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Abstract

This article begins by reviewing the causal set approach in dis-
crete quantum gravity. In our version of this approach a special role
is played by covariant causal sets which we call c-causets. The im-
portance of c-causets is that they support the concepts of a natural
distance function, geodesics and curvature in a discrete setting. We
then discuss curvature in more detail. By considering c-causets with a
maximum and minimum number of paths, we are able to find c-causets
with large and small average curvature. We then briefly discuss our
previous work on the inflationary period when the curvature was es-
sentially zero. Quantum mechanics on c-causets is considered next.
We first introduce a free wave equation for c-causets. We then show
how the state of a particle with a specified mass (or energy) can be
derived from the wave equation. It is demonstrated for small examples
that quantum mechanics predicts that particles tend to move toward
vertices with larger curvature.

1 Covariant Causal Sets

This article is based upon the following four guidelines. The universe is:
(1) Discrete, (2) Structured, (3) Expanding, (4) QuantumMechanical. Guide-

1

http://arxiv.org/abs/1507.04810v1


lines 2, 3 and 4 are well-established and do not need discussion. However,
Guideline 1 is fairly unconventional so we shall briefly consider it. There is
already evidence that the universe is discrete. We know that energy comes
in discrete packets or quanta that are integer multiples of Planck’s constant
h. Also, electric charge only exists in integer multiples of the electron charge
e (or ±e/3, ±2e/3 if you include quarks). What has not been experimentally
observed is a discreteness of space and time. This may be due to the extreme
smallness of candidates for elementary lengths and times such as the Planck
length of about 10−33cm. and Planck time of about 10−43sec. It should also
be mentioned that postulating discreteness avoids infinities and singularities
that have plagued quantum field theory and general relativity theory.

We shall describe the structure of the universe by a causal set or causet
[1, 6, 8–10]. Mathematically, a causet is a finite partially ordered set (x,<).
For a, b ∈ x, we interpret a < b as meaning that b is in the causal future of
a. If a < b and there is no c ∈ x with a < c < b we say that a is a parent of

b and write a ≺ b. Denoting the cardinality of x by |x|, a labeling of x is a
map ℓ : x→ {1, 2, . . . , |x|} such that a < b implies ℓ(a) < ℓ(b). A labeling of
x may be considered a “birth order” of the vertices of x. A covariant causet

(c-causet) is a causet that has a unique labeling [2–5]. In this article we shall
only model possible universes by c-causets.

A path in a c-causet x is a finite sequence a1a2 · · ·an with a1 ≺ a2 ≺ · · · ≺
an. The height h(a) of a ∈ x is the cardinality, minus one, of a longest path
in x that ends with a. Two vertices a, b are comparable if a < b or b < a.
It is shown in [3] that a causet x is a c-causet if and only if a, b ∈ x are
comparable whenever h(a) 6= h(b). We call the set

Sj(x) = {a ∈ x : h(a) = j}

the jth shell of x, j = 0, 1, 2, . . . . Letting sj(x) = |Sj(x)|, j = 0, 1, 2, . . . , k,
we call (s0(x), s1(x), . . . , sk(x)) the shell sequence of x. A c-causet is uniquely
determined by its shell sequence [3]. Conversely, any finite sequence of pos-
itive integers is the shell sequence of a unique x-causet. We usually assume
that s0(x) = 1 and the vertex labeled 1 represents the big bang.

Let ω = a1a2 · · · an be a path in x where aj ∈ N are the labels of the
vertices. The length of ω is

L(ω) =
[
n−1∑

j=1

(aj+1 − aj)
2

]1/2
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A geodesic from a to b where a < b, is a path from a to b of smallest length.
For a < b, we define the distance from a to b to be d(a, b) = L(ω) where
ω is a geodesic from a to b. It is shown in [3] that if a < b < c, then
d(a, c) ≤ d(a, b) + d(b, c). This shows that the triangle inequality holds for
d(a, b) when applicable. In this way, d(a, b) is a weak type of metric. It is
also shown in [3] that a subpath of a geodesic is a geodesic. Of course, if
a < b then there is at least one geodesic from a to b. The curvature K(a)
of a ∈ x is the number of geodesics, minus one, from the vertex labeled 1 to
a [3–5]. The average curvature is

C(x) =
∑

{K(a) : a ∈ x} / |x|

We call a path from 1 to a vertex in the top shell a maximal path because
such a path cannot be extended.

