )|Ψ〉 has to give the clock-time dynamics of O(X,T ) in

general relativity. In the last chapter, we found that the operators Ĥ�
g(N ) and Ĉg(M,N ) re-

produce the algebra of relative diffeomorphisms between the gravitational and matter fields,

and are candidates for generators of such transformations in the quantum theory. In this

chapter, we explicitly evaluate the relative transformations of the emergent gravitational

fields with respect to the clock time. We will show that these transformations are indeed

generated by Ĥ�
g(N ) and Ĉg(M,N ), and they recover the dynamics of general relativity in

appropriate semi-classical limits.

Due to their self-adjointness, Ĥ�
g(M) and Ĉg(M,N ) generate the following unitary op-

erators in K:

ˆexp
(
i
ε1
~
Ĥ�
g(M)

)
≡ ÛHg(M, ε1) , ˆexp

(
i
ε2
~
Ĉg(M,N )

)
≡ ÛCg(M,N , ε2)

When ε1 is small, we have the infinitesimal transformations of the emergent gravitational
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fields by ÛHg(M, ε1) as:

δε1

∫
S̄X,∆X

Ea
I (T1)dsa

= ε1〈Ψ|P̂
i

~
[Ĵ(eX,∆X)I , Ĥ�

g(N )]Π̂T1|Ψ〉+O(ε1
2) +O(~) +O(d4)

δε1P exp[

∫
ēX,∆X

AJb (T1)(τJ)deb]K̄L̄

= ε1〈Ψ|P̂
i

~
[ĥ(eX,∆X)K̄L̄ , Ĥ�

g(N )]Π̂T1|Ψ〉+O(ε1
2) +O(~) +O(d4)

(10.1)

Similarly, the infinitesimal transformations by ÛCg(M,N , ε2) with small ε2 are given by:

δε2

∫
S̄X,∆X

Ea
I (T1)dsa

= ε2〈Ψ|P̂
i

~
[Ĵ(eX,∆X)I , Ĉg(M,M′)]Π̂T1 |Ψ〉+O(ε2

2) +O(~) +O(d4)

δε2P exp[

∫
ēX,∆X

AJb (T1)(τJ)deb]K̄L̄

= ε2〈Ψ|P̂
i

~
[ĥ(eX,∆X)K̄L̄ , Ĉg(M,M′)]Π̂T1|Ψ〉+O(ε2

2) +O(~) +O(d4)

(10.2)

Equations (10.1) are of special interest in deriving the dynamics in terms of the clock time.

These equations are expected to give the variations of the gravitational fields at the clock time

T1, when the fields are translated perpendicularly to clock time slices. The perpendicular

direction of the time slices might or might not agree with the clock time coordinate direction

at the time T1. When the two agree, the clock time derivative of the local gravitational

observables should be described by (10.1) with a specific choice of N , and possibly a term

generated by the Gauss constraint. In this case the matter coordinates simply correspond

to the gauge where the shift function V a is set to be zero. When the two directions differ,
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the equations of evolution should further include a term that is generated by the momentum

constraint. In short, aside from the contribution (10.1), the presence of the terms generated

by momentum and the Gauss constraints should be determined by the dynamics of the

spatial coordinate and frame fields.

To calculate the clock-time derivative of a gravitational observable Ô, one needs to choose

an appropriate value for N in (10.1). Ignoring matter back reactions, the commutator

i
~ [Ô(v̄∗n(Γ̄)), Ĥ �

g(N̄)] approximates i
~ [Ô(v̄∗n(Γ̄)), Ĥ(N̄)], which corresponds to {O(x), H(N̄)}

in the classical theory. Recall that when all fields are on-shell, H(N̄ = 1) generates

the diffeomorphisms given by unit normal flows orthogonal to spatial slices, transforming

O(x) ≡ O(x, 0) into O(x, t). Therefore, when all the constraints are satisfied, {O(x), H(N̄ =

1)} = ∂tO(x, t)|t=0 is simply the speed of O with respect to the proper time carried by the

flow. Also, in chapter 5 we have defined the speed of the clock νφ0(x) ≡ {φ0(x), H(N̄ =

1)} = ∂tφ
0(x, t)|t=0 (on shell). Combining the two different speeds, Leibniz rule instructs

us to obtain the derivative of O with respect to φ0 at the proper time t = 0, by using

ν−1
φ0 (x){O(x), H(N̄ = 1)} = {O(x), H(N̄ = ν−1

φ0 )}. Therefore, we expect the appropriate

lapse function to be N (X) = ν−1
φ0 (X,T1) .

