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Abstract

This article presents a sequential growth model for the universe
that acts like a quantum computer. The basic constituents of the
model are a special type of causal set (causet) called a c-causet. A c-
causet is defined to be a causet that is independent of its labeling. We
characterize c-causets as those causets that form a multipartite graph
or equivalently those causets whose elements are comparable whenever
their heights are different. We show that a c-causet has precisely two
c-causet offspring. It follows that there are 2n c-causets of cardinality
n + 1. This enables us to classify c-causets of cardinality n + 1 in
terms of n-bits. We then quantize the model by introducing a quan-
tum sequential growth process. This is accomplished by replacing the
n-bits by n-qubits and defining transition amplitudes for the growth
transitions. We mainly consider two types of processes called station-
ary and completely stationary. We show that for stationary processes,
the probability operators are tensor products of positive rank-1 qubit
operators. Moreover, the converse of this result holds. Simplifications
occur for completely stationary processes. We close with examples of
precluded events.
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1 Introduction

One frequently hears people say that the universe acts like a giant quantum
computer, but when pressed they are usually short on details. This article
attempts to begin giving these details. It should be emphasized that only
a basic framework is presented and much work remains to be done. If this
idea is correct, then great benefits will result. One benefit being better
understanding of the universe itself and another is the ability to tap into a
source of enormous computational power.

We first present a theory of discrete quantum gravity in terms of causal
sets (causets) [2, 5, 7]. Unlike previous sequential growth models the basic
elements of this theory are a special type of causet called a covariant causet
(c-causet). A c-causet is defined to be a causet that is independent of its
labeling. That is, two different labelings of a c-causet are isomorphic. The
restriction of a growth model to c-causets provides great simplifications. For
example, every c-causet possesses a unique c-causet history and has precisely
two covariant offspring. It follows that there are 2n c-causets of cardinality
n + 1. This enables us to classify c-causets of cardinality n + 1 in terms
of n-bits. The framework of a classical computer is already emerging. We
characterize c-causets as those causets that form a multipartite graph or
equivalently those causets whose elements are comparable whenever their
heights are different.

We next quantize the model by introducing a quantum sequential growth
process. This is accomplished by replacing the n-bits with n-qubits and defin-
ing transition amplitudes for the growth transitions. The transition ampli-
tudes are given by complex-valued coupling constants cn,j, j = 0, 1, . . . , 2n−1.
If the coupling constants are independent of j, we call the process station-
ary and if they are independent of n and j we call the process completely
stationary. We show that for stationary processes the probability operators
that determine the quantum dynamics are tensor products of rank-1 qubit
operators. Moreover, the converse of this result holds. Simplifications occur
for completely stationary processes. In this case, all the qubit operators are
the same and can be related to spin operators. We close with some examples
of precluded events in the completely stationary case.
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2 Covariant Causets

In this article we call a finite partially ordered set a causet. If two causets are
order isomorphic, we consider them to be identical. If a and b are elements
of a causet x, we interpret the order a < b as meaning that b is in the causal
future of a and a is in the causal past of b. An element a ∈ x is maximal if
there is no b ∈ x with a < b. If a < b and there is no c ∈ x with a < c < b,
then a is a parent of b and b is a child of a. If a, b ∈ x we say that a and b are
comparable if a ≤ b or b ≤ a. A chain in x is a set of mutually comparable
elements of x and an antichain is a set of mutually incomparable elements of
x. The height of a ∈ x is the cardinality of the longest chain whose largest
element is a. The height of x is the maximum of the heights of its elements.
We denote the cardinality of x by |x|.

If x and y are causets with |y| = |x|+1, then x produces y if y is obtained
from x by adjoining a single maximal element a to x. In this case we write
y = x � a and use the notation x → y. If x → y, we also say that x is a
producer of y and y is an offspring of x. In general, x may produce many
offspring and y may be the offspring of many producers.

A labeling for a causet x is a bijection ` : x → {1, 2, . . . , |x|} such that
a, b ∈ x with a < b implies that `(a) < `(b). A labeled causet is a pair
(x, `) where ` is a labeling of x. For simplicity, we frequently write x =
(x, `) and call x an `-causet. Two `-causets x and y are isomorphic if there
exists a bijection φ : x → y such that a < b if and only if φ(a) < φ(b) and
` [φ(a)] = `(a) for every a ∈ x. Isomorphic `-causets are considered identical
as `-causets. It is not hard to show that any causet can be labeled in many
different ways but there are exceptions and these are the ones of importance
in this work. A causet is covariant if it has a unique labeling (up to `-
causet isomorphism). Covariance is a strong restriction which says that the
elements of the causet have a unique “birth order” up to isomorphism. We
call a covariant causet a c-coset.

We denote the set of c-causets with cardinality n by Pn and the set of all
c-causets by P = ∪Pn. Notice that any nonempty c-causet y has a unique
producer. Indeed, if y had two different producers x1, x2 then x1 and x2 could
be labeled differently and these could be used to give different labelings for y.
If x ∈ P , then the parent-child relation a ≺ b makes x into a graph (x,≺). A
graph G is multipartite if there is a partition of its vertices V = ∪Vj such that
the vertices of Vj and Vj+1 are adjacent and there are no other adjacencies.
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Theorem 2.1. The following statements for a causet x are equivalent. (a) x
is covariant, (b) the graph (x,≺) is multipartite, (c) a, b ∈ x are comparable
whenever a and b have different heights.

