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Abstract

Peter Bergmann and his students embarked in 1949 on a mainly canonical
quantization program whose aim was to take into account the underlying four-
dimensional diffeomorphism symmetry in the transition from a Lagrangian to
a Hamiltonian formulation of Einstein’s theory. Along the way they devel-
oped techniques for dealing in phase space with the arbitrariness that arises
in classical solutions given data at a given coordinate time. They argued that
even though one seemed to destroy the full covariance through the focus on
a temporal foliation of spacetime, this loss was illusory. In work undertaken
with Anderson and I. Goldberg in the early 1950’s they constructed explicit
expressions for both the generator of transformations between solutions which
could be physically distinct, i.e., did not necessarily correspond to changes in
spacetime coordinates, and invariant transformations that did correspond to
four-dimensional diffeomorphisms. They argued that the resulting factor al-
gebra represented diffeomorphism invariants that were the correct candidates
for promotion to quantum operators. Early on they convinced themselves
that only the corresponding construction of classical invariants could ade-
quately reflect the fully relativistic absence of physical meaning of spacetime
coordinates. Efforts were made by Bergmann students Newman and Janis to
construct these classical invariants. Then in the late 1950’s Bergmann and
Komar proposed a comprehensive program in which classical invariants could
be constructed using the spacetime geometry itself to fix intrinsic spacetime
landmarks. At roughly the same time Dirac formulated a new criterion for
identifying initial phase space variables, one of whose consequences was that
Bergmann himself abandoned the gravitational lapse and shift as canonical
variables. Furthermore, Bergmann in 1962 interpreted the Dirac formalism
as altering the very nature of diffeomorphism symmetry. One class of in-
finitesimal diffeomorphism was to be understood as depending on the per-
pendicular to the given temporal foliation. Thus even within the Bergmann
school program the preservation of the full four-dimensional symmetry in the
Hamiltonian program became problematic. Indeed, the ADM and associated
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Wheeler-DeWitt program that gained and has retained prominence since this
time abandoned the full symmetry. There do remain dissenters - raising the
question whether the field of quantum gravity has witnessed a Renaissance
in the ensuing decades - or might the full four-dimensional symmetry yet be
reborn?

1 Introduction

Peter G. Bergmann served as a research assistant to Albert Einstein at the Institute
for Advanced Study in Princeton from 1936 to 1941, immediately after receiving
his doctoral degree at Charles University in Prague. While still working on his
dissertation in which he dealt with the quantum description of a harmonic oscillator
in a curved space, he wrote to Einstein that ‘As you can see, my training in any
direction is in no way to be understood as complete. It is clear to me that I have
much to learn in the field of relativity theory as well as quantum mechanics. If
it were possible I would gladly continue to work in the search for a link between
these two fields.”1 His work with Einstein was mainly concerned with unified field
theory, but he continued to think about this problem. Having secured a tenure-track
position at Syracuse University in 1947, following war-related research from 1944-47,
he was finally able to focus on the problem that would occupy him for the remainder
of his career. His first groundbreaking paper dealt with a generalized approach to
non-linear field theories like general relativity, with an eye toward quantization [8].
Einstein at the time did not seem to endorse this enterprise. In response to a note
from Bergmann2 expressing a hope that they might get together to discuss these
ideas he wrote “You are seeking an independent new path toward a solution of the
fundamental problems. No one can help in this effort, and least of all someone who
to some extent has his own fixed ideas. You know, for example, that on the basis
certain considerations I firmly believe that the probability concept can not play a
primary role in the desription of reality. You seem to believe that one should first set
up a field theory and then subsequently ‘quantize’ it . . . Your attempt to carry out
an abstract field theory without knowing in advance the formal nature of the field
quantities seems to me unfortunate, being formally deficient and indeterminate.3

1”Wie Sie ersehen kønnen, ist meine Ausbildung noch keineswegs in ergendeiner Richtung als
abgeschlossen zu betrachten. Ich bin mir darüber klar, dass ich besonders auf dem Gebiet der
Relativitästheorie einerseits, der Quantentheorie anderseits, noch sehr viel zu lernen habe. Wenn
es mir møglich wäre , würde ich sehr gern in der Richtung weiterarbeiten, die Verbindung zwishen
diesen beiden Gebieten zu suchen.” The Albert Einstein Archives at the Hebrew University of
Jerusalem (AEA), 6-222, Letter from Bergmann to Einstein dated 14 March, 1936.

2AEA, 6-282, Letter from Bergmann to Einstein dated January 24, 1949
3“Sie suchen einen selbständigen und neuen Weg zur Løsung der prizipiellen Schwierigkeiten.

Bei diesem Bestreben kann einem Niemand helfen, am wenigsten Einer, der einigermassen fix-
ierte Ideen hat. Sie wissen z. B., dass ich auf Grund gewisser Ueberlegungen fest glaube, dass
der Wahrscheinlichkeitsbegriff nicht primär in die Realitätsbeschreibung eingehen darf, während
Sie daran zu glauben scheinen, dass man zuerst eine Feldtheorie aufzustellen und diese dann
nachträglich zu ‘quantisieren’ hat . . . Ihr Versuch, eine Feldtheorie abstrakt durchzuführen, ohne
von vornherein über die formale Natur der Feldgrøssen zu verfügen, erscheit mir nicht glücklich,
weil formal zu arm und unbestimmt.” AEA, 6-282, Letter from Einstein to Bergmann dated Jan-
uary 26, 1949.
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Nevertheless, Einstein did in 1954 recommend approval of Bergmann’s application
for National Science Foundation funding of his project entitled Quantum Theory of
Gravitation with the words “All physicists are convinced of the high truth value of
the probabilistic quantum theory and of the general relativity theory . . . There are
presently only few theoretical physicists who have penetrated deeply enough into
both theories to be able to undertake such an attempt at all. Dr. Bergmann is one
of the few who are completely at home in both theories.”4 Einstein was, however,
still not willing to participate in this effort according to Joshua Goldberg. Following
Goldberg’s brief meeting with Einstein in 1954, Bergmann contacted Einstein to
inquire whether the three of them might collaborate. Einstein declined. See [58].

I will focus in this essay on the work of Bergmann and his collaborators from
1949 to 1962, where appropriate comparing and contrasting with contemporary work
in the ‘opposing’ camps. As far as possible I will try to structure this essay in the
chronological order in which problems were addressed by the Syracuse associates.
The plan was to eventually develop a Hamiltonian formalism and then to undertake
a canonical quantization. The fundamental challenge was to properly take into ac-
count the symmetry of Einstein’s theory under general coordinate transformations.
The profound consequence from Bergmann’s perspective was that spacetime coor-
dinates were themselves devoid of physical content. He firmly believed that the
ultimate quantum theory must deal exclusively with operators that were invariant
under the action of this symmetry group. This view is in sharp contrast to the
geometrodynamic principles that were proposed by Wheeler at roughly the time
at which my narrative terminates. Bergmann may well have contributed to the
dominance of the 3 + 1 formalism with his interpretation of Dirac’s 1958 variables,
published in his 1962 overview of general relativity.

In Section 2, after addressing the first foray by Bergmann (B49) [8] and Bergmann
Brunings (BB49) [8, 14] that constituted the theoretical basis of much that was to
follow, I turn in 1950 to Bergmann and his students Penfield, Schiller, and Zatzkis
(BPSZ50) [19] who constructed a Hamiltonian for Einstein-Maxwell theory in a for-
malism in which the spacetime coordinates evolved in an arbitrary parameter time.
After the discovery by Penfield (P50) [45] that the parameterized formalism could
be abandoned and that four of the Einstein equations arose from the demand that
primary constraints be preserved in time, Anderson and Bergmann (AB51) in 1951
[4] derived secondary constraints in a generic diffeomorphism covariant theory and
wrote down the phase space generator of general coordinate transformations. These
studies was undertaken before the Syracuse group became aware of the earlier pio-
neering work of Léon Rosenfeld (R30) [55], and they became aware of Dirac’s new
approach to constrained dynamics only when BPSZ50 was already a preprint. Pi-
rani and Schild had in the meantime effectively simultaneously derived their own
Hamiltonian employing Dirac’s method, also in the parameterized version. I will
show in Schiller’s thesis (S53) [65] that Rosenfeld had strongly influenced him.

In Section 3, after a brief look at Anderson’s 1952 thesis speculation regarding a
Schwinger-type Lagrangian action operator, I consider the full-scale effort in 1953 by
Bergmann and Schiller (BS53) [21] to formulate a Lagrangian quantum action prin-
ciple, attempting to extend the Schwinger action principle to Einstein’s generally

4AEA, 6313, Recommendation dated April 18, 1954.
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covariant theory. This same paper also looks closely not only at the Poisson bracket
generators of canonical transformations that correspond to infinitesimal coordinate
transformations (invariant transformation), but also transformations between phys-
ically distinct solutions of Einstein’s equations, an analysis I take up in Section 4,
where I also consider the related 1955 work by Bergmann and I. Goldberg (BG55)
[16]. They undertook a closer examination of the classical factor group of canon-
ical transformations modulo invariant transformations, leading to the notion of a
reduced phase space whose elements are constants of the motion. The algebra of
these observables was realized by what I call ‘Bergmann-Goldberg brackets’ - mod-
estly termed ‘extended Dirac brackets’ by the authors. With the recognition that
the determination of these brackets required the construction of diffeomorphism in-
variants (constants both temporally and spatially), I consider in Section 5 efforts
to construct diffeomorphism invariants. Bergmann’s student Newman proposed an
iterative construction. Alternatively, Janis investigated the possibility of obtaining
the desired algebra of invariants through the imposition of coordinate conditions,
simplified through the addition of a divergence to the Einstein Lagrangian that triv-
ialized the primary constraints. Dirac somewhat later in 1959 (D59) [27] proposed
his own general relativistic coordinate conditions, with Bergmann’s enthusiastic sup-
port. Roughly simultaneously Komar proposed the use of intrinsic coordinates to
construct the elements of this physical phase space (K58) [41].