To independently verify these statements about the dynamics, we now carry out a cal-

culation directly based on the definition of the observables. Since there is a set of local

observables corresponding to each clock time, the dynamics can be evaluated by comparing

the expectation values of the observables at a sequence of different clock times. In partic-

ular, the comparison between two adjacent clock times leads to the equation of motion for

〈O(X,T )〉 as

d

dT

∣∣∣∣
T1

〈Ô(X,T )〉 = lim
∆T→0

1

∆T

[
〈Ψ|P̂Ô(X)Π̂T1+∆T |Ψ〉 − 〈Ψ|P̂Ô(X)Π̂T1|Ψ〉

]
(10.3)

To evaluate this quantity, we start from the invariance of the local observables. Being

physical, a local observable Ô(X,T ) = P̂Ô(X)Π̂T commutes with Ĥ(Np) for arbitrary Np.
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Setting p = p∗ and Np = NNp∗ we have

0 = 〈Ψ| i
~

[
Ĥ
(
NNp∗

)
, P̂Ô(X)Π̂T1

]
|Ψ〉

= 〈Ψ|P̂Ô(X)
i

~

[
Ĥ
(
NNp∗

)
, Π̂T1

]
|Ψ〉+ 〈Ψ|P̂ i

~

[
Ĥ
(
NNp∗

)
, Ô(X)

]
Π̂T1|Ψ〉

(10.4)

The second term is familiar from the previous chapter, while the first term can be calculated

using the notation defined in (3.7) and (6.4):

〈Ψ|P̂Ô(X)
i

~

[
Ĥ
(
NNp∗

)
, Π̂T1

]
|Ψ〉

= 〈Ψ|P̂Ô(X)
∑
[Γ̄]

|s[Γ̄]〉〈s[Γ̄]|
i

~

[
Ĥ
(
NNp∗

)
, Π̂T1

]
|Ψ〉

=
∑
[Γ̄]

〈Ψ|P̂Ô(X)|s[Γ̄]〉〈SΓ̄|
i

~

[
Ĥ(Γ̄)

(
NNp∗

)
, Π̂T1(Γ̄)

]
P̂diff |Ψ〉

=
∑
[Γ̄]

〈Ψ|P̂Ô(X)|s[Γ̄]〉

×
[
〈SΓ̄|

i

~
∑
m

[
Ĥ(Γ̄)(N

N
p∗ ), ν̂φ0(v̄∗m(Γ̄))

]
ν̂−1
φ0 (v̄∗m(Γ̄))

∏
n

ν̂φ0(v̄∗n(Γ̄))δ̂(φ̂0(v̄∗n(Γ̄))− T1)P̂diff |Ψ〉

−〈SΓ̄|
i

~
∑
m

[
Ĥ(Γ̄)(N

N
p∗ ), φ̂

0(v̄∗m(Γ̄))
] ∂

∂Tm

∣∣∣∣
T1

∏
n

ν̂φ0(v̄∗n(Γ̄))δ̂(φ̂0(v̄∗n(Γ̄))− Tn)P̂diff |Ψ〉
]

+O(~)

= 〈Ψ|P̂Ô(X)
∑
m

N (Xm)Φ̂int(Xm)Π̂T1|Ψ〉+ 〈Ψ|P̂Ô(X)
∑
m

N (Xm)ν̂φ0(Xm)
∂

∂Tm

∣∣∣∣
T1

Π̂{Tn}|Ψ〉

+O(d) +O(~)

(10.5)

where Π̂{Tn} gives the deformed spatial slices with nonconstant clock field values around T1,
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and is defined by