Example 1. Let x be the c-causet with shell sequence (1, 2, 1). Using
semicolons to separate shells, we can label the vertices by (1; 2, 3; 4). There
are two maximal paths 1− 2− 4 and 1− 3− 4. Both of these paths have
length

√
5 so they are both geodesics. We conclude that d(1, 4) =

√
5 and

K(1) = −1, K(2) = K(3) = 0, K(4) = 1. The average curvature becomes
C(x) = 0.

The shell sequence determines the “shape” or geometry of x. We view a
c-causet x as a framework or scaffolding of a possible universe. The vertices
represent tiny cells that may or may not be occupied by a particle. Presum-
ably these cells have four-dimensional Planckian volume, but we need not
commit ourselves here. This geometry gives the kinematics of the system.
The dynamics is described in terms of paths in x. It is natural to assume that
particles tend to move along geodesics. Thus, they tend to collect around
vertices with large curvature. (We shall have more to say about this in Sec-
tion 4.) In this way, the curvature distribution of a universe determines
the mass (energy) distribution. Notice that this is exactly opposite to the
traditional approach in general relativity.

2 Curvature

This section discusses the curvature distribution for c-causets. First of all, we
are interested in finding c-causets with large curvatures. After all, our own
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universe has stars, black holes, galaxies and galaxy clusters. These certainly
suggest the presence of huge, albeit local, curvatures even though our universe
in the large is essentially flat. Although it is difficult to determine curvatures
for arbitrary c-causets, it is easy to find the number of maximal paths. There
are exceptions, but roughly speaking the more maximal paths we have, the
more geodesics we have and hence, the more curvature. We then ask the
following question. Given n ∈ N, which c-causets x with |x| = n have the
largest number of maximal paths?

If x has shell sequence (1, s1(x), s2(x), . . . , sk(x)), the number of maximal
paths is s1(x)s2(x) · · · sk(x). Now

n = |x| − 1 =

k∑

i=1

si(x)

gives a partition of n and we want to maximize Πk
i=1si(x). A partition of n,

n = α1+α2+ · · ·+αk, αi ∈ N, is large if α1α2 · · ·αk is a maximum among all
partitions of n. The question posed at the end of the previous paragraph re-
duces to finding large partitions of n because such partitions would determine
shell sequence of c-causets with the largest number of maximal paths.

To gain some intuition about this purely combinatorial problem, consider
partitions of 10. (Recall that the order of the numbers in a partition is
immaterial.) A few partitions of 10 are:

10 = 9 + 1 = 8 + 2 = 7 + 3 = 6 + 4 = 5 + 5

The products in these partitions are: 9, 16, 21, 24, 25. However, we get larger
products if we consider partitions with three terms:

10 = 5 + 3 + 2 = 4 + 3 + 3

The products become 30 and 36. In fact, the partitions with largest products
are 3 + 3 + 4 and 3 + 3 + 2 + 2.

Example 2. The large partitions for the first few positive integers are:
2 = 2, 3 = 3, 4 = 4 = 2 + 2, 5 = 3 + 2, 6 = 3 + 3, 7 = 3 + 4 = 3 + 2 + 2,
8 = 3 + 3 + 2, 9 = 3 + 3 + 3, 10 = 3 + 3 + 4 = 3 + 3 + 2 + 2,
11 = 3 + 3 + 3 + 2, 12 = 3 + 3 + 3 + 3,
13 = 3 + 3 + 3 + 4 = 3 + 3 + 3 + 2 + 2, 14 = 3 + 3 + 3 + 3 + 2,
15 = 3 + 3 + 3 + 3 + 3, 16 = 3 + 3 + 3 + 3 + 4 = 3 + 3 + 3 + 3 + 2 + 2.
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After examining Example 2, the reader can easily make a conjecture given
by the statement of Theorem 2.2. Our proof relies on the following simple
lemma.

Lemma 2.1. If α, β ∈ R satisfy α ≥ 2, β > 2, then α+ β < αβ.