In Section 6 I discuss Dirac’s 1958 gravitational Hamiltonian (D58) [26] and
Bergmann’s 1962 (B62) [11] interpretation. This reformulation of general relativistic
Hamiltonian dynamics strongly influenced Bergmann’s own treatment of general
covariance. Most significantly, he showed that Dirac’s new variables implied that
infinitesimal diffeomorphisms must be understood as incorporating a compulsory
metric field dependence - that which is now taken as a conventional decomposition
in the direction normal to the spacelike temporal foliations of spacetime. This
decomposition later became a foundational principle in Wheeler’s geometrodynamics
program - but with a conscious abandonment of the full four-dimensional symmetry
that had been pursued by the Syracuse group. I will argue that although the Wheeler
program has until recently dominated the efforts at quantization, the Bergmann
program has itself undergone a continuous development since the supposed pre-
Renaissance era, and is in my opinion now poised to reassert what Pitts in this
volume has called its strong general relativity exceptionalism. Significantly, the
lapse and shift were abandoned as phase space variables. The link to the underlying
four-dimensional diffeomorphism symmetry was thus obscured, and perhaps even
temporally lost. Such was the case in the equivalent parallel work of Arnowitt,
Deser, and Misner, culminating in their 1962 review [5]. Bergmann carefully laid
out the basis of this apparent loss in his 1962 interpretation of Dirac’s classical
general relativistic Hamiltonian analysis [11].
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2 Initial consequences of a generally covariant La-

grangian action

Given that a Lagrangian density transforms under an arbitrary infinitesimal space-
time coordinate transformation x′µ = xµ + ξµ(x) as a density of weight one plus a
possible total divergence, Bergmann showed in 1949 [8] that the Legendre matrix
must be singular and that consequently there exists as many (primary) constraining
relations among the fields and conjugate momenta as there are independent null vec-
tors of this matrix. Bergmann and Brunings [14] then applied this logic to a generic
reparameterization covariant theory with field variables yA(x) and with spacetime
coordinates xµ themselves functions of four parameters uα := (t, us). They assumed
a Lagrangian density L that depended only on field variables yA and first derivatives
with respect to the spacetime coordinates, yA,µ := ∂yA

∂xµ . BPSZ50 [19] later assumed
that the Lagrangian was quadratic in the yA,µ, and of the form

L = ΛAρBσ(y)yA,µyB,ν , (2.1)

then the transformed Lagrangian with variables xµ(u) is no longer quadratic in time
derivatives yA,0 since yA,µ = ∂uα

∂xµ

∂yA
∂uα = J−1Mα

µ
∂yA
∂uα , where the Mα

µ are minors of
the matrix ∂xν

∂uβ
5 and J is the determinant of this matrix. Both J and Mα

µ are
functions of ẋµ := ∂xµ

∂t
. It does turn out, however, that the resulting Lagrangian

is homogeneous of degree one in the velocities ẏA and ẋµ. They simplified the
notation by representing the variables ya(t, u

s) and xµ(t, us) collectively as ya, with
corresponding conjugate momenta πa. Then the Hamiltonian density defined in the
usual manner as H := πaẏa−L ≡ 0 vanished identically when viewed as a functional
of the fields and velocities. Seven of the primary constraints could easily be found.
The challenge was to find the eighth which they showed needed to be employed as
the Hamiltonian density (with the option of adding arbitrary linear combinations of
the remaining seven). They were able to demonstrate that the original Lagrangian
dynamics followed from the resulting Hamiltonian field equations.

The expressed rationale for the introduction of the parameter formalism was
that in this way if would be possible to incorporate singular particle sources in the
theory. The parameterization procedure was apparently inspired by the work of Paul
Weiss who had employed it in work cited by Bergmann and Brunings [66, 67, 68].6

It is possible that at least initially Bergmann thought it conceivable that just as
the classical field theory automatically determined particle motions via the Einstein
Infeld Hoffmann (EIH) procedure, the quantized field might automatically induce
particle quantum wave mechanics.7 He did write that “it is possible, in the general
theory of relativity, to treat the motion of field singularities (which are used to
represent particles) without having to deal with infinite interaction terms of one kind

5Explicitly, Mα
µ = 1

3! ǫ
αβγδǫµνρσ

∂xν

∂uβ
∂xρ

∂uγ
∂xσ

∂uδ

6Goldberg has expressed to me the opinion that the parameterization idea was inspired by
Weiss. Weiss had introduced a parameterized version of electromagnetism in flat spacetime, but
he did not conceive of the xµ(u) as dynamical variables. See [53] for more background, and also
[59] for Weiss’ influence on Hamilton-Jacobi techniques in general relativity.

7See [23]. See also [57] and [58] for a discussion of the Syracuse school’s work on classical
equations of motion.
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or another. It is possible that this accomplishment will lead to a more satisfactory
quantized theory . . . ”8

The task of constructing the explicit Hamiltonian was taken up in BPSZ50 [19].
Since the Legendre matrix Gab := ∂2L

∂ẏa∂yb
is singular, it is not possible to solve

the defining equation πa = Gabẏb + fa[y] for the velocities in terms of the fields
ya and momenta πb. BPSZ50 developed a scheme for solving for the ẏb which
involved the use of a matrix Eab that they called a ‘quasi-inverse’ of Gab which
satisfied the relations GabEbcG

cd = Gad and EabG
bcEcd = Ead.

9 They did not cite a
reference for this procedure.10 The bulk of this paper dealt with the determination
of Eab. Since the task was greatly simplified when the parameterized formalism was
abandoned, I will wait to describe this simplified procedure. Most relevant for the
moment is the fact that the resulting vanishing Hamiltonian density was quadratic
in the momenta, taking the form H = 1

4
πaEabπ

b = 0. Taking as the gravitational
Lagrangian Einstein’s first-order form

LE :=
√
−ggµν

(

Γσ
ρσΓ

ρ
µν − Γσ

ρµΓ
ρ
σν

)

, (2.2)

they found an explicit expression of the Hamiltonian that generated the correct
first-order equations of motion for all of the phase space variables. As expected,
it contained eight arbitrary spacetime functions, four of them corresponding to the
original diffeomorphism freedom, and four to the reparameterization freedom. The
first four were functions that appeared in the solution for Eab. The fifth amounted
to an arbitrary choice for function t(x), and the three remaining functions could be
chosen to multiply the constraints that generated reparamterizations in us. Still in
this work the authors stated their intention that ’the new formalism will be used to
give a new derivation of the equations of motion.’11

At this juncture we make a quick detour to the Hamiltonian derivation of Pirani
and Schild [48]. They had listened to Dirac’s Vancouver lectures on constrained
Hamiltonian dynamics in August of 1949. A letter from Bergmann to Schild, dated
February 12, 1949, indicates that Schild had already read the Bergmann’s 1949
paper.12 It was natural that it would then have occurred to him that Dirac’s pro-
cedure could be applied to general relativity, and he suggested this as a thesis topic

8[8], p. 680
9Equations (3.1) in BPSZ50 have incorrect right hand sides. The typos were corrected in [4],

equation (4.3).
10The matrix Eab is known as the Moore-Penrose pseudoinverse [51], first described by Moore

in 1920 [42], and then rediscovered by Penrose in 1955 [47]. Penrose has communicated to me that
he was unaware of its use in BPSZ50.

11[19], p. 88. Curiously, even though Joshua Goldberg had just begun his own thesis work [31]
under Bergmann’s direction at this time, and it was devoted both to the covariance foundations
of the EIH approach and the Hamiltonian form of general relativity, he has communicated to me
that he never shared this view.

12“I am sorry that we did not get together in New York . . . In the meantime, I have received the
reprints you were kind enough to send me. I shall reciprocate in kind and send you one I have
here at the moment and regularly send you my output . . .We are having a project at Syracuse in
which we are attempting to investigate the general properties of covariant field theories (whether
or not they be impressed on a Riemannian geometry), with the special purpose of learning how
to quantize covariant theories. If you should have any papers relating to this general subject, I
should certainly appreciate knowing about them.”
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to Pirani. Even though they continued to work with the Bergmann Brunings pa-
rameterized model, the technique they employed turned out to be substantially less
involved than BPSZ50. Dirac’s procedure involved the independent variation of yA,
πB, and ẏA, leading him to distinguish a ‘strong’ equality which remained valid un-
der these variations, assuming one begins on the constraint hypersurface in phase
space, and a ‘weak’ equality which is not preserved under these variations. He could
prove that with constraints φa = 0 the Hamiltonian could be written as a strong
equality, H ≡ βaφa, where the βa are arbitrary functions of the three sets of vari-
ables. Some ingenuity was still required to construct the Hamiltonian constraint
which was assumed to be of the form H = ẋγ (Φγ + cγσφ

σ) where the φσ were al-
ready known constraints. The problem was to find the constraints Φγ . This feat was
accomplished through the adroit addition of a strongly vanishing product of known
constraints. Goldberg insists that the news in Syracuse of the Pirani Schild result
was a shock and the Dirac analysis was still unknown when the preprint arrived.13

The resulting exchange was nevertheless civil. Bergmann acknowledged receipt of
the preprint in a letter to Schild dated January 15, 1950: “I got your letter, plus
preprints, in Syracuse last week, in the midst of reading term papers. As a result,
I have not been able to compare your formula with ours to see whether they agree.
This is, however, trivial, because disagreement would mean an arithmetical error on
our part or yours, and that is not very likely. The formulas will look quite differ-
ent, and that is why comparison will be somewhat slow.” He continued “From the
external appearance of your constraint, I suspect that you get yours by methods
quite different from ours, and thus, I think we ought to publish separately, calling
attention to the other fellow’s paper. In particular, we are distributing a preprint
of our paper as an ONR Technical Report (as soon as it is off the press, you will get
your copy). I would, therefore, suggest that you people in Pittsburgh go ahead with
your plans for publication, and we do with ours... From the point of view of further
development, I consider it extremely important that we should exchange complete
information on the technique employed, because the obvious next stage is to con-
struct improved covariant theories, and to do so requires use of the tricks learned.
Likewise, we should know what we are planning, so that we shall not duplicate our
work unnecessarily. So I am looking forward to spending a day with you in New
York. Give me a ring as soon as you hit town.’”The reference is to the APS meeting
in New York, February 2 - 4, 1950 in which either Schild or Pirani reported on their
work.