〈s[Γ̄]|Π̂{Tn} ≡ 〈SΓ̄|sym
{∏

n

ν̂φ0(v̄∗n(Γ̄))δ̂(φ̂0(v̄∗n(Γ̄))− Tn)

}
P̂diff (10.6)

for any 〈s[Γ̄]| ∈ K. Since Π̂{Tn=T1} = Π̂T1 , the coherence condition (7.1) implies

P̂Ô(X)
∂

∂Tm

∣∣∣∣
T1

Π̂{Tn}|Ψ〉

=
∂

∂Tm

∣∣∣∣
T1

P̂O(X, {Tn})Π̂T1|Ψ〉+
∂

∂Tm

∣∣∣∣
T1

P̂O(X,T1)Π̂{Tn}|Ψ〉+O(~)

(10.7)

where Ô(X,T ) can be any local observables involving only gravitational and the clock’s

momentum field, and O(X, {Tn}) is a smooth function with O(X, {Tn = T1}) = O(X,T1) =

〈Ô(X,T1)〉. As proposed near the begining of this chapter, the lapse function will now be

set to be N (X) = ν−1
φ0 (X,T1). Applying the coherence conditions to (10.5), we derive

〈Ψ|P̂Ô(X)
i

~

[
Ĥ

(
N
ν−1
(T1)

p∗

)
, Π̂T1

]
|Ψ〉

= O(X,T1)〈Ψ|P̂
∑
m

ν−1
φ0 (Xm, T1)Φ̂int(Xm)Π̂T1|Ψ〉+O(X,T1)〈Ψ|P̂

∑
m

∂

∂Tm

∣∣∣∣
T1

Π̂{Tn}|Ψ〉

+O(X,T1)
∑
m

ν−1
φ0 (Xm, T1)

∂

∂Tm

∣∣∣∣
T1

νφ0(Xm, {Tn})〈Ψ|P̂Π̂T1|Ψ〉

+
∑
m

∂

∂Tm

∣∣∣∣
T1

O(X, {Tn})〈Ψ|P̂Π̂T1|Ψ〉+O(d) +O(~)

= O(X,T1)

[∑
m

ν−1
φ0 (Xm, T1)

(
Φint(Xm, T1) +

∂

∂Tm

∣∣∣∣
T1

νφ0(Xm, {Tn})
)]

+
d

dT

∣∣∣∣
T1

O(X,T )

+O(d) +O(~)

(10.8)

where we have used the ADM clock condition (6.1). The first term above involves the

dynamics of the clock, and the second term is the desired clock time derivative of the local

observable.
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Further, combining (10.8) and (10.4), we obtain

0 = 〈Ψ| i
~

[
Ĥ

(
N
ν−1
(T1)

p∗

)
, P̂Ô(X)Π̂T1

]
|Ψ〉

= O(X,T1)

[∑
m

ν−1
φ0 (Xm, T1)

(
Φint(Xm, T1) +

∂

∂Tm

∣∣∣∣
T1

νφ0(Xm, {Tn})
)]

+
d

dT

∣∣∣∣
T1

O(X,T )

+〈Ψ|P̂ i
~

[
Ĥ

(
N
ν−1
(T1)

p∗

)
, Ô(X)

]
Π̂T1|Ψ〉+O(d) +O(~)

(10.9)

Specifically, when Ô(X,T ) = P̂Π̂T , equation (10.9) gives the clock dynamics

0 =

[∑
m

ν−1
φ0 (Xm, T1)

(
Φint(Xm, T1) +

∂

∂Tm

∣∣∣∣
T1

νφ0(Xm, {Tn})
)]

+O(d) +O(~)
(10.10)

Finally, (10.9) and (10.10) leads to the relative Heisenberg equation with respect to the clock

time

d

dT

∣∣∣∣
T1

O(X,T )

= 〈Ψ|P̂ i
~

[
Ô(X), Ĥ

(
N
ν−1
(T1)

p∗

)]
Π̂T1|Ψ〉+O(d) +O(~)