Proof. We have that

0 < (α− 1)(β − 2) = αβ − β − 2α + 2

Hence,

α + β ≤ α + β + (α− 2) < αβ

Theorem 2.2. Let n ∈ N with n ≥ 2.
If n ≡ 0 (mod 3), then n = 3m and the large partition of n is:

n = 3 + 3 + · · ·+ 3 (m 3s)

If n ≡ 2 (mod 3), then n = 3m+ 2 and the large partition of n is:

n = 3 + 3 + · · ·+ 3 + 2 (m 3s)

If n ≡ 1 (mod 3), then n = 3m+ 1 = 3(m− 1) + 4 and the large partitions

of n are:

n = 3 + 3 + · · ·+ 3 + 4 = 3 + 3 + · · ·+ 3 + 2 + 2 (m− 1 3s)

Proof. Take a partition of n, n = α1 + α2 + · · · + αk. If α1 ≥ 5, then
α1 = β + γ, β ≥ 2, γ > 2 and α1 < βγ by Lemma 2.1. Hence, we obtain
another partition of n

n = β + γ + α2 + · · ·+ αk

where α1α2 · · ·αk < βγα2 · · ·αk. Continue this process until we arrive at a
partition n = β1 + β2 + · · · + βs where βi is 2 or 3. If there are more than
two 2s, we have, say

n = β1 + β2 + · · ·+ βt + 2 + 2 + 2

But then n = β1 + β2 + · · ·+ βt + 3 + 3 with

β1β2 · · ·βt · 8 < β1β2 · · ·βt · 9
which gives a larger product. Again, continue this process until we arrive at
a partition of n with fewer than three 2s and the rest are 3s. This gives a
large partition. We have then obtained the three cases in the theorem.
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Corollary 2.3. The number of maximal paths in a c-causet with the largest

number of such paths follow the sequence: 2, 3, 22, 2 · 3, 32, 22 · 3, 2 · 32, 33, 22 ·
32, 2 · 33, . . .

It follows from Theorem 2.2 that c-causets whose shell sequences consist
of all 3s or all 3s and a 2 or all 3s and two 2s (or a 4) have the largest
number of maximal paths. (Unlike partitions, the positions of the 2s are
important.) Although we have not proved this, we conjecture that besides a
few exceptions, such c-causets have the largest average curvature. The many
examples we have examined all substantiate this conjecture. We now present
three of them.

Example 3. Suppose x has shell sequence (1, 3, 3, 3, 3, 3, 3, 3). This
c-causet has 22 vertices and 37 = 2187 maximal paths. The following table
summarizes the distances and curvatures for x.

i 1 2 3 4 5 6 7 8 9 10 11 12

d(1, i) 0 1 2 3
√
8

√
13

√
18

√
17

√
22

√
27

√
26

√
31

K(i) −1 0 0 0 0 1 0 2 2 0 5 3

i 13 14 15 16 17 18 19 20 21 22

d(1, i)
√
36

√
35

√
40

√
45

√
44

√
49

√
54

√
53

√
58

√
63

K(i) 0 9 4 0 14 5 0 20 6 0

Table 1 (Distances and Curvatures)
We conclude that this c-causet has average curvature

C(x) = 70

22
≈ 3.18

Example 4. Suppose x has shell sequence (1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2). This
c-causet has 21 vertices and 210 = 1024 maximal paths. The next table
summarizes the distances and curvatures for x.
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i 1 2 3 4 5 6 7 8 9 10 11

d(1, i) 0 1 2
√
5

√
8

√
9

√
12

√
13

√
16

√
17

√
20

K(i) −1 0 0 1 0 2 0 3 0 4 0

i 12 13 14 15 16 17 18 19 20 21

d(1, i)
√
21

√
24

√
25

√
28

√
29

√
32

√
33

√
36

√
37

√
40

K(i) 5 0 6 0 7 0 8 0 9 0

Table 2 (Distances and Curvatures)
The average curvature of this c-causet is

C(x) = 44

21
≈ 2.1

Example 5. Suppose x has shell sequence (1, 4, 4, 4, 4, 4). This c-causet
has 21 vertices and 45 = 1024 maximal paths. The next table now
summarizes the distances and curvatures for x.

i 1 2 3 4 5 6 7 8 9 10 11

d(1, i) 0 1 2 3 4
√
13

√
18

√
25

√
32

√
27

√
34

K(i) −1 0 0 0 0 1 0 1 0 0 2

i 12 13 14 15 16 17 18 19 20 21

d(1, i)
√
41

√
48

√
43

√
50

√
57

√
64

√
59

√
66

√
73

√
80

K(i) 2 0 2 5 3 0 8 9 4 0

Table 3 (Distances and Curvatures)
The average curvature of this c-causet is

C(x) = 30

21
≈ 1.71
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We have previously considered c-causets with high curvature. Let us now
examine the other extreme which is low curvature. As before, these should
be obtained from c-causets with the least number of maximal paths. We
first eliminate uninteresting c-causets that can have a single vertex in a shell
above the first shell. We say that a partition of n is trivial if it has the
form n = n or n = m + 1 + 1 + · · · + 1. A partition of n is small if it
is nontrivial and has the form n = α1 + α2 + · · · + αk where α1α2 · · ·αk is
minimal among all nontrivial partitions of n. Again, to get some intuition
about small partitions, we consider some examples.