Bergmann had already by this time had some misgivings about the BPSZ50
results, as reported by Scheidegger to Schild on January 20, 1950.14 Scheidegger
writes “I had a chance to talk to Bergmann; he is still worried about the quantization
of the gravitational field; he thinks that his previous results were wrong since there
are some 8 more constraints which had been overlooked heretofore.” Indeed, as I
have noted previously [56] , Bergmann and Brunings had stated without supporting
evidence that there were no constraints beyond the eight primary ones. A letter from
Bergmann to Schild dated November 16, 1950 confirms his realization that more
constraints are present: “In the meantime we have continued our work and found

13private communication.
14See also [23]
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that additional constraints must be satisfied if the equations of the Hamiltonian
formalism are to be equivalent to those of the Lagrangian formalism. At the present
we are working on a proof that the number of these additional constraints equals the
number of primary constraints. A serious quantization procedure must take all the
constraints into account ab initio. As soon as we know, we shall write up and send
you a copy of the MS. What are you doing these days?” Schild responds on February
5, 1951: “Felix and I are very interested in your results on additional constraints. At
the moment I do not quite understand how they come in. In Dirac’s language, these
constraints mean that the identities obtained earlier by you (and presumably the
same as those obtained by us) are second class φ - equations. We had an argument
that seemed convincing at the time, that the Poisson brackets between identities for
the gravitational Lagrangian ought to vanish. Your results seem to contradict this
(Do you get new constraints in the specific case of the gravitational field without
singularities?) We would be very interested to see your manuscript when you have
the mimeographed form. We are looking into the matter too and will let you know as
soon as we can confirm your results.” According to a note from Schild to Bergmann
dated January 23, 1952, Schild’s student R. Skinner began working on this problem
in June, 1951, as a component of his dissertation. The results were published jointly
with Pirani and Schild [49]. By this time they had abandoned the parameterized
formalism, as had AB51 in 1951 [4].

2.1 The Rosenfeld, Anderson, Bergmann, Penfield, Schiller

nexus

Here the story becomes confused. Goldberg maintains that Bergmann had always
known that there were additional constraints. Yet he attributes the first derivation
of secondary constraints in general relativity to Penfield, following Penfield’s dis-
covery that the parameterized formalism could be abandoned.15 Penfield showed
that the four vacuum Einstein equations Gµν = 0 followed as a consequence of the
preservation in time of the primary constraints [45]. Goldberg went on to show in
his thesis that these secondary constraints were preserved as a consequence of the
Bianchi identities [31]. Also, Penfield was listed as a co-author in the abstract of the
APS talk that announced the results of the AB51 paper that has until recently been
cited as the first work in which the secondary constraints of Einstein’s theory were
systematically derived. The tale is substantially further complicated through the
discovery by the Syracuse group in 1950 of Rosenfeld’s pioneering systematic analy-
sis of the constrained Hamiltonian dynamics of Einstein’s theory[55, 54]. Anderson
informed me in 2007 that it was he who had made this discovery and brought it to
Bergmann’s attention. In the same conversation Schiller told me that this Rosen-
feld paper inspired his own doctoral thesis [65], and he cited Rosenfeld both in
the original thesis and is cited in this article which was received by the Physical
Review in May, 1951. They write that their work “is in some respects similar to
results obtained by Rosenfeld.” This is of particular relevance since the same meth-
ods that Rosenfeld had developed for a generally covariant Lagrangian theory were
directly applicable to the quadratic model with the Einstein Lagrangian (2.2) in its

15private communication, and cf. also [58]
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unparameterized form, as analyzed by Anderson and Bergmann [4]. Furthermore,
Rosenfeld had already in this groundbreaking article not only developed an algo-
rithm for determining all higher order constraints, but also showed how to construct
the phase space generator of general infinitesimal coordinate transformations.16 Pen-
field’s thesis, which he defended in July, 1950, contains no reference to Rosenfeld.
The published version [46] is almost identical - excepting for the inclusion of this
reference, and this - in addition to Penfield’s full time teaching duties at Harpur
College - may account for the one year delay in its submission to the Physical Re-
view. Bergmann’s first public recognition of Rosenfeld’s work apparently occurred
at the August 1950 International Congress of Mathematicians [9].

The basis of all of the cited works is the fundamental identity that follows from
the assumption that the variation under the symmetry group of the Lagrangian
density is a total divergence. Although all of the authors considered more general
symmetry groups, I will confine my attention here to general covariance under in-
finitesimal coordinate transformations x′µ = xµ + ξµ(x), in which case all assumed
that the fields yA transformed as

δ̄yA = FAµ
BνyBξ

µ
,ν − yA,µξ

µ, (2.3)

where the FAµ
νσ are constants. Furthermore, it was assumed that the term Sµ

,µ

that was added to the Lagrangian was linear in the second derivatives, so that
Sµ = fAµρ(y)yA,ρ. In this case the sum of the Lagrangian density and a total
divergence must transform as a scalar density of weight one, namely17

δ̄L+
(

δ̄Sµ
)

,µ
≡

((

L+ Sν
,ν

)

ξµ
)

,µ
. (2.4)

This is true in the passage from
√−gR to the Einstein Lagrangian, as Bergmann

had spelled out in detail in his textbook [7]. Although Rosenfeld did not employ the
Einstein Lagrangian, it was quadratic in the first derivatives of the field variables.
The difference was that his purely gravitational contribution was constructed using
tetrad fields, and as such it transformed as a scalar density under general coordinate
transformations whereas the Einstein Lagrangian did not. On the other hand under
local Lorentz transformations its variation involved a total divergence, and Rosenfeld
showed how to construct the correct Hamiltonian with this additional local gauge
symmetry.

Since (2.4) is an identity, a wealth of information can be derived from it. It must
be true that the coefficients of each derivative of ξµ must vanish. The origins of this
procedure can be traced all the way back to Felix Klein [38].18 This is the method
utilized by Rosenfeld. Bergmann, on the other hand, undertook an integration over
all space, taking the ξµ → 0 on the boundary. In this manner he derived what he
called ‘the generalized contracted Bianchi identities,’

FAµ
Bρ

(

LAyB
)

,ρ
+ LAyA,µ ≡ 0, (2.5)

16See [60] for a detailed analysis of this paper.
17This is a direct expression of the transformation property of a scalar density S (y(x)) of weight

one under a coordinate transformation x′µ(x), S′ (y′(x′)) = S (y(x))
∣

∣

∂x
∂x′

∣

∣

18See [60]
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where LA := ∂L
∂yA

−
(

∂L
∂yA,µ

)

,µ
. It follows that the coefficient of yA,µνρ must vanish

identically, leading to the conclusion that FAµ
B0yBΛ

AC ≡ 0. Using Bergmann’s
notation I let (2.1) represent the Einstein Lagrangian (2.2). Then it follows from
(2.5) that uµA := FAµ

B0yB is a null vector of ΛAC := ΛA0B0,19

uµAΛ
AC ≡ 0. (2.6)

Then since
πA = 2ΛA0B0ẏB + 2ΛA0BayB,a (2.7)

it follows that (2.7) does not possess unique solutions for ẏA. Rosenfeld’s procedure
for obtaining the general solution was to first find those linear combinations of ẏA
which could be set equal to zero, consistently with (2.7). He let ẏ0A represent this
solution set, including the non-vanishing ẏA. For his Lagrangian choices there was a
simple procedure for finding this special solution. Letting N represent the number
of fields, he merely needed as a first step to isolate N − 4 independent rows of the
matrix Λ. Then he could quickly find the four null vectors usA, where s = 1, . . . , 4.
Furthermore, N − 4 of the equations of (2.7) could be solved for N − 4 momenta,
and the remaining momenta could be expressed in terms of them. And finally, the
general solution of (2.7) is ẏA = ẏ0A +λsusA where the λs(x) are arbitrary spacetime
functions.20 When this solution is substituted into the lagrangian the null vectors do
not contribute so that the Lagrangian then becomes a function of yA and πB. On the
other hand the contribution to the Hamiltonian from πAẏA becomes a function of yA
and πB, plus a sum of primary constraints multiplying the arbitrary functions λs.
Although Rosenfeld for some unknown reason did not calculate the full Hamiltonian
for his tetrad field, he could easily have done so using his methods, as shown in [60].

I have gone through Rosenfeld’s method in some detail to compare and contrast
with the Bergmann school procedure. Robert Penfield was actually the first to
obtain the unparameterized gravitational Hamiltonian, and he did so by using the
quasi-inverse EAB which satisfies the relations

ΛABEBCΛ
CD = ΛAD (2.8)

and
EABΛ

BCECD = EAD. (2.9)

His thesis [45] contains slightly more detail than the published work [46]. The basic
idea is to use the matrix DC

A that transforms the matrix ΛAB into a ‘bordered’ ma-
trix in which the final four rows and columns vanish. This feat is accomplished using
the four null vectors usA as the final four rows, i.e., DN−4+s

A = usA, making certain
that the first N−4 rows are linearly independent. Using AB51’s notation, I will rep-
resent the bordered matrix with a prime, so that therefore Λ′CD = ΛABDC

AD
D
B.

Continuing with their notation I represent the resulting N − 4 dimensional non-
vanishing invertible matrix by Λ′C∗D∗

, where the starred indices range from 1 to
N − 4. Let the inverse be GA∗B∗ . It results that EAB = GC∗D∗DC∗

AD
D∗

B.

