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Space-time and special relativity from causal networks
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We show how the Minkowskian space-time emerges from a topologically homogeneous causal
network, presenting a simple analytical derivation of the Lorentz transformations, with metric as
pure event-counting. The derivation holds generally for d = 1 space dimension, however, it can be
extended to d > 1 for special causal networks.

PACS numbers: 4.60+n

Do events happen in space-time or is space-time that
is made up of events? This question may be considered a
”which came first, the chicken or the egg?” dilemma, but
the answer may contain the solution of the main problem
of contemporary physics: the reconciliation of quantum
theory (QT) with general relativity (GR). Why? Because
“events” are central to QT and “space-time” is central
to GR. Therefore, the question practically means: which
comes first, QT or GR?

In spite of the evidence of the first position—”events
happen in space-time”—the second standpoint—”space-
time is made up of events”—is more concrete, if we be-
lieve à la Copenhagen that whatever is not “measured”
is only in our imagination: space-time too must be mea-
sured, and measurements are always made-up of events.
Thus QT comes first. How? Space-time emerges from
the tapestry of events that are connected by quantum
interactions, as in a huge quantum computer: this is the
Wheeler’s It from bit [1]. For a theory of quantum gravity
a variation of QT may still be needed, such as a “third-
quantization” of causal connections, allowing non pre-
established causal relations. However, at least for the
simplest case of Special Relativity (SR) QT tout court
should be sufficient. Ref. [2] showed the mechanism
with which space-time emerges endowed with SR from
a network of causally connected events, starting only
from the topology of the network, and getting the met-
ric from pure event-counting. Ref. [3] later has shown
how the Minkowski signature can be derived from the
causal poset. Here we will present a simple analytical
derivation of the Lorentz transformations from a causal
network (CN) in 1 space dimension: generalization to
larger dimensions will be discussed at the end of the pa-
per. As we will see, the only thing that is needed in
addition to causality is the topological homogeneity of
the CN, corresponding to the Galileo relativity principle.

The program of deriving the geometry of space-time
from purely causal structure (causal sets) is not new,
and was initiated by Sorkin and collaborators more than
two decades ago [4]. In this publication and in follow-
ing ones (see the review [5]) the possibility of recovering
the main features of the space-time manifold—topology,
differentiable structure and the conformal metric—has
been investigated, starting from discrete sets of points
endowed with a causal partial ordering. Since from the

start, causal sets were an independent research line in
quantum gravity, since they naturally possess a space-
time discreteness and provide a history-space for a “path
integral” formulation [6, 7]. They also fit perfectly the
spirit of very recent works on operational probabilistic
theories [8, 9].
We now introduce the main notion of causal network

(CN) as a partially ordered set of events with the par-
tial order representing the causal relation between two
events. As mentioned, the aim is to have the space-time
endowed with SR emerging from the network of events,
thinking to them not as “happening in space-time”, but
as making up space-time themselves. Thus the notions of
event and causal relation have to be considered as primi-
tive, similarly to those of “point” and “line” in geometry
(for their meaning in an operational framework and in
QT, see Refs. [9, 10]). In synthesis, the CN represents
the most general structure of “information processing”.
A causal set is a set N of elements called events

a, b, c . . . ,∈ N equipped with a partial order relation �
which is: (1) Reflexive: ∀a ∈ N we have a � a; (2) An-
tisymmetric: ∀a, b ∈ N, we have a � b � a ⇒ a = b; (3)
Transitive: ∀a, b, c ∈ N, a � b � c ⇒ a � c; (4) Locally
finite: ∀a, c ∈ C, |{b ∈ N : a � b � c}| < ∞, where |S|
denotes the cardinality of the set S. In the following we
will also write a ≺ b to state that a � b with a 6= b.
A causal set is represented by a graph with points being
the events and the edges drawn between any two points
a and b for which a � b—i. e. that are causal connected,
as in Fig. 1. What we call a causal network (CN) is just
a causal set that is unbounded in all directions. In order
to satisfy transitivity, the CN is a directed acyclic graph
(DAG), i. e. loops are forbidden (arrows on edges are
usually not drawn by orienting the graph e. g. from the
bottom to the top).
Causality of the network naturally suggests the notion

of light-cone Ja of an event a ∈ N, along with those of
past/future light-cone J−a /J

+
a , respectively (see Fig. 1)

