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These are some notes in lieu of the lectures I was scheduled to give, but had to cancel at the
last moment. In some places, they are more complete, in others much less so, regrettably.
I hope they at least give a feel for the subject and convey some of the excitement felt at the
moment by those of us working on it.

An extensive set of references and a glossary of terms can be found at the end of the notes.
For a philosophically oriented discussion of some of the background to the causal set idea,
see reference [1]. For general background see [2] [3] [4] [5] [6] [7].

Introduction

It seems fair to say that causal set theory has reached a stage in which questions of

phenomenology are beginning to be addressed meaningfully. This welcome development is

due on one hand to improved astronomical observations which shed light on the magnitude

of the cosmological constant (in apparent confirmation of a long-standing prediction of

the theory) and on the other hand to theoretical advances which for the first time have

placed on the agenda the development of a quantum dynamical law for causal sets (and

also for a scalar field residing on a background causal set). What we have so far are:

(i) an apparently confirmed order of magnitude prediction for the cosmological constant;

(ii) a method of counting black hole horizon “states” at the kinematical level; (iii) the

beginnings of a framework in which two-dimensional Hawking radiation can be addressed;

(iv) a classical causal set dynamics which arguably is the most general consistent with the

discrete analogs of general covariance and relativistic causality; and in consequence of this,

both (v) the formulation of a “cosmic renormalization group” which indicates how one

might in principle solve some of the large number puzzles of cosmology without recourse

to a post-quantum era of “inflation”; and (vi) a hint of how non-gravitational matter might
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arise at the fundamental level from causal sets rather than having to be added in by hand

or derived at a higher level à la Kaluza-Klein from an effective spacetime topology arising

from the fundamental structures via coarse-graining. In addition, a good deal of computer

code has been written for use in causal set simulations, including a library of over 5000

lines of Lisp code that can be used by anyone with access to the Emacs editor. At present,

the principal need, in addition to fleshing out the developments already outlined, is for

a quantum analog of the classical dynamics alluded to above. It looks as if a suitable

quantum version of Bell causality (see below) could lead directly to such a dynamics, that

is to say, to a theory of quantum spacetime, and in particular to a theory of quantum

gravity.

The remainder of these notes rapidly reviews the subject in its current state, progress-

ing broadly from kinematics to dynamics to phenomenology. Although this sequence does

not always reflect exactly the chronological development of the theory, it is not far off, and

it also fits in well with Taketani’s “3-stages” schema of scientific discovery [8].

Origins of the causet idea

The tradition of seeing the causal order of spacetime as its most fundamental structure

is almost as old as the idea of spacetime itself (in its Relativistic form). In [9], Robb

presented a set of axioms for Minkowski space analogous to Euclid’s axioms for plane

geometry. In so doing, he effectively demonstrated that, up to an overall conformal factor,

the geometry of 4-dimensional flat spacetime (which I’ll denote by M4, taken always with

a definite time-orientation) can be recovered from nothing more than the underlying point

set and the order relation ≺ among points (where x ≺ y ⇐⇒ the vector from x to

y is timelike or lightlike and future-pointing). Later, Reichenbach [10] from the side of

philosophy and Zeeman [11] from the side of mathematics emphasized the same fact, the

latter in particular by proving the theorem, implicit in [9], that any order-isomorphism of

M4 onto itself must — up to an overall scaling — belong to the (isochronous) Poincaré

group.

In a certain sense, however, these results appear to say more than they really do.

Informally, they seem to tell us that M4 can be reconstructed from the relation ≺, but in

actually carrying out the reconstruction (see below), one needs to know that what one is

trying to recover is a flat spacetime and not just a conformally flat one. Clearly, there’s

nothing in the relation ≺ per se which can tell us that. This difficulty shows itself, in a

sense, in the failure of Zeeman’s theorem for M2 and M1 (i.e. 1+1 and 0+1 dimensional

Minkowski space). But it shows up still more clearly with the curved spacetimes of General
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Relativity, where the natural generalization of the flat space theorems is that a Lorentzian

geometry M can be recovered from its causal order only up to a local conformal factor.

Notice that when one says that a Lorentzian manifold M is recovered, one is talking

about all the mathematical structures that go into the definition of a spacetime geometry:

its topology, its differential structure and its metric. Various special results show how to

recover, say, the topology (see e.g. [12]) but the most complete theorems are those of [13]

and [14], the latter delineating very precisely how close M can come to violating causality

without the theorem breaking down.

The upshot of all these reconstruction theorems is that, in the continuum, something

is lacking if we possess only the causal order, namely the conformal factor or equivalently

the “volume element”
√−g d4x. On the other hand, if we do give the volume element (say

in the form of a measure µ on M) then it is clear that metric gab will be determined in

full. The causal order alone, however, is — in the continuum — incapable of furnishing

such a measure.