19This two-index object should not be confused with the parameters introduced in BPSZ50.
20See [60] for details
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Penfield did not refer explicitly to this quasi-inverse. Rather, he noted that
corresponding to the bordering procedure, there was a related transformation of
the ẏA, namely ẏ′A = D−1C

AẏC such that ΛAB ẏAẏB = Λ′ABẏ′Aẏ
′

B = Λ′A∗B∗

ẏ′A∗ ẏ′B∗ .
Therefore only these specific linear combinations of the velocities were fixed by (2.7).
Furthermore, (2.7) can be solved for these velocities as follows. First contract with
DC

A to get
DC

Aπ
A = 2Λ′CDẏ′D + 2DC

AΛ
ABayB,a, (2.10)

yielding DC∗

Aπ
A = 2Λ′C∗D∗

ẏ′D∗ + 2DC∗

AΛ
ABayB,a, which can be solved to give

ẏ′A∗ =
1

2
GA∗C∗

(

DC∗

Bπ
B − 2DC∗

DΛ
DBayB,a

)

=:
1

2
GA∗C∗DC∗

Dπ̄
D. (2.11)

Note that therefore velocities ẏ0A that can be expressed in terms of the momenta are

ẏ0A =
1

2
DB∗

AD
C∗

DGB∗C∗π̄D, (2.12)

and the general solution is

ẏA = ẏ0A + uαAwα =
1

2
DB∗

AD
C∗

DGB∗C∗π̄D + uαAwα. (2.13)

In addition, taking C = N − α in (2.10), we get the primary constraints

gα := DN−α
A

(

πA − 2ΛABayB,a

)

= uαAπ̄
A = 0. (2.14)

Now substituting (2.13) observe that the Lagrangian density becomes

L = ΛAB ẏ0Aẏ
0
B + 2ΛABa

(

ẏ0A + uαAwα

)

yB,a + ΛAaBbyA,ayB,b

=
1

4
GA∗B∗DA∗

CD
B∗

Dπ̄
C π̄D + ΛABaDC∗

AyB,aGC∗D∗DD∗

E π̄
E

+ 2ΛABauαAwαyB,a + ΛAaBbyA,ayB,b. (2.15)

Also

πAẏA =
(

π̄A + 2ΛABayB,a

)

(

1

2
DC∗

AGC∗D∗DD∗

E π̄
E + uαAwα

)

(2.16)

Therefore the Hamilton density is

H = πAẏA − L =
1

4
GA∗B∗DA∗

CD
B∗

Dπ̄
C π̄D − ΛAaBbyA,ayB,b + wαgα. (2.17)

This is AB51’s equation (4.9), although they did not give the explicit form for the
quasi-inverse. It appears in Penfield’s thesis [45] and also in [46]. The significance
of this result cannot be overemphasized. It applies to every general relativistic La-
grangian - including the Dirac and ADM Lagrangians which differ from the Einstein
Lagrangian merely in the choice of Sµ. In each case we have a sum of contributions
of arbitrary spacetime functions multiplying the primary constraints.

It is noteworthy also that the procedure is essentially the same that had been
developed by Rosenfeld in 1930. The velocities ẏ′A are recognized as his ẏ0A where

11



he chooses ẏ′N−s = 0. Then the general solution for the velocities is obtained by
adding the ws(x) multiplying the null vectors of the Legendre matrix. I maintain
that if Rosenfeld had felt so inclined, he could have undertaken a straightforward
modification of his case two to address Penfield’s problem. He did not because he
had a much more ambitious goal: to devise a quantum theory for all known parti-
cles experiencing all known forces, including gravity. This interaction for spinorial
fields required the use of tetrads.21 It is also remarkable, as AB51 observe in a
footnote, that the same construction of a particular solution ẏ0A(π, yB, yA,a) can be
employed for the non-quadratic parameterized theory.22 They use the same nota-
tion as Rosenfeld to represent it. And then as Rosenfeld noted, the general solution
becomes ẏA = ẏ0A + wαuαA.

The main focus of AB51 is the construction of the phase space generators of in-
finitesimal general coordinate transformations, with the field variables transforming
according to (2.3). They begin by considering the corresponding variation of the
momenta (2.7), with the remarkable conclusion that these variations do not depend
on higher time derivatives of the descriptors ξµ that appear in (2.3) ; Isolating the
terms containing the second time derivatives we have

δ̄ẏA = FAµ
B0ξ̈µ + . . . = uµAξ̈

µ + . . . (2.18)

But according to (2.7), δ̄πA = 2ΛAB δ̄ẏB + . . . and there is therefore no contribu-
tion from ξ̈µ since ΛABuµB = 0. This presents a puzzle that only much later did
Bergmann identify in print, “During the early Fifties those of us interested in a
Hamiltonian formulation of general relativity were frustrated by a recognition that
no possible canonical transformations of the field variables could mirror four dimen-
sional coordinate transformations and their commutators, not even at the infinites-
imal level. That is because (infinitesimal or finite) canonical transformations deal
with dynamical variables on a three-dimensional hypersurface, a Cauchy surface,
and the commutator of two such infinitesimal transformations must be an infinitesi-
mal transformation of the same kind. However, the commutator of two infinitesimal
diffeomorphism involves not only the data on a three-dimensional hypersurface but
their ‘time’-dreivatives as well. And if these data be added to those drawn on ini-
tially, then, in order to obtain first-order ‘time’ derivatives of the commutator, one
requires second-order ‘time’ derivatives of the two commutating diffeomorphisms,
and so forth. The Lie algebra simply will not close.”23 In more detail, suppose one
carries out an infinitesimal transformation x

µ
1 = xµ + ξ

µ
1 (x), followed by a second,

xµ(x1) + ξ
µ
2 (x1) ≈ xµ + ξν1 (x) + ξ

µ
2 (x) + ξ

µ
2,ν(x)ξ

ν
1 (x). Then one finds the difference

when the operations are carried out in reverse order. This is the Lie algebra commu-
tator ξµ1,νξ

ν
2 − ξ

µ
2,νξ

ν
1 . But then the commutator of the infinitesimal transformation

with this descriptor, commuted with a third transformation, should in principle yield
second time derivatives of the original descriptors ξµ1 and ξ

µ
2 , etc. There was a clear

conflict with the diffeomorphism Lie algebra since the Poisson bracket commutator

21See [63] for more context - and his correspondence with Dirac!
22It is interesting that this statement applies also to the relativistic string, but this is not the

approach that I took in the thesis [61] that I wrote under Bergmann’s direction, nor in the follow-up
preprint [64] and publication [62].

23[12], p. 175
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of two of these generators could not yield second time derivatives of the descriptors
ξν1 and ξν2 , etc. Nevertheless, AB51’s conclusion at this time was that the symmetry
generator could be expanded as

C = 0Aµξ
µ + 1Aµξ̇

µ, (2.19)

with the understanding that δ̄yA =
{∫

d3xC, yA
}

and δ̄πA =
{∫

d3xC, πA
}

. It did
not depend on higher time derivatives of the descriptors ξµ. (We will see later how
this apparent inconsistency was resolved.)

AB51 then required that under an infinitesimal coordinate transformation the
Hamiltonian H =

∫

d3xH must retain (2.17) in the same form. Considering the
special case in which the arbitrary functions wα depend explicitly on the spacetime
coordinates but not on the canonical variables, this is the condition that δ̄H =
∫

d3xδwαgα. Writing out the variation of H generated by (2.19) we conclude that

∫

d3xδwαgα =

∫

d3x

(

{C, H}+ ∂C

∂t

)

(2.20)

=

∫

d3x
(

{

0Aµ, H
}

ξµ +
{

1Aµ, H
}

ξ̇µ + 0Aµξ̇
µ + 1Aµξ̈

µ
)

, (2.21)

where (2.19) was used in the second line. Next they used the fact that at the fixed
time at which these spatial integrals are calculated each order of time derivative can
be changed arbitrarily, and therefore the coefficients of each order of time derivative
in δwα needed to match with the corresponding coefficient on the right hand side.
First they focused attention on the arbitrary ξ̈µ term in (2.21). On the one hand
they knew from (2.18) that the only term in δ̄ẏA that is dependent on ξ̈µ is uµAξ̈

µ.
But from (2.13) they knew that the ξ̈µ-dependent term in δ̄ẏA must be δwµuµA

since the variation of the phase space variables does not depend on this higher time
derivative. It follows that δwµ = . . . + ξ̈µ. So finally they concluded that the 1Aµ

must be the primary constraints gµ.
Next, regarding the coefficient of ξ̇α on the right hand side of (2.21) it is clear from

the left hand side of (2.20) that it must be proportional to the primary constraints,
i.e., {1Aµ, H}+0Aµ must be a linear combination of the gα. Similarly, looking at the
coefficient of ξα it follows that {0Aµ, H} must also be a linear combination of the
gα. It is noteworthy that the existence of secondary constraints does not follow from
these result. Rather, AB51 were aware that the time rate of change of the primary
constraints 1Aµ needed to be set equal to zero in order to maintain consistency
with the Lagrangian theory. Indeed, they wrote that if the Poisson brackets of the
primary constraints with the Hamiltonian did not vanish identically, then “they must
be set equal to zero, and the requirement then becomes that the Poisson bracket of
these expressions with the Hamiltonian vanish, and so on until a point is reached
where no new constraints are being obtained.”24. AB51 thus insisted that the 0Aµ

and 1Aµ, “together with the hamiltonian, form a function group.”25 It is noteworthy
that they did not deduce that the Hamiltonian itself must be a linear combination
of constraints, i.e., that it must vanish.