J
−
a := {b ∈ N : b � a}, J

+
a := {b ∈ N : a � b}, (1)

and Ja := J
−
a ∪ J

+
a . Accordingly, one has that a � b

is equivalent to a ∈ J
−
b and to b ∈ J+a . We will call

independent or space-like two events a, b ∈ N that are
not causally related—namely a 6∈ Jb (or b 6∈ Ja)—and
causally dependent or time-like otherwise, namely when
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a ∈ Jb (or b ∈ Ja). We call a CN connected if for every
a, b ∈ N there exists c ∈ Ja ∩ Jb, corresponding to the
intuitive notion of connectedness. Two events that are

a

FIG. 1: Causal network: illustration of the set of past/future
light-cone of event a.

not space-like are connected by at least a causal chain,
e. g. a � b are connected by the causal chain C(a, b)
given by C(a, b) := {ci}

N
i=1, with a ≡ c1 ≺ c2 ≺ . . . cN ≡

b. Being the equivalent of a world-line, the causal chain
plays also the role of an observer. It is convenient to
orient the chain, generalizing its definition to include the
case b � a, writing C(a, b) for C(a, b) := {ci}

N
i=1, with

b ≡ c1 ≺ c2 ≺ . . . cN ≡ a. The verse of the chain is
taken into account by a signed cardinality |C(a, b)|± :=
σ|C(a, b)| with σ = + for a ≺ b, and σ = − for b ≺ a.
In order to derive SR from the CN, we need the equiv-

alent of the Galileo principle [11], namely the invariance
of the physical law with the reference system. Within
a single frame the Galileo principle is just uniformity of
space and time. In the present purely topological con-
text, this translates to the topological homogeneity of the
CN, the physical law being the causal connection-rule of
the network, i. e. the tile of the causal pattern. At this
point, we need to make more specific the notion of CN,
introducing different types of links, e. g. in Fig. 2 we
have two generally different kinds of input links—the left
and the right ones—for each node. It is now convenient
to label links with letters. We then consider the input
and the output sets lin(a) = {i1(a), i2(a), . . . iK(a)} and
lout(a) = {o1(a), o2(a), . . . oH(a)} of links of an event.
We now say that a CN is topologically homogeneous if for
each couple of events a, b ∈ N one has the isomorphism
ij(a) = ij(b) and oj(a) = oj(b) for j = 1, . . .H = K. An
example of homogeneous CN is given in Fig. 2. There is
no loss of generality in considering only homogeneous CN
with H = K and with all events isomorphic: in fact, one
can always reach this situation, by grouping connected
events into single ones, i. e. by event coarse-graining.
In a homogeneous causal network we can also easily see

how causality is sufficient to guarantee a maximum speed
of “information flow”. Such speed is just “one-event per
step”, corresponding to a line at 45o in Fig. 2 (to con-
nect events along a line making an angle < 45o with the
horizontal, one needs to follow some causal connections
in the backward direction from the output to the input).

FIG. 2: Right: homogeneous causal network. Left: equivalent
representation as a quantum circuit. .

We will now introduce the notion of simultaneity in
relation to an observer. The observer is just a causal
chain (conveniently taken as unbounded). We label the
events of the chain with relative numbers, choosing an
event for the zero. Hence, an observer will be denoted as
Oa = {oi}i∈Z, with oi � oi+1 ∀i ∈ Z, and with a = o0
representing the origin. The index i ∈ Z plays the role
of the observer’s proper time. Thanks to the topological
homogeneity, we can translate the observer Oa to any
event a′ ∈ N. We will denote by O the equivalence class
of all observers translated over all events of the CN. We
will also denote by Oa(b, c) the causal chain C(b, c) ⊂ Oa.
We now define simultaneity of events a and b—denoted
as a ∼O b—as follows

a ∼O b ⇐ inf
b∗∈J

+

b

|Oa(a, b
∗)|± = inf

a∗∈J
+
a

|Ob(b, a
∗)|±. (2)

Depending on the shape of the observer chain, one may
have situations in which there are no synchronous events.
However, it is easy to see that for an observer that is topo-
logically homogeneous (i. e. periodic) there always exist
infinitely many simultaneous events. Moreover, modulo
event coarse-graining, without loss of generality we can
restrict only to observers with a zig-zag with a single pe-
riod, with α ≥ 1 steps to the right and β ≥ 1 steps to
the left (we will call them simply periodic). Each ziz-zag
is the equivalent of a tic-tac of an Einstein clock made
with light bouncing between two mirrors. All events on
the same mirror lay on a line, and for such events there
always exist (infinitely many) synchronous events.
The given notion of simultaneity allows us to associate

each observer with a foliation of the CN. For each event
oi ∈ Oa there is a leaf Li(Oa), which is the set of events si-
multaneous to oi with respect to the observer Oa, namely

