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Classical Wheeler-DeWitt field and its Quantization

Avadhut V. Purohit, ∗

(Dated: October 30, 2019)

Gravitating scalar field theory developed by re-interpreting the Wheeler-DeWitt equation as a
classical field equation. Gravity and scalar fields are not coupled but unified into a single field.
Although the classical theory is scalar, the corresponding quantum theory has spin-2. Whereas
linearised quantum theory has scalar quantum.

PACS numbers:

INTRODUCTION

The theory is developed by re-interpreting the
Wheeler-DeWitt equation [1] as a classical field equation.
Such an interpretation can be found in [2]. Unlike [2] this
theory is not the third quantization. Φ is a gravitating
scalar field defined only over 3-metric. 3-Ricci curvature
scalar is an intrinsic property of this field just like mass is
an intrinsic property of standard fields. Plane-wave limit
of Φ (i.e., e±iPaqa) gives a pure gravitational field. Quan-
tization of full theory results in the quantum of spin-2.
It does not have well-defined momentum. But quantiza-
tion of linearized theory again gives scalar quantum and
quantum has well-defined momentum.

The classical theory is discussed in the second sec-
tion. This includes action formulation as well as Hamil-
tonian formulation. In section three, the theory applied
to Schwarzschild spacetime and ordinary matter distri-
bution. Quantum theory is done in the forth section.
Linearized quantum theory is done in the fifth section.
The sixth section summarises earlier sections. Possible
implications, predictions are also discussed in this sec-
tion.

WHEELER - DEWITT THEORY AS A

CLASSICAL THEORY

Lagrangian formulation

The Wheeler-DeWitt equation which is considered
to be describing the quantum nature of gravity [1] is re-
interpreted as a classical field equation for Φ.

(

∂

∂qab
Gabcd

∂

∂qcd
−√

qR(3)

)

Φ = 0 (1)

Since Φ is a functional of 3-metric alone, it satisfies dif-
feomorphism constraints.

Db

∂Φ

∂qbc
= 0 (2)

Gabcd is inverse DeWitt metric and its properties
are derived in [1], Appendix A. It has signature

(−,+,+,+,+,+). Using co-ordinates (ζ, ζA) introduced
by DeWitt (in 5.7, A23 and 5.10, [1]).

ζ :=

(

32

3

)
1
2

(det q)
1
4 (3)

ḠAB := Tr

(

q−1 ∂q

∂ζA
q−1 ∂q

∂ζB

)

(4)

q := qab

in these co-ordinates DeWitt metric takes form
(

−1 0
0 3

32ζ
2ḠAB

)

(5)

As analyzed by DeWitt, 5-dimensional manifold M̄ is
identified with SL(3,R)/SO(3,R). Coordinates of this
symmetric space are denoted by ζA =

(

r1, r2, x, y, z
)

.
r1 and r2 are two non-compact coordinates that can be
thought of as radial co-ordinates on symmetric space.
DeWitt has shown this manifold to be geodesically com-
plete. Wheeler-DeWitt equation in these coordinates is
re-written as (refer 5.20, [1])
(

∂2

∂ζ2
− 32

3ζ2
∂

∂ζA
ḠAB ∂

∂ζB
− 3

32
ζ2R(3)

)

Φ = 0 (6)

The field is complex in general but I will be working
with the real field only. The action functional for the
corresponding field is assumed to be

A =

∫

dζDζ
1

2

(

(

∂Φ

∂ζ

)2

− 32

3ζ2
∂Φ

∂ζA
ḠAB ∂Φ

∂ζB
+

3ζ2

32
R(3)Φ2

)

(7)

Dζ is a measure over 5D manifold. If co-ordinates chosen
as mentioned above then, an invariant measure can be

taken as dr1dr2

r1r2
dθ1dθ2dθ3. Invariance of an action func-

tional under Φ → Φ + δΦ gives (6). Invariance of an
action under variation of ζµ := (ζ, ζA) give conserved
quantities (can also be found in [2])

T µ
ν :=

∂L

∂
(

∂Φ
∂ζν

)

∂Φ

∂ζµ
− Lδνµ (8)

The geodesic distance between two 3-metrics can be writ-
ten in the compact form ( refer (A66), [1])

ds2 = −dζ2 + ζ2ds̄2 (9)

ds is a length element on the 6D manifold and ds̄ is a
length element on the 5D manifold (refer [1]).
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Hamiltonian formulation