Example 6. Some nontrivial partitions of 10 are

10 = 2 + 3 + 5 = 5 + 5 = 6 + 4 = 7 + 3 = 8 + 2

The products of the terms are 30, 25, 24, 21 and 16. The smallest is
10 = 8 + 2. The small partitions of 6 and 7 are: 6 = 4 + 2, 7 = 5 + 2. These
motivate the following theorem.

Theorem 2.4. If n ≥ 4, then its unique small partition is n = (n− 2) + 2.

Proof. Suppose m < n and n = (n −m) +m is a nontrivial partition of n.
Then m ≥ 2 and n−m ≥ 2. Suppose m > 2 and n−m > 2. Since n > m+2
we have

nm− 2n = n(m− 2) > (m+ 2)(m− 2) = m2 − 4

Hence,

(n−m)m = nm−m2 > 2n− 4 = 2(n− 2)

We conclude that the partition n = (n−m)+m has larger product then the
partition n = (n − 2) + 2 if m > 2. Hence n = (n − 2) + 2 is the smallest
partition for two term partitions. Now suppose

n = α + β + [n− (α+ β)]

is a nontrivial three term partition. Then from Lemma 2.1 we have that
αβ > α + β. It follows that

(n− α− β)αβ ≥ (n− α− β)(α + β)

8



But n = (n− α− β) + (α+ β) is a two term nontrivial partition of n, so by
our previous work we have that

(n− α− β)(α+ β) > (n− 2)2

We now continue this process. For example, let

n = α + β + γ + [n− (α+ β + γ)]

be a nontrivial four term partition of n. We can form the three term partition

n = (α + β) + γ + [n− (α+ β + γ)]

and as before

(n− α− β − γ)αβγ ≥ (n− α− β − γ)(α + β)γ

which reduces to our previous case.

The next two examples show that c-causets with shell sequences corre-
sponding to small partitions have average curvature zero.

Example 7. Consider a c-causet with shell sequence (1, 2, n). The
maximal paths 1− 2− 4 and 1− 3− 4 are geodesics so K(4) = 1. For the
vertices j = 5, 6, . . . , n+ 3 we have the two paths 1− 2− j, 1− 3− j. If
these two paths have the same length, then

1 + (j − 2)2 = 4 + (j − 3)2

But this implies that j = 4 which is a contradiction. Hence, only one of
these two paths is a geodesic (it happens to be the second). Thus K(j) = 0
for j = 5, 6, . . . , n+ 3. It follows that the average curvature is zero.

Example 8. Consider a c-causet with shell sequence (1, 6, 2). The vertices
are labeled 1, 2, . . . , 9 where 8 and 9 are in the top shell. The paths to 8 are
1− 2− 8, . . . , 1− 7− 8 and the paths to 9 are 1− 2− 9, . . . , 1− 7− 9. It is
easy to check that 1− 4− 8 and 1− 5− 8 are the geodesics to 8 and
1− 5− 9 is the only geodesic to 9. Hence, K(8) = 1, K(1) = −1 and
K(j) = 0, j 6= −1, 8. It follows that the average curvature is zero. A similar
analysis holds for any c-causet with shell sequence (1, n, 2) n ≥ 2 in which
case the average curvature is again zero.
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Although they are useful for illustrating extreme cases of curvature, the
c-causets considered in the last five examples are not suitable for describing
our universe. According to Guideline 3 of the Introduction, our universe is
expanding. From the c-causet viewpoint this means expanding both “ver-
tically” and “horizontally.” The c-causets in Examples 3, 4 and 5 are not
expanding “horizontally” while those in Examples 7 and 8 are not expanding
“vertically.”

