
Causal Set Generator and Action Computer

William Cunningham

Department of Physics, Northeastern University,

360 Huntington Ave. Boston, MA 02115, United States

Dmitri Krioukov

Departments of Physics, Mathematics, and Electrical&Computer Engineering, Northeastern University,
360 Huntington Ave. Boston, MA 02115, United States

Abstract

The causal set approach to quantum gravity has gained traction over the past three decades, but numerical experiments
involving causal sets have been limited to relatively small scales. The software suite presented here provides a new
framework for the generation and study of causal sets. Its efficiency surpasses previous implementations by several
orders of magnitude. We highlight several important features of the code, including the compact data structures, the
O(N2) causal set generation process, and several implementations of the O(N3) algorithm to compute the Benincasa-
Dowker action of compact regions of spacetime. We show that by tailoring the data structures and algorithms to take
advantage of low-level CPU and GPU architecture designs, we are able to increase the efficiency and reduce the amount
of required memory significantly. The presented algorithms and their implementations rely on methods that use CUDA,
OpenMP, x86 Assembly, SSE/AVX, Pthreads, and MPI. We also analyze the scaling of the algorithms’ running times
with respect to the problem size and available resources, with suggestions on how to modify the code for future hardware
architectures.

Keywords: Causal Sets, Lorentzian Geometry, CUDA, x86 Assembly

PROGRAM SUMMARY
Program Title: Causal Set Generator and Action Computer

Program URL: https://bitbucket.org/dk-lab/

causalsetgenerator

Licensing Provisions: MIT

Programming Language: C++/CUDA, x86 Assembly

Computer: Any with Intel CPU

Operating System: (RedHat) Linux

RAM: 512 MB

Number of Processors Used: 112

Distribution Format: Online Repository

Classification: 1.5, 1.9, 6.5, 23

Nature of Problem: Generate causal sets and compute the

Benincasa-Dowker action.

Solution Method: We generate causal sets sprinkled on a

Lorentzian manifold by randomly sampling element coor-

dinates using OpenMP and linking elements using CUDA.

Causal sets are stored in a minimal binary representation

via the FastBitset class. We measure the action in parallel

using OpenMP, SSE/AVX and x86 Assembly. When multiple

computers are available, MPI and POSIX threads are also

incorporated.

Running Time: The runtime depends on the causal set size.

Email addresses: w.cunningham@northeastern.edu (William
Cunningham), dima@northeastern.edu (Dmitri Krioukov)

A typical simulation can be performed in under a minute.

Scaling with respect to Amdahl’s and Gustafson’s Laws is

analyzed in the body of the text.

Additional Comments: The program runs most efficiently with

an Intel processor supporting AVX2 and an NVIDIA GPU

with compute capability greater than or equal to 3.0.

1. Introduction

There exist a multitude of viable approaches to quantum
gravity, among which causal set theory is perhaps the most
minimalistic in terms of baseline assumptions. It is based
on the hypothesis that spacetime at the Planck scale is
composed of discrete “spacetime atoms” related by causal-
ity [1]. These “atoms”, hereafter called elements, possess
a partial order which encodes all information about the
causal structure of spacetime, while the number of these
elements is proportional to the spacetime volume—“Order
+ Number = Geometry” [2]. One of the first successes of
the theory was the prediction of the order of magnitude
of the cosmological constant long before experimental evi-
dence [3], while one of the most recent significant advances
was the definition and study of a statistical partition func-
tion for the canonical causal set ensemble [4] based on
the Benincasa-Dowker action [5]. This work provided a

Preprint submitted to Computer Physics Communications September 12, 2017

ar
X

iv
:1

70
9.

03
01

3v
1

 [
gr

-q
c]

 9
 S

ep
 2

01
7

https://bitbucket.org/dk-lab/causalsetgenerator
https://bitbucket.org/dk-lab/causalsetgenerator

framework to study phase transitions and measure observ-
ables, with paths towards developing a dynamical theory of
causal sets from which Einstein’s equations could possibly
emerge in the continuum limit. Yet the progress along this
path is partly blocked on numerical limitations. Since the
theory is non-local, the combination of action computation
running times, O(N3), and thermalization times, O(N2),
of Monte-Carlo methods used to sample causal sets from
the ensemble, result in O(N5) overall running times, lim-
iting numerical experimentation to causal sets sizes N of
just tens of elements.

Here we present new fast algorithms to generate causal
sets sprinkled onto a Lorentzian manifold, and to com-
pute the Benincasa-Dowker action, with an emphasis on
how these algorithms are optimized by leveraging the com-
puter’s architecture and instruction pipelines. After pro-
viding a short background information on causal sets and
the Benincasa-Dowker action in Sections 1.1 and 1.2, we
describe several algorithm implementations to generate
causal sets in Section 2. Section 3 presents a highly opti-
mized data structure to represent causal sets that speeds
up the computation of the action, Section 4, by orders of
magnitude. Section 5 presents an analysis of algorithms’
running times as functions of the causal set size and avail-
able computational resources. We conclude with a sum-
mary in Section 6.

1.1. Causal Sets

Causal sets, or locally-finite partially ordered sets, are
the central object in the causal set approach to quan-
tum gravity [1, 6, 7]. These structures are modeled as
directed acyclic graphs (DAGs) with N labeled elements
(n1, n2, . . . , nN) and directed pairwise relations (ni, nj).
If obtained by sprinkling onto a Lorentzian manifold, they
approximate the manifold in the continuum limit N →∞.
Lorentzian manifolds are (d + 1)-dimensional manifolds
with d spatial dimensions and one temporal dimension
whose metric tensors gµν , µ, ν = 0, 1, . . . , d, have one neg-
ative eigenvalue [8, 9]. These DAGs are a particular type
of random geometric graph [10]: elements are assigned co-
ordinates in time and d-dimensional space via a Poisson
point process with intensity ξ, and are linked pairwise if
they are causally related, i.e., timelike-separated in the
spacetime with respect to the underlying metric (Figure 1).
Due to the non-locality implied by the causal structure,
causal sets have an information content which scales at
least as O(N2) compared to that in competing theories
of discrete spacetime which scales as O(N) [11–13]. As
a result, by using the causal structure information con-
tained in these DAG ensembles, one can recover the space-
time dimension [14, 15], continuum geodesic distance [16],
differential structure [17–20], Ricci curvature [5], and the
Einstein-Hilbert action [11, 21–23], among other proper-
ties.

SIGNAL

OBSERVER

θ

η

Figure 1: The causal set as a random geometric graph.
Elements of the causal set are sprinkled uniformly at random with
intensity ξ into a particular region of spacetime, where η and θ re-
spectively refer to the temporal and spatial coordinates in (1 + 1)-
dimensions. Light cones, drawn by 45-degree lines in these conformal
coordinates, bound the causal future and past of each element. When
light cones of a pair of elements (shown in blue and green) overlap,
the elements are said to be causally related, or timelike separated,
as indicated by the bold red line. The black elements both to the
future of the signal and to the past of the observer form the pair’s
Alexandroff set shown by the teal color. Not all pairwise relations
are drawn.