24[4], p. 1023
25[4], p. 1023
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AB51 have until recently been identified as having been the first to demonstrate
that secondary constraints arise in general relativity. But that honor really belongs
to Rosenfeld. He actually proved it in an argument of the type that Bergmann and
Schiller later employed in 1953. His starting point was the identity (2.4) - although
as I pointed out earlier he really looked at two special cases that did not include
the Einstein Lagrangian.26 One immediately deduces from the identity (2.4) the

existence of a (vanishing) conserved charge, noting that δ̄L = LAδ̄yA +
(

∂L
∂yA,µ

)

,µ

and rewriting (2.4) as

0 ≡ L
Aδ̄yA +

(

∂L

∂yA,µ
δ̄yA + δ̄Sµ −

(

L+ Sν
,ν

)

ξµ
)

,µ

. (2.22)

So when the field equations are satisfied, i.e. LA = 0, the current Cµ := ∂L
∂yA,µ

δ̄yA +

δ̄Sµ −
(

L+ Sν
,ν

)

ξµ is conserved, Cµ
,µ = 0. But since this current depends on the

arbitrary time-dependent ξµ it must vanish. And furthermore, in calculating the
time rate of change of d3xC where C := C0, one obtains precisely the AB51 relation
on the right-hand side of (??) where one already knows that that 0Aµ and 1Aµ

are constraints. In addition, Rosenfeld showed explicitly that d3xC generated the
correct variations of the phase space variables under infinitesimal diffeomorphisms.
It is remarkable that he also did not recognize that the vacuum general relativistic
Hamiltonian vanished - even though the particular generator d3xC with ξµ = δ

µ
0

was ostensibly the Hamiltonian - except for a possible spatial surface integral!27

Schiller himself used this vanishing conserved charge in his thesis [65], and he was
therefore apparently the first in the Syracuse group to note its role as the generator
of coordinate symmetry transformations.28

3 Anderson, Bergmann and Schiller, and Lagrangian

approaches to quantum gravity

After reviewing the fundamentals described above, roughly the latter half of An-
derson’s 1952 thesis [1] was devoted to a quantum gravitational attempt modeled
on Schwinger’s Lagrangian approach. The idea was that a Lagrangian approach
could prove to be simpler to implement given that in configuration-velocity space
the primary constraints are identities. The hope was then to deduce a quantum com-
mutation relation amongst field variables and time derivatives by assuming, as did
Schwinger, that the variation of quantum transition amplitudes was generated by
an Hermitian operator. He proposed an approximation procedure for implementing

26See [60], and in particular equation (37).
27Josh Goldberg has informed me that Bergmann himself took some time to come to this real-

ization.
28 I should add parenthetically that the evidence suggests that Rosenfeld was probably aware

of the daunting challenge one faced in finding a constraint algebra that corresponded to the con-
ventional diffeomorphism Lie algebra. Regarding the algebra he confined his attention to spatial
diffeomorphisms whose generators did satisfy a closed Poisson bracket algebra.This discussion is
in his Section 6 [55][54]. See also [60], pp 43-44.
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this idea, assuming a quadratic Lagrangian operator of the form

L̂ = ŷA,µΛ̂
AµBν ŷB,ν + ∆̂, (3.1)

where Λ̂ and ∆̂ are functions of the undifferentiated ŷA. He notes that in considering
variations δŷA he cannot alter the order of factors, and it is therefore impossible to
deduce the field equations in the conventional manner (say with all δŷA to the right).
He argues that c-number variations are excluded since then it would not be possible
to undertake finite transformations ŷA = ŷA(ŷ

′

B). His conclusion, adopted later
by Bergmann and Schiller in 1953, is that the quantum Lagrangian may not be
associated with a general variational principle. He does require, instead, that the
varied Lagrangian differ identically from the original only by a total divergence, and
this does lead to the canonically quantized Hamiltonian approach with the usual
cast of primary and secondary constraints.

Thus Anderson proposed to implement a Schwinger variational principle of the
form

δ 〈α′

1, t1|α′

2, t2〉 =< α′

1, t1|δ
∫

d4xL̂|α′

2, t2 >, (3.2)

where the α′ constitute a complete set of eigenvalues of the operators α̂. It is
noteworthy that his approximation procedure was modeled after the Gupta-Bleuler
procedure in quantum electrodynamics, in which the vanishing of the positive fre-
quency components of gauge constraint is employed as a condition on quantum
states. Anderson cited in this regard the Schwinger and Feynman techniques as
expounded in Dyson’s 1951 Cornell lectures [29] and his groundbreaking 1949 paper
[28].29

In 1953 Bergmann and his student Ralph Schiller BS53 [20] decided to pursue a
Schwinger-type Lagrangian approach to quantum gravity. They claimed, however,
that it was not possible to formulate a Schwinger-like quantum action principle that
would be valid for this wider class of solution variations. Indeed, if this had been
possible then it presumably would have been possible to deduce a quantum commu-
tator algebra for all the gravitational metric variables. Instead, they showed that in
the vacuum case it was sufficient to restrict the variations to those engendered by
general coordinate transformations - even though, as mentioned above, the genera-
tor of these variations vanished. Indeed, in the Lagrangian formulation the primary
constraints vanish identically, and the remaining constraints are nothing other than
the four Einstein equations G0µ = 0 that do not involve second time derivatives of
the metric.

As in the papers cited previously, BS53 considered arbitrary generally covari-
ant theories, but now with field operator variables ŷA (with the ‘hat’ signifying an
operator) described by a Lagrangian L(ŷA, ŷA,µ), and for the purpose of this discus-
sion of the differences that arise with operators, I will spell out the new identities
that arise under general coordinate transformations as a consequence of operator
factor ordering. I work with Anderson’s quadratic Lagrangian (3.1). Assuming a

29Anderson explained to the author and Rickles in 2011 that his exposure to Dyson did not come
from Syracuse, but rather from a visit to Mexico in the summer of 1951 where he worked with
Alejandro Medina and “tried to understand Dyson’s paper, and the renormalization program. So
then I got very much involved in quantum field theory.”
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change in coordinates x′µ = xµ + ξµ, the corresponding variations of yA are δ̄ŷA =
FAµ

Bν ŷBξ
µ
,ν − ŷA,µξ

µ where the FAµ
Bν are constants and δ̄ŷA(x) := ŷ′A(x) − ŷA(x)

is minus the Lie derivative in the ξµ direction. The variation in the Lagrangian
operator is

δ̄L = δ̄ŷA,µΛ̂
AµBν ŷB,ν + ŷA,µΛ̂

AµBν δ̄ŷB,ν +

{

∂∆̂

∂ŷC
· δ̄ŷC

}

+ ŷA,µ

{

∂Λ̂AµBν

∂ŷC
· δ̄ŷC

}

ŷB,ν ,

where the curly bracket and dot notation employed by BS53 denotes the insertion
of the variation where the vacancy occurs in each derivative. Continuing, we have

δ̄L =
(

δ̄ŷAΛ̂
AµBν ŷB,ν + ŷA,νΛ̂

AνBµδ̄ŷB

)

,µ
+

{

∂∆̂

∂ŷC
· δ̄ŷC

}

+ŷA,µ

{

∂Λ̂AµBν

∂ŷC
· δ̄ŷC

}

ŷB,ν

−δ̄ŷA

(

Λ̂AµBν ŷB,ν

)

,µ
−

(

ŷA,νΛ̂
AνBµ

)

,µ
δ̄ŷB

:=
(

δ̄ŷAΛ̂
AµBν ŷB,ν + ŷA,νΛ̂

AνBµδ̄ŷB

)

,µ
+
{

L̂A · δ̄ŷA
}

.

It is presumed that this variation satisfies identities that correspond in the classical
realm to the Lagrangian varying as a density of weight one plus a total divergence, as
discussed earlier. So as in the classical case one ends up with three identities, namely
the vanishing of the coefficients of each order of time derivative of the arbitrary c-
number descriptors ξµ. The crucial result is that the authors determine that the
following sixteen quantum operator field equations must vanish,

{

L̂A · FAµ
Bν ŷB

}

= 0. (3.3)

The authors maintain, although they do not give a proof, that the classical Einstein
field equations (and Einstein-Maxwell when the additional gauge symmetries are
included) result in the limit as ~ → 0.30 Specializing the Lagrangian symmetry to
rigid translation in time they also obtain the quantum generator of time evolution

in the Lagrangian framework which takes the form
{

∂L̂
∂ ˙̂yA

· ˙̂yA
}

− L̂ := Ĥ with the

corresponding Schrödinger equation ĤΨ = i~∂Ψ
∂t
.

They also have a general expression for the quantum generator of general coor-

dinate transformations,
∫

d3x
({

∂L̂
∂ŷA,0

· δ̄ŷA
}

− Q̂0
)

where Q̂0 arises from the diver-

gence term in the variation of the Lagrangian. Using this generator it is possible
to deduce commutation relations as does Schwinger in the Lorentz covariant case.
There are, however, commutators that cannot be determined. Lorentz covariant
quantum electrodynamics is cited as an example. Since one is working explicitly
with Lagrangian expressions the momentum conjugate to Â0 vanishes identically.
(It is a primary constraint.) So the Lagrangian expression for the U(1) generator

30For vacuum general relativity, we read off from δ̄gµν = −gµν,αδξ
α +2gα(µδξ

α
,ν) =: −gµν,αδξ

α+

F(µν)ρ
(αβ)σδξρ,σ that F(µν)ρ

(αβ)σ = 4δσ(µδ
(β
ν) δ

α)
ρ . The proposed field operator equations are then

{

L̂σα · ĝαρ
}

= 0.
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is 1
2π

∫

d3x∂[0Âs]ξ,s, and requiring that δÂρ = ξ,ρ does not lead to a definite com-

mutation relation involving Â0. The authors’ conclusion is that ‘the commutation
relations between the ŷA and ˙̂yA are not determined completely, and “preliminary
examination shows, however, that the variables whose time derivatives remain in-
determinate are precisely the ones whose time derivatives are also indeterminate in
the classical theory.” Thus, the quantum theory must deal exclusively with observ-
ables, fields which have vanishing Poisson brackets with the generators of general
coordinate transformation symmetries!

4 Generators of general canonical transformations

and reduced phase space algebra

One more significant innovation in the BS53 paper was the identification within the
Lagrangian framework of a generally covariant system of transformations of the yA
and yA,µ that would correspond in phase space to general canonical transformations
- including changes that could alter the form of the field equations. The general class
would however include transformations that produced physically distinct solutions
to these equations. The authors identified as canonical transformations those that
did not introduce higher time derivatives in the field equations. They then focused
on those transformations that would in the classical realm not change the form of the
field equations, and would therefore generally involve the addition of a divergence Qµ

,µ

to the varied Lagrangian. Representing those configuration-velocity transformations
that did not alter the equations of motion as δ̄yA = fA(yB, yB,ρ), they were able to
show that even in the presence of constraints it was still possible to write these
permissible variations in terms of the momenta πC as

fC =
∂

∂πC

(

πBfB −Q4
)

.