Proof. Conditions (b) and (c) are clearly equivalent. To prove that (a) im-
plies (b), suppose x is covariant and let x = ∪mi=0yi where yi is the set of
elements in x of height i. Suppose a ∈ yn, b ∈ yn+1 and a 6< b. We can delete
maximal elements of y until b is maximal and the only element of height
n + 1. Denote the resulting causet by z. We can label b by |z|, a by |z| − 1
and consistently label the other elements of z so that z is an `-causet. We
can also label b by |z| − 1, a by |z| and keep the same labels for the other
elements of z. This gives two nonisomorphic labelings of z. Adjoining maxi-
mal elements to z to obtain x, we have x with two nonisomorphic labelings
which is a contradiction. Hence, a < b so a is a parent of b. It follows that
x is multipartite. To prove that (b) implies (a), suppose the graph (x,≺) is
multipartite. Letting x = ∪mi=0yi where yi is the set of elements of height i,
it follows that a < b for all a ∈ yi, b ∈ yi+1, i = 0, . . . ,m− 1. We can write

y0 =
{
a1, . . . , a|y0|

}
y1 =

{
a|y0|+1, . . . , a|y0|+|y1|

}
...

ym =
{
a|y0|+···+|ym−1|+1, . . . , a|y0|+···+|ym|

}
where j is the label on aj. This gives a labeling of x and is the only labeling
up to isomorphism.

Theorem 2.2. If x ∈ P, then x has precisely two covariant offspring.

Proof. By Theorem 2.1, the graph (x,≺) is multipartite. Suppose x has
height n. Let x1 = x � a where a has all the elements of height n as parents.
Then a is the only element of x1 with height n+ 1. Hence, x1 is multipartite
so by Theorem 2.1, x1 is a covariant offspring of x. Let x2 = x � b where b
has all the elements of height n− 1 in x as parents. (If n = 1, then b has no
parents.) It is clear that x2 is a multipartite graph. By Theorem 2.1, x2 is a
covariant offspring of x. Also, there is only one covariant offspring of each of
these two types. Let y = x � c be a covariant offspring of x that is not one of
these two types and let a ∈ x have label |x|. Then a and c are incomparable
and we can label x by |x|+ 1. If we interchange the labels of a and c, we get
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a nonisomorphic labeling of y which gives a contradiction. We conclude that
x has precisely two covariant offspring.

Corollary 2.3. There are 2n c-causets of cardinality n+ 1.

Proof. Notice that we obtain all c-causets from the producer-offspring process
of Theorem 2.2. Indeed, take any x ∈ P and delete maximal elements until
we arrive at the one element c-causet. In this way, x is obtained from the
process of Theorem 2.2. We now employ induction on n. There are 1 = 21−1

c-causets of cardinality 1. If the result holds for c-causets of cardinality n,
then by Theorem 2.2 there are 2 · 2n−1 = 2n c-causets of cardinality n + 1.
Hence, the result holds for c-causets of cardinality n+ 1.

As a bonus we obtain an already known combinatorial identity. A com-
position of a positive integer n is a sequence of positive integers whose sum
is n. The order of terms in the sequence is taken into account. For example
the following are the compositions of 1, 2, 3, 4, 5.

n = 1: 1

n = 2: 1 + 1, 2

n = 3: 1 + 1 + 1, 1 + 2, 2 + 1, 3

n = 4: 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, 2 + 1 + 1, 2 + 2, 1 + 3, 3 + 1, 4

n = 5: 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 2, 1 + 1 + 2 + 1, 1 + 2 + 1 + 1,

2 + 1 + 1 + 1, 1 + 1 + 3, 1 + 3 + 1, 3 + 1 + 1, 1 + 4, 4 + 1,

2 + 3, 3 + 2, 1 + 2 + 2, 2 + 1 + 2, 2 + 2 + 1, 5

The reader has surely noticed that for n = 1, 2, 3, 4, 5, the number of compo-
sitions of n is 2n−1.

Corollary 2.4. There are 2n−1 compositions of the positive integer n.

Proof. There is a bijection between compositions of n and multipartite graphs
with n vertices. The result follows from Corollary 2.3.

The pair (P ,→) forms a partially ordered set in its own right. Moreover,
(P ,→) also forms a graph that is a tree. Figure 1 depicts the first five levels
of this tree. The binary designations in Figure 1 will now be explained. By
Corollary 2.3, at height n + 1 there are 2n c-causets so binary numbers fit
well, but how do we define a natural order for the c-causets? We have seen in
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Theorem 2.2 that if x ∈ Pn, n = 1, 2, . . ., then x has precisely two offspring
in P , x→ x0, x1 here x0 has the same height as x and x1 has the height of x
plus one. We call x0 the 0-offspring and x1 the 1-offspring of x. We assign a
binary order to x ∈ P recursively as follows. If x ∈ P1, then x is the unique
one element c-causet and we designate x by 0. If x ∈ Pn+1, then x has a
unique producer y ∈ Pn. Suppose y has binary order jn−1jn−1 · · · j2j1, ji = 0
or 1. If x is the 0-offspring of y, then we designate x with jn−1 · · · j2j10 and
if x is a 1-offspring of y, then we designate x with jn−1 · · · j2j11. The reader
can now check this definition with the binary order in Figure 1.

We now see the beginning development of a giant classical computer. At
the (n+ 1)th step of the process, n-bit strings are generated. It is estimated
that we are now at about the 1060th step so (1060 − 1)-bit strings are being
generated. There are about 21060 such strings so an enormous amount of
information is being processed. When we get to quantum computers, then
superpositions of strings will be possible and the amount of information in-
creases exponentially. It is convenient to employ the notation

j = jnjn−1 · · · j2j1

for an n-bit string. In this way we can designate each x ∈ P uniquely by
xn+1,j where n + 1 = |x|. For example, the c-causets at step 3 in Figure 1
are x3,00, x3,01, x3,10, x3,11. In decimal notation we can also write these as
x3,0, x3,1x3,2, x3,3.