Momentum conjugate to Φ is defined as

Π :=
∂L

∂ ∂Φ
∂ζ

=
∂Φ

∂ζ
(10)

The Hamiltonian is obtained by Legendre transformation

H =

∫

Dζ
1

2

(

Π2 +
32

3ζ2
∂Φ

∂ζA
ḠAB ∂Φ

∂ζB
− 3ζ2

32
R(3)Φ2

)

(11)

The Hamiltonian gives ζ evolution and equations of mo-
tion are govern by

∂Φ

∂ζ
= {Φ, H} ∂Π

∂ζ
= {Π, H} (12)

The situation for R(3) < 0 is mathematically equivalent
to m2 < 0 coupling of the scalar field. In order for the
Hamiltonian to be bounded from below, introduce λΦ4

term with λ > 0. Φ = 0 is not a maxima. The field roll

down to either of the minima Φvac = ±
√

− 3
32 ζ

2R(3)

2λ . For

R(3) < 0 quadratic coupling remains positive definite.
Hamiltonian constraints corresponds tothis situation are
GabcdP

abP cd −√
qR(3) + λ.

• Discussion:

Baierlein, Sharp and Wheeler ([4],[5]) have shown in
the classical theory that if the intrinsic geometry is given
on any two hypersurfaces then, except in certain singular
cases, total geometry of the entire space-time manifold is
determined. DeWitt([1]) has shown that we hit frontier

at ζ = 0 and cannot be avoided by co-ordinate trans-
formation. It can be mapped into singularities in some
cases such as the big bang singularity, black hole singular-
ity. These singularities of general relativity are mapped
into classical Wheeler-DeWitt field theory. In the ADM
theory, we get N , Na and qab on solving equations of mo-
tion. But in the classical Wheeler-Dewitt theory, we get
Φ(ζ, ζA) (or equivalently Φ(qab)) which is defined over
6D manifold (Gabcd,M). This manifold is discussed in
[1]. In general, Φ can be a complex scalar field which can
be written as a linear combination of two independent
real scalar fields (Φ = Φ1 + iΦ2). Such a theory has 2
degrees of freedom.

APPLICATIONS

The theory developed in the earlier section is ap-
plied to isotropic spacetimes. Na = 0 is assumed for
simplicity.

Static geometry

In absence of matter and static spacetime
KabK

ab − K2 = 0 and R(3) = 0. The first condition
gives

∂2

∂ζ2
Φ = 0 (13)

Assuming Φ|ζ=1 = 0.

Φ = Φ0 (ζ − 1) (14)

Schwarschild solutions satisfy R(3) = 0. Here, it is writ-
ten in isotropic radial co-ordinates

gµνdx
µdxν = α2dt2 − f(r̄)

(

dr̄2 + dΩ2
)

(15)

with f(r̄) =
(

1 + m
2r̄

)4
and α2 =

1− m

2r̄

1+ m

2r̄
. In asymptotically

flat limit

Φ ∝ m

r̄
(16)

This is a gravitational potential due to particle of mass
m at distance r. (13) also applicable when matter exists.
In that case only functional form of ζ changes depending
on solution to R(3) = − (8πG)T .

Dynamical geometry

Asume R(3) = ε2

ζ2 . Wheeler-DeWitt equation when
extrinsic curvature is non-zero takes form

(

∂2

∂ζ2
− ε2

)

Φ = 0 (17)

The field is oscillatory for ε2 < 0. It is hyperbolic and
essentially self coupled for ε2 > 0. i.e., we add λΦ4 term
to make the Hamiltonian positive definite. Φ roll down
from ζ2R(3) = ε2 to ζ2R(3) = −2ε2.

E =
1

2

(

∂Φ

∂ζ

)2

− ε2

2
Φ2 + λΦ4 (18)

E is conserved quantity and can be interpreted as an
energy of the Wheeler-DeWitt field Φ.

Appearance ε2 does not necessarily tell if it is due to
intrinsic curvature of 3 dimensional space itself or it is
because of existence of ordinary scalar matter. Both are
on equal footing concerning the extrinsic curvature term.
On other hand, for ε2 < 0 the field satisfying (17) gives
E = 1

2 |ε|2. That’s precisely the matter energy differing
just by factor 1

2 .