1.2. The Benincasa-Dowker Action

In many areas of physics, the action (S) plays the most
fundamental role: using the least action principle [24, 25],
one can recover the dynamic laws of the theory as the
Euler-Lagrange equations that represent the necessary
condition for action extremization δS = 0. In general rel-
ativity, from the Einstein-Hilbert (EH) action,

SEH =
1

2

∫
R (xµ)

√
−g dxµ , (1)

where R is the Ricci scalar curvature and g is the metric
tensor determinant, Einstein’s field equations can be ex-
plicitly derived and then solved given a particular set of
constraints [26]. Therefore, if one hopes to develop a dy-
namical theory of quantum gravity, the discrete action in
the quantum theory must converge to (1) in the contin-
uum limit. The numerical investigation of whether such
convergence does indeed take place can be quite difficult:
the quantum gravity scale is the Planck scale, so that if
the convergence is slow, it may be extremely challenging to
observe it numerically. This is indeed the case the causal
set discrete action, known as the Benincasa-Dowker (BD)
action [5], which has been shown to converge slowly to the
EH action in curved higher-dimensional spacetimes such
as (3 + 1)-dimensional de Sitter spacetime [20, 22].

The BD action was discovered in the study of the
discrete d’Alembertian (B), i.e., the discrete covariant
second-derivative approximating � ≡ −∂2t + ∇2, defined

2

in (1 + 1)-dimensions, for instance, as

Bφ (xµ) =
2

l2

(
− φ (xµ) +

2

∑
y∈L1

−2
∑
y∈L2

+
∑
y∈L3

φ (yµ)

)
,

(2)

where φ(xµ) is a scalar field on the causal set, l ≡ ξ−1/(d+1)

is the discreteness scale, and the ith order inclusive order
interval (IOI) Li corresponds to the set of elements {y}
which precede x with exactly (i− 1) elements {zj} within
each open Alexandroff set, i.e., y ≺ {zj} ≺ x∀ y ∈ Li and
|{zj}| = i − 1. In [5] it was shown that in the contin-
uum limit, (2) converges in expectation to the continuum
d’Alembertian plus another term proportional to the Ricci
scalar curvature

lim
N→∞

E [Bφ (xµ)] = �φ (xµ)− 1

2
R (xµ)φ (xµ) . (3)

From (2) and (3) one can see when the field is constant
everywhere, so that �φ(xµ) = 0, then (2) converges to the
Ricci curvature in the continuum limit, and therefore to
the EH action when summed over the entire causal set. It
was also shown in [5] that the expression for the BD action
in (1 + 1) dimensions is

SBD = 2(N − 2n1 + 4n2 − 2n3) , (4)

where ni is the abundance of the ith order IOI, i.e., the
cardinality of the set Li (Figure 2). While (4) converges
in expectation, any typical causal set tends to have a BD
action far from the mean. This poses a serious problem for
numerical experiments which already require large graphs,
N & 216, to show convergence, and also indicates that
Monte Carlo experiments must have relatively large ther-
malization times. To partially alleviate this problem, it
is not (2) which one usually calculates, but rather an-
other expression, called the “smeared” or “non-local” ac-
tion (Sε) which is obtained by averaging (or smearing)
over subgraphs described by a mesoscale characterized by
ε ∈ (0, 1). The new expression which replaces (4) is

Sε = 2ε

[
N − 2ε

N−1∑
i=1

nif2 (i− 1, ε)

]
,

f2 (i, ε) = (1− ε)i
[

1− 2εi

1− ε
+
ε2i (i− 1)

2 (1− ε)2

]
.

(5)

The smeared action (5) was shown to also converge to the
EH action in expectation, while fluctuations are greatly
suppressed so that numerical experiments with the same
degree of convergence accuracy can be performed with or-
ders of magnitude smaller graph sizes [20].

While in some cases one might want to compare directly
the expectation of the BD action to the continuum re-
sult (1), in Monte Carlo experiments with the canonical

causal set ensemble one uses (5) in the quantum partition
function

Z(N, d, T) =
∑
C

eiSε/~ , (6)

where the sum is over the ensemble of all causal sets C with
fixed size N , dimension d, and topology T . The Wick-
rotated partition function used in numerical experiment
is

Z(N, d, T) =
∑
C

e−βSε/~ , (7)

where ~ → 1 and β ∈ R+. Methods for generating causal
set Markov chains using this partition function are dis-
cussed in [11].

1.3. Computational Tasks

Generating causal sets involves an O(N) coordinate gen-
eration operation followed by an O(N2) element linking
operation, both of which can be parallelized (Section 2).
Yet the bottleneck is not graph generation but the O(N3)
action computation. After each causal set is constructed,
the primary computationally intensive task in comput-
ing (5) is counting the IOIs. For each pair of causally
related elements we must count the number of elements
within their Alexandroff set. As a result, the runtime de-
pends greatly on the ordering fraction, defined as the frac-
tion of related pairs, which in turn depends on the choice
of manifold, dimension, and bounding region.

Previous work implemented as a part of the Cactus
framework [27] has been quite successful, but because the
causal set thorn1 is part of a broader numerical relativity
package it is challenging to modify core data structures
and to take advantage of platform-specific architectures.
Therefore, one of the main new features of the software
suite presented here is a new efficient data structure called
the FastBitset (Section 3), which offers compressed-bit
storage and several highly optimized algorithms designed
specially to calculate the smeared BD action. As a result,
larger causal sets may be studied in the asymptotic regime
N & 216, possibly up to the extreme sizes N ∼ 224, and
the Markov chains generated by smaller causal sets may
be extended further than before to enable a closer exami-
nation of phase transitions found in [11].

2. Causal Set Generation

2.1. Coordinate Generation

For a finite region of a particular Lorentzian mani-
fold, coordinates are sampled via a Poisson point pro-
cess with intensity ξ, using the normalized distributions
given by the volume form of the metric. For instance, for

1Extensions of the Cactus package are called “thorns”, which are
built off of the “flesh”, i.e., the core framework.

3

= { }= { } = { }

n
1
 = 4 n

2
 = 5 n

3
 = 4

L
1

L
2
 L

3
 = { }= { } = { }

n
4
 = 4 n

5
 = 5 n

6
 = 3

L
4

L
5
 L

6

L
1

L
2

L
3

L
4

1 1

1

1

1

1

1

1
1

1

1

1

1

1

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
0

0
00

0

1 1 10 0 1 0 0 11 1 1 00 0 0 00 1 1

1 1 1 10 0 0 0 111 11 1 0 0 0000

0 0 0 0 0 0 0 0 0 0 0 0 0 0
000000000000000

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

0 0

0 0000

0000 0

00

0 0

0

0

00

00 0

0000

0 0 0

00

0 0

0

1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 10 0 1 0 0 1

1 1 1 10 0 0 0 1&

0 1 00 0 1 0 0 1

POPCNTQ 3

L
4

i

i

j

j
(SUM)

Figure 2: Proper distance and the order intervals. The left panel shows discrete hypersurfaces of constant proper time τ = x2 − t2
(dashed) are approximated using the graph distance. If the black point is some element x in a larger causal set, then the order intervals would
be found by counting the number of elements belonging to each hypersurface, i.e., ni = |Li|. In general the structure is not tree-like. The
top of the right panel shows the subgraphs associated with each of the first four inclusive order intervals used in (4), and the bottom part
shows how they are detected using the causal (adjacency) matrix, assuming the graph has been topologically sorted, i.e., time-ordered. For
each pair of timelike separated elements (i, j), we take the inner product of rows i and j between columns i and j using the bitwise AND in
place of multiplication and the popcntq instruction in place of a sum. The resulting value tells how many elements lie within the Alexandroff
set. Details of the algorithm can be found in Section 3.3.

any (d + 1)-dimensional Friedmann-Lemâıtre-Robertson-
Walker (FLRW) spacetime [28] with compact spatial hy-
persurfaces, the volume form may be written

dV = a(t)ddt dΩd , (8)

where a(t) is the scale factor, which describes how space
expands with time, and dΩd is the differential form
for the d-dimensional sphere. From this expression,
we find the normalized temporal distribution is ρ(t) =
a(t)d/

∫
a(t′)d dt′, and spatial coordinates are sampled

from the surface of the d-dimensional unit sphere. Be-
cause the (d + 1) × N coordinates of the elements sprin-
kled within a spacetime are all independent with respect
to each other, these may easily be generated in parallel
using OpenMP [29].