= 〈Ψ|P̂ i
~

[
Ô(X), Ĥ �

g

(
N
ν−1
(T1)

p∗

)]
Π̂T1|Ψ〉+ 〈Ψ|P̂ i

~

[
Ô(X), Ĥ �

m

(
N
ν−1
(T1)

p∗

)]
Π̂T1 |Ψ〉

+O(~) +O(d)

(10.11)

The second term in (10.7) involving Ĥm requires some attention. Referring to (5.1) and

(5.3), we recall that a spatially localized operator is a product of gravitational operators and

the matter operators that provide the coordinates and frames. Accordingly the commutator

between the spatially localized operator and Ĥm(Np∗) can be sorted into two parts. The

first part comes from commuting the gravitational operators with Ĥm(Np∗), and gives the

contribution of matter back reaction, which will be denoted as εm. The second part comes

from commuting the matter operators with Ĥm(Np∗), and gives the dynamics of the mat-
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ter coordinates and frames. From the previous discussion, this part should contain terms

generated by momentum and Gauss constraints.

Recall that the emergent gravitational fields transform as (8.2) between two spatial matter

coordinates and frames. Consequently, we only need to evaluate the dynamics in one specific

spatial coordinate and frame. Here we pick our specific coordinates and frames to be fixed

at each vn̄, which means

〈Ψ|P̂ i
~

[
φ̂(v∗n), Ĥ �

m

(
N
ν−1
(T1)

p∗

)]
Π̂T1|Ψ〉 = 0

〈Ψ|P̂ i
~
Ôi(v

∗
n)

[
Ĵ(v∗n)iI , Ĥ

�
m

(
N
ν−1
(T1)

p∗

)]
Π̂T1|Ψ〉 = 0

〈Ψ|P̂ i
~
Ôi(v∗n)

[
ˆ̄J(v∗n)Ii , Ĥ

�
m

(
N
ν−1
(T1)

p∗

)]
Π̂T1|Ψ〉 = 0

〈Ψ|P̂ i
~
Ôī(v

∗
n)

[
Û(v∗n)īĪ , Ĥ

�
m

(
N
ν−1
(T1)

p∗

)]
Π̂T1|Ψ〉 = 0

〈Ψ|P̂ i
~
Ôī(v∗n)

[
ˆ̄U(v∗n)Īī , Ĥ

�
m

(
N
ν−1
(T1)

p∗

)]
Π̂T1|Ψ〉 = 0

(10.12)

The dynamics of these specific matter spatial coordinates and frames have zero contribution

to (10.11), up to an error of order of ~. In this setting, the clock time derivatives of the
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gravitational local observables can be evaluated using only Ĥg and the matter back reactions:

d

dT

∣∣∣∣
T1

〈Ĵ(eX,∆X , T )I〉

=
d

dT

∣∣∣∣
T1

∫
S̄X,∆X

Ea
I (T )dsa

= 〈Ψ|P̂ i
~

[
Ĵ(eX,∆X)I , Ĥ

�
g

(
N
ν−1
(T1)

p∗

)]
Π̂T1|Ψ〉+ εm +O(~) +O(d)

= 〈Ψ|P̂ i
~

[
Ĵ(eX,∆X)I , Ĥ�

g

(
νφ0
−1(T1)

)]
Π̂T1|Ψ〉+ εm +O(~) +O(d)

d

dT

∣∣∣∣
T1

〈ĥ(eX,∆X , T )ĪJ̄〉

=
d

dT

∣∣∣∣
T1

P exp[

∫
ēX,∆X

AJb (T )(τJ)deb]ĪJ̄

= 〈Ψ|P̂ i
~

[
ĥ(eX,∆X)ĪJ̄ , Ĥ

�
g

(
N
ν−1
(T1)

p∗

)]
Π̂T1 |Ψ〉+ εm +O(~) +O(d)

= 〈Ψ|P̂ i
~

[
ĥ(eX,∆X)ĪJ̄ , Ĥ�

g

(
νφ0
−1(T1)