• Interpretation:
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Φ is a gravitating scalar field. For isotropic static
space, the intrinsic velocity of the field ∂Φ

∂ζ
remains con-

stant. The functional form of ζ obtained by solving 3-
Ricci scalar shows that in an asymptotically flat space-
time Φ is a Newtonian gravitational field. For ordinary
matter, Φ is oscillatory and phase space trajectories are
elliptical. When curvature is positive, Φ is self-coupled.

In this case topology of surface changes from R(3) = ε2

ζ2

to R(3) = −2 ε2

ζ2 . Φ accelerates in presence of an external

source of gravity J (can be modeled by adding coupling
term JΦ). The theory shows both features gravity as
well as scalar matter. So it is termed as a gravitating
scalar field.

WHEELER - DEWITT FIELD: QUANTUM

THEORY

The quantum nature of the relativistic field is
known. Under canonical theories of gravity, loop quan-
tum gravity successfully quantizes pure gravity. But this
is a theory of gravitating scalar field. Therefore, it is nat-
ural to ask what is the quantum naure of the theory.

Usually, scalar field theory is quantized by going into
the Fourier space of configuration space. Here, that pro-
cedure of quantization is extremely difficult because of
nonlinearities of the theory. Instead, quantization is pos-
sible in the configuration space (ζ, ζA). Solution ω to
Riccati equation (33) (which can be thought of as an ef-
fective intrinsic curvature term) allows us to write the
Hamiltonian as a collection of harmonic oscillators. De-
fine five sets of vector-valued annihilation and creation
operators

aA := 1√
2

(

Π− i
√

32
3ζ2 Ā

AC ∂Φ
∂ζC − iωΦ

)

ζ̂A (19)

a†
A
:= 1√

2

(

Π+ i
√

32
3ζ2 Ā

AB ∂Φ
∂ζB + iωΦ

)

ζ̂A

ω is a solution to (33). ζ̂A is 5-dimensional unit directed
along A. The metric ḠAB is positive definite and the
space is symmetric. Therefore square root ĀAB exists
and is real. The non-trivial commutation relations satis-
fied by creation and annihilation operators are

[aA(ζ, ζC), a†
B
(ζ, ζ′

C
)]

=











i

√

32

3ζ2
ĀAC ∂

∂ζC
[Π,Φ] + iω [Π,Φ] if A = B

0 otherwise

=
(

ω − α(ζA)
ζ

)

δ
(

ζC , ζ′
C
)

δAB (20)

α(ζA) =
√

32
3ζ2 Ā

AB 1
ζB . Here, ∂

∂x
δ(x) = − 1

x
δ(x) is used.

Operation between creation and annihilation operators

is dot product in the 5 dimensional superspace and not
a tensor product.

H =

∫

Dζ

(

∑

A

a†
A
aA +

D

2

(

ω − α(ζA)

ζ

)

δ(0)

)

(21)

Refer Appendix for calculation. D is number of dimen-
sions which can vary from 0 to 5. The second term is
interpreted as a vaccum energy. The Hamiltonian can be
thought of collection of Infinitely many harmonic oscilla-
tors. In general, the adjoint of an annihilation operator
a is

1√
2

(

Π− i

√

32

3ζ2
ĀAC ∂Φ

∂ζC
− iω⋆Φ

)

(22)

Choosing real ω ensures self-adjointness of the Hamilto-

nian. In a region ω < α(ζA)
ζ

, role of creation and anni-

hilation operator get reversed. Ground state u0(ζ, ζ
A) is

the one which gets annihilated by annihilation operator.

aAu0 = 0 for ω >
α(ζA)

ζ
(23)

aA
†
u0 = 0 for ω <

α(ζA)

ζ
Φ

and other eigen states are obtained by repeatedly apply-
ing creation operator. State functional u(ζ, ζA) is five
component object.