Li(Oa) := {b ∈ N : a ∼O oi}. (3)

The collection of all leaves for all the events in Oa is the
foliation L(Oa) of N associated to the observer Oa

L(Oa) := {Li(Oa), ∀i ∈ Z}. (4)
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The foliation has an “origin” a defined by the observer
Oa. Homogeneity of foliations follows from that of the ob-
server. Notice that a foliation does not generally contain
all the events of the CN (it certainly does for α = β = 1):
this fact is related to the sparsness issue raised in Ref.
[12] for Lorentz-transformed regular lattices of points.
For a given foliation L(Oa) we can now define a pair of

coordinates z(b) for any event b ∈ L(Oa) via the map

KOa
: N → Z

2, b 7→ KOa
(b) := z(b) =

[

z1(b)
z2(b)

]

,

z1(b) := inf
b∗∈J

+

b

|Oa(a, b
∗)|±, z2(b) := inf

a∗∈J
+
a

|Ob(b, a
∗)|±.

(5)

Thus, to each observer Oa it corresponds a coordinate

z =4 z =221

a

b

a*b*

FIG. 3: Illustration of the coordinate map in Eq. (5) (the
observer has α = 3 and β = 2).

map, and this is what is commonly called a reference
frame—shortly frame. The coordinates z1 and z2 do not
have an immediate meaning, but get an simple interpre-
tation thanks to the following Lemma.

Lemma 1 An event b ∈ L(Oa) belongs to the t-th leaf
Lt(Oa) for t = (z1 − z2)/2, and the number of events on
such leaf between b and Oa is given by s = (z1 + z2)/2.

Proof. There exists t ∈ Z such that ot is simultaneous
to b. By definition one has b ∈ Lt(Oa), and

inf
b∗∈J

+

b

|Oot(ot, b
∗)|± = inf

ot∗∈{jfot
|Ob(b, ot

∗)|±. (6)

One has

z1(b) = t+ inf
b∗∈J

+

b

|Oot(ot, b
∗)|±, (7)

whereas

z2(b) = inf
o∗
t
∈J

+
ot

inf
a∗∈J

+
a

(

|Ob(b, o
∗
t )|± + |Ob(o

∗
t , a

∗)|±

)

. (8)

Topological homogeneity implies that

z2(b) = inf
ot∗∈J

+
ot

|Ob(b, o
∗
t )|± − t. (9)

Using the simultaneity condition in Eq. (6) we can com-
bine Eqs. (7) and (9) to get t = 1

2
(z1 − z2).�

According to the last Lemma the coordinates
[

t(b)
s(b)

]

:= 2
1
2U(π/4)

[

z(b)
z(b)

]

, (10)

where U(θ) is the matrix performing a θ-rotation, can be
interpreted as the space-time coordinates of the event b
in the frame L(Oa).
Frames in standard configuration (boosted). Consider

now two observers O1
a = {o1i } and O2

a = {o2j} sharing
the same origin (homogeneity guarantees the existence
of observers sharing the origin). We will shortly denote
the two frames as R1 and R2, and the corresponding co-
ordinate maps as K1 and K2. We will say that the two
frames R1 and R2 are in standard configuration if there
exist positive α12, β12, such that ∀i ∈ Z

K1(o2i ) = D
12K2(o2i ), D

12 := diag(α12, β12). (11)

It turns out that having chosen only simply periodic ob-
servers, one has αij = αj/αi ∈ Z

+, βij = βj/βi ∈ Z
+.