Another property of our universe is that it is flat in the large which
means that its average curvature is essentially zero. We have shown in pre-
vious work [5] that this occurs for an expanding universe if the expansion
is exponential. We have also shown that this zero average curvature does
not hold for slower than exponential expansion [5]. The simplest c-causet
with an exponential expansion has shell sequence (1, 2, 22, . . . , 2n). This is
called the inflationary period and we believe that this period ends at about
n = 308 [5]. After this period, the system enters a multiverse period of
parallel universes. All of the universes share a common inflationary period
but then they separate and evolve on different paths. Which particular his-
tory path a universe takes depends on probabilities determined by quantum
mechanics [4, 5]. (This quantum mechanics of the macroscopic picture is
different, but possibly related to the quantum mechanics of the microscopic
picture considered in the next section.) We have reason to believe that our
particular universe has a pulsating growth [5].

We now briefly discuss the concept of time in this model. There are
actually two types of time, geometrical time and chronological time. The
geometrical time is built into the causal relation a < b where b is in the causal
future of a. The chronological time is universe dependent and is the natural
time that a universe “ticks off” after it completes a shell. After a universe
completes a particular shell it goes into a new cycle until it completes a new
shell by adding vertices one at a time. Presumably each cycle takes a Planck
instant of about 10−43 sec. to complete. We estimate that our universe has
about 1060 shells and that each shell on average has about 1025 vertices. In
summary, one can say that the universe does not evolve in time, the universe
makes the time.

10



3 Quantum Mechanics

This section discusses quantum mechanics on a c-causet. In order to develop
a quantum theory we shall need an analogue of Schrödinger’s or Dirac’s equa-
tions which describe the evolution of quantum states. Recall that Schrödinger’s
equation has the form

i
∂

∂t
ψ(t, x) = Hψ(t, x) =

[
∇2 + V (x)

]
ψ(t, x) (3.1)

where ψ is a wave function, H the Hamiltonian, x is the 3-dimensional posi-
tion, ∇2 the Laplacian and V is the potential energy of the system. To find
a discrete analogue of (3.1) we have two obstacles to overcome. First, we do
not have the concept of a derivative. Second, a partial derivative is actually
a directional derivative and we do not have directions. We circumvent these
problems by replacing a derivative by a difference and a direction by a path.

Let x be an arbitrary c-causet. For a ∈ x, we say that a path ω in x
contains a and write a ∈ ω if ω has the form a1a2 · · · an where ai = a for
some i. For a path

ω = · · · aa1a2 · · · an−1b · · ·
we define the covariant difference operator ∇ω as follows. The domain of ∇ω

is
D(∇ω) = {v : x× x→ C : v(a, b) = 0 if a ≮ b and a, b /∈ ω}

and for v ∈ D(∇ω) we have

∇ωv(a, b) = d(a, an−1)v(a, b)− d(a, b)v(a, an−1)

Notice that if we suitably redefine the distance function d so that d ∈ D(∇ω)
then ∇ωd(a, b) = 0 which is why we call ∇ω the covariant difference operator.
We denote the length of ω from a to b by Lb

a(ω). Let m > 0 be the mass
(or energy) of a particle. Defining δω(a, b) = d(a, b) − Lb

a(ω), the free wave

equation at (ω, a) is

i∇ωv(ab) = mδω(a, b)v(a, b) (3.2)

We call (3.2) the free wave equation because it describes the wave amplitude
of a particle that has no forces acting on it except gravity and gravity is not
really a force anyway, it is geometry. Presumably, forces can be imposed by
adding additional terms to (3.2).
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The motivation for (3.2) is the following. The lefthand side of (3.2) is a
rate of change for v and the coefficient of the righthand side is nonpositive
so it corresponds to a resistance term. If ω is a geodesic, then the righthand
side is zero and the particle moves unencumbered along ω. Otherwise, the
particle resists motion along ω. The resistance is proportional to m which is
a measure of inertia and to the factor δω(a, b) which measures how far ω is
from being a geodesic.

If a function v is a solution to (3.2) for every b ∈ ω with b > a and satisfies
the initial condition v(a, b) = 1 for a ≺ b, then v is a (free) wave function at

(ω, a). The initial condition and (3.2) determine v uniquely using the next
result.

Lemma 3.1. If v is a wave function at (ω, a) and a < c ≺ b, then

v(a, b) =
i d(a, b)

i d(a, c)−mδω(a, b)
v(a, c)

=
d(a, b) [d(a, c)− imδω(a, b)]

d(a, c)2 +m2δω(a, b)2
v(a, c)

(3.3)

Proof. Applying (3.2) we have that

i [d(a, c)v(a, b)− d(a, b)v(a, c)] = mδω(a, b)v(a, b)

Solving for v(a, b) we obtain (3.3).