The binary order that we have just discussed in equivalent to a natural
order in terms of the c-causet structure. Let x = {a1, . . . , an} ∈ Pn where we
can assume without loss of generality that j is the label of aj, j = 1, . . . , n.
Define

jx� = {i ∈ N : aj < ai}

Thus, jx� is the set of labels of the descendants of aj. Order the set of
c-cosets in Pn lexicographically as follows. If x, y ∈ Pn, then x < y if

1x� = 1y�, · · · , jx� = jy�, (j + 1)x ( �(j + 1)�

It is easy to check that < is a total order relation on Pn. The next theorem,
whose proof we leave to the reader, shows that the order < on Pn is equivalent
to the binary order previously discussed.

Theorem 2.5. If xn,j, xn,k ∈ Pn, then xnj < xn,k if and only if j < k.
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Example 1. We can illustrate Theorem 2.5 by considering P4. For the
c-causets x4,0, x4,1, . . . , x4,7 ∈ P4 we list the sets (1x�, 2x�, 3x�). Notice that
we need not list 4x� = ∅ in all cases of P4.

x4,0 : (∅, ∅, ∅)
x4,1 : ({4} , {4} , {4})
x4,2 : ({3, 4} , {3, 4} , ∅)
x4,3 : ({2, 3, 4} , {3, 4} , {4})
x4,4 : ({2, 3, 4} , ∅, ∅)
x4,5 : ({2, 3, 4} , {4} , {4})
x4,6 : ({2, 3, 4} , {3, 4} , ∅)
x4,7 : ({2, 3, 4} , {3, 4} , {4})

The lexicographical order becomes:

x4,0 < x4,1 < x4,2 < x4,3 < x4,4 < x4,5 < x4,6 < xx,7

Example 2. This is so much fun that we list the sets

(1x�, 2x�, 3x�, 4x�)

for the c-causets x5,0, . . . , x5,15 ∈ P5.

x5,0 : (∅, ∅, ∅, ∅) x5,1 : ({5} , {5} , {5} , {5})
x5,2 : ({4, 5} , {4, 5} , {4, 5} , ∅) x5,3 : ({4, 5} , {4, 5} , {4, 5} , {5})
x5,4 : ({3, 4, 5} , {3, 4, 5} , ∅, ∅) x5,5 : ({3, 4, 5} , {3, 4, 5} , {5} , {5})
x5,6 : ({3, 4, 5} , {3, 4, 5} , {4, 5} , ∅) x5,7 : ({3, 4, 5} , {3, 4, 5} , {4, 5} , {5})
x5,8 : ({2, 3, 4, 5} , ∅, ∅, ∅) x5,9 : ({2, 3, 4, 5} , {5} , {5} , {5})
x5,10 : ({2, 3, 4, 5} , {4, 5} , {4, 5} , ∅) x5,11 : ({2, 3, 4, 5} , {4, 5} , {4, 5} , {5})
x5,12 : ({2, 3, 4, 5} , {3, 4, 5} , ∅, ∅) x5,13 : ({2, 3, 4, 5} , {3, 4, 5} , {5} , {5})
x5,14 : ({2, 3, 4, 5} , {3, 4, 5} , {4, 5} , ∅) x5,15 : ({2, 3, 4, 5} , {3, 4, 5} , {4, 5} , {5})

This order structure (Pn, <) induces a topology on Pn whereby we can
describe the “closeness” of c-causets. For example, we can place a metric on
Pn by defining ρ(xnj, xn,k) =

∣∣j − k∣∣. If we want to keep the size of the
metric reasonable, we could define

ρ(xn,j, xn,k) =
1

2n−1

∣∣j − k∣∣
8



3 Quantum Sequential Growth Processes

The tree (P ,→) can be thought of as a growth model and an x ∈ Pn is
a possible universe at step (time) n. An instantaneous universe x grows
one element at a time in one of two ways at each step. A path in P is a
sequence (string) ω1ω2 · · · where ωi ∈ Pi and ωi → ωi+1. An n-path is a
finite sequence ω1ω2 · · ·ωn where again ωi ∈ Pi and ωi → ωi+1. We denote
the set of paths by Ω and the set of n-paths by Ωn. We think of ω ∈ Ω as
a “completed” universe or as a universal history. We may also view ω ∈ Ω
as an evolving universe. Since a c-causet has a unique producer, an n-path
ω = ω1ω2 · · ·ωn is completely determined by ωn. In other words, a c-causet
possesses a unique history. We can thus identify Ωn with Pn and we write
Ωn ≈ Pn. If ω = ω1ω2 · · ·ωn ∈ Ωn we denote by ω →) the two element
subset of Ωn+1 consisting of {ωx0, ωx1} where x0 and x1 are the offspring of
ωn. Thus,

(ω →) = {ω1 · · ·ωnx0, ω1 · · ·ωnx1}
If A ⊆ Ωn we define (A→) ⊆ Ωn+1 by

(A→) = ∪{(ω →) : ω ∈ A}

Thus, (A→) is the set of one-element continuations of n-paths in A.
The set of all paths beginning with ω ∈ Ωn is called an elementary cylinder

set and is denoted by cyl(ω). If A ⊆ Ωn, then the cylinder set cyl(A) is
defined by

cyl(A) = ∪{cyl(ω) : ω ∈ A}
Using the notation

C(Ωn) = {cyl(A) : A ⊆ Ωn}
we see that

C(Ω1) ⊆ C(Ω2) ⊆ · · ·
is an increasing sequence of subalgebras of the cylinder algebra C(Ω) =
∪C(Ωn). Letting A be the σ-algebra generated by C(Ω), we have that (Ω,A)
is a measurable space. For A ⊆ Ω we define the sets An ⊆ Ωn by

An = {ω1ω2 · · ·ωn : ω1ω2 · · ·ωnωn+1 · · · ∈ A}

That is, An is the set of n-paths that can be continued to a path in A. We
think of An as the n-step approximation to A. We have that

cyl(A1) ⊇ cyl(A2) ⊇ · · · ⊇ A

9



so that A ⊆ ∩cyl(An). However, A 6= ∩cyl(An) in general, even if A ∈ A.
Let Hn = L2(Ωn) = L2(Pn) be the n-path Hilbert space CΩn = CPn with

the usual inner product

〈f, g〉 =
∑{

f(ω)g(ω) : ω ∈ Ωn

}
For A ⊆ Ωn, the characteristic function χA ∈ Hn has norm ‖χA‖ =

√
|A| .