This failing is perhaps one reason to question the reality of the continuum, but of

course it is not the only one. In modern times, doubts show up clearly in Riemann’s

inaugural lecture (Habilitationsschrift) [15], where he contrasts the idea of what he calls a

discrete manifold with that of a continuous manifold, which latter he takes to be a relatively

unfamiliar and unintuitive idea in comparison with the former! The most evocative quotes

from this lecture are perhaps the following:

Grössenbegriffe sind nur da möglich, wo sich ein allgemeiner Begriff vor-
findet, der verschiedene Bestimmungsweisen zulässt. Je nachdem unter
diesen Bestimmungsweisen von einer zu einer andern ein stetiger Übergang
stattfindet oder nicht, bilden sie eine stetige oder discrete Mannigfaltigkeit;
die enzelnen Bestimmungsweisen heissen im ersten Falle Punkte, im let-
zten Elemente dieser Mannigfaltigkeit. (p.273)

or in translation, ⋆

Concepts of magnitude are only possible where a general concept is met
with that admits of different individual instances [Bestimmungsweisen].
According as, among these individual instances, a continuous passage from
one to another takes place or not, they form a continuous or discrete

⋆ These translations are not guaranteed, but they’re a lot better than what “Google” did

(try it for fun!).
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manifold; the individual instances are called in the first case points, in the
second elements of the manifold;

Die Frage über die Gültigkeit der Voraussetzungen der Geometrie im Un-
endlichkleinen hängt zusammen mit der Frage nach dem innern Grunde
der Massverhältnisse des Raumes. Bei dieser Frage, welche wohl noch zur
Lehre vom Raume gerechnet werden darf, kommt die obige Bemerkung
zur Anwendung, dass bei einer discreten Mannigfaltigkeit das Princip der
Massverhältnisse schon in dem Begriffe dieser Mannigfaltigkeit enthalten
ist, bei einer stetigen aber anders woher hinzukommen muss. Es muss
also entweder das dem Raume zu Grunde liegende Wirkliche eine discrete
Mannigfaltigkeit bilden, oder der Grund der Massverhältnisse ausserhalb,
in darauf wirkenden bindenden Kräften, gesucht werden.

or in translation,

The question of the validity of the presuppositions of geometry in the
infinitely small hangs together with the question of the inner ground of the
metric relationships of space. [I almost wrote “spacetime”!] In connection
with the latter question, which probably [?] can still be reckoned to be
part of the science of space, the above remark applies, that for a discrete
manifold, the principle of its metric relationships is already contained in
the concept of the manifold itself, whereas for a continuous manifold,
it must come from somewhere else. Therefore, either the reality which
underlies physical space must form a discrete manifold or else the basis
of its metric relationships must be sought for outside it, in binding forces
[bindenden Kräfte] that act on it;

and finally,

Bestimmte, durch ein Merkmal oder eine Grenze unterschiedene Theile
einer Mannigfaltigkeit heissen Quanta. Ihre Vergleichung der Quantität
nach geschieht bei den discreten Grössen durch Zählung, bei den stetigen
durch Messung. (p.274)

or in translation,

Definite portions of a manifold, distinguished by a criterion [Merkmal] or
a boundary, are called quanta. Their quantitative comparison happens
for discrete magnitudes through counting, for continuous ones through
measurement.
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With the subsequent development of physics, more compelling reasons emerged for

questioning the continuum, including the singularities and infinities of General Relativity,

of Quantum Field Theory (including the standard model), and of black hole thermody-

namics. Einstein, for example, voiced doubts of this sort very early [16]:

But you have correctly grasped the drawback that the continuum brings. If
the molecular view of matter is the correct (appropriate) one, i.e., if a part
of the universe is to be represented by a finite number of moving points,
then the continuum of the present theory contains too great a manifold of
possibilities. I also believe that this too great is responsible for the fact
that our present means of description miscarry with the quantum theory.
The problem seems to me how one can formulate statements about a
discontinuum without calling upon a continuum (space-time) as an aid; the
latter should be banned from the theory as a supplementary construction
not justified by the essence of the problem, which corresponds to nothing
“real”. But we still lack the mathematical structure unfortunately. How
much have I already plagued myself in this way!

and at a later stage stressed the importance of the causal order in this connection, writing

[17] that it would be “especially difficult to derive something like a spatio-temporal quasi-

order” from a purely algebraic or combinatorial scheme.

The causal set idea is, in essence, nothing more than an attempt to combine the

twin ideas of discreteness and order to produce a structure on which a theory of quantum

gravity can be based. That such a step was almost inevitable is indicated by the fact that

very similar formulations were put forward independently in [4], [5] and [2], after having

been adumbrated in [18]. The insight underlying these proposals is that, in passing from

the continuous to the discrete, one actually gains certain information, because “volume”

can now be assessed (as Riemann said) by counting ; and with both order and volume

information present, we have enough to recover geometry.

In this way the topology, the differential structure and, the metric of continuum

physics all become unified with the causal order (much as mass is unified with energy in

Special Relativity). Moreover the Lorentzian signature (namely (−+++) in 4 dimensions)

is singled out as the only one compatible with a consistent distinction between past and

future, hence the only one that can make contact with the idea of causal order.

To see how these basic ideas work themselves out, we need first a more precise state-

ment of what a causal set is.
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What is a causal set?