• Interpretation:

The Hamiltonian is a collection of five pairs of creation
and annihilation operators. A quantum state is a five-
component object indicating intrinsic property, i.e., spin.
Each component of the spinor is a square-integrable func-
tion. The generators of SL(3,R)/SO(3,R) form a spin
S = 2 under SO(3) spin subalgebra. The theory remains
quantum even when intrinsic curvature of 3-dimensional
space is zero.
In general, the theory has two domains indicated by (23).
Both have evolution opposite with respect to each other.
Riccati equation appears because of non-linearity of the
theory. Representation is known in (ζ, ζA) space and not
in its fourier space where Riccati equation would have
become algebraic equation. In general, the momentum
which is identified by T 0

k components of (8) does not
share Hamilton’s eigenstates. Therefore the quantum of
particular energy does not have well-defined momentum.

LINEARIZED QUANTUM THEORY

Unlike full theory, linearized theory allows standard
quantization. Assume (ζ, ζA) = (1 + t, 1 + xA) (with
xA ≈ 0) and ḠAB ∝ δAB

Φ :=
∫

Dk 1√
2ω~k

(

a~ke
i~k.~x + a†~k

e−i~k.~x
)

(24)

Π :=
∫

Dk (−i)
√

ω~k

2

(

a~ke
ik.x − a†~k

e−ik.x
)

(25)



4

with ω~k
satisfying

ω2
~k
=

32

3
|~k|2 − ε2 (26)

Creation and annihilation operators satisfy following
commutaion relation

[

a~k, a~k′

]

=
[

a†~k, a
†
~k′

]

= 0 (27)
[

a~k, a
†
~k′

]

= V δ(D)
(

~k − ~k′
)

(28)

V is a volume of phase space. For 2D dimensional phase
space V = (2π)D. Then Hamiltonian operator becomes

H =
∫

Dk ω~k

(

a†~k
a~k +

1
2 (2π)

Dδ(0)
)

(29)

~P =
∫

Dk~ka†~k
a~k (30)

The quantum of a linearized theory is scalar. It does not
have two sectors with opposite time evolution. |n, kA〉
are eigenstates of this Hamiltonian describing quantum
in n-th state with momentum kA. Unlike the full theory,
eigenstates of Hamiltonian are eigenstates of momentum
as well. Therefore this quantum of particular energy also
has well-defined momentum.

DISCUSSION

Classical Wheeler-DeWitt field theory has both fea-
tures gravity as well as scalar matter. Positive 3-Ricci
curvature scalar is field theoretically unstable. Field roll
down to get negative intrinsic curvature scalar. The
quantum theory of corresponding scalar field theory hap-
pens to describe quantum of spin 2. But linearized theory
describe scalar quantum. The quantum of spin-2 does not
have well-defined momentum but the scalar quantum has
well-defined momentum.

The quantum theory suggests that gravity is more
fundamental and a scalar field arises out of gravity. This
can happen either by forming a bound state of pair of
gravitons or gravitons annihilating into the scalar parti-
cle. If Higgs is a bound state of gravitons, it would have
a discrete energy spectrum. From which it is possible
to infer gravitons. ζ2R(3) has units of m2 because R(3)

is on equal footing with matter density. But whether it
can be interpreted as mass or it is a generalization of
mass is not clear yet. This needs further investigation.
But such work can give a geometric perspective to Higgs
mechanism.

Appendix

1
2

∑

A

(

a†
A
aA + aAa†

A
)

= 1
2

(

Π2 + 32
3ζ2

∂Φ
∂ζA ḠAB ∂Φ

∂ζB + ω2
)

+ω
√

32
3ζ2

∑

A ĀAB ∂Φ
∂ζB Φ

Notice that

∂
∂ζB

(

ω
√

32
3ζ2

∑

A ĀAB 1
2Φ

2
)

− ∂
∂ζB

(

ω
√

32
3ζ2

∑

A ĀAB
)

1
2Φ

2

= ω
√

32
3ζ2

∑

A ĀAB ∂
∂ζB

(

1
2Φ

2
)

The first term on the left hand side is a surface term.
Assuming this term to vanish on the surface (after inte-
grating over five dimensional manifold, we get

− ∂
∂ζB

(

ω
√

32
3ζ2

∑

A ĀAB
)

1
2Φ

2 (31)

= ω
√

32
3ζ2

∑

A ĀAB ∂
∂ζB

(

1
2Φ

2
)

(32)

ω is chosen such that it satisfy the following Riccati equa-
tion

ω2 − ∂

∂ζB

(

ω

√

32

3ζ2

∑

A

ĀAB

)

= − 3

32
ζ2R(3) (33)
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