In particular 1n = χΩn satisfies

‖1n‖ = |Ωn|1/2 = 2(n−1)/2

A positive operator ρ on Hn that satisfies 〈ρ1n, 1n〉 = 1 is called a proba-
bility operator [2]. Corresponding to a probability operator ρ we define the
decoherence functional [2, 3, 6]

Dρ : 2Ωn × 2Ωn → C

by Dρ(A,B) = 〈ρχB, χA〉. We interpret Dρ(A,B) as a measure of the inter-
ference between the events A and B when the system is described by ρ. We
also define the q-measure µρ : 2Ωn → R+ by µρ(A) = Dρ(A,A) and interpret
µρ(A) as the quantum propensity of the event A ⊆ Ωn [2, 4, 7]. In general, µρ
is not additive on 2Ωn so µρ is not a measure. However, µρ is grade-2 additive
[2, 4, 7] in the sense that if A,B,C ∈ 2Ωn are mutually disjoint, then

µρ(A∪B∪C) = µρ(A∪B)+µρ(A∪C)+µρ(B∪C)−µρ(A)−µρ(B)−µρ(C)

Let ρn be a probability operator on Hn, n = 1, 2, . . . . We say that the
sequence {ρn} is consistent if

Dρn+1(A→, B →) = Dρn(A,B)

for all A,B ⊆ Ωn [2]. We call a consistent sequence {ρn} a covariant quantum
sequential growth process (CQSGP). Let ρn be a CQSGP and denote the
corresponding q-measure by µn. A set A ∈ A is suitable if limµn(An) exists
(and is finite) in which case we define µ(A) = limµn(An). We denote the
collection of suitable sets by S(Ω). Of course, ∅,Ω ∈ S(Ω) with µ(∅) = 0,
µ(Ω = 1. If A ∈ C(Ω) and A = cyl(B) where B ⊆ Ωm, then it follows from
consistency that limµn(An) = µm(B). Hence, A ∈ S(Ω) and µ(A) = µm(B).
We conclude that C(Ω) ⊆ S(Ω) ⊆ A and it can be shown that the inclusions
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are proper, in general. In a sense, µ is a q-measure on S(Ω) that extends the
q-measures µn.

There are physically relevant sets that are not in C(Ω). In this case, it is
important to know whether such a set A is in S(Ω) and if it is, to find µ(A).
For example, if ω ∈ Ω then

{ω} =
∞⋂
n=1

{ω}n ∈ A

but {ω} /∈ C(Ω). As another example, the complement {ω}′ /∈ C(Ω). Even
if {ω} ∈ S(Ω), since µn(A′) 6= 1 − µn(A) for A ⊆ Ωn in general, it does
not follow immediately that {ω}′ ∈ S(Ω). For this reason, we would have to
treat {ω}′ as a separate case.

We saw in Section 2 that we can represent each element of P uniquely as
xn,j where n = |x| and j can be considered as a binary number. We can also
represent each element in Pn+1 as a n-bit binary number j = jnjn−1 · · · j2j1,
j = 0 or 1. Since Ωn ≈ Pn we can also represent each ω ∈ Ωn+1 by an
n-bit binary number j. The standard basis for Hn+1 = L2(Ωn+1) is the set

of vectors ej = χωj
, ωj ∈ Ωn+1. We frequently use the notation

∣∣j〉 = ej
which is called the computational basis in quantum computation theory. In
this theory

∣∣j〉 is represented by∣∣j〉 = |jn · · · j2j1〉 = |jn〉 ⊗ · · · ⊗ |j2〉 ⊗ |j1〉

where |ji〉 is |0〉 or |1〉 which form the basis of the two-dimensional Hilbert
space C2.

The basis vectors |0〉 and |1〉 are called qubit states but we shall call
them qubits, for short. We also call

∣∣j〉 given above, an n-qubit. This is the
quantum computation analogue of an n-bit of classical computer science. If
ρn+1 is a probability operator, the corresponding decoherence matrix is the
2n × 2n complex matrix whose j − k component is given by

Mρn+1 =
[〈
ρn|k〉,

∣∣j〉〉]
This is frequently shortened to

Mρn+1 =
[〈
ρnk, j

〉]

11



but we shall not use this notation because it can be confusing. For A,B ⊆
Ωn+1 we form the superpositions

|A〉 =
∑
{|i〉 : ωi ∈ A}

|B〉 =
∑
{|i〉 : ωi ∈ B}

The decoherence functional is now given by

Dρn+1(A,B) = 〈ρn+1|B〉, |A〉〉

Superpositions are a strictly quantum phenomenon that has no counterpart
in classical computation.

An event A ⊆ Ωn is precluded if µn(A) = 0 [4]. Precluded events have
been extensively studied in [1, 3, 5, 7, 8] and they are considered to be events
that never occur. We shall give simple examples later which show that if A is
precluded and B ⊆ A then B need not be precluded. However, the following
properties do hold.

Theorem 3.1. (a) If A ⊆ Ωn is precluded and B ⊆ Ωn is disjoint from A
then µn(A ∪ B) = µn(B). (b) If A,B ⊆ Ωn are disjoint precluded events
then A ∪B is precluded.