2.2. Pairwise Relations

Once coordinates are assigned to the elements, the pair-
wise relations are found by identifying pairs of elements
which are timelike separated, and efficient storage requires
the proper choice of the representative data structure. A
causal set is a graph, i.e., a set of N labeled elements along
with a set of pairs (i, j) which describe pairwise relations
between elements, so the most straightforward represen-
tation uses an adjacency matrix of size N × N . If the
graph is simply-connected, i.e., there exist no self-loops or
multiply-connected pairs, then this matrix contains only
1’s and 0’s, with each entry indicating the existence or
non-existence of a relation between the pair of elements
specified by a particular pair of row and column indices.
Moreover, if this graph is undirected, the matrix will be
symmetric. We represent causal sets as undirected graphs
with topologically sorted elements, meaning that elements

are labeled such that an element with a smaller index will
never precede an element with a larger index. In the con-
text of the embedding space, this simply means elements
are sorted by their time coordinate before relations are
identified.

2.2.1. Naive CPU Linking Algorithm

The naive implementation of the linking algorithm using
the CPU uses a sparse representation in the compressed
sparse row (CSR) format. Because the elements have been
sorted, we require twice the memory to store sorted lists of
both future-directed and past-directed relations, i.e., one
list identifies relations to the future and the other those
to the past. While identification of the relations is in fact
only O(N2) in time, the data reformatting (list sorting)
pushes it roughly to O(N2.6), as we will see in Section 5.

2.2.2. OpenMP Linking Algorithm

The second implementation uses the dense graph rep-
resentation and is parallelized using OpenMP. Using this
dense representation for a sparse graph can waste a rela-
tively large amount of memory compared to the informa-
tion content; however, the nature of the problem described
in the previous section dictates a dense representation will
permit a much faster algorithm, as we will discuss later
in Sections 4 and 5. Moreover, the sparsity will depend
greatly on the input parameters, so in many cases the bi-
nary adjacency matrix is the ideal representation.

2.2.3. Naive GPU Linking Algorithm

While OpenMP offers a great speedup over the naive
implementation, the linking algorithm is several orders of
magnitude faster when instead we use one or more Graph-
ics Processing Units (GPUs) with the CUDA library [30].

4

There are many difficulties in designing appropriate algo-
rithms to run on a GPU: one must consider size limitations
of the global memory, which is the GPU equivalent of the
RAM, and the GPU’s L1 and L2 caches, as well as the
most efficient memory access patterns. One particularly
common optimization uses the shared memory, which is a
reserved portion of up to 48 KB of the GPU’s 64 KB L1
cache. This allows a single memory transfer from global
memory to the L1 cache so that spatially local memory
reads and writes by individual threads afterwards are at
least 10x faster. At the same time, an additional layer of
synchronizations among threads in the same thread block
must be considered to avoid thread divergence and unnec-
essary branching. It also puts constraints on data struc-
tures since it requires spatially local data or else the cache
miss rate will drastically increase.

The first GPU implementation offers a significant
speedup by allowing each of the 2496 cores in the NVIDIA
K80m (using a single GK210 processor) to perform a sin-
gle comparison of two elements. The output is a sparse
edge list of 64-bit unsigned integers, so that the lower and
upper 32 bits each contain a 32-bit unsigned integer corre-
sponding to a pair of indices of related elements. After the
list is fully generated, it is decoded on the GPU using a
parallel bitonic sort to construct the past and future sparse
edge lists. During this procedure, vectors containing de-
gree data are also constructed by counting the number of
writes to the edge list.

2.2.4. Optimized GPU Linking Algorithm

Despite the great increase in efficiency, this method fails
if N is too large for the edge list to fit in global GPU
memory or if N is not a multiple of 256. The latter fail-
ure occurs because the thread block size, i.e., the number
of threads guaranteed to execute concurrently, is set to
128 for architectural reasons2, and the factor of two comes
from the index mapping used internally which treats the
adjacency matrix as four square submatrices of equal size.
The second GPU implementation addresses these limita-
tions by tiling the adjacency matrix, i.e., sending smaller
submatrices to the GPU serially. Further, when N is not
a round number these edge cases are handled by exiting
threads with indices outside the proper bounds so that no
improper memory accesses are performed.

This second implementation also greatly improves the
speed by having each thread work on four pairs of ele-
ments instead of just one. Since each of the four pairs has
the same first element by construction, the corresponding
data for that element may be read into the shared memory,
thereby reducing the number of accesses to global memory.
Moreover, threads in the same thread block also use shared
memory for the second element in each pair. Hence, since

2On the NVIDIA K80m, which has a Compute Capability of 3.7,
each thread block cannot have greater than 1024 threads, there can
be at most 16 thread blocks per multiprocessor, and at the same
time no greater than 2048 threads per multiprocessor.

each thread block has 128 threads and each thread works
on four pairs, there are only 132 reads (128+4) global
memory rather than 512 (128×4), where each read con-
sists of reading (d + 1) floats for a (d + 1)-dimensional
causal set. Finally, when the dense graph representation
is used, the decoding step may be skipped, which offers a
rather substantial speedup when the graph is dense. There
are other optimizations to reduce the number of writes
to global memory using similar techniques via the shared
memory cache.

2.2.5. Asynchronous GPU Linking Algorithm

A third version of the GPU linking algorithm also ex-
ists which uses asynchronous CUDA calls to multiple con-
current streams. By further tiling the problem, simulta-
neously data can be passed to and from the GPU while
another stream executes the kernel, i.e., the linking oper-
ations. This helps reduce the required bandwidth over the
PCIe bus and can sometimes improve performance when
the data transfer time is on par with the kernel execution
time. We find in Section 5 this does not provide as great a
speedup as we expected, so this is one area for future im-
provement should this end up being a bottleneck in other
applications.

3. The FastBitset Class

3.1. Problems with Existing Data Structures

The relations found by the linking algorithm are best
stored in dense matrix format for the action algorithm,
as we will see in Section 4. A binary adjacency matrix
can be implemented in several ways in C++. The naive
approach is to use a std::vector<bool> object. While
this is a compact data structure, there is no guarantee
memory is contiguously stored internally and, moreover,
reading from and writing to individual locations is compu-
tationally expensive. Because the data is stored in binary,
there is necessarily an internal conversion involving sev-
eral bitwise and type-casting operations which make these
simple operations take longer than they would for other
data structures.

The next best option is the std::bitset<> object. This
is a better option than the std::vector<bool> because
it has bitwise operators pre-defined for the object as a
whole, i.e., to multiply two objects one need not use a for

loop; rather, operations like c = a & b are already imple-
mented. Further, it has a bit-counting operation defined,
making it easy to immediately count the number of bits
set to ‘1’ in the object. Still, there is no guarantee of con-
tiguous memory storage and, worst of all, the size must be
known at compile-time. These two limitations make this
data structure impossible to use if we want to specify the
size of the causal set at runtime.

Finally, the last option we’ll examine is the
boost::dynamic bitset<> provided in the Boost
C++ Libraries [31]. While this is not a part of the ISO

5

C++ Standard, it is a well-maintained and trusted library.
Boost is known for offering more efficient implementa-
tions of many common data structures and algorithms.
The boost::dynamic bitset<> can be dynamically
sized, unlike the std::bitset<>, the memory is stored
contiguously, and it even has pre-defined bitwise and
bit-counting operations. Still, it does not suit the needs
of the abovementioned problem because it is not possible
to access individual portions of the bitset: we are limited
to work only with individual bits or the entire bitset.