As a mathematical structure, a causal set (or causet for short) is simply a locally finite

ordered set. In other words, it is a set C endowed with a binary relation ≺ possessing the

following three properties:

(i) transitivity: (∀x, y, z ∈ C)(x ≺ y ≺ z ⇒ x ≺ z)

(ii) irreflexivity: (∀x ∈ C)(x 6≺ x)

(iii) local finiteness: (∀x, z ∈ C) (card {y ∈ C | x ≺ y ≺ z} < ∞)

where ‘card’ stands for “cardinality”.In the presence of transitivity, irreflexivity automat-

ically implies acyclicity, i.e. the absence of cycles x0 ≺ x1 ≺ x2 ≺ · · · ≺ xn = x0, and this

is often taken as an axiom in place of (ii). The condition (iii) of local finiteness is a formal

way of saying that a causet is discrete. Thus the real number line, for example does not

qualify as a causet, although it is a partial order. †

A structure satisfying the above axioms can be thought of as a graph, and in this sense

is conveniently represented as a so-called Hasse diagram in which the elements of C appear

as vertices and the relations appear as edges. (The sense of the relation is usually shown,

just as in the spacetime diagrams of Relativity theory, by making the line between x and y

be a rising one when x ≺ y.) Actually, it is not necessary to draw in all the relations, but

only those not implied by transitivity (the “links”), and this convention is almost always

adopted to simplify the appearance of the diagram. A causet can also be thought of as

a matrix M (the “causal matrix”) with the rows and columns labeled by the elements of

C and with the matrix element Mjk being 1 if j ≺ k and 0 otherwise. Perhaps, however,

the most suggestive way to think of a causet for the purposes of quantum gravity is as a

relation of “descent”, effectively a family tree that indicates which of the elements C are

“ancestors” of which others.

The multiplicity of imagery associated with causets (or partial orders more generally)

is part of the richness of the subject and makes it natural to use a variety of language in

discussing the structural relationships induced by the basic order relation ≺. Thus, the

† The above definition utilizes the so called “irreflexive convention” that no element pre-

cedes itself. Axioms (i) and (ii) define what is variously called an “order”, a “partial

order”, a “poset”, an “ordered set” or an “acyclic transitive digraph”. Axiom (iii), which

expresses the condition of local finiteness, can also be stated in the form “every order-

interval has finite cardinality”.
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relationship x ≺ y itself, is variously described by saying that x precedes y, that x is an

ancestor of y, that y is a descendant of x, or that x lies to the past of y (or y to the

future of x). Similarly, if x is an immediate ancestor of y (meaning that there exists no

intervening z such that x ≺ z ≺ y) then one says that x is a parent of y, or y a child of x,

or that y covers x, or that x ≺ y is a link. (See the glossary.)

Still other interpretations of the relation ≺ are possible and can also be useful. For

example a causet of finite cardinality is equivalent to a T0 topological space of finite cardi-

nality, allowing one to use the language of topology in talking about causets (which indeed

may turn out to have more than just a metaphorical significance). A causet can also be

treated as a function by identifying C with the function ‘past’ that associates to each x ∈ C

the set past(x) of all its ancestors, and this is in fact the representation on which the Lisp

code of [19] is based.

For the purposes of quantum gravity, a causal set is, of course, meant to be the deep

structure of spacetime. Or to say this another way, the basic hypothesis is that spacetime

ceases to exist on sufficiently small scales and is superseded by an ordered discrete structure

to which the continuum is only a coarse-grained, macroscopic approximation.

Now, at first sight, a structure based purely on the concept of order might seem

to be too impoverished to reproduce the geometrical and topological attributes in terms

of which general relativistic spacetime is normally conceived. However, if one reflects

that light cones can be defined in causal terms and that (in the continuum) the light

cones determine the metric up to a conformal rescaling, then it becomes understandable

that (given minimal regularity conditions like the absence of closed causal curves) the

causal order of a Lorentzian manifold (say J+ in the usual notation) captures fully the

conformal metric, as well as the topology and the differential structure. The volume

element
√−gdnx cannot be recovered from J+, but in the context of a discrete order,

it can be obtained in another way — by equating the number of causet elements to the

volume of the corresponding region of the spacetime continuum that approximates C. As

discussed above, these observations provide the kinematical starting point for a theory of

discrete quantum gravity based on causal sets. The dynamics must then be obtained in

the form of a “quantum law of motion” for the causet. Let us consider the kinematics

further.

Causal set kinematics in general

Both the study of the mathematics of causets for its own sake and its study for the sake

of clarifying how the geometrical and topological properties of a continuous spacetime
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translate into order properties of the underlying causet can be regarded as aspects of

causal set kinematics: the study of causets without reference to any particular dynamical

law.

A large amount is known about causet kinematics as a result of extensive work by

both physicists and mathematicians. (See for example [20] [21] [22] [23] [24] [25] [26] [27].)

(Some of the mathematicians were directly influenced by the causal set idea, others were

studying ordered sets for their own reasons.) We know for example, that the length of

the longest chain ♭ provides a good measure of the proper time (geodesic length) between

any two causally related elements of a causet that can be approximated by a region of

Minkowski space [28]. And for such a causet, we also possess at least two or three good

dimension estimators, one of which is well understood analytically [29].

The next few sections are devoted to some of these topics.

“How big” is a causet element?