Proof. (a) Since µn(A) = 0 we have that

‖ρ1/2
n χA‖2 =

〈
ρ1/2
n χA, ρ

1/2
n χA

〉
= 〈ρnχA, χA〉 = 0

Hence, ρ
1/2
n χA = 0 so ρnχA = 0. Since A ∩B = ∅ we have that

µn(A ∪B) = 〈ρnχA∪B, χA∪B〉 = 〈ρn(χA + χB), χA + χB〉
= 〈ρnχA, χA〉+ 2Re〈ρnχA, χA〉+ 〈ρnχB, χB〉
= 〈ρnχB, χB〉 = µn(B)

Part (b) follows from (a).

An event A ∈ S(Ω) is precluded if µ(A) = 0 and A is strongly precluded
if there exists an n ∈ N such that µm(Am) = 0 for all m ≥ n. For example,
if A = cyl(B) where B ⊆ Ωn and µn(B) = 0 then A is strongly precluded.
Of course, strongly precluded events are precluded.

A precluded event is primitive if it has no proper, nonempty precluded
subsets.

12



Theorem 3.2. If A ⊆ Ωn is precluded, then A is primitive or A is a union
of mutually disjoint primitive precluded events.

Proof. If A is primitive we are finished. Otherwise, there exists a proper,
nonempty precluded subset B ⊆ A. Since |B| <∞ there exists a nonempty,
primitive precluded event A1 ⊆ B ⊆ A. Applying Theorem 3.1, we conclude
that µn(A ∩ A′1) = 0. In a similar way, there exists a nonempty, primitive
precluded event A2 ⊆ A ∩ A′1. Of course, A1 ∩ A2 = ∅. Continuing, this
process must eventually stop and we obtain a sequence of mutually disjoint
primitive preluded events A1, . . . , An with A = ∪Ai.

4 Covariant Amplitude Processes

This section considers a method of constructing a CQSGP called a covariant
amplitude process. Not all CQSGPs can be constructed in this way, but this
method appears to have physical motivation [2].

A transition amplitude is a map ã : P × P → C such that ã(x, y) = 0 if
x 6→ y and

∑
y ã(x, y) = 1 for all x ∈ P . This is similar to a Markov chain

except ã(x, y) may be complex. The covariant amplitude process (CAP)
corresponding to ã is given by the maps an : Ωn → C where

an(ω1ω2 · · ·ωn) = ã(ω1, ω2)ã(ω2, ω3) · · · ã(ωn−1, ωn)

We can consider an to be a vector in Hn = L2(Ωn) = L2(Pn). Notice that for
x ∈ Pn we can define an(x) to be an(ω) where ω ∈ Ωn is the unique history
of x. Observe that

〈1n, an〉 =
∑
ω∈Ωn

an(ω) = 1

and we also have that

‖an‖ =

(∑
ω∈Ωn

∣∣an(ω)2
∣∣)1/2

Define the rank-1 positive operator ρn = |an〉〈an| on Hn. The norm of ρn is

‖ρn‖ = ‖an‖2 =
∑
ω∈Ωn

|an(ω)|2

13



Since 〈ρn1n, 1n〉 = |〈1n, an〉|2 = 1, we conclude that ρn is a probability oper-
ator. It is shown in [2] that {ρn} is consistent so {ρn} forms a CQSGP. We
call {ρn} the CQSGP generated by the CAP {an}.

The decoherence functional corresponding to the CAP {an} becomes

Dn(A,B) = 〈ρnχB, χA〉 = 〈χB, an〉〈an, χA〉

=
∑
ω∈A

an(ω)
∑
ω∈B

an(ω)

In particular, for ω, ω′ ∈ Ωn the decoherence matrix elements

Dn(ω, ω′) = an(ω)an(ω′)

are the matrix elements of ρn in the standard basis. The q-measure µn : 2Ωn →
R+ is given by

µn(A) = Dn(A,A) =

∣∣∣∣∣∑
ω∈A

an(ω)

∣∣∣∣∣
2

In particular, µn(ω) = |an(ω)|2 for every ω ∈ Ωn and µn(Ωn) = 1. Of course,
we also have that µn(x) = |an(x)|2 for all x ∈ Pn.

Since each x ∈ Pn has precisely two offspring, we can describe a transition
amplitude ã and the corresponding CAP {an} in a simple way. Let

ã(xn,j, xn+1,j0) = cn,j

and

ã(xn,j, xn+1,j1) = 1− cn,j

j = 0, 1, . . . , 2n−1 − 1. We call the numbers cn,j ∈ C coupling constants for
the corresponding CAP {an}.

Example 3. If the CAP {an} has coupling constants cn,j, then we have
a2(x2,0) = c1,0, a2(x2,1) = 1− c1,0, a3(x3,00) = c1,0c2,0,
a3(x3,01) = c1,0(1− c2,0), a3(x3,10) = (1− c1,0)c2,1,
a3(x3,11) = (1− c1,0)(1− c2,1).

We shall only need a special case of the next theorem but it still has
independent interest.

14



Theorem 4.1. An operator M on Hn is a rank-1 probability operator if
and only if M has a matrix representation M = [αjαk] where αj ∈ C, j =
1, . . . , n, satisfy

∑
αj = 1.

Proof. Suppose M = [Mjk] with Mjk = αjαk where
∑
αj = 1. Let ψ ∈ Cn

be the vector ψ = (α1, . . . , αn). We have that M = |ψ〉〈ψ| so M is positive
with rank 1. To show that M is a probability operator we have∑

j,k

Mjk =
∑
j,k

αjαk =
∣∣∣∑αj

∣∣∣2 = 1

Conversely, let M be a rank-1 probability operator. Since M is rank-1, it
has the form M = |ψ〉〈ψ| for some ψ ∈ Cn. We then have the matrix
representation

M = [〈ej, ψ〉〈ψ, ek〉]

where ej, j = 1, . . . , n, is the standard basis for Cn. Letting αj = 〈ψ, ej〉 we
conclude that M = [αjαk]. Since M is a probability operator we have that∣∣∣∣∣∑

j

αj

∣∣∣∣∣
2

=
∑
j,k

αjαk = 1

Now there exists a θ ∈ R such that e−iθ
∑
αj = 1. Letting ψ′ = eiθψ we

obtain
M = |ψ′〉〈ψ′| =

[
α′jα

′
k

]
where α′j = e−iθαj, j = 1, . . . , n. Hence,

∑
α′j = 1.