Given these limitations, we have developed the
FastBitset class to represent causal sets in a way which
is most efficient for non-local algorithms such as the one
used to find the BD action. The adjacency matrix is
comprised of a std::vector of these FastBitset objects,
with each object corresponding to a row of the matrix.
Internally, this data structure holds an array of 64-bit
unsigned integers which contain the matrix elements in
their raw bits. We have provided all four set opera-
tions (intersection, union, disjoint union, and difference)
and several bit-counting operations, including variations
which maybe used on a proper subset of the entire object.
The performance-critical algorithms used to calculate the
BD action have been optimized using inline assembly and
SSE/AVX SIMD instructions [32].

3.2. Optimized Algorithms in the FastBitset

One of the most frequently used operations is the set
intersection, i.e., row multiplication using the bitwise AND

operator. The naive implementation uses a for loop, but
the optimized algorithm takes advantage of the 256-bit
YMM registers located within each physical CPU core.
The larger width of these registers means that in a single
CPU cycle we may perform a bitwise AND on four times
the number of bits as in the naive implementation at the
expense of moving data to and from these registers. The
outline is described in Algorithm 1. It is important to
note that for such an operation to be possible, the array of
blocks must be 256-bit aligned. Any bits used as padding
are always set to zero so they do not affect any results.

Algorithm 1 Set Intersection with AVX

Input:
A . The bit array of the first FastBitset
B . The bit array of the second FastBitset

n . The number of blocks
1: procedure intersection(A,B,n)
2: for i = 0; i < n; i += 4 do
3: ymm0 ← A[i]
4: ymm1 ← B[i]
5: ymm0 ← (ymm0) & (ymm1)
6: A[i]← ymm0

Output:
A . The first bit array now holds the result

The code shown inside the for loop is written entirely

in inline assembly, with Operation 5 using the SIMD in-
struction vpand provided by AVX2. Therefore, for each
set of 256 bits, we use two move operations from the L1
or L2 cache to the YMM registers, one bitwise AND oper-
ation, and one final move operation of the result back to
the general purpose registers. The bottleneck in this op-
eration is not the bitwise operation, but rather the move
instructions vmovdqu, which limits throughput due to the
bus bandwidth to these registers. As a result, it is not
faster to use all 16 of the YMM registers, but rather only
two. While certain prefetch instructions were tested we
found no further speedup.

One of the reasons this data structure was developed
was so we could perform such an operation on a subset
of two sets of bits. We apply the same principle as in
Algorithm 1, but with unwanted bits masked out, i.e., set
to zero after the operation. For blocks which lie outside
the range we want to study, they are not even included
in the for loop. The new operation, denoted the partial
intersection, is outlined in Algorithm 2.

In the partial intersection algorithm, we consider two
scenarios: in one the entire range of bits lies within a single
block, and in the second it lies over some range of blocks,
in which case the original intersection algorithm may be
used on those full blocks. In either case, it is essential all
bits outside the range of interest are set to zero, as shown
by the memset and get bitmask operations.

The final operation which we must optimize is the bit
count and, therefore, the partial bit count as well. This
is a well-studied operation which has many implementa-
tions and is strongly dependent on the hardware and com-
piler being used. The bit count operation takes some
binary string, usually in the form of an unsigned inte-
ger, and returns the number of bits set to one. Because
it is such a fundamental operation, some processors su-
port a native assembly instruction called popcnt which
acts on a 32- or 64-bit unsigned integer. Even on sys-
tems which support these instructions, the compiler is not
always guaranteed to choose these instructions. For in-
stance, the GNU function builtin popcount actually
uses a lookup table, as does Boost’s do count method
used in its dynamic bitset. Both are rather fast, but
they are not fully optimized, and for this reason we will at-
tempt to package the fastest known implementation with
the FastBitset. When such an instruction is not sup-
ported the code will default to Boost’s implementation.

The fastest known implementation of the popcount al-
gorithm uses the native 64-bit CPU instruction popcntq,
where the trailing ‘q’ indicates the instruction operates on
a (64-bit) quadword operand. While we could use a for

loop with a simple assembly call, we would not be taking
advantage of the modern pipeline architecture with just
one call to one register. For this reason, we can unroll the
loop and perform the operation in pseudo-parallel fashion,
i.e., in a way in which prefetching and prediction mecha-
nisms will improve the instruction throughput by our ex-
plicit suggestions to the out-of-order execution (OoOE)

6

Algorithm 2 Partial Intersection with AVX

Input:
A . The first bit array
B . The second bit array
o . Starting bit index
n . Length of subset

1: function get bitmask(offset)
2: return (1� offset)− 1

3: procedure partial intersection(A,B,o,n)
4: . Divide o by 64 to get the block index
5: x← o/64
6: . Indices within the blocks
7: a← o % 64
8: b← (o+ n) % 64
9: if range inside single block then

10: A[x] ← A[x] & B[x] & get bitmask(a) &
get bitmask(b)

11: u← 1 . Used one block
12: else
13: . Intersection on full blocks
14: m← (n− 1)/64 . Number of full blocks
15: intersection(A[x+ 1], B[x+ 1],m)

16: . Intersection on end blocks
17: A[x] &= B[x] & get bitmask(a)
18: A[x+m] &= B[x+m] & get bitmask(b)
19: u← m+ 2 . Used m+ 2 blocks

20: . Set other blocks to zero
21: l← a
22: h← A.getNumBlocks()−l − u
23: if l > 0 then
24: memset(A, 0, 8 ∗ l)
25: if h > 0 then
26: memset(A[l + u], 0, 8 ∗ h)
Output:

A . The first bit array now holds the result

Algorithm 3 Optimized Bit Counting

Input:
A . The bit array
N . The number of blocks

1: procedure count bits(A,n)
2: . The counter variables
3: c[4]← {0, 0, 0, 0}
4: for i = 0; i < N ; i += 4 do
5: A[i]←popcntq(A[i])
6: c[0] += A[i]
7: A[i+ 1]←popcntq(A[i+ 1])
8: c[1] += A[i+ 1]
9: A[i+ 2]←popcntq(A[i+ 2])

10: c[2] += A[i+ 2]
11: A[i+ 3]←popcntq(A[i+ 3])
12: c[3] += A[i+ 3]

Output:
c[0] + c[1] + c[2] + c[3] . Number of set bits

units in the CPU. We demonstrate how this works in Al-
gorithm 3.

This algorithm is so successful because the instructions
are not blocked nearly as much here as if they were per-
formed using a single register. As a result, the Intel in-
struction pipeline allows the four sets of operations to
be performed nearly simultaneously (i.e., instruction-level
parallelism) via the OoOE units. While it would be pos-
sible to extend this performance to use another four reg-
isters, this would then mean the bitset would need to be
512-bit aligned.

3.3. The Vector Product

To execute the vector product operation, we want to
utilize the good features described above. If a popcount
is performed directly after the intersection, a lot of time
is wasted copying data to and from YMM registers when
the sum variable could be stored directly in the YMM
registers, for instance. Since the vmovdqu operations are
comparatively expensive, removing one out of three offers
a great speedup. Furthermore, for large bitsets it is in fact
faster to use an AVX popcount implementation [33]. We
show such an implementation below in Algorithm 4.