Iterating (3.3), we obtain v(a, b) uniquely. If ω is a geodesic, we obtain a
much simpler expression.

Corollary 3.2. If ω is a geodesic from a to b, then the wave function at

(ω, a) is given by v(a, b) = d(a, b)/d(a, c) where a ≺ c, c ∈ ω.

Proof. Applying Lemma 3.1 and the fact that a subpath of a geodesic is a
geodesic, gives the result.

We now discuss the quantum formalism on a c-causet x. Let {a1, a2, . . . , an}
be the shell Sk(x) and let Ωk(x) be the set of paths from the vertex labeled
1 to vertices in Sk(x). For ω ∈ Ωk(x) with aj ∈ ω denote the wave func-
tion at (ω, 1) by vk(ω, aj). There are two levels of quantum mechanics in
this formalism. The lower level which we call the hidden level is probably
inaccessible to us observationally. This is the level of particle trajectories or
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paths in Ωk(x). The path Hilbert space is the set of complex-valued functions
Kk(x) = L2(Ωk(x)) on Ωk(x) with the standard inner product

〈f, g〉 =
∑{

f(ω)g(ω) : ω ∈ Ωk(x)
}

A wave function vk(ω) = vk(ω, aj) depending on ω gives a vector in Kk(x).
Letting 1 be the identically one function in Kk(x) define

N = 〈1, vk(ω)〉 =
∑

{vk(ω) : ω ∈ Ωk(x)}

We define the probability vector v̂k by v̂k(ω) = vk(ω)/N . It follows that
〈1, v̂k〉 = 1

For A,B ⊆ Ωk(x) define the decoherence functional [1, 6, 7, 9]

Dk(A,B) =
∑{

v̂k(ω)v̂k(ω
′) : ω ∈ A, ω′ ∈ B

}

Then B 7→ Dk(A,B) is a complex-valued measure on Ωk(x) satisfying
Dk (Ωk(x),Ωk(x)) = 1. Moreover, Dk(A,B) = Dk(B,A) andMij = Dk(Ai, Aj)
is a positive definite matrix for every A1, . . . , As ⊆ Ωk(x) [1,7,9]. Notice that

Dk(A,B) = 〈χAv̂k, v̂k〉〈v̂k, χBv̂k〉

where χA is the characteristic function of A. Moreover,

Dk ({ω} , {ω′}) = v̂k(ω)v̂k(ω
′)

The function µk : 2
Ωk(x) → R+ given by

µk(A) = Dk(A,A) =

∣∣∣∣∣
∑

ω∈A

v̂k(ω)

∣∣∣∣∣

2

is the corresponding q-measure on 2Ωk(x). The function µk is not additive
in general, but is grade-2 additive [3, 6, 7]. Because µk is not additive we
do not call µk(A) the quantum probability of A. Instead, we call µk(A) the
quantum propensity of A. The propensity µk is useful for describing quantum
interference. For A,B ⊆ Ωk(x) with A∩B = ∅, we say that A and B interfere

in µk(A ∪ B) 6= µk(A) + µk(B).
The higher quantum level which we call the position level is accessible

to us by measurements and is the quantum theory usually considered. We
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define the position Hilbert space by Hk(x) = L2(Sk(x)) with the standard
inner product. Define the vector vk(aj) ∈ Hk(x) by

vk(aj) =
∑

{vk(ω, aj) : ω ∈ Ωk(x), aj ∈ ω}

Let

N1 =

[
n∑

j=1

|vk(aj)|2
]1/2

and normalize vk(aj) to obtain the state ψk(aj) = vk(aj)/N1. Thus, ψk is a
unit vector in Hk(x). For A ⊆ Sk(x), χA gives a projection operator P (A)
and the probability that the particle is in A is given by

pk(A) = 〈ψk, P (A)ψk〉 =
∑{

|ψk(aj)|2 : aj ∈ A
}

In particular, the probability that the particle is at aj becomes

pk(aj) = 〈ψk, P ({aj})ψk〉 =
∣∣ψ(aj)

∣∣2

For any j < k we have the state ψj defined in a similar way on L2 (Sj(x)).
Note that the state ψk is completely determined by the massm of the particle
and the geometry (gravity) of the c-causet.