This feat was achieved by expressing the velocities ẏA as functions of the momenta,
satisfying constraints gi(yA, yB,a, π

C) = 0 and arbitrary variables wi. This rendered
meaningful the derivatives with respect to πA of the velocity argument that appeared
in fA(yB, yB,a, ẏC). The chain rule for differentiation using these new variables was

valid, however, only for functions F satisfying the condition ∂wi

∂ẏA

∂F
∂πA = 0. As a

consequence it turned out the generator C := πBfB −Q4 was independent of wi.
Bergmann and I. Goldberg continued in 1955 (BG55) [15] this investigation of

general canonical transformations and its subgroup of invariant transformations (i.e.,
those corresponding to diffeomorphisms and perhaps additional gauge symmetreis),
but in this instance in phase space. Their substantial achievement has gone largely
unrecognized. They invented a new non-canonical phase space bracket which they
modestly called an ‘extended Dirac bracket’, but as I noted above I refer to it as
the Bergmann-Goldberg bracket. This bracket, in a sense to be explained, uniquely
expresses the algebra of diffeomorphism-invariant observables, but it is formulated in
a general manner applicable to any Hamiltonian model possessing gauge symmetry.
Remarkably, the resulting reduced phase space algebra of constants of the motion
in general relativity is obtained without the imposition of coordinate conditions.
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Rather, the scheme requires the identification of null vectors of the symplectic form
in addition to variables (not necessarily canonical) for the constraint hypersurface.
Then the idea was that invariant variables could be identified, invariant in the
sense that they do not change in the null directions. As we shall see below, this is
equivalence to constructing diffeomorphism invariants.

The authors worked with a finite-dimensional phase space of dimension 2N. I will
address later the extension to field theory. Specifically, let ζµ be the configuration -
momenta set qk, pk, with the canonical equations of motion ζ̇µ = ǫµν ∂H

∂ζν
, where

ǫµν =

(

0 I

−I 0

)

.

Let Ca(ζµ) = 0, a = 1, . . . , N , represent constraints. Now confine attention to the
constraint hypersurface which we assume to be covered by the phase space functions
ym. It is convenient to let Y α := ym, Ca cover the full 2N dimensional phase space.
BG55 showed that those transformations δym on the constraint hypersurface that
preserve the constraints are generated by functions A(y), such that

ǫmnδAy
n =

∂A

∂ym
, (4.1)

where ǫmn := ζµ,mǫµνζ
ν
,n.

Most interesting for us at the moment is the situation in which ǫmn is singular.
Indeed, let us suppose that the constraints are all first class, in which case there will
exist N independent null vectors Um

(s), i.e., ǫmnU
n
(s) = 0. Then contracting Um

(s) with

(4.1) it follows that the generator must satisfy the condition

∂A

∂ym
Um
(s) = 0. (4.2)

BG55 then showed that the commutator of two transformations satisfying this con-
dition, with generators A and B, has a generator

∂A

∂ym
δBy

m − ∂B

∂ym
δAy

m + ǫmnδAy
mδBy

n =: {A,B}BG (4.3)

This is the definition of the Bergmann-Goldberg bracket. Most importantly, they
proved that this commutator generator also satisfied the condition (4.2), i.e,

∂ {A,B}BG

∂ym
Um
(s) = 0.

The authors then wrote this expression in terms of the quasi-inverse ηmn of the
matrix ǫmn - an object that we encountered earlier in a different context.. This has
the property

ηlmǫmn = δln − U l
(s)V

(s)
n ,

where V
(s)
n is a null vector of ηln. Thus multiplying (4.1) by the quasi-inverse there

results
δAy

m = Um
(s)V

(s)
n δyn − ηmnA,n.
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Inserting this into (4.3) gives, taking (4.2) into account,

{A,B}BG = ηmnA,mB,n. (4.4)

We need one more consequence of our assumption that the constraints are first
class, i.e.,

{

Ca, Cb
}

= cdabCd.

Note that

{Ca, Y α} ǫαn = ǫµνCa
,µY

α
,ν ǫρσζ

ρ
,αζ

σ
,n = ǫµνCa

,µǫρσζ
σ
,nδ

ρ
ν = δµσC

a
,µζ

σ
,n = δan = 0,

or, expanding the left hand side, we find that on the constraint hypersurface

{Ca, ys} ǫsn = −
{

Ca, Cb
}

ǫbn = −
{

Ca, Cb
}

cdabCdǫbn = 0.

In other words, δays := {Ca, ys} is a null vector of ǫsn. But, as we have seen, not
only are the generators A and B invariant under this null transformation, but so is
the commutator. The condition (4.2) now has a clear physical meaning. It assumes
the form

0 =
∂A

∂ym
δaym = {A,Ca} .

In other words the permissible generators must be invariant under the action of
the gauge group. Thus we have the remarkable result that the Bergmann-Goldberg
bracket gives the algebra satisfied by variables that are invariant under the action
of the constraints. In the context of general relativity these invariants are constants
of the motion - in addition to their independence of spatial coordinates! The alge-
bra of observables of the reduced phase space is however not unique because of the
arbitrariness present in the quasi-inverse. A specific choice will result from the impo-
sition of coordinate conditions. Indeed, when all the constraints are rendered second
class in this manner, BG55 have proven that their generalized bracket becomes the
Dirac bracket. There is another significant aspect of this result that has not received
the attention it is due, perhaps in part because Bergmann and his collaborators have
never stated it explicitly. Or they might not have fully appreciated the significance
of their result as is suggested by the Bergmann - Janis correspondence that will be
discussed below. The fact is that one can obtain diffeomorphism invariants through
the imposition of appropriate coordinate conditions - appropriate in the sense that
they render the original set of first class constraints plus coordinate conditions sec-
ond class. The proof follows from the authors’ requirement that their generalized
brackets are valid only for variables that are invariant under the action of the original
first class generators. Before this paper appeared the argument had been made that
simply by restricting the constrained phase space through coordinate conditions one
was proceeding stepwise to the construction of invariants - although a direct demon-
stration that the variables satisfying the eventual Dirac bracket algebra were indeed
invariant under the action of the diffeomorphism generators was lacking.

But on the other hand, to carry out the construction of the reduced algebra
one must be in possession of invariants. Knowledge of the null vectors can serve
in this search, as BG55 briefly illustrated with classical electromagnetism. In this
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case the first class constraints are π0 = ∂L
∂Ȧ0

= 0 and ∂πa

∂xa = 0 where πa = δL
δȦa

. This

second constraint is the statement that the longitudinal canonical momentum πa
l

(the longitudinal electric field) is determined by the charged sources. The natural
choice for the variables ym in this case is ym(~x) = (A0, Al a, At b, π

c
t ), where the t

subscript represents the transverse field. As we have seen the constraints generate
variations in null directions of ǫmn, namely producing arbitrary variations in A0 and
Al a. The resulting Bergmann-Goldberg algebra is therefore the algebra satisfied by
the gauge invariant transverse electric and magnetic fields.

5 Gravitational observables, coordinate conditions,

and intrinsic coordinates

Bergmann and his collaborators had therefore reached a definitive positive conclu-
sion on the nature of the algebra of observables in classical general relativity, both
in the Hamiltonian and Lagrangian approaches. Observables were invariant under
the action of the full diffeomorphism group, and the Bergmann-Goldberg bracket
represented their commutator algebra. But there remained a problem. One still
needed to find a complete set of invariant functionals that represented observables.
Newman initiated an iterative construction of invariants in his 1956 thesis [44], con-
tinued in a joint publication with Bergmann in 1957 [43]. But the evidence suggested
that it might perhaps be helpful to try a new tack, modeled in part on success in
constructing gauge invariants in electromagnetism as Bergmann explained in 1956
[10]. Bergmann’s student Allen Janis completed a thesis in 1957 [36] in which he
investigated how to find invariants through the imposition of coordinate conditions.
The thesis confined attention to what he called ‘Lorentz type’ conditions of the form

Cj(yA, yA,ρ) = C∗j(yA) + CjAρ(yB)yA,ρ = 0, (5.1)

corresponding to the Lorenz gauge in electromagnetism.31 A 1958 joint publication
confined the analysis to coordinate conditions that do not depend on time deriva-
tives ẏA. The idea in both instances is to add to the Lagrangian, as did Fermi in
electrodynamics, a term that with suitable initial conditions renders the Lagrangian
non-singular while imposing the gauge conditions. The appropriate term to add
is 1

2
aijC

iCj, and the initial data must be chosen consistent with (5.1). As in the
previous papers, the focus here was to identify the temporal boundary terms that
corresponded to the implementation of a canonical change in the physical state.
The new consideration here was that infinitesimal changes needed to respect the
coordinate conditions, i.e., neither the form of the conditions, nor their zero value
(modulo the equations of motion) were permitted to change under variations δ̄yA.
They required that the equations of motion retained their form, and also that the
Lagrangian might be altered by a total time derivative. This latter condition took an
altered form since it was required to hold only for data that satisfied the coordinate
condition. Therefore the requirement was that δ̄L′ = Q̇ + 1

2
δaijC

iCj, where they
reverted to the finite dimensional case. The generator boundary terms C ′j again

31A January 1957 APS abstract with Bergmann [35] is similarly limited in scope.
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took the form C ′ = −Q + ∂L′

∂q̇k
. And as in the earlier papers it was possible to show

that Ċ ′ +Mk δ̄qk = 0 where Mk = 0 are the Euler-Lagrange equations. The C ′ are
therefore generally non-vanishing constants of the motion. They recognized that
there might still remain some gauge freedom after the imposition of coordinate con-
ditions, and these were to be factored out, just as the invariant transformations were
factored out in forming the reduced algebra represented by the Bergmann-Goldberg
algebra. Furthermore, and this was the message of the paper, these reduced alge-
bras were identical, thereby showing that the imposition of coordinate conditions
was legitimate. The equivalence was demonstrated explicitly for electromagnetism
(in fact, focusing on only one Fourier mode of oscillation). They did express some
misgivings about the practical use of this method as one was still faced with the
technical challenge of constructing constants of the motion whose corresponding
transformations respected the coordinate conditions. In closing they mention an
alternative approach due to Komar and Géhéniau and Debever .