Of course the question is badly worded, because a causet element has no size as such. What

it’s really asking for is the conversion factor v0 for which N = V/v0. Only if we measure

length in units such that v0 ≡ 1 can we express the hypothesis that number=volume in the

form N = V . On dimensional grounds, one naturally expects v0 ∼ (Gh̄)2 [where I’ve taken

c ≡ 1]. But we can do better than just relying on dimensional analysis per se. Consider first

the entropy of a black hole horizon, which is given by S = A/4Gh̄ = 2πA/κ, with κ = 8πG,

the rationalized gravitational constant. This formula suggests forcefully that about one bit

of entropy belongs to each horizon “plaquette” of size κh̄, and that the effectively finite size

of these “plaquettes” reflects directly an underlying spacetime discreteness. Consideration

of the so called entanglement entropy leads to the same conclusion, namely that there

exists an effective “ultraviolet cutoff” at around l =
√

κh̄. [30]

A related but less direct train of thought starts by considering the gravitational action-

integral 1

2κ

∫
RdV . Here the “coupling constant” 1/2κ is an inverse length2 and conven-

tional Renormalization Group wisdom suggests that, barring any “fine tuning”, the order

of magnitude of such a coupling constant will be set by the underlying “lattice spacing”, or

in this case, the fundamental discreteness scale, leading to the same conclusion as before

that l ≡ (v0)
1/4 is around l =

√
κh̄ ∼ 10−32cm.

♭ The term ‘chain’ is defined in the glossary.
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A noteworthy implication of the formula l ∼
√

κh̄ is that l→ 0 if h̄→ 0 (κ being

fixed). That is, the classical limit is necessarily a continuum limit: spacetime discreteness

is inherently quantal.

The reconstruction of M4

In order to get a better feel for how it is that “geometry = order + number”, it is useful

to work through the reconstruction — in the continuum — of M4 from its causal order

and volume-element. The proof can be given in a quite constructive form which I’ll only

sketch here.

We start with a copy M of M4 and let ≺ be its causal order. We construct in turn:

light rays l, null 3-planes, spacelike 2-planes, spacelike lines, arbitrary 2-planes, arbitrary

lines, parallel lines, parallelograms, vectors. Once we have vector addition (affine structure)

it is easy to get quadratic forms and in particular the flat metric ηab. (The normalization

of ηab uses the volume information.)

You may enjoy working these constructions out for yourself, so I won’t give them

all here. At the risk of spoiling your fun however, let me give just the first two, which

perhaps are less straightforward than the rest. We define a light ray l to be a maximal

chain such that ∀x, y ∈ l, interval(x, y) is also a chain; and from any such l we get then the

null hyperplane N(l) = l ∪ l♮, where l♮ is the set of all points of M spacelike to l.

Sprinkling, coarse-graining, and the “Hauptvermutung”

A basic tenet of causet theory is that spacetime does not exist at the most fundamental

level, that it is an “emergent” concept which is relevant only to the extent that some

manifold-with-Lorentzian-metric M furnishes a good approximation to the physical causet

C. Under what circumstances would we want to say that this occurred? So far the most

promising answer to this question is based on the concepts of sprinkling and coarse-graining.

Given a manifold M with Lorentzian metric gab (which is, say, globally hyperbolic)

we can obtain a causal set C(M) by selecting points of M and endowing them with the

order induced from that of M (where in M , x ≺ y iff there is a future causal curve from x

to y). In order to realize the equality N = V , the selected points must be distributed with

unit density in M . One way to accomplish this (and conjecturally the only way!) is to

generate the points of C(M) by a Poisson process. (To realize the latter, imagine dividing

M up into small regions of volume ǫ and independently putting a point into each region

with probability ǫ. In the limit ǫ→ 0 this is the Poisson process of unit intensity in M .)
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Let us write M ≈ C for the assertion that M is a good approximation to C. The idea

then is that M ≈ C if C “might have been produced by a sprinkling of M” (in a sense to

be specified more fully below).

It’s important here that the elements of C(M) are selected at random from M . In

particular, this fact is an ingredient in the heuristic reasoning leading to the prediction

of a fluctuating cosmological constant (see below). But such a kinematic randomness

might seem gratuitous. Wouldn’t a suitable regular embedding of points into M yield a

subset that was equally uniformly distributed, if not more so? To see what goes wrong,

consider the “diamond lattice” in M2 consisting of all points with integer values of the

null coordinates u = t − x and v = t + x. This would seem to be a uniform lattice, but

under a boost u→λu, v→ v/λ it goes into a distribution that looks entirely different, with

a very high density of points along the u=constant lines (say) and large empty spaces in

between. In particular, our diamond lattice is far from Lorentz invariant, which a truly

uniform distribution should be — and which C(M) produced by a Poisson process actually

is. Examples like this suggest strongly that, in contrast to the situation for Euclidean

signature, only a random sprinkling can be uniform for Lorentzian signature.

I have just argued that the idea of random sprinkling must play a role in making the

correspondence between the causet and the continuum, and for purely kinematic reasons.