Algorithm 4 Optimized Vector Product

Input:
A . The first bit array
B . The second bit array
N . The number of blocks

1: procedure vecprod(A,B,N)
2: ymm2←table . Lookup table
3: ymm3←0xf . Mask variable
4: for i = 0; i < N ; i ++ do
5: ymm0← A[i]
6: ymm1← B[i]
7: ymm0←(ymm0) & (ymm1) . Intersection
8: ymm4←(ymm0) & (ymm3) . Lower Mask
9: ymm5←((ymm0) � 4) & (ymm3) . High Mask

10: ymm4←vpshufb(ymm2, ymm4) . Shuffle
11: ymm5←vpshufb(ymm3, ymm5) . Shuffle
12: ymm5←vpaddb(ymm4, ymm5) . Horiz. Add
13: ymm5←vpsadbw(ymm5, ymm7) . Horiz. Add
14: ymm6←ymm5+ymm6 . Accumulator

15: c←ymm6

Output:
c[0] + c[1] + c[2] + c[3] . Vector product sum

This algorithm is among the best known SIMD algo-
rithms for bit accumulation [33]. At the very start, a
lookup table and mask variable are each loaded into a
YMM register. The table is actually the first half of the
Boost lookup table, stored as an unsigned char array.
These variables are essential for the instructions later to
work properly, but their contents are not particularly in-
teresting. Once the intersection is performed, two mask
variables are created using the preset mask. The bits in

7

these masks are then shuffled (vpshufb) according to the
contents of the lookup table in a way which allows the hori-
zontal additions (vpaddb, vpsadbw) to store the sum of bits
in each 64-bit range in the respective range. Finally, the
accumulator saves these values in ymm6. The instructions
are once again paired in a way which allows the instruc-
tion throughput to be maximized via instruction-level par-
allelism, and the partial vector product uses a very similar
setup to the partial intersection with respect to masking
and memset operations. If the bitset is too short, i.e., if the
causal set is too small, this algorithm will perform poorly
due to the larger number of instructions, though it is easy
to experimentally determine which to use on a particular
system and then hard-code a threshold.

All of the algorithms mentioned so far may be easily
optimized for a system with (512-bit) ZMM registers, and
we should expect the greatest speedup for the set oper-
ations. Using Intel Skylake X-series and newer proces-
sors, which support 512-bit SIMD instructions, we may
replace something like vpand with the 512-bit equivalent
vpandd. An optimal configuration today would use a Xeon
E3 processor with a Kaby Lake microarchitecture, which
can have up to a 3.9 GHz base clock speed, together with
a Xeon Phi Knights Landing co-processor, where AVX-
512 instructions may be used together with OpenMP to
broadcast data over 72 physical (288 logical) cores.

4. Action Computation

4.1. Naive Action Algorithm

The optimizations described above which use AVX and
OpenMP are orders of magnitude faster than the naive ac-
tion algorithm, which we review here. The primary goal
in the action algorithm is to identify the abundance ni
of the subgraphs Li identified in Figure 2. When we use
the smeared action rather than the local action, this se-
ries of subgraphs continues all the way up to those defined
by the set of elements LN−2, i.e., the largest possible sub-
graph is an open Alexandroff set containingN−2 elements.
Therefore, the naive implementation of this algorithm is
an O(N3) procedure which uses three nested for loops to
count the number of elements in the Alexandroff set of ev-
ery pair of related elements. For each non-zero entry (i, j)
of the causal matrix, with i < j due to time-ordering, we
calculate the number of elements k both the future of ele-
ment i and to the past of element j and then add one to
the array of interval abundances at index k.

4.2. OpenMP Action Algorithm

The most obvious optimization uses OpenMP to paral-
lelize the two outer loops of the naive action algorithm,
since the properties of each Alexandroff set in the causal
set are mutually independent. Therefore, we combine the
two outer loops into a single loop of size N(N−1)/2 which
is parallelized with OpenMP, and then keep the final in-
ner loop serialized. When we do this, we must make sure

we avoid write conflicts to the interval abundance array:
if two or more threads try to modify the same spot the
array, some attempts may fail. To fix this, we generate T
copies of this array so that each of the T threads can write
to its own array. After the action algorithm has finished,
we perform a reduction on the T arrays to add all results
to the first array in the master thread. This algorithm
still scales like O(N3) since the outer loop is still O(N2)
in size.

4.3. AVX Action Algorithm

The partial vector product algorithms described in Sec-
tion 3.3 naturally provide a highly efficient modification
to the naive action algorithm. The partial intersection
returns a binary string where indices with 1’s indicate el-
ements both to the future of element i and to the past of
element j, and then a popcount will return the total num-
ber of elements within this interval. A summary of this
procedure is given in Algorithm 5.

Algorithm 5 Optimized Cardinality Measurement

Input:
A . The adjacency matrix
c . The array of cardinalities
p . The number of element pairs

1: procedure cardinality(A,c,p)
2: for k = 0; k < p; k ++ do
3: . Convert the pair index to two element indices
4: {i, j} ←convert index(k)
5: if elements are not related then
6: continue
7: . Cardinality for pair (i, j)
8: m← A[i].partial vecprod(A[j], i, j − i+ 1)
9: c[m+ 1] ++

Output:
c . The populated array

This algorithm is able to be further optimized by us-
ing OpenMP with a reduction clause to accumulate the
cardinalities. In turn, each physical core is parallelizing
instructions via AVX, and then each CPU is paralleliz-
ing instructions by distributing tasks in this outer loop to
each core. While it is typical to use the number of logical
cores during OpenMP parallelization, we instead use the
number of physical cores (typically half the logical cores,
or a quarter in a Xeon Phi co-processor) because it is not
always efficient to use hyperthreading alongside AVX.

4.4. MPI Optimization: Static Design

When the graph is small, so that the entire adjacency
matrix fits in memory on each computer, we can simply
split the for loop in Algorithm 5 evenly among all the
cores on all computers using a hybrid OpenMP and Plat-
form MPI approach. But when the graph is extremely
large, e.g., N & 221, we cannot necessarily fit the entire
adjacency matrix in memory. To address this limitation,

8

Rank 0 Rank 1 Rank 2 Rank 3
0 1 2 3 4 5 6 7
0 3 2 5 4 7 6 1
0 5 2 7 4 1 6 3
0 7 2 1 4 3 6 5
0 2 1 3 4 6 5 7
0 4 1 5 2 6 3 7
0 6 1 7 4 2 5 3

Table 1: Permutations of MPI buffers using four computers.
Each of four computers, identified by its rank, holds a quarter of
the adjacency matrix. Two buffers on each computer each hold an
eighth of the entire matrix, labeled {0, . . . , 7}, so that all pairwise
row operations may be performed using the minimal number of inter-
rank transfers. Each of the seven rows is a non-trivial permutation of
the eight buffers, indicating only seven rounds of MPI data transfers
are necessary to calculate the action when the algorithm is split over
four computers.

we use MPI to split the entire problem among 2x com-
puters, where x ∈ Z+. Each computer will generate some
fraction of the element coordinates, and after sharing them
among all other computers, will generate its portion of the
adjacency matrix, hereafter referred to as the adjacency
submatrix. In general, these steps are fast compared to
the action algorithm.

The MPI version of the action algorithm is performed
in several steps. It begins by performing every pairwise
operation possible on each adjacency submatrix, without
any memory swaps among computers. Afterward, each
adjacency submatrix is labeled by two numbers: the first
refers to the first half of rows of the adjacency submatrix
on that computer while the second corresponds to the sec-
ond half, so that there are 2x+1 groups of rows labeled
{0, . . . , 2x+1 − 1}. There will never be an odd number
since the matrix is 256-bit aligned. We then wish to per-
form the minimal number of swaps of these row groups
necessary to operate on every pair of rows of the origi-
nal matrix. Within each row group all pairwise operations
have already been performed, so moving forward only op-
erations among rows of different groups are performed.