4 Quantum Mechanical Examples

In these examples we shall only consider the position level of the quantum
theory and the highest shell in the c-causet.

Example 9. We begin with the simplest nontrivial universe; namely, a
c-causet with shell sequence (1, 2, 2). The labeled vertices are (1; 2, 3; 4, 5).
We interpret the vertex 1 as representing the entire inflationary period of a
universe. The four paths in this c-causet are ω1 : 1− 2− 4, ω3 : 1− 3− 4,
ω3 : 1− 2− 5 and ω4 : 1− 3− 5. Notice that ω1, ω2 and ω4 are geodesics
and K(4) = 1, K(5) = 0. Applying Lemma 3.1, the wave function becomes

v(ω1, 4) =
d(1, 4)

d(1, 2)
=

√
5
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v(ω2, 4) =
d(1, 4)

d(1, 3)
=

√
5

2

v(ω4, 5) =
d(1, 5)

d(1, 3)
=

√
8

2
=

√
2

v(ω3, 5) =
i d(1, 5)

i d(1, 2)−mδω3
(1, 5)

=
i
√
8

i+m
(√

10−
√
8
)

=

√
8
[
1 + im

(√
10−

√
8
)]

1 +m2
(√

10−
√
8
)2

=

√
8

1 +
(
18− 8

√
5
)
m2

+ i

(
4
√
5− 8

)
m

1 +
(
18− 8

√
5
)
m2

We now compute the functions v(j) =
∑

i v(ωi, j). We have that

v(4) = v(ω1, 4) + v(ω2, 4) =
3
2

√
5

v((5) = v(ω3, 5) + v(ω4, 5)

=

[ √
18

1 +
(
18− 8

√
5
)
m2

+
√
2

]
+

i
(
4
√
5− 8

)
m

1 +
(
18− 8

√
5
)
m2 +

√
2

The normalization constant becomes

N2
1 = |v(4)|2 + |v(5)|2 = 53

4
+

16

1 +
(
18− 8

√
5
)
m2

The state is ψ(4) = v(4)/N1, ψ(5) = v(5)/N1. This gives the probability

p(4) = |ψ(4)|2 = |v(4)|2
N2

1

=
45

[
1 +

(
18− 8

√
5
)
m2

]

64 + 53
[
1 +

(
18− 8

√
5
)
m2

]

Of course, p(5) = 1− p(4). These probabilities are actually functions of m
and we write p(j,m). To be precise, p(j,m) is not defined for m = 0 and we
write

p(j, 0) = lim
m→0

p(j,m)

If one graphs p(4, m) as a function of m, one obtains an increasing function
with values p(4, 0) = 0.38462, p(4, 2.5) = 0.49601 and p(4, 10) = 0.84901. In
fact

lim
m→∞

p(4, m) = 0.94906
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This gives an unusual behavior at low mass (energy). For m < 2.5 the
particle prefers to move toward the lower curvature vertex 5 than toward
the higher curvature vertex 4. This is either a strange behavior or may
indicate that about m = 2.5 is a lower bound for possible values of m.

Example 10. We now consider a slightly more complicated universe with
a c-causet having shell sequence (1, 3, 2). The labeled vertices are
(1; 2, 3, 4; 5, 6). The six paths are ω1 : 1− 2− 5, ω2 : 1− 3− 5, ω3 : 1− 4− 5,
ω4 : 1− 2− 6, ω5 : 1− 3− 6, ω6 : 1− 4− 6. We see that ω2, ω5 and ω6 are
geodesics and K(5) = 0, K(6) = 1. Applying Lemma 3.1, the wave function
becomes

v(ω1, 5) =
i d(1, 5)

i d(1, 2)−mδω1
(1, 5)

=
i
√
8

i+m
(√

10−
√
8
)

=

√
8
[
1 + im

(√
10−

√
8
)]

1 +m2
(√

10−
√
8
)2

v(ω2, 5) =
d(1, 5)

d(1, 3)
=

√
8

2
=

√
2

v(ω3, 5) =
i d(1, 5)

i d(1, 4)−mδω3
(1, 5)

=
i
√
8

3i+m
(√

10−
√
8
)

=

√
8
[
3 + im

(√
10−

√
8
)]