Komar had already in his 1956 thesis [40] (written under Wheeler’s direction)
used the Géhéniau and Debever [30] results as a means of distinguishing physically
inequivalent solutions of Einstein’s equations. Komar argued that in what he called
‘asymmetric’ spacetimes, i.e., spacetimes that possess no Killing symmetries, the
four independent Weyl scalars, formed with up to second derivatives of the metric,
could be employed to define what he called ‘intrinsic coordinates’. And in the frame
in which these coordinates were employed, the metric components would be uniquely
determined, and hence diffeomorphism invariants.32 Komar even made a specific
proposal for the coordinates, though without proof that his choices corresponded
to spatial and timelike directions. Komar published a detailed proposal for the
implementation of intrinsic coordinates in 1958 [41], focusing first on the implications
for the initial value problem in general relativity. He was able to show that the
intrinsic coordinate choice led to unique temporal evolution. But of special concern
to him was whether it would be possible to isolate from the redundant set of metric

32It is not clear when Bergmann became aware of Komar’s work. Géhéniau summarized his
joint work with Debever at the July 1955 Bern meeting. They proved that their existed at most
fourteen independent second order spacetime scalars. Bergmann posed a question, following the
presentation, relating to the existence of only four second differential order scalars that existed
for vacuum spacetimes that possessed no symmetry. There is an edited proof (which does not
appear to be in Bergmann’s handwriting) of the Géhéniau article that was to appear in the Bern
proceedings. The proof is in the Syracuse Bergmann archives (SUBA) in a folder labeled Bern
Correspondence and does not mention Komar. The document states that Bergmann later had
a private discussion with Wigner, and Wigner’s response to Bergmann’s inquiry follows. How-
ever, the ultimate published version contains the comment “The question that must be decided
( and that Komar in Princeton has also addressed) concerned the characterization of definitively
distinct solutions of Einstein’s gravitational equations.” “Die Frage, die entschieden werden sollte
(und die auch Herr Komar in Princeton angegriffen hatte) betraf die Charakterisierung wesentlich
verschiedener Lsungen der EINSTEINschen Gravitationsgleichungen. It is likely that Bergmann
heard the basis of his question directly from Komar at the April 1955 Washington meeting of the
American Physical Society, where they were both present on the same day. Komar likely referred
in his report [39] to an observation that would appear in his Ph. D. thesis [40], citing the as yet
unpublished [30] result that in a generic vacuum spacetime there exists four independent scalar
invariants of second differential order. We know that Komar did go to Syracuse as a postdoctoral
researcher, presumably at the beginning of the 1957 academic year. He stayed at Syracuse until
1963, promoted eventually to Associate Professor [32].
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components and time derivatives a non-redundant set of four constants of the motion
that would label physically distinguishable spacetimes. He addressed this question
in studying the initial value problem.

Allen Janis, in an unpublished draft written in 195833, did address the issue of
the relationship in general between invariants and their associated algebra, and the
variables that satisfied the Dirac algebra after the imposition of constraints. The
former he called ’primary observables’, and the latter ’secondary observables’. This
proposed distinction elicited a revealing discussion in correspondence in 1958 be-
tween Allen Janis and Bergmann. Bergmann’s first remark concerns gauge freedom
that might remain if a residual asymptotic invariance group is present, in which
case he observes that an invariance group that ‘contains no arbitrary functions of
four coordinates” would be admissible. He also notes that in any case, as is true
with the Komar approach, there will remain a redundance of observables. He then
points to the recent work of Arnowitt, Deser, and Misner - to be published and also
the work of Arnowitt and Deser reported “at our meetings at Zurich and Neuchatel,
who pointed out that the secondary observables can often be interpreted as primary
observables, so that the distinction can often be more historical than actual. Take,
as an example, the ’transverse’ portion of some electromagnetic variable, e. g., the
vector potential. One may either define the transverse vector potential as a certain
functional of the vector potential (by means of an integral projection operator), so
that it qualifies as a primary observable, without reference to a restricted coordinate
frame; or one may introduce a special radiation gauge, in which case the transverse
vector potential is simply the vector potential. Certainly, Komar’s observables are
interpretable either as primary or as secondary observables, depending on one’s point
of view.”34

Correspondence by Bergmann with Dirac in 1959 sheds more light on the state
of affairs with coordinate conditions at this time.35 The letter was in response to
Dirac’s 1959 publication [27] of a suggestion of suitable coordinate conditions in
general relativity. Dirac had published in 1958 (D58) [25] his groundbreaking paper
in which he simplified the primary constraints in general relativity through the
addition of a total divergence to the Lagrangian, thereby eliminating time derivatives
of g0µ. These components were thus freely prescribable. Bergmann wrote that “(1)
. . . regardless of the motive in introducing the metric grs on the initial hypersurface
, the canonical transformation that you first published a year ago to simplify and
kill the primary constriants, is both legitimate and successful. At this stage the
total number of canonical field variables is reduced from twenty to twelve.” He then
goes on to discuss the proposed coordinate conditions. “(2) What I have found
most remarkable is the manner in which you have introduced coordinate conditions
to change the secondary first-class constraints into second-class constraints, and
eventually to reduce the theory to four canonical field variables. As far as I can
see, your procedure and the one that Komar and I are still working on supplement
each other: Your coordinates and field variables are intuitive, and results obtained
will lend themselves to physical interpretation in terms of concepts with which we

33SUBA, Correspondence folder, True observables and the generalized equivalence problem
34SUBA, Correspondence folder, Letter from Bergmann to Janis dated September 15, 1958
35SUBA, Correspondence folder, Letter from Bergmann to Dirac dated October 9, 1959
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are familiar from other field theories. Your expansions will break down, or at least
become unwieldy, if the field should be strong. You yourself have called attention to
this fact. Komar and I work principally with closed-form expressions. Our variables
are developed locally and require no solution of partial differential equations; but
even if and when we complete our construction of the complete Lie algebra of our
observables, including the dynamical laws, our results will be difficult to relate to
more conventional concepts and procedures. Perhaps someone here will attempt to
prove in some detail the mathematical equivalence of our two approaches. I do hope
that we shall soon have another chance to compare notes on our progress personally,
on either side of the Atlantic Ocean.”36

An addendum to the same letter, dated October 14, raises another issue related
to the problem of time. “(3) When I discussed your paper at the Stevens conference
yesterday, two more questions arose, which I should like to submit to you; To me
it appeared that because you use the Hamiltonian constraint HL to eliminate one
of the non-substantive field variables, κ, in the final formulation of the theory your
Hamiltonian vanishes strongly, and hence all the final field variables, i.e., ẽrs, p̃rs,
are ‘frozen’ (constants of the motion). I should not consider that as a source of
embarrassment, but Jim Anderson says that in talking to you he found that you
now look at the situation a bit differently. Can you enlighten me? If you have no
objection, I should communicate your reply to Anderson and a few other participants
in the discussion.

Dirac responded on November 11, 195937 first with the terse acknowledgement “I
fully agree with your comments (1) and (2).” Then he addressed the frozen time is-
sue. “If the conditions you introduce to fix the surface are such that only one surface
satisfies the conditions, then the surface cannot move at all, the Hamiltonian will
vanish strongly and all dynamical variables will be frozen. However, one may intro-
duce conditions which allow an infinity of roughly parallel surfaces. The surface can
then move with one degree of freedom and there must be one non-vanishing Hamil-
tonian that generates this motion. I believe my condition grsp

rs ≃ 0 is of this second
type, or maybe it allows also a more general motion of the surface corresponding
roughly to Lorentz transformations. The non-vanishing Hamiltonian one would get
by substituting a divergence term from the density of the Hamiltonian.” We are of
course aware that Bergmann had much earlier concluded that observables must be
independent of the coordinate time - and this would imply that the Hamiltonian re-
sulting after the imposition of coordinate conditions would vanish identically, simply
because the vanishing Hamiltonian constraint would be explicitly solved to express
dependent degrees of freedom in terms of an independent set. This is a point that
Anderson made in an undated letter to Bergmann commenting on a pre-publication
draft he had obtained of Dirac’s paper.38 It turns out here that Dirac’s coordinate
condition did not fully eliminate the freedom in fixing the coordinate time. There
remained a physically spurious one-parameter freedom. This issue was later par-
tially addressed in Anderson’s 1964 comparison of coordinate fixation techniques [3]

36SUBA, Correspondence folder, Letter from Bergmann to Dirac dated October 9, 1959
37SUBA, Correspondence folder
38SUBA, Correspondence folder.
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.39 It turns out that to fully eliminate this freedom the coordinate time must ap-
pear explicitly in a coordinate condition - as it does with Bergmann-Komar intrinsic
coordinates.40

Indeed, while Bergmann and Komar were convinced that observables could not
depend on coordinate time, they were also well aware that intrinsic time dependence
was not excluded! They made this case quite explicitly in 1962 in their contribution
to the Infeld Festschrift [18] in a section entitles ‘Time-dependent solutions’. They
proposed interpreting an appropriately chosen function of canonical variables as the
time. The idea was to choose a constant of the motion C, and find the canonical
conjugate to it, θ. Then since the Poisson bracket of C with the Hamiltonian H

weakly vanishes, H must be independent of θ - at least on the constraint hypersur-
face. Thus one can solve for C, and write C+h(φ, π) = H = 0, where the arguments
of h are the remaining phase variables with C and θ excluded. Let {, } represent
the original Poisson bracket, and [, ] the bracket formed with φ, π. A variable A will
then satisfy the equation of motion

dA

dθ
= {A,H} = [A, h] +

(

∂A

∂θ

∂H

∂C
− ∂C

∂θ

∂θ

∂C

)

= [A, h] +
∂A

∂θ
.