We label all possible permutations except those which
provide trivial swaps, i.e., moves which would swap buffers
within a single computer, or moves which swap buffers in
only some computers. The non-trivial configurations are
shown for four computers in Table 1. By organizing the
data in this way, we can ensure no computers will be idle
after each data transfer. We use a cycle sort to determine
the order of permutations so that we can use the minimal
number of total buffer swaps. We are able to simulate
this using a simple array of integers populated by a given
permutation, after which the actual operation takes place.
By starting at the current permutation and sorting to each
un-visited permutation we can record how many steps each
would take. Often it is the case that several will use the
same number of steps, in which case we may move from
the current permutation to any of the others which use the
fewest number of swaps. Once all pairwise partial vector

products have completed on all computers for a partic-
ular permutation, that permutation is removed from the
global list of unused permutations which is shared across
all computers.

4.5. MPI Optimization: Load Balancing

The MPI algorithm described in the previous section
grows increasingly inefficient when the pairwise partial
vector product operations are not load-balanced across all
computers. In Algorithm 5, there is a continue state-
ment which can dramatically reduce the runtime when
the pairs used by one computer are less connected than
those on another computer. When the entire adjacency
matrix fits on all computers, this is easily addressed by
identifying a random graph automorphism by performing
a Fisher-Yates shuffle of labels. This allows each com-
puter to choose unique random pairs, though it introduces
a small amount of overhead.

On the other hand, if the adjacency matrix must be split
among multiple computers, load balancing is much more
difficult. If we suppose that in a four-computer setup the
for loops on two computers finish long before those on the
other two, it would make sense for the idle computers to
perform possible memory swaps and resume work rather
than remain idle. The dynamic design in Figure 3 ad-
dresses this flaw by permitting transfers to be performed
independently until all operations are finished.

The primary difficulty with such a design is that for this
problem, MPI calls require all computers to listen and re-
spond, even if they do not participate in a particular data
transfer. The reason for this is that the temporary storage
used for an individual swap is spread across all computers
to minimize overhead and balance memory requirements.
Therefore, each computer uses POSIX threads: a master
thread listens and responds to all MPI calls, and also mon-
itors whether the computer is active or idle with respect
to action calculations, while a secondary thread will per-
form all tasks related to those calculations. A flag variable
shared between both threads indicates the active/idle sta-
tus on each computer.

As opposed to static MPI action algorithm, where whole
permutations are fundamental, buffer pairs are fundamen-
tal in the load-balanced implementation. This means there
is a list of unused pairs as well as a list of pairs available
for trading, i.e., those pairs on idle computers. When two
computers are both idle, they check to see if a buffer swap
would give either an unused pair, and if so they perform
a swap. After a swap to an unused pair, the computer
moves back from an idle to an active status.

5. Simulations and Scaling Evaluations

5.1. Spacetime Region Considered

In benchmarking experiments, we choose to study a
(1+1)-dimensional compact region of de Sitter spacetime.

9

Start

Active, Busy

Work

Finished?

Transfer

Request

Received?

Transfer

Active,

Not Busy

Locked?

Queued

Transfer

Available?

Idle,

Not Busy

All Pairs

Used?
End

no no

yes

yes

yes

no

yes

no

no

yes

Figure 3: Load-balanced action algorithm using MPI. When the adjacency matrix is split among multiple computers, we want to make
sure no computers end up idle for long periods of time, yet to move from an Idle to Busy state at least one other computer must have finished
its work. Initially, all computers are Active and Busy, indicating they are not waiting for another task to finish and are currently working
on the action algorithm. If two other computers have requested an exchange, an Active, Busy computer will allow them to use part of its
memory for temporary storge (Transfer). Once a computer finishes its portion of work on the action algorithm, it will enter the Active, Not
Busy state, at which point it will add its pair of buffer indices to the global list of available buffers. An MPI spinlock, developed specifically
for this algorithm, is implemented to ensure only one computer can manage a transfer. If another pair of computers is exchanging data, the
Active, Not Busy computer will enter a Queued state, where it will remain until other transfers have completed. Otherwise, it will attempt a
memory transfer if possible by checking the list of available buffers. If no other buffers are available, or if any available transfers would lead
to redundant calculations, the computer enters the Idle, Not Busy state, where it waits for another computer to initiate a transfer. Once all
buffer pairs have been used, the algorithm ends.

The de Sitter manifold is one of the three maximally sym-
metric solutions to Einstein’s equations, and it is well-
studied because its spherical foliation has compact spatial
slices (i.e., no contributing boundary terms), constant cur-
vature everywhere, and most importantly, a non-zero value
for the action. We study a region bounded by some con-
stant conformal time η0 so that the majority of elements,
which lay near the minimal and maximal spatial hyper-
surfaces, are connected to each other in a bipartite-like
graph.

The (1 + 1)-dimensional de Sitter spacetime using the
spherical foliation is defined by the metric

ds2 = sec2 η(−dη2 + dθ2) , (9)

and volume element dV = sec2 η dη dθ. This foliation of
the de Sitter manifold has compact spatial slices, mean-
ing the manifold has no timelike boundaries. Elements

are sampled using the probability distributions ρ(η|η0) =
sec2 η/ tan η0 and ρ(θ) = 1/2π, so that η ∈ [−η0, η0] and
θ ∈ [0, 2π). Finally, the form of (9) indicates elements are
timelike-separated when dθ2 < dη2, i.e., π−|π−|θ1−θ2|| <
|η1 − η2| for two particular elements with coordinates
(η1, θ1) and (η2, θ2). This condition is used in the CUDA
kernel which constructs the causal matrix in the asyn-
crhonous GPU linking algorithm.

We expect the precision of the results to improve with
the graph size, so we study the convergence over the range
N ∈ [210, 220] in these experiments. Larger graph sizes
are typically used to study regions with boundary contri-
butions and, therefore, will not be considered here. We
choose a cutoff η0 = 0.5 in particular because for η0 too
small we begin to see a flat Minkowski manifold, whereas
for η0 too large, a larger N is needed for converge since
the discreteness scale l =

√
V/N is larger.

10

0 500 1000 1500 2000 2500
0

50000

100000

150000

200000

250000

Size of Alexandroff Set (i)

A
b
u
n
d
a
n
c
e
(n
i)

Measured (= 2-6)

Continuum Value

210 211 212 213 214 215 216 217

-10

0

10

20

30

Graph Size (N)

M
e
a
n
A
c
ti
o
n
(S

)

Figure 4: The action in (1 + 1)-dimensional de Sitter spacetime. The left panel shows the interval abundance distribution for a
(1 + 1)-dimensional de Sitter slab with N = 215 and η0 = 0.5. The right panel shows the BD action (green) converging toward the EH action
(black) as the graph size increases. We take a symmetric temporal cutoff η0 = ±0.5 and a small smearing parameter ε = 2−6 � 1 so the
onset of convergence appears as early as possible. Remarkably, the terms in the series (5) are several orders of magnitude larger than the
continuum result S ≈ 6.865, yet the standard deviation about the mean is quite small, shown by the error bars in the second panel. The error
increases with the graph size because the smearing parameter ε is fixed while the discreteness scale l =

√
V/N decreases. All data shown are

averged over ten graphs.

5.2. Convergence and Running Times

Initial experiments conducted to validate the BD ac-
tion show that the interval abundance distribution takes
the form of manifold-like causal set described in [34], and
that the mean begins to converge to the EH action around
N & 214 (Figure 4). The Ricci curvature for the constant-
curvature de Sitter manifold is given by R = d(d + 1) so
that the EH action is simply

SEH =
d(d+ 1)

2
V (η0) = 4π tan η0 . (10)

While normally one would need to consider the Gibbons-
Hawking-York boundary terms which contribute to the to-
tal gravitational action, it is known that spacelike bound-
aries do not contribute to the BD action [23].