9 +m2
(√

10−
√
8
)2

v(ω4, 6) =
i d(1, 6)

i d(1, 2)−mδω4
(1, 6)

=
i
√
13

i+m
(√

17−
√
13
)

=

√
13

[
1 + im

(√
17−

√
13
)]

1 +m2
(√

17−
√
13
)2

v(ω5, 6) =
d(1, 6)

d(1, 3)
=
i
√
13

2

v(ω6, 6) =
d(1, 6)

d(1, 4)
=
i
√
13

3

Hence,

v(5) =

[ √
8

1 +m2
(√

10−
√
8
)2 +

√
2 +

3
√
8

9 +m2
(√

10−
√
8
)2

]
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+ i
√
8m

(√
10−

√
8
)[

1

1 +m2
(√

10−
√
8
)2 +

1

1 +m2
(√

10−
√
8
)2

]

v(6) =
√
13

[
5

6
+

1

1 +m2
(√

17−
√
13
)2

]
+

im
(√

17−
√
13
)

1 +m2
(√

17−
√
13
)2

As in Example 9, we can compute ψ(5) = v(5)/N1 and ψ(6) = v(6)/N1. We
then find the probability

p(6) =
|v(6)|2

|v(5)|5 + |v(6)|2
=

1∣∣∣v(5)v(6)

∣∣∣
2

+ 1

As a function of m we have that p(6, 0) = 0.61905 and

lim
m→∞

p(6, m) = 0.81864

The function p(6, m) is essentially increasing as a function of m.

Example 11. Our final example is the c-causet with shell sequence
(1, 2, 3) and labeled vertices (1; 2, 3; 4, 5, 6). The six paths are ω1 : 1− 2− 4,
ω2 : 1− 3− 4, ω3 : 1− 2− 5, ω4 : 1− 3− 5, ω5 : 1− 2− 6 and ω6 : 1− 3− 6.
We see that ω1, ω2, ω4 and ω6 are geodesics and K(4) = 1,
K(5) = K(6) = 0. Applying Lemma 3.1, the wave function becomes

v(ω1, 4) =
d(1, 4)

d(1, 2)
=

√
5

v(ω2, 4) =
d(1, 4)

d(1, 3)
=

√
5

2

v(ω3, 5) =
i d(1, 5)

i d(1, 2)−mδω3
(1, 5)

=
i
√
8

i+m
(√

10−
√
8
)

=

√
8
[
1 + im

(√
10−

√
8
)]

1 +m2
(√

10−
√
8
)2

v(ω4, 5) =
d(1, 5)

d(1, 3)
=

√
8

2
=

√
2

v(ω5, 6) =
i d(1, 6)

i d(1, 2)−mδω5
(1, 6)

=
i
√
13

i+m
(√

17−
√
13
)
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=

√
13

[
1 + im

(√
17−

√
13
)]

1 +m2
(√

17−
√
13
)2

v(ω6, 6) =
d(1, 6)

d(1, 3)
=

√
13

2

We conclude that

v(4) = 3
2

√
5

v(5) =

[ √
8

1 +m2
(√

10−
√
8
)2 +

√
2

]
+

i
√
8m

(√
10−

√
8
)

1 +m2
(√

10−
√
8
)2

v(6) =
√
13

[
1

1 +m2
(√

17−
√
13
)2 +

1

2

]
+
i
√
13m

(√
17−

√
13
)

1 +m2
(√

17−
√
13
)2

It follows that

N2
1 = |v(4)|2 + |v(5)|2 + |v(6)|2

=
33

2
+

16

1 +m2
(√

10−
√
8
)2 +

26

1 +m2
(√

17−
√
13
)2

Hence,

p(4, m) =
45

4N2
1

p(5, m) =

16

1+m2(
√
10−

√
8)

2 + 2

N2
1

p(6, m) =

13
14

+ 26

1+m2(
√
17−

√
13)

2

N2
1

We conclude that p(4, 0) = 0.192308, p(5, 0) = 0.307692 and p(6, 0) = 0.500.
We also have that

lim
m→∞

p(4, m) = 45
66

= 0.681818

lim
m→∞

p(5, m) = 4
33

= 0.121212
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lim
m→∞

p(6, m) = 13
66

= 0.19697

The graph of p(4, m) is increasing and the graphs of p(5, m) and p(6, m) are
both decreasing. All these examples show that, at least for masses above a
certain moderate level, particles tend to move toward vertices of larger
curvature.
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