Examples of observers corresponding to frames in stan-
dard configuration are shown in Fig. 4. Clearly different
frames correspond to generally different sets of events,
and what follows applies to the events in their intersec-
tion: thus, again, the transformation includes an implicit
event coarse-graining. We now see how it is possible to

1 3
OO

13

O
2

= =0
1 o0

2 o0
3 = ao

=2

=2

=1
1

2

=12

=4

=1

12

=3
23

13
=12

α           β   

α           β   

=2

=1

=2α           β   

α          β   

α          β   

=4

3

α          β   1

2

3

12

23

FIG. 4: Example of three observers related as in Eq. (11) and
then generating reference frames in standard configuration.

define a relative velocity between two frames in standard
configuration. It is readily seen that K2(o2n) = (n,−n),
whence K1(o2l ) = (lα12,−lβ12). We can now define the

relative velocity between R1 and R2 as the quotient be-
tween the space and time coordinates of the observer O2

with respect to observer O1, namely, by Lemma 1

v12 =
nα12 − nβ12

nα12 + nβ12
=

α12 − β12

α12 + β12
. (12)

Of course one has K2(o2i ) = D
21K1(o2i ) ∀i ∈ Z, with

D
21 = D

12−1
= diag(1/α12, 1/β12), whence upon rewrit-

ing Eq. (12) for v21 one obtains v21 = −v12.
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Velocity-composition rule. Consider three frames R1,
R
2, R3 in pairwise standard relation, associated to ob-

servers O1, O2, O3 sharing the origin a, corresponding
to the coordinate maps K1,K2,K3 (see for example the
situation illustrated in Fig. 4). Let D12 = diag(α12, β12)
and D

23 = diag(α23, β23) be the matrixes relating re-
spectively the coordinates of the second observer with
respect to the first one and the coordinates of the third
observer with respect to the second one, according to

K1(o1i ) = D
12K2(o2i ), K2(o3j ) = D

23K3(o3j). (13)

We are interested in the relation between the coordinates
of frame R3 with respect to frame R1. This is given by

K1(o3j ) = D
13K3(o3j ), (14)

with matrix D
13 = D

12
D

23 = diag(α12α23, β12β23).
From Eq. (12) it immediately follows that

v13 =
α12α23 − β12β23

α12α23 + β12β23
, (15)

which by simple algebraic manipulations gives

v13 =

(

α12−β12

α12+β12

)

+
(

α23−β23

α23+β23

)

1 +
(

α12−β12

α12+β12

)(

α23−β23

α23+β23

) =
v12 + v23
1 + v12v23

, (16)

namely the velocity composition rule of special relativity.

Lorentz transformations. Again using Lemma 1 we
can derive the space-time coordinate transformations be-
tween the two frames R1 and R2 in standard relation. Us-
ing the topological homogeneity of N it follows that Eq.
(11) holds for any event b ∈ R1∩R2. One has z11 = α12z21
and z12 = β12z22 , and after easy manipulations we get

z11 ± z12
2

=
α12 + β12

2

[

z21 ± z22
2

+

(

α12 − β12

α12 + β12

)

z21 ∓ z22
2

]

,

(17)

where we can easily identify the space-time coordinates
of the event in the two frames and their relative velocity,
in terms of which Eqs. (17) become

t1 = 1

2
(α12 + β12)

(

t2 + v12s2
)

,

s1 = 1

2
(α12 + β12)

(

s2 + v12t2
)

.
(18)

Using the simple relation

1

2
(α12 + β12) =

χ12
√

1− (v12)2
, χ12 :=

√

α12β12, (19)

we obtain the identities

t1 = χ12

t2 + v12s2
√

1− (v12)2
, s1 = χ12

s2 + v12t2
√

1− (v12)2
, (20)

which differ from the Lorentz transformations only by the
multiplicative factor χ12. The factor χ12 can be removed
by rescaling the coordinate map in Eq. (10) using the

factor (2αβ)
1
2 in place of 2

1
2 , with the constants α and β

of the observer. The relative velocity between two frames
R
1 and R2 does not change in this representation because

the common factor simplifies in Eq. (12). Consequently
also the velocity-composition rule is left unchanged. A

multiplicative factor
√

α1β1

α2β2 = χ−1

12
now shows up after

the factor 1/2 in both transformations (18), and, using
relation (19) we get the usual Lorentz transformations.

We emphasize that the whole procedure for defin-
ing the space-time coordinates is made only with event-
counting on the CN. For each transformation a corre-
sponding coarse-graining (of the starting or the ending
foliation) seems essential (corresponding to the usual
rescaling in the Minkowski space, due to reciprocity be-
tween the observers). Finally, it is clear that our deriva-
tion could be extended to d > 1 space dimensions, for
CN that are embeddable in d+1 dimensions, with leaves
that can be embedded in d dimensions, e. g. for a d+ 1-
dimensional diamond lattice.
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