A second concept which might be needed as well, depending on how the dynamics works

out, is that of coarse-graining. Indeed, one might expect that, on very small scales, the

causet representing our universe will no more look like a manifold than the trajectory

of a point particle looks microscopically like a smooth curve in nonrelativistic quantum

mechanics. Rather, we might recover a manifold only after some degree of “averaging”

or “coarse-graining” (assuming also that we keep away from the big bang and from black

hole interiors, etc., where we don’t expect a manifold at all). That is, we might expect

not C ≈ M but C′ ≈ M ′, where C′ is some coarse-graining of C and M ′ is M with a

correspondingly rescaled metric. The relevant notion of coarse-graining here seems to be

an analog of sprinkling applied to C itself: let C′ be obtained from C by selecting a subset

at random, keeping each element x ∈ C with some fixed probability, say 1/2 if we want a

2:1 coarse-graining.

Implicit in the idea of a manifold approximating a causet is that the former is relatively

unique; for if two very different manifolds could approximate the same C, we’d have no

objective way to understand why we observe one particular spacetime and not some very

different one. (On the other hand, considering things like AdS/CFT duality, who knows...!)

The conjecture that such ambiguities don’t occur has been called the “Hauptvermutung”.

In the Gh̄→ 0 limit, it has already been proven in [31]. Moreover, the fact that we know
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how to obtain dimensional and proper time information in many situations (see below) is

strong circumstantial evidence for its truth at finite Gh̄. Nevertheless it would be good to

prove it in full, in something like the following form.

Conjecture If M1 ≈ C and M2 ≈ C then M1 ≈ M2

Here M1 ≈ M2 means that the manifolds M1 and M2 are “approximately isometric”. As

the quotation marks indicate, it is surprisingly difficult to give this conjecture rigorous

meaning, due ultimately to the Lorentzian signature of gab (cf. [32]). Here’s a sketch of

how it might be done: interpret M ≈ C to mean that Prob(C(M) = C) is relatively

large (in comparison with Prob(C(M) = C′)) for most of the other C′; and interpret

M1 ≈ M2 to mean that the random variables C(M1) and C(M2) share similar probability

distributions (on the space of causets). These definitions almost make the conjecture look

tautological, but it isn’t! (cf. [33])

Dimension and length

Assuming that — as seems very likely — causal sets do possess a structure rich enough

to give us back a macroscopically smooth Lorentzian geometry, it is important to figure

out how in practice one can extract geometrical information from an order relation. But

before we can speak of a geometry we must have a manifold, and the most basic aspect of

a manifold’s topology is its dimension. So an obvious first question is whether there is a

good way to recognize the effective continuum dimension of a causal set (or more precisely

of a causal set that is sufficiently “manifold like” for the notion of its dimension to be

meaningful). In fact several workable approaches exist. Here are three of them. All three

estimators will assign a dimension to an interval I in a causet C and are designed for the

case where I ≈ A for some interval (“double light cone”) A in Minkowski space M
d.

Myrheim-Meyer dimension [5] [29]. Let N = |I| be the number of elements in I and let R

be the number of relations in I (i.e. pairs x, y such that x ≺ y). Let f(d) = 3

2

(
3d/2

d

)−1

.

Then f−1(R/
(
N
2

)
) is a good estimate of d when N ≫ (27/16)d.

Remark The Myrheim-Meyer estimator is coarse-graining invariant on average (as is the

next)

Midpoint scaling dimension. Let I = interval(a, b) and let m ∈ I be the (or a) “mid-

point” defined to maximize N ′ = min{|interval(a, m)|, |interval(m, b)|}. Then log2(N/N ′)

estimates d.
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A third dimension estimator. Let K be the total number of chains in I. Then lnN/ ln lnK

estimates d. However, the logarithms mean that good accuracy sets in only for exponen-

tially large N .

A length estimator

Again this is for C ≈ M
d (or some convex subspace of M

d). Let x ≺ y. The most obvious

way to define a distance (or better a time-lapse) from x to y is just to count the number

of elements L in the longest chain joining them, where a joining chain is by definition a

succession of elements zi such that x ≺ z1 ≺ z2 ≺ z3 · · · ≺ y. Clearly a maximal path in

this sense is analogous to a timelike geodesic, which maximizes the proper-time between

its endpoints. It is known that this estimator L converges rapidly to a multiple of the

true proper time T as the latter becomes large. However the coefficient of proportionality

depends on the dimension d and is known exactly only for d = 1 and d = 2. For d > 2

only bounds are known, but they are rather tight.

Thus, it seems that we have workable tools for recovering information on both di-

mensionality and length (in the sense of timelike geodesic distance). However, these tools

have been proven so far primarily in a flat context, and it remains to be shown that they

continue to work well in the presence of generic curvature.

Dynamics

A priori, one can imagine at least two routes to a “quantum causet dynamics”. On one

hand, one could try to mimic the formulation of other theories by seeking a causet-invariant

analogous to the scalar curvature action, and then attempting to build from it some discrete

version of a gravitational “sum-over-histories”. On the other hand, one could try to identify

certain general principles or rules powerful enough to lead, more or less uniquely, to a family

of dynamical laws sufficiently constrained that one could then pick out those members of

the family that reproduced the Einstein equations in an appropriate limit or approximation.

(By way of analogy, one could imagine arriving at general relativity either by seeking a spin-

2 analog of Poisson’s equation or by seeking the most general field equations compatible

with general covariance and locality.)