)]
Π̂T1|Ψ〉+ εm +O(~) +O(d))

(10.13)

By setting ε1 = ∆T and N = νφ0
−1(T1) in (10.1), we see that (10.1) agrees perfectly with

(10.13). This means that Ĥg indeed generates the diffeomorphisms perpendicular to the

equal-clock-time spatial slices, when acting on |Ψ〉.
Next, we evaluate the semi-classical limit of (10.13). The commutators in the equations



68

can be carried out again using (6.13) to obtain

d

dT

∣∣
T1

∫
S̄X,∆X

Ea
I (T )dsa

= 〈Ψ|P̂ i
~

[
Ĵ(eX,∆X)I , Ĥ�

g(νφ0
−1(T1))

]
Π̂T1|Ψ〉+ εm +O(~) +O(d)

≡ 〈Ψ|P̂ΦX,∆X
J (Ĵ , ĥ)IΠ̂T1|Ψ〉+ 〈Ψ|P̂ΦX,∆X

J,α (Ĵ , ĥ, α̂)IΠ̂T1|Ψ〉+ εm +O(~) +O(d)

= 〈Ψ|ΦX,∆X
J (Ĵ(T1), ĥ(T1))I |Ψ〉+ 〈Ψ|ΦX,∆X

J,α (Ĵ(T1), ĥ(T1), α̂(T1))I |Ψ〉+ εm +O(~) +O(d)

d

dT

∣∣
T1
P exp[

∫
ēX,∆X

AJb (T )(τJ)deb]K̄L̄

= 〈Ψ|P̂ i
~

[
ĥ(eX,∆X)ĪJ̄ , Ĥ�

g(νφ0
−1(T1))

]
Π̂T1|Ψ〉+ εm +O(~) +O(d)

≡ 〈Ψ|P̂ΦX,∆X
h (Ĵ , ĥ)K̄L̄ Π̂T1 |Ψ〉+ εm +O(~) +O(d)

= 〈Ψ|ΦX,∆X
h (Ĵ(T1), ĥ(T1))K̄L̄ |Ψ〉+ εm +O(~) +O(d)

(10.14)

Note that the equation for E fields contains a term ΦJ,α which involves the operator α̂.

Finally, using the coherence conditions (7.1), we derive the equations of motion for the
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emergent gravitational fields

d

dT

∣∣∣∣
T1

∫
S̄X,∆X

Ea
I (T )dsa

= 〈Ψ|ΦX,∆X
J (〈ĵ(T1)〉, 〈ĥ(T1)〉)I |Ψ〉+ 〈Ψ|ΦX,∆X

J,α (〈Ĵ(T1)〉, 〈ĥ(T1)〉, 〈α̂(T1)〉)I |Ψ〉

+εm +O(~) +O(d)

=

{∫
S̄X,∆X

Ea
I dsa, Hg(νφ0

−1(T1))

}∣∣∣∣
E(T1),A(T1)

+ εm +O(~) +O(d3)

d

dT

∣∣∣∣
T1

P exp[

∫
ēX,∆X

AJb (T )(τJ)deb]K̄L̄

= 〈Ψ|ΦX,∆X
h (〈Ĵ(T1)〉, 〈ĥ(T1)〉)K̄L̄ |Ψ〉+ εm +O(~) +O(d)

=

{
P exp[

∫
ēX,∆X

AJb (T )(τJ)deb]K̄L̄ , Hg(νφ0
−1(T1))

}∣∣∣∣
E(T1),A(T1)

+ εm +O(~) +O(d2)

(10.15)

where Hg(N ) is exactly the classical gravitational Hamiltonian constraint. Note that the

term of ΦJ,α contributes only to the order of d3, and is suppressed similarly to the previous

case. Since (10.15) holds for any S̄X,∆X and ēX,∆X , it gives the equations of motion for the
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emergent fields up to errors of O(d)

d

dT

∣∣∣∣
T1

Ea
I (X,T ) = {Ea

I (X,T ), [Hg(N ) +Mg(V ) +Gg(Λ)]}
∣∣∣∣
E(T1),A(T1),N=νφ0

−1(T1),V=0,Λ=0

+εm +O(~) +O(d)

d

dT

∣∣∣∣
T1

AJb (X,T ) =
{
AJb (X,T ), [Hg(N ) +Mg(V ) +Gg(Λ)]