An operator on C2 is called a qubit operator. We shall only need the
following corollary of Theorem 4.1.

Corollary 4.2. A qubit operator M is a rank-1 probability operator if and
only if M has a matrix representation

M =

[
|c|2 c(1− c)

c(1− c) |1− c|2

]
(4.1)

where α ∈ C.
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A CAP {an} is stationary if the coupling constants cn,j are indepen-
dent of j. In this case we write cn,j = cn and we have ã(xn,j, xn+1,j0) =
cn, ã(xn,j, xn+1,j1) = 1− cn. By Corollary 4.2 the operators

ĉj =

[
|cj|2 cj(1− cj)

cj(1− cj) |1− cj|2

]
are qubit rank-1 probability operators.

Theorem 4.3. Let {cn} be the coupling constants for a stationary CAP. The
generated CQSGP {ρn} has the form

ρn = ĉn−1 ⊗ ĉn−2 ⊗ · · · ⊗ ĉ2 ⊗ ĉ1 (4.2)

Proof. Since Ωn ≈ Pn we can write

ρ2 = D2 =

[
|c1|2 c1(1− c1)

c1(1− c1) |1− c1|2

]
= ĉ1

At the next step we apply Example 3 to obtain

ρ3 = D3

=


|c1|2 |c2|2 |c1|2 c2(1− c2) c1(1− c1) |c2|2 c1(1− c1)c2(1− c2)

|c1|2 c2(1− c2) |c1|2 |1− c2|2 c1(1− c1)c2(1− c2) c1(1− c1) |1− c2|2

c1(1− c1) |c2|2 c1(1− c1)c2(1− c2) |1− c1|2 |c2|2 |1− c1|2 c2(1− c2)

c1(1− c1)c2(1− c2) c1(1− c1) |1− c2|2 |1− c1|2 c2(1− c2) |1− c1|2 |1− c2|2


=

[
|c1|2 ĉ2 c1(1− c1)ĉ2

c1(1− c1)ĉ2 |1− c1|2 ĉ2

]
= ĉ2 ⊗ ĉ1

Continuing by induction, we have that (4.2) holds.

Equation (4.2) shows that the (n−1)-qubit probability operator ρn is the
tensor product of n − 1 qubit probability operators. The next result show
that the converse of Theorem 4.3 holds.

Theorem 4.4. If the CQSGP {ρn} has the form

ρn = βn−1 ⊗ βn−2 ⊗ · · · ⊗ β2 ⊗ β1

where βj is a rank-1 probability operator, then {ρn} is generated by a station-
ary CAP.

16



Proof. Since βj, j = 1, . . . , n − 1, is a rank-1 qubit probability operator, by
Corollary 4.2 we have that

βj =

[
|cj|2 cj(1− cj)

cj(1− cj) |1− cj|2

]

where cj ∈ C. As in the proof of Theorem 4.3, {ρn} is generated by a
stationary CAP whose coupling constants are {cn}

We say that a CAP is completely stationary if the coupling constants cn,j
are independent of n and j. In this case, we have a single coupling constant
c ∈ C and the generated CQSGP {ρn} has the form

ρn = ĉ⊗ · · · ⊗ ĉ =
n−1⊗

1

ĉ

where ĉ has the form (4.1).

5 Examples of Q-Measures

In this section we compute some simple examples of q-measures in the sta-
tionary case. Let {an} be a stationary CAP with corresponding coupling
constants {cn}. As usual, we can identify Ωn with Pn. If ω = ω1 · · ·ωn ∈ Ωn

we have that µn(ω) = µn(ωn). For P2 = {x2,0, x2,1} we have a2(x2,0) = c1,
a2(x2,1) = 1− c1, so µ2(x2,0) = |c1|2 and µ2(x2,1) = |1− c1|2. For

P3 = {x3,0, x3,1, x3,2, x3,3}

we have a3(x3,0) = c1c2, a3(x3,1) = c1(1− c2), a3(x3,2) = (1− c1)c2, a3(x3,3) =
(1 − c1)(1 − c2). Hence, µ3(x3,0) = |c1|2 |c2|2, µ3(x3,1) = |c1|2 |1− c2|2,
µ3(x3,2) = |1− c1|2 |c2|2 and µ3(x3,3) = |1− c1|2 |1− c2|2. We now compute
the q-measure of some two element sets. We have that

µ3 ({x3,0, x3,1}) = |a3(x3,0) + a3(x3,1)|2 = |c1|2

Since µ3 ({x3,0, x3,1}) 6= µ3(x3,0) + µ3(x3,1) in general, we conclude that x3,0

and x3,1 interfere with other, except in special cases. If

µ3 ({x3,0, x3,1}) < µ3(x3,0) + µ3(x3,1)

17



we say that x3,0 and x3,1 interfere destructively and if

µ3 ({x3,0, x3,1}) > µ3(x3,0) + µ3(x3,1)

we say that x3,0 and x3,1 interfere constructively. The three possible cases,
=, <,> can occur depending on the value of c2. In a similar way, we have
that µ ({x3,0, x3,2}) = |c2|2

µ3 ({x3,0, x3,3}) = |1− c1 − c2 + 2c1c2|2

µ3 ({x3,1, x3,2}) = |c1 + c2 − 2c1c2|2

µ3 ({x3,1, x3,3}) = |1− c2|2

It follows that any pair of elements of P3 interfere, in general. Finally, we
compute the q-measures of some three element sets:

µ ({x3,0, x3,1, x3,2}) = |c1 + c2 − 2c1c2|2

µ3 ({x3,0, x3,1, x3,3}) = |1− c2 + 2c1c2|2

We now consider

P4 = {x4,0, x4,1, x4,2, x4,3, x4,4, x4,5, x4,6, x4,7}

In this case we have a4(x4,0) = c1c2c3, a4(x4,1) = c1c2(1 − c3), a4(x4,2) =
c1(1− c2)c3, a4(x4,3) = c1(1− c2)(1− c3), a4(x4,4) = (1− c1)c2c3, a4(x4,5) =
(1−c1)c2(1−c3), a4(x4,6) = (1−c1)(1−c2)c3, a4(x4,7) = (1−c1)(1−c2)(1−c3).
We then have that µ4(x4,j) = |a4(x4,j)|2, j = 0, 1, . . . , 7. In general, the
pattern is clear that

µn(xn,j) = |c′1|
2 |c′2|

2 · · ·
∣∣c′n−1

∣∣2
where c′i = ci if the history of xn,j turns “left” at the ith step and c′i = 1− ci
if it turns “right” at the ith step. Some q-measures of two element sets are

µ4 ({x4,0, x4,1}) = |c1|2 |c2|2

µ4 ({x4,1, x4,2}) = |c1|2 |c2 + c3|2

In general, any pair of c-causets in P4 interfere.
We now consider the extremal left path ω` = x1,0x2,0x3,0 · · · . Is {ω`} ∈

S(Ω)? We have that

µn(xn,0) = |c′1|
2 |c′2|

2 · · ·
∣∣c′n−1

∣∣2
18



Now {ω`} ∈ S(Ω) if and only if limµn(xn,0) exists and this depends on the
values of cn. In fact, we can set values of cn so that limµn(xn,0) = r for an
r ∈ R+. For example, if we let cn = cn+1 = · · · = 1, then we obtain

µ(ω`) = limµm(xm,0) = |c′1|
2 |c′2|

2 · · ·
∣∣c′n−1

∣∣2
Moreover, in this case {ω} ∈ S(Ω) for every ω ∈ Ω with similar values for
µ(ω).

As another example, let A ⊆ Ω be the set of paths ω = ω1ω2 · · · such that
ω3, ω4, · · · are the “middle half” of P3,P4, . . . . That is, A1 = P1, A2 = P ,
A3 = {x3,1, x3,2},

A4 = {x4,2, x4,3x4,4, x4,5}
A5 = {x5,4, x5,5x5,6, x5,7x5,8x5,9x5,10x5,11}
...

Now µ1(A1) = µ2(A2) = 1, µ3(A3) = |c1 + c2 − 2c1c2|2

µ4(A4) = |c1(1− c2)c3 + c1(1− c2)(1− c3) + (1− c1)c2c3 + (1− c1)c2(1− c3)|2

= |c1(1− c2) + (1− c1)c2|2 = |c1 + c2 − 2c1c2|2

It is not a coincidence that µ4(A4) = µ3(A3). In fact, A4 = (A3 →) and
A = cyl(A3). It follows that A ∈ C(Ω) so A ∈ S(Ω) with µ(A) = µ3(A3). In
a similar way A′ ∈ S(Ω) with µ(A′) = |1− c1 − c2 + 21c2|2. We can interpret
A′ as the “one fourth end paths” with A′n = (An)′, n = 3, 4, . . . .

The situation for noncylinder sets is more complicated so to simplify
matters we consider a completely stationary CAP. In this case we have only
one coupling constant c. For x ∈ Pn we have that an(x) = cj(1− c)k where
j + k = n− 1, j is the number of “left turns” and k is the number of “right
turns.” We then have explicitly that

µn(Pn) =

∣∣∣∣∣∑
x∈Pn

an(x)

∣∣∣∣∣
2

=

∣∣∣∣∣
n−1∑
j=0

(
n− 1
j

)
cj(1− c)(n−1−j)

∣∣∣∣∣
2

=
∣∣(c+ 1− c)n−1

∣∣2 = 1

The q-measure of x ∈ Pn becomes

µn(x) =
∣∣cj(1− c)k∣∣2 = |c|2j |1− c|2k
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It is interesting that in this case we have

∑
x∈Pn

µn(x) =
n−‘∑
j+0

(
n− 1
j

)(
|c|2
)j (|1− c|2)(n−1−j))

=
(
|c|2 + |1− c|2

)n−1

If ω = ω1ω2 · · · ∈ Ω, then

µn ({ω}n) = µn(ωn) = |c|2j |1− c|2k

Whether limµn(ωn) exists or not depends on c. If |c| , |1− c| < 1 then {ω} ∈
S(Ω) for every ω ∈ Ω and µ(ω) = 0. If |c| , |1− c| > 1, then {ω} /∈ S(Ω)
for every ω ∈ Ω. If |c| < 1, |1− c| > 1 or vice versa, then {ω} ∈ S(Ω) for
some ω ∈ Ω and {ω} /∈ S(Ω) for others. Except for the trivial cases |c| = 1
or |1− c| = 1 we have that µ({ω}) = 0 whenever |ω| ∈ S(Ω). An interesting
example of a set B /∈ C(Ω) is

B = {ω1ω2 · · · ∈ Ω: ωj is connected j ∈ N}

Thus, B = {ω`}′ where ω` is the extremal left path. Then B /∈ C(Ω) and
µn(Bn) = |1− cn−1|2. If |c| < 1, then limµn(Bn) = 1 so B ∈ S(Ω) with
µ(B) = 1.