These calculations are extremely efficient when the GPU
is used for element linking and AVX is used on top of
OpenMP to find the action (Figure 5). The GPU and
AVX optimizations offer nearly a 1000x speedup compared
to the naive linking and action algorithms, which in turn
allows us to study larger causal sets in the same amount of
time. The decreased performance of the naive implemen-
tation of the linking algorithm, shown in the first panel
of Figure 5, is indicative of the extra overhead required
to generate sparse edge lists for both future and past re-
lations. There is a minimal speedup from using asyn-
chronous CUDA calls because the memory transfer time
is already much smaller than the kernel execution time.

5.3. Scaling: Amdahl’s and Gustafson’s Laws

We analyze how Algorithm 5 performs as a function of
the number of CPU cores (nc) to show both strong and
weak scaling properties (Figure 6). Amdahl’s Law, which
measures strong scaling, describes speedup as a function of

the number of cores at a fixed problem size. Since no real
problem may be infinitely subdivided, and some finite por-
tion of any algorithm is serial, such as cache transfers, we
expect at some finite number of cores the speedup will no
longer substantially increase when more cores are added.
In particular, strong scaling is important for Monte Carlo
experiments, where the action must be calculated many
thousands of times for smaller causal sets. We find, re-
markably, a superlinear speedup when the number of cores
is a power of two and hyperthreading is disabled, shown
by the solid lines. The dashed lines in Figure 6 indicate
the use of 28, 32, and 56 logical cores on 14-core dual pro-
cessors.

We also measure the weak scaling, described by
Gustafson’s Law, which tells how runtime varies when
the problem size N3 per processor P is constant (Fig-
ure 6(right)). This is widely considered to be a more accu-
rate measure of scaling, since we typically limit our exper-
iments by the runtime and not by the problem size. Weak
scaling is most relevant for convergence tests, where the
action of extremely large graphs must be studied in a rea-
sonable amount of time. Our results show nearly perfect
weak scaling, again deviating when the number of cores is
not a power of two or hyperthreading is enabled. We get
slightly higher runtimes overall when more computers are
used for two reasons: the computers are connected via a
10Gb TCP/IP cable rather than Infiniband and the load
imbalance becomes more apparent as more computers are
used. Since the curves have a nearly constant upward shift,
we believe the likely explanation is the high MPI latency.
For each data point in these experiments, we “warm up”
the code by running the algorithm three times, and then
record the smallest of the next five runtimes. All exper-
iments were conducted using dual Intel Xeon E5-2680v4

11

Naive (Double Loop)

OpenMP (Single Loop)

GPU (Naive)

GPU (Optimized)

GPU (Asynchronous)

210 211 212 213 214 215
10-2

10-1

100

101

102

103

Graph Size (N)

L
in
k
T
im
e
(s
e
c
)

Naive (Triple Loop)

OpenMP (Double Loop)

AVX and Assembly

210 211 212 213 214 215 216 217
10-3
10-2
10-1
100
101
102
103
104
105

Graph Size (N)

A
c
ti
o
n
T
im
e
(s
e
c
)

Figure 5: Performance of the linking and action algorithms. We benchmark the O(N2) node linking algorithm (left) and the O(N3)
action algorithm (right) over a wide range of graph sizes. The left panel shows moving from a sparse (blue) to a dense (red) representation
improves the scaling of the linking algorithm, though it can still take several minutes to generate causal sets of modest size. When the
NVIDIA K80m GPU is used, we find a dramatic speedup compared to the original implementation, which allows us to generate much larger
causal sets in the same amount of time. We find the three variations of the GPU algorithm (green, orange, yellow) provide nearly identical
run times. The right panel shows the benefits of using both OpenMP and AVX instructions to parallelize. The optimal OpenMP scheduling
scheme varies according to the problem size, though in general a static schedule is best, since it has the least overhead.

Linear Speedup

One Computer

Two Computers

Four Computers

20 21 22 23 24 25 26 27 28
20

21

22

23

24

25

26

27

28

Number of Cores (nc)

S
p
e
e
d
u
p
(s
)

20 21 22 23 24 25 26 27 28
20

21

22

23

24

25

26

27

28

Number of Cores (nc)

T
im
e
(s
)

Figure 6: Strong and weak scaling of the action algorithm. The action algorithm exhibits nearly perfect strong and weak scaling,
shown by the straight green lines in each panel. The for loop in Algorithm 5 is parallelized using OpenMP, while the partial inner product
is parallelized using AVX. When multiple computers are used, pairs identified by the loop are evenly distributed among all computers. We
find the best speedups when the total number of cores used is a power of two and hyperthreading is disabled (solid lines). When we use all
28 physical cores, or we use 32 or 56 logical cores in our dual Xeon E5-2680v4 CPUs, we find a modest increase speedup (dashed lines). In
the right panel, the runtime should remain constant while the number of processors is increased as long as the amount of work per processor
remains fixed. The constant increase in runtime when more computers are added is likely due to a high MPI communication latency over a
10Gb TCP/IP network.

12

processors running at 2.4 GHz on a Redhat 6.3 operating
system with 512 GB RAM, and code was compiled with
nvcc V8.0.61 and linked with g++/mpiCC 4.8.1 with Level
3 optimizations enabled.

6. Conclusions

By using low-level optimization techniques which take
advantage of modern CPU and GPU architectures, we
have shown it is possible to reduce runtimes for causal set
action experiments by a factor of 1000. We used OpenMP
to generate the element coordinates in parallel in O(N)
time and used the GPU to link elements much faster than
with OpenMP. By tiling the adjacency matrix and bal-
ancing the amount of work each CUDA thread performs
with the physical cache sizes and memory accesses, we al-
lowed the GPU to generate causal sets of size N & 220 in
just a few hours. We developed the efficient and compact
FastBitset data structure to overcome limitations im-
posed by other similar data structures, and implemented
ultra-efficient intersection, bit counting, and inner product
methods using assembly in Algorithms 2, 3, and 5. The
MPI algorithms described in Sections 4.4 and 4.5 provide
a rigorous protocol for asynchronous information exchange
in the most efficient way when the adjacency matrix is too
large to fit on a single computer. Finally, we demonstrated
superlinear scaling of the action algorithm with the num-
ber of CPU cores, indicating that the code is well-suited
to run in its current form on large computer clusters.

Acknowledgments

We thank J. Chartrand, D. Kaeli, C. Orsini, D. Rideout,
N. Roy, S. Surya, and P. Whitford for useful discussions
and suggestions. This work was supported by NSF grants
CNS-1442999 and CNS-1441828.

References

References

[1] L. Bombelli, J. Lee, D. Meyer, R. D. Sorkin, Space-
time as a causal set, Phys. Rev. Lett. 59 (1987) 521–524.
doi:10.1103/PhysRevLett.59.521.

[2] R. Sorkin, Causal sets: Discrete gravity, Notes for the Valdivia
Summer School in Jan. 2002 (2003). arXiv:gr-qc/0309009.

[3] R. Sorkin, Spacetime and causal sets, in: J. D’Olivo,
E. Nahmad-Achar, M. Rosenbaum, M. Ryan, L. Urrutia, F. Zer-
tuche (Eds.), Relativity and Gravitation, World Scientific, 1990,
pp. 150–173.

[4] S. Surya, Evidence for the continuum in 2d causal set
quantum gravity, Class. Quant. Grav. 29 (2012) 132001.
doi:10.1088/0264-9381/29/13/132001.