} ∣∣∣∣
E(T1),A(T1),N=νφ0

−1(T1),V=0,Λ=0

+εm +O(~) +O(d)

(10.16)

Referring to (2.4) we conclude that (10.16) is the gauge-fixed (with N = νφ0
−1, V = 0

and Λ = 0) classical equations of motion in Hamiltonian form, up to the corrections. Once

again the correction terms are given by matter back reaction, quantum fluctuations, and the

discretization of space. Up to these errors, with the matter coordinates and frames satisfying

(10.8), the equations of motion agree with classical general relativity.

The dynamics of emergent gravitational fields using other matter coordinates and frames

follows immediately, from applying the clock time dependent transformation (8.5) to (10.16).

Since (8.5) agrees with the classical transformations up to the errors, it will simply re-express

(10.16) into another gauge in which V a and ΛI are nonzero.

11 Corrections to the Classical Limit

Before finishing our exploration, let us look into the correction terms that appear in the

constraint equations (9.6) and (9.11), the emergent algebra (9.13), and the equations of

motion (10.16). For the purpose of recovering general relativity, we assume that the matter

back reaction εm is small and focus on other corrections.

The corrections of order ~ result from two different kinds of quantum effects. The first
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is the regularization of the inverse triad factor (detE)−1/2 appearing in Hg. In the standard

operator Ĥg(N̄) defined in (2.29)-(2.31), this factor is regularized by the commutator between

the total volume and holonomy operators, and thus is always finite by construction. This is

true even when the state being acted on has zero total spatial volume. On the other hand, the

classical counterpart (detE)−1/2 clearly diverges when the E fields vanishes. This contrast

signifies the departure of the quantum Hamiltonian constraint from the classical Hamiltonian

constraint when the scale of space becomes comparable to lp. The gravitational Hamiltonian

constraint operator Ĥg(Np) for our model, defined in (3.3)-(3.5), preserves this feature and

therefore also contains the inverse triad corrections at the Plank scale. The second source

of corrections is the uncertainty principle. All the fields are quantum mechanical in the

model, so there are corrections coming from quantum fluctuations in both gravitational

and matter sectors. In our context of describing local gravitational fields, the uncertainty

in the matter fields results in fuzziness of the coordinates and frames. As a result, the

conditions on the coordinates and frames listed in chapter 6 all come with errors of order ~.

Further, in obtaining the semi-classical limit, the replacement of the local gravitational and

clock momentum observable operators with their expectation values also introduces errors

of order ~l2p and order ~. Summarizing all the corrections denoted by O(~), we see that they

are negligible when the coherent state |Ψ〉 is observed at a large scale, when the competing

classical terms are much greater.

The corrections of order d result from the discretization of space. Remarkably, these

terms are of zeroth order of ~ and could still dominate in large scales when the quantum

effects are insignificant. Recall that d is the upper bound of the spatial coordinate gap, and

it is finite since there is only finitely many physical points {v∗n} in the discretized space. This

is in contrast with the regularization of a theory in a continuous space, in which coordinate

gaps are merely regularization parameters to be set infinitesimal. The effect of the finite

value of d comes in two parts. First, in the correspondence (8.1), we see that the expectation

values of the local observables determine the emergent fields only up to errors of order d.