As a special case, let {an} be a completely stationary CAP with coupling
constant c = 1

2
+ i

2
. This is probably the simplest nontrivial coupling constant.

Notice that 1− c = 1
2
− i

2
= c and |c| = |c| = 1/

√
2. Moreover

c =
1√
2
eiπ/4, c =

1√
2
e−iπ/4

For x ∈ Pn we have that µn(x) = 1/2n−1. It follows that {ω} ∈ S(Ω) for
every ω ∈ Ω and µ(ω) = 0. In a similar way, if A ⊆ Ω is finite, then A ∈ S(Ω)
and µ(A) = 0. Moreover, A′ ∈ S(Ω) and µ(A′) = 1. In P3 we have that

µ3 ({x3,0, x3,1}) = |c|2 = 1
2

= µ3(x3,0) + µ3(x3,1)

so in this case x3,0 and x3,1 do not interfere. In a similar way, µ3 ({x3,0, x3,2}) =
1/2 so x3,0 and x3,2 do not interfere. On the other hand,

µ3 ({x3,0, x3,3}) =
∣∣1− 2c− 2c2

∣∣2 = 0
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so x3,0 and x3,3 interfere destructively. Also,

µ3 ({x3,1, x3,2}) =
∣∣2c− 2c2

∣∣2 = 4 |c(1− c)|2 = 1

so x3,1 and x3,2 interfere constructively. Even in this simple case we can get
strange results:

µ3 ({x3,0, x3,1, x3,2}) =
∣∣2c− 2c2

∣∣2 =
5

4

We can check grade-2 additivity:

5

4
= µ3 ({x3,0, x3,1, x3,2})

= µ3 ({x3,0, x3,1}) + µ3 (x3,0, x3,2) + µ3 ({x3,1, x3,2})

− µ3(x3,0)− µ3(x3,1)− µ3(x3,2) =
1

2
+

1

2
+ 1− 3

4

An interesting property of this special case is that the probability operators
ρn = ρ2 ⊗ · · · ⊗ ρ2 are closely related to the Pauli spin operator

σy =

[
0 −i
i 0

]

In particular, for c = 1
2

+ i
2

we have

ρ2 =

[
|c|2 c(1− c)

c(1− c) |1− c|2

]
=

1

2

[
1 −i
i 1

]
=

1

2
(I + σy)

In this way, ρn corresponds to a state for (n− 1) spin-1
2

particles.
We now consider precluded events for the CAP we are discussing. We

say that xn,j, xn,k ∈ Pn are an antipodal pair if an(xn,j) = −an(xn,k). Since
an(xn,m) = cjc k, j + k = n− 1, we have that

an(xn,m) = 2(n−1)/2eirπ/4

for sone r ∈ {0, 1, . . . , 7}. It follows that xn,j and xn,k are an antipodal pair
if and only if

an(xn,j) = 2(n−1)/2eirπ/4 = −an(xn,k)

for some r ∈ {0, 1, . . . , 7}. We leave the proof of the following result to the
reader. As usual we apply the identity Ωn ≈ Pn.
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Theorem 5.1. A set A ⊆ Ωn is a nonempty, primitive precluded event if
and only if A = {xn,j, xn,k} where xn,j and xn,k are an antipodal pair.

Applying Theorems 5.1 and 3.2 we obtain:

Corollary 5.2. A set A ⊆ Ωn is precluded if and only if A is a disjoint
union of antipodal pairs.

Example 4. We illustrate Corollary 5.2 by displaying the antipodal pairs
in P3, P4 and P5. In P3 there is only one antipodal pair (x3,0, x3,3). In P4

the antipodal pairs are

(x4,0, x4,3), (x4,0, x4,5), (x4,0, x4,6)

(x4,1, x4,7), (x4,2, x4,7), (x4,4, x4,7)

In P5 there are 28 antipodal pairs. To save writing we use the notation
j = x5,j. The antipodal pairs in P5 are

(0, 3), (0, 5), (0, 6), (0, 9), (0, 10), (0, 12)

(15, 3), (15, 5), (15, 6), (15, 9), (15, 10), (15, 12)

(1, 7), (1, 11), (1, 13), (1, 14), (2, 7), (2, 11), (2, 13), (2, 14)

(4, 7), (4, 11), (4, 13), (4, 14), (8.7), (8, 11), (8, 13), (8, 14)

According to the coevent formulation [1, 6, 7, 8], precluded events do not
occur so we can remove them from consideration. What is left can occur
in some anhomomorphic realization of possible universes [1, 7, 8]. We can
remove a precluded event from Ωn (or Pn) which is as large as possible but
there is no unique way of doing this, in general. To illustrate this method let
us remove the “left” and “right” precluded extremes. In P3 we remove the
precluded event {x3,0, x3,3} and we obtain

A3 = {x3,1, x3,2}

with µ3(A3) = 1. In P4 we remove the precluded event

{x4,0, x4,1, x4,6, x4,7}

and we obtain
A4 = {x4,2, x4,3, x4,4, x4,5}
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with µ4(A4) = 1. In P5 we remove the precluded event

{x5,0, x5,1, x5,2, x5,3, x5,4, x5,11, x5,12, x5,13, x5,14, x5,15}

and we obtain
A5 = {x5,5, x5,6, x5,7, x5,8, x5,9, x5,10}

with µ5(A5) = 1. Continuing this process, we conjecture that we obtain a
sequence of events An ⊆ Ωn where |An| = 2(n−2) and µn(An) = 1. Although
|Ωn| increases exponentially, if this conjecture holds then |An| only increases
linearly. This gives a huge reduction for the number of possible universes. If
A ⊆ Ω satisfies An = An then A ∈ S(Ω) with µ(A) = 1 and A′ ∈ S(Ω) with
µ(A′) = 0. We would then conclude that A′ is precluded and a realizable
universe would have to be in A.
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