The recent progress in dynamics has come from the second type of approach, and with

the causet’s “time-evolution” conceived as a process of what may be termed sequential

growth. That is, the causet is conceived of as “developing in time”, ⋆ rather than as

⋆ It might be more accurate to say that the growth of the causet is time.
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“existing timelessly” in the manner of a film strip. At the same time the growth process

is taken to be random rather than deterministic — classically random to start with, but

ultimately random in the quantum sense familiar from atomic physics and quantum field

theory. (Thus the quantum dynamical law is being viewed as more analogous to a classical

stochastic process like Brownian motion than to a classical deterministic dynamics like

that of the harmonic oscillator. [34] [35]) Expressed more technically, the idea is to seek a

quantum causet dynamics by first formulating the causet’s growth as a classical stochastic

process and then generalizing the formulation to the case of a “quantum measure” [36] or

“decoherence functional” [37].

The growth process in question can be viewed as a sequence of “births” of new causet

elements and each such birth is a transition from one partial causet to another. A dynamics

or “law of growth” is then simply an assignment of probabilities to each possible sequence

of transitions. Without further restriction, however, there would be a virtually limitless set

of possibilities for these probabilities. The two principles that have allowed us to narrow

this field of possibilities down to a (hopefully) manageable number are discrete general

covariance and Bell causality. To understand the first of these, notice that taking the

births to be sequential implicitly introduces a labeling of the causet elements (the first-

born element being labeled 0, the second-born labeled 1, etc). Discrete general covariance

is simply the requirement that this labeling be “pure gauge”, that it drop out of the final

probabilities in the same way that the choice of coordinates drops out of the equations of

general relativity. This requirement has the important side effect of rendering the growth

process Markovian, so that it is fully definable in terms of transition probabilities obeying

the Markov sum rule. The requirement of Bell causality is slightly harder to explain, but

it is meant to capture the intuition that a birth taking place in one region of the causet

cannot be influenced by other births that occur in regions spacelike to the first region.

Taken together, these assumptions lead to a set of equations and inequalities that —

remarkably — can be solved explicitly and in general [38] [39]. The resulting probability

for a transition C →C′ in which the new element is born with ̟ ancestors and m parents

(immediate ancestors) is given by the ratio

λ(̟, m)

λ(n, 0)
, (1)

where n = card(C) is the number of elements before the birth in question and where the

function λ is defined by the formula

λ(̟, m) =
∑̟

k=m

(
̟ − m

k − m

)
tk (2)
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with tn≥0 and t0 > 0. A particular dynamical law, then, is determined by the sequence

of “coupling constants” tn (or more precisely, by their ratios).

(It turns out that the probabilities resulting from these rules can be re-expressed in

terms of an “Ising model” whose spins reside on the relations x≺y of the causet, and whose

“vertex weights” are governed directly by the parameters tn [38]. In this way, a certain

form of “Ising matter” emerges indirectly from the dynamical law, albeit its dynamics is

rather trivial if one confines oneself to a fixed background causet. This illustrates how one

might hope to recover in an appropriate limit, not only spacetime and gravity, but also

certain forms of non-gravitational matter (here unified with gravity in a way reminiscent

of earlier proposals for “induced gravity” [40]).)

With some progress in hand concerning both the kinematics and dynamics of causets,

it is possible to start to think about applications, or if you will “phenomenology”. Several

projects of this nature are under way, with some interesting results already obtained. In

the remaining sections I will mention some of these results and projects.

Fluctuations in the cosmological constant

From the most basic notions of causal set theory, there follows already an order of magni-

tude prediction for the value of the cosmological constant Λ. More precisely, one can argue

that Λ should fluctuate about its “target value”, with the magnitude of the fluctuations

decreasing with time in proportion to N−1/2, where N is the relevant number of ancestors

(causet elements) at a given cosmological epoch. If one assumes that (for reasons yet to be

understood) the target value for Λ is zero, and if one takes for the N of today the space-

time volume of the currently visible universe from the big bang until the present, then

one deduces for Λ a magnitude consistent with the most recent observations, as predicted

already in [41] (and with refined arguments in [35] and [42]).

Four basic features of causet theory enter as ingredients into the refined version of the

argument: the fundamental discreteness, the relation n = V , the Poisson fluctuations in n

associated with sprinkling, and the fact that n serves as a parameter time in the dynamics

of sequential growth.

From the first of these we derive a finite value of n (at any given cosmic time).

From the fourth we deduce that, since time is not summed over in the path-integral

of non-relativistic quantum mechanics, neither should one expect to sum over n in the

gravitational path integral that one expects to result as an approximation to the still to be

formulated quantum dynamics of causets. But holding n fixed means holding spacetime
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volume V fixed, a procedure that leads in the continuum to what is called “unimodular

gravity”.

In the classical limit, this unimodular procedure leads to the action principle

δ

(∫
(

1

2κ
R − Λ0)dV − λV

)
= 0

where Λ0 is the “bare” cosmological constant, V =
∫

dV , κ = 8πG, and λ is a La-

grange multiplier implementing the fixation of V . Plainly, the last two terms combine

into −
∫

ΛdV where Λ = Λ0 + λ, turning the effective cosmological constant Λ into a free

constant of integration rather than a fixed microscopic parameter of the theory. Moreover,

the fact that Λ and V enter into the action-integral in the combination −ΛV means that

they are conjugate in the quantum mechanical sense, leading to the indeterminacy relation

δΛ δV ∼ h̄ .