These errors account for the fact that one can only specify a smooth field up to corrections
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of order d, by making finitely many measurements on coordinate sites separated by gaps of

typical value d. Indeed, this seems nothing more than a fact of reality, that we can only

estimate continuous fields using finite data points. However, instead of the insufficiency

of discrete data in describing a continuous reality, the model attributes the errors to our

intention of obtaining a continuous picture from the intrinsically discrete reality. Second,

the use of holonomies instead of the A fields as configuration variables introduces corrections

in all orders of |A|d. In the regularized classical Hamiltonian constraint, the A fields appear

through the linear terms in holonomies divided by the coordinate lengths of their paths. The

nonlinear terms in the holonomies contribute to errors, and vanish in the limit of the paths

shrinking to zero length. In the quantum theory, it no longer makes sense to take such limits,

since the knot space is topological. In our model, we introduces matter coordinates such that

we can define emergent A fields from the holonomy observables, through the correspondence

(8.1). Similar to the classical case, when written in terms of the emergent fields, nonlinear

terms of holonomy observables contribute to corrections in the semi-classical limit of the

model. Moreover, the coordinate lengths of the embedded paths in the coordinate space are

given by the finite coordinate gap d that can not be taken to zero as a limit. Therefore,

the discretization of space in our model also leads to finite values of holonomy corrections,

which contain all powers of |A|d. The holonomy corrections are clearly suppressed by small

d value when A fields are nonsingular and bounded. However, the corrections would become

important when A fields become singular near, for example, an initial singularity or a black

hole. Overall, we see that all the corrections denoted by O(d) are negligible when the matter

spatial coordinate gaps are small and the emergent gravitational fields are nonsingular.

Lastly, all the corrections in the model are well-formulated, and can be explicitly calcu-

lated. Moreover, the model is ready for the inclusion of emergent matter fields defined in a

way analogous to (8.10), and also their full coupling with the emergent gravitational fields.

The explicit expressions of the corrections will be in terms of the emergent fields and their

quantum fluctuations. Therefore, the model serves as a promising testing ground for the

emergence of loop quantum cosmology from loop quantum gravity.
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12 Conclusions

Let us briefly review the results of this thesis. The thesis is based on the current stage of loop

quantum gravity, which results from a specific canonical quantization of general relativity,

and possesses a rigorously constructed knot space that solves the Gauss and momentum

constraints. The space encodes the Planck-scale quantum geometry of space in a background

independent way that respect the diffeomorphism symmetry in general relativity. Due to its

background independence and discrete structure, the theory’s semi-classical limit has been

difficult and unclear. However, the success of loop quantum cosmology provides evidence

of the possible correct limits. In parallel with loop quantum cosmology, the model in this

thesis proposes a concrete method to overcome the difficulties and obtain the semi-classical

limit of the full theory.

The model we have constructed shares the same knot space with loop quantum gravity

coupled to matter fields, although it uses the modified graph-preserving Hamiltonian con-

straint operator in constructing the physical Hilbert space. Strictly respecting background

independence, the model utilizes its matter sector to provide the coordinates and frames

to describe the local gravitational observables. In obtaining the physical Hilbert space, the

model assumes the validity of the group averaging procedure described in chapter 4. The

semi-classical limits given by the coherent state |Ψ〉 agree with full general relativity, when

the criteria discussed in chapter 11 are met so that the corrections are insignificant. Also,

the corrections of order ~ and d have clear interpretations, as discussed in the preceding

chapter.

Finally, the model provides a set-up to explicitly calculate the correction terms for the

dynamics of emergent gravitational fields. It is of great interest to see how these corrections

behave near the initial singularity, and near the singularity of a black hole. In loop quantum

cosmology, the quantum and holonomy corrections have been extensively studied. Among the

remarkable results of these models is that the corrections replace the initial singularity with

a well-behaved bouncing of the scale factor, preceded by a contracting universe [31][30] and

followed by a built-in slow-roll inflationary phase [33][34][35]. These predictions are testable
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and give distinguishable signals in the spectrum of cosmic microwave background radiation

[33][34][35]. It is then important to ask whether loop quantum cosmology emerges from a

certain symmetrical semi-classical limit of loop quantum gravity, and if so, what additional

details the full theory would provide regarding the predicted signals. Explicitly evaluating

the correction terms in our model could provide answers to these questions. Hopefully, it

would show that the observable predictions of loop quantum cosmology are indeed tests of

loop quantum gravity, as a fundamental theory of gravity. (A concrete, affirmative result for

emergence of the bouncing has been obtained and will appear in [36].)
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