[5] D. Benincasa, F. Dowker, Scalar curvature of a
causal set, Phys. Rev. Lett. 104 (2010) 181301.
doi:10.1103/PhysRevLett.104.181301.

[6] P. Wallden, Causal sets: Quantum gravity from a fundamen-
tally discrete spacetime, J. Phys. Conf. Ser. 222 (2010) 012053.
doi:10.1088/1742-6596/222/1/012053.

[7] S. Surya, Directions in causal set quantum gravity (2011).
arXiv:1103.6272.

[8] S. W. Hawking, A. R. King, P. J. McCarthy, A new topology
for curved space-time which incorporates the causal, differential,

and conformal structures, J. Math. Phys. 17 (2) (1976) 174–181.
doi:10.1063/1.522874.

[9] D. B. Malament, The class of continuous timelike curves deter-
mines the topology of spacetime, J. Math. Phys. 18 (1977) 1399.
doi:10.1063/1.523436.

[10] M. Penrose, Random Geometric Graphs, Oxford University
Press, Oxford, 2003.

[11] L. Glaser, D. O’Connor, S. Surya, Finite size scaling in 2d causal
set quantum gravity (2017). arXiv:1706.06432.

[12] S. Surya, Private communication (28 June 2017).
[13] S. Surya, Numerical questions in causal set quantum gravity,

Making Quantum Gravity Computable (June 2017).
[14] J. Myrheim, Statistical geometry, CERN TH-2538 (1978).
[15] D. Meyer, The dimension of causal sets, Ph.D. thesis, Mas-

sachusetts Institute of Technology (1989).
[16] D. Rideout, P. Wallden, Emergence of spatial structure

from causal sets, J. Phys. Conf. Ser. 174 (2009) 012017.
doi:10.1088/1742-6596/174/1/012017.

[17] F. Dowker, L. Glaser, Causal set d’alembertians for var-
ious dimensions, Class. Quant. Grav. 30 (2013) 195016.
doi:10.1088/0264-9381/30/19/195016.

[18] L. Glaser, A closed form expression for the causal set
d’alembertian, Class. Quant. Grav. 31 (2014) 095007.
doi:10.1088/0264-9381/31/9/095007.

[19] S. Aslanbeigi, M. Saravani, R. Sorkin, Generalized causal
set d’alembertians, J. High Energy Phys. 2014 (2014) 24.
doi:10.1007/JHEP06(2014)024.

[20] A. Belenchia, D. Benincasa, F. Dowker, The con-
tinuum limit of a 4-dimensional causal set scalar
d’alembertian, Class. Quant. Grav. 33 (2016) 245018.
doi:10.1088/0264-9381/33/24/245018.

[21] D. Benincasa, F. Dowker, B. Schmitzer, The random discrete
action for two-dimensional spacetime, Class. Quant. Grav. 28
(2011) 105018. doi:10.1088/0264-9381/28/10/105018.

[22] D. Benincasa, The action of a causal set, Ph.D. thesis, Imperial
College London (2013).

[23] M. Buck, F. Dowker, I. Jubb, S. Surya, Boundary terms
for causal sets, Class. Quant. Grav. 32 (2015) 205004.
doi:10.1088/0264-9381/32/20/205004.

[24] P. de Maupertuis, Accord de différentes lois de la nature qui
avaient jusqu’ici paru incompatibles, Mém. de l’Acad. des Sc.
de Paris (1744) 417–426.

[25] I. Gelfand, S. Fomin, Calculus of Variations, Prentice-Hall, New
Jersey, 1963.

[26] R. Wald, General Relativity, University of Chicago Press,
Chicago, 1984.

[27] G. Allen, T. Goodale, F. Löffler, D. Rideout, E. Schnet-
ter, E. Seidel, Component specification in the cactus
framework: The cactus configuration language, in: 11th
IEEE/ACM International Conference on Grid Computing,
2010. doi:10.1109/GRID.2010.5698008.

[28] J. Griffiths, J. Podolský, Exact Space-times in Einstein’s Gen-
eral Relativity, Cambridge University Press, New York, 2009.

[29] OpenMP Architecture Review Board, OpenMP application pro-
gram interface version 3.1, http://www.openmp.org (2011).

[30] NVIDIA Corporation, CUDA C programming guide, http://

docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf,
Version PG-02829-001 v8.0, Accessed 2017-07-11 (2017).

[31] Boost Community, Boost C++ Libraries, http://www.boost.

org (2017).
[32] Intel Corporation, Intel intrinsics guide, http://software.

intel.com/sites/landingpage/IntrinsicsGuide, Accessed
2017-07-11 (2017).

[33] W. Mu la, N. Kurz, D. Lemire, Faster population
counts using AVX2 instructions, Comput. J. (2017) 1–
10doi:10.1093/comjnl/bxx046.

[34] L. Glaser, S. Surya, Toward a definition of locality in a
manifoldlike causal set, Phys. Rev. D 88 (2013) 124026.
doi:PhysRevD.88.124026.

13

http://dx.doi.org/10.1103/PhysRevLett.59.521
http://arxiv.org/abs/gr-qc/0309009
http://dx.doi.org/10.1088/0264-9381/29/13/132001
http://dx.doi.org/10.1103/PhysRevLett.104.181301
http://dx.doi.org/10.1088/1742-6596/222/1/012053
http://arxiv.org/abs/1103.6272
http://dx.doi.org/10.1063/1.522874
http://dx.doi.org/10.1063/1.523436
http://arxiv.org/abs/1706.06432
http://www.perimeterinstitute.ca/videos/numerical-questions-causal-set-quantum-gravity
http://cds.cern.ch/record/293594
http://hdl.handle.net/1721.1/14328
http://dx.doi.org/10.1088/1742-6596/174/1/012017
http://dx.doi.org/10.1088/0264-9381/30/19/195016
http://dx.doi.org/10.1088/0264-9381/31/9/095007
http://dx.doi.org/10.1007/JHEP06(2014)024
http://dx.doi.org/10.1088/0264-9381/33/24/245018
http://dx.doi.org/10.1088/0264-9381/28/10/105018
http://spiral.imperial.ac.uk/handle/10044/1/14170
http://dx.doi.org/10.1088/0264-9381/32/20/205004
http://dx.doi.org/10.1109/GRID.2010.5698008
http://www.openmp.org
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.boost.org
http://www.boost.org
http://software.intel.com/sites/landingpage/IntrinsicsGuide
http://software.intel.com/sites/landingpage/IntrinsicsGuide
http://dx.doi.org/10.1093/comjnl/bxx046
http://dx.doi.org/PhysRevD.88.124026

	1 Introduction
	1.1 Causal Sets
	1.2 The Benincasa-Dowker Action
	1.3 Computational Tasks

	2 Causal Set Generation
	2.1 Coordinate Generation
	2.2 Pairwise Relations
	2.2.1 Naive CPU Linking Algorithm
	2.2.2 OpenMP Linking Algorithm
	2.2.3 Naive GPU Linking Algorithm
	2.2.4 Optimized GPU Linking Algorithm
	2.2.5 Asynchronous GPU Linking Algorithm

	3 The FastBitset Class
	3.1 Problems with Existing Data Structures
	3.2 Optimized Algorithms in the FastBitset
	3.3 The Vector Product

	4 Action Computation
	4.1 Naive Action Algorithm
	4.2 OpenMP Action Algorithm
	4.3 AVX Action Algorithm
	4.4 MPI Optimization: Static Design
	4.5 MPI Optimization: Load Balancing

	5 Simulations and Scaling Evaluations
	5.1 Spacetime Region Considered
	5.2 Convergence and Running Times
	5.3 Scaling: Amdahl's and Gustafson's Laws

	6 Conclusions