Finally the Poisson fluctuations in n of size δn ∼ √
n at fixed V imply that, at fixed n, there

will be fluctuations in V of the same magnitude: δV ∼ √
n ∼

√
V , which correspond to

fluctuations in Λ of magnitude δΛ ∼ h̄/δV ∼ 1/
√

V (taking h̄ = 1). The observed Λ would

thus be a sort of residual quantum gravity effect, even though one normally associates the

quantum with the very small, rather than the very big!

Of course, this prediction of a fluctuating Λ remains at a heuristic level until it can

be grounded in a complete “quantum causet dynamics”. Nevertheless, given its initial

success, it seems worthwhile to try to extend it by constructing a model in which not

only the instantaneous magnitude of the fluctuations could be predicted, but also their

correlations between one time and another. In this way, one could assess whether the

original prediction was consistent with important cosmological constraints such as the

extent of structure formation and the abundances of the light nuclei. In this respect, it is

worth noting that current fits of nucleosynthesis models to the observed abundances favor

a non-integer number of light neutrinos falling between two and three. If this indication

holds up, it will require some form of effective negative energy density at nucleosynthesis

time, and a negative fluctuation in the contemporaneous Λ is perhaps the simplest way to

realize such an effective density.

Added note: A concrete model of the sort suggested above has been developed in [43].

Links across the horizon

An important question on which one can hope to shed light while still remaining at the

level of kinematics is that of identifying the “horizon states” that underpin the entropy of
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a black hole. Indeed, just as the entropy of a box of gas is, to a first approximation, merely

counting the molecules in the box, one might anticipate that the entropy of a black hole

is effectively counting suitably defined “molecules” of its horizon. With this possibility in

mind, one can ask whether any simply definable sub-structures of the causets associated

with a given geometry could serve as candidates for such “horizon molecules” in the sense

that counting them would approximately measure the “information content” of the black

hole.

Perhaps the most obvious candidates of this sort are the causal links crossing the

horizon in the neighborhood of the hypersurface Σ for which the entropy is sought. (Recall

that a link is an irreducible relation of the causet.) Of course, the counting of any small

scale substructures of the causet is prone to produce a result proportional to the area of

the horizon, but there is no reason a priori why the coefficient of proportionality could not

be divergent or vanishing, or why, if it is finite, it could not depend on the details of the

horizon geometry.

Djamel Dou [44] has investigated this question for two very different black hole ge-

ometries, one in equilibrium (the 4 dimensional Schwarzschild metric) and one very far

from equilibrium (the conical horizon that represents the earliest portion of a black hole

formed from the collapse of a spherical shell of matter). For the Schwarzschild case, he

made an ad hoc approximation that reduced the problem to 2 dimensional Schwarzschild

and found, for a certain definition of “near horizon link”, that the number N of such links

has an expectation value which reduces in the h̄→ 0 limit to c(π2/6)A, where A is the

horizon area and c is a constant arising in the dimensional reduction. (By h̄→ 0 I mean

equivalently l2/R2→0 where l is the fundamental causet scale and R the horizon radius.)

For the expanding horizon case (again dimensionally reduced from 4 to 2) he obtained

exactly the same answer, c(π2/6)A, despite the very different geometries. Not only is this

a nontrivial coincidence, it represents the first time, to my knowledge, that something like

a number of horizon states has been evaluated for any black hole far from equilibrium. The

first step in solidifying and extending these results would be to control the dimensional

reduction from 4 to 2, evaluating in particular the presently unknown coefficient c. Second,

one should check that both null and spacelike hypersurfaces Σ yield the same results. (The

null case is the best studied to date. Conceptually, it is important for possible proofs of

the generalized second law [45].) Also one should assess the sensitivity of the answer to

changes in the definition of “near horizon link”, since there exist examples showing that

the wrong definition can lead to an answer of either zero or infinity. And of course one

should extend the results to other black hole geometries beyond the two studied so far.
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Here is one of the definitions of “near horizon link” investigated by Djamel: Let H

be the horizon of the black hole and Σ, as above, the hypersurface for which we seek the

entropy S. The counting is meant to yield the black hole contribution to S, corresponding

to the section H ∩ Σ of the horizon. We count pairs of sprinkled points (x, y) such that

(i) x ≺ Σ, H and y ≻ Σ, H.

(ii) x ≺ y is a link ‡

(iii) x is maximal‡ in (pastΣ) and y is minimal‡ in (future Σ) ∩ (futureH).

What are the “observables” of quantum gravity?

Just as in the continuum the demand of diffeomorphism-invariance makes it harder to

formulate meaningful statements, † so also for causets the demand of discrete general co-

variance has the same consequence, bringing with it the risk that, even if we succeeded

in characterizing the covariant questions in abstract formal terms, we might never know

what they meant in a physically useful way. I believe that a similar issue will arise in every

approach to quantum gravity, discrete or continuous (unless of course general covariance

is renounced). ♭

Within the context of the classical growth models described above, this problem has

been largely solved [47], the “observables” being generated by “stem-predicates”. (‘stem’

is defined in the glossary).

Added note: The conjecture in [47] has been settled in the affirmative by [48].

‡ see glossary

† Think, for example, of the statement that light slows down when passing near the sun.

♭ In the context of canonical quantum gravity, this issue is called “the problem of time”.

There, covariance means commuting with the constraints, and the problem is how to

interpret quantities which do so in any recognizable spacetime language. For an attempt

in string theory to grapple with similar issues see [46].
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How the large numbers of cosmology might be understood: a “Tolman-Boltz-

mann” cosmology

Typical large number is ratio r of diameter of universe to wavelength of CMB radiation.

Idea is cycling of universe renormalizes [49] coupling constants such that r automatically

gets big after many bounces (no fine tuning). Large numbers thus reflect large age of

universe. See [50] and [51].

Fields on a background causet

See [52], [53], [54].

Topology change

See [55].
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GLOSSARY

Major deviations from these definitions are rare in the literature but minor ones are com-
mon. (In this glossary, we use the symbol < rather than ≺.)

ancestor/descendant

If x < y then x is an ancestor of y and y is a descendant of x.

antichain

a trivial order in which no element is related to any other (cf. ‘chain’)

causet = causal set = locally finite order

chain = linear order

an order, any two of whose elements are related. In particular, any linearly
ordered subset of an order is a chain. n-chain = chain of n elements

child/parent

If x < y is a link we can say that x is a parent of y and y a child of x. One also
says that “y covers x”.

comparable

see ‘related’

covering relation, covers

see ‘child’, ‘link’

descendant

see ‘ancestor’

down-set = downward-set = past-set = order-ideal = ancestral set

a subset of an order that contains all the ancestors of its members

full stem

A partial stem whose complement is the (exclusive) future of its top layer

future

see ‘past’

inf = greatest lower bound (cf. ‘sup’)

interval

see ‘order-interval’
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level

In a past-finite causet the level of an element x is the number of links in the
longest chain a < b < ... < c < x. Thus, level 0 comprises the minimal elements,
level 1 is level 0 of the remainder, etc.

linear extension

Let S be a set and < an order-relation on S. A linear extension of < is a second
order-relation ≺ which extends < and makes S into a chain.

link = covering relation

An irreducible relation of an order, that is, one not implied by the other relations
via transitivity. Of course we exclude pairs (xx) from being links, in the case
where such pairs are admitted into the order relation at all.

(There’s no inconsistency here with the notion that a “chain” ought to be made
up of “links”: the links in a chain are indeed links relative to the chain itself,
even if they aren’t links relative to the enveloping order.)

locally finite

An order is locally finite iff all its order-intervals are finite. (cf. ‘past-finite’)

maximal/minimal

A maximal/minimal element of an order is one without descendants/ancestors.

natural labeling

A natural labeling of a past-finite order is an assignment to its elements of labels
0 1 2 ... such that x < y ⇒ label(x) < label(y). Thus it is essentially the same
thing as a locally finite linear extension.

order-interval (or just plain interval)

The interval determined by two elements a and b is the set, interval(a, b) =
{x|a < x < b}.

order = ordered set = poset = partially ordered set = partial order

An order is a set of elements carrying a notion of “ancestry” or “precedence”.
Perhaps the simplest way to express this concept axiomatically is to define an
order as a transitive, irreflexive relation < . Many other, equivalent definitions
are possible. In particular, many authors use the reflexive convention, in effect
taking ≤ as the defining relation.

It is convenient to admit the empty set as a poset.

order-isomorphic

isomorphic as posets

25



origin = minimum element

a single element which is the ancestor of all others

originary

a poset possessing an origin is originary

parent

see ‘child’

partial stem (or just plain stem)

a past set of finite cardinality

partial post

An element x of which no descendant has an ancestor spacelike to x. The idea
is x is the progenitor of a “child universe”

partially ordered set

see ‘order’

past/future

past(x) = {y|y < x} , future(x) = {y|x < y}
past-finite

An order is past-finite iff all its down-sets are finite. (cf. ‘locally finite’)

path = saturated chain

a chain all of whose links are also links of the enveloping poset (saturated means
it might be “extended” but it can’t be “filled in”)

poset

see ‘order’

post

An element such that every other element is either its ancestor or its descendant:
a one-element slice.

preorder = preposet = acyclic relation = acyclic digraph

A preorder is a relation whose transitive closure is an order.

pseudo-order = transitive relation (possibly with cycles)

related = comparable

Two elements x and y are ‘related’ (or ‘comparable’) if x < y or y < x.

slice = maximal antichain
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(where maximal means it can’t be enlarged and remain an antichain)

equivalently, every x in the causet is either in the slice or comparable to one of
its elements.

equivalently, its inclusive past is a full stem

spacelike = incomparable

Two elements x and y are spacelike to each other (x ♮ y) iff they are unrelated
(ie neither x < y nor y < x).

stem

see ‘partial stem’

sup = least upper bound (cf. ‘inf’)

transitively reduced

The “transitive reduction” of an order is its Hasse digraph, an acyclic relation
containing only links.
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