6 Dirac variables and Bergmann’s interpretation

I have already mentioned, in conjunction with AB51, the puzzle regarding the failure
to implement the full diffeomorphism Lie algebra. In fact, although AB51 did not
remark on this fact, the mystery deepened with the deduction in this article that
the associated Poisson bracket algebra did not arise for the wide class of generally
covariant field theories they considered. This broad class included the quadratic
Einstein model (2.2) although they did not display the explicit form for the secondary
constraints for this specific case. They did however construct the general secondary
constraints, and they displayed in their equation (7.7) the full algebra of these among
themselves and also with the primary constraints - without calling attention to the
Lie algebra puzzle. Bergmann’s resolution was inspired by Dirac’s gravitational
Hamiltonian paper D58. One can best appreciate its significance in citing a passage
from Bergmann’s letter to Nathan Rosen in 1973, in which he proposes that Dirac
be invited to talk at the 7th General Relativity and Gravitation conference to be
held in Tel Aviv. He writes “Having through an extended period wrestled with the
same problems that he succeeded in solving - a viable Hamiltonian version of general
relativity, I have the profoundest respect for his genius, second only (in my personal
experience) to Einstein.”41 I had not fully appreciated until recently, after rereading
his Handbuch der Physik article, that Bergmann is not referring here to Dirac’s
earlier constrained Hamiltonian dynamics algorithm, developed concurrently with
Bergmann, but to Dirac’s apparently unwitting solution of the algebra conundrum.

39SUBA, Correspondence folder, This letter is also undated. Anderson writes “Enclosed is what
I hope is a corrected and correct version of the paper we discussed over the phone. As I mentioned
then, I agree in the main with your comments and in fact appreciated them.” Unfortunately we
are not in possession of the earlier draft.

40See [50] for a proof.
41SUBA, Correspondence folder, Letter from Bergmann to Rosen, September 26, 1973, BA
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As noted above, Dirac was the first to publish a simplified version of the primary
constraints in general relativity in which they appear as vanishing momenta [26].
DeWitt had already reported a similar result at a Stevens meeting, although for
the parameterized theory. This had inspired Anderson to seek an analogous result
in the unparameterized model which he published shortly after Dirac [2]. With
the addition of an appropriate divergence to the Einstein Lagrangian Dirac showed
that the four momenta conjugate to g0µ must vanish. It follows immediately that
the g0µ are arbitrary. He was also the first to make the critical discovery that the
canonical variables gab and πcd were invariant under diffeomorphisms that left the
spatial coordinates on a given spacelike hypersurface of constant x0 fixed. In his
1962 Handbuch de Physik article [11], Bergmann called these variables ‘D-invariant’
in Dirac’s honor. Under an arbitrary infinitesimal diffeomorphism x′µ = xµ + ξµ(x),
the change in D-invariants by definition does not depend on time derivatives of the
ξµ. Although Dirac did not demonstrate this explicitly, he clearly knew that given
any vector Aµ, in addition to Aa constituting a D-invariant, there is a fourth D-

invariant AL := Aµn
µ, where nµ = −g0µ (−g00)

−1/2
= (N−1,−N−1Na) is the unit

normal to the x0 = const hypersurface.42 Dirac astutely reasoned that the time rate
of change of the phase space variables would correspond to the naught component
of a vector, namely, the variation of a variable η under a change in time would be
of the form

δη =

∫

d3x {H0, η} δt, (6.1)

and the task was then to express H0 in terms of D-invariants using HL := Hµn
µ. We

read off that H0 =
1
n0 (HL − Han

a) = NHL +NaHa.
Bergmann realized that this expression for the Hamiltonian could be obtained

from an object
∫

d3x (HLǫ
0 + Haǫ

a) that generates variations of D-invariants corre-
sponding to infinitesimal coordinate transformations - provided that these transfor-
mations involved a metric field dependence of the form

ξµ = δµa ǫ
a + nµǫ0, (6.2)

since if one sets ξµ = δ
µ
0 δt in this expression it follows that ǫ0 = N and ǫa = Na,

and therefore the change in any variable η under time evolution is given by (6.1).
As far as I am aware Bergmann was the first to note and publish this observation.43

The implications are of course profound, for as Bergmann showed, this dependence
eliminated the higher time derivatives that appear in the standard Lie algebra, as
discussed previously. Indeed, Bergmann derived the modified commutator of two
infinitesimal transformations of the form (6.2), obtaining

ǫρ = δρa
(

ǫa1,bǫ
b
2 − ǫa2,bǫ

b
1

)

+ eab
(

ǫ01ǫ
0
2,b − ǫ02ǫ

0
1,b

)

+ nρ
(

ǫa2ǫ
0
1,a − ǫa1ǫ

0
2,a

)

. (6.3)

42 Bergmann later in 1989, [13], p. 298, characterized Dirac’s procedure as having “first appeared
by magic”. It is possible that he might have been inspired to employ the normal by Weiss’s work
[66] - which he nominally supervised. But I now doubt this. The Weiss construction employs
the covariant normal. It does not depend on the metric. But most significantly his canonical
momenta are simply the conjugates of the field derivatives with respect to the parameter time, and
his formalism did not contemplate reparameterization covariance - the context in which a notion
of D-invariance would arise.

43[11], equation (27.11)
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Note that no time derivatives of the descriptors appear in this expression. Thus
the problem described in section (2) with the original diffeomorphism Lie algebra
is resolved. Strangely, Bergmann did not give the corresponding Poisson brackets
of the generators HL and Ha although it is straightforward to derive them44 and
he must surely have known this bracket algebra which is now known as the Dirac
algebra - even though Dirac apparently never published it. Higgs actually gives a
partial result [33, 34], but the offending bracket

{HL,H
′

L} =

∫

d3x′′
Ha(x

′′)eab(x′′)
(

δ3(x− x′′) + δ3(x′ − x′′)
) ∂

∂xb
δ3(x− x′) (6.4)

is missing. The first appearance in print I have found is in DeWitt [24], equation
(4.26a). The eab represents the inverse of the 3-metric gab, and its appearance
signifies that the group now constitutes exclusively a transformation group in phase
space - even though every element can be associated with a specific four-dimensional
general coordinate transformation, with none excluded.45

7 Conclusions

I have focused in this essay on the implications of the general covariance symmetry
of Einstein’s general theory of relativity as they were progressively investigated by
Peter G. Bergmann and his collaborators at Syracuse University from 1949 to 1962.
Bergmann believed that this underlying symmetry needed to be taken into account
in the passage from the classical theory to an eventual quantum theory of gravity
- in essence because it implied that spacetime coordinates could not of themselves
carry physical information. In his mind the situation was similar to that in quantum
electrodynamics where physical observables needed to be invariant under the action
of the U(1) gauge symmetry group. The situation in general relativity was of course
enormously complicated by the fact that the gauge symmetry transformations of the
metric field were themselves born of a corresponding transformation of spacetime
coordinates - yet these very coordinates in the classical context not only served as
identifying spatial labels but also tracked the field evolution in time. In fact, the
underlying unity of classical spacetime would render this distinction between space
and time labels as contrary to the principle of general relativity. Spatial field labels
would under a four dimensional diffeomorphism transform into combined spatial and
temporal indicators.

We can discern a clear evolution in the Syracuse group’s grasp and tentative
resolution of the technical challenge they faced in attempting to implement this
symmetry. It seemed natural that if the starting point was to be Einstein’s the-
ory one would need a procedure for reinterpreting the metric field and its space-
time derivatives as quantum operators. They first exploited identities that arose
amongst classical field and velocity variables as a consequence of general covari-
ance. The initial intent was to then perform a Legendre transformation to phase
space and pursue a canonical quantization approach, to convert Poisson bracket

44He and Komar give the derivation later in [17]
45In [50] we call it the ‘diffeomorphism related group’.
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relations to quantum commutators. The task was complicated by the appearance
of primary constraining relations among these variables since they would lead to
quantum inconsistencies, and there did not exist a procedure analogous to those
employed in quantum electrodynamics that could be employed to eliminate them.
It seemed preferable to work exclusively with variable functionals that were invariant
under the action in phase space of the diffeomorphism group. An early attempt was
made to formulate a quantum Schwinger-like action principle that would yield quan-
tum commutators among field configuration and velocity operators, and its failure
strengthened the case for first constructing classical invariants and then quantizing.
The central objective was then to develop a phase space formalism that would in-
corporate general canonical transformations that might or might not correspond to
a change in spacetime coordinates and in the process identify the gauge symmetry
subgroup. Both invariant and general infinitesimal transformations were revealed
in the classical temporal boundary terms that have served for finite dimensional
dimensional (non-field theoretic) systems as the foundation principle for Hamilton-
Jacobi approaches. As had Rosenfeld much earlier (but for tetrad gravity), the
Bergmann group showed that these latter vanishing terms terms would serve as
the canonical generators of four-dimensional diffeomorphisms. The projection from
configuration-velocity to phase space necessitated a procedure for finding the general
solution of linear equations involving the singular Legendre matrix. The Bergmann
school method differed mainly in outward appearance from that employed earlier
by Rosenfeld. Dirac’s roughly contemporaneous method was conceptually distinct
and operationally somewhat simpler. And as we have seen Pirani and Schild suc-
ceeded in exploiting it to publish the first gravitational Hamiltonian - albeit using
Bergmann’s parameterized model. And Bergmann’s student Penfield obtained the
first non-parameterized Hamiltonian only shortly later. It should be stressed, how-
ever, that neither Pirani Schild nor Dirac himself ever concerned themselves with
the realization of diffeomorphism symmetry as a canonical transformation group.

We should also be cognizant of the fact that everything I have summarized so far
occurred before the putative start of the Renaissance of general relativity in 1955.
Major advances were made already in 1930, and one could contend that there did
exist a degree of continuous progress in quantum gravity in the intervening period
- at least in the period commencing in 1948.46

The next chapter in the Syracuse story concerns the construction of classical
gravitational invariants. These invariants would satisfy a Poisson bracket algebra
that would transform between physically distinct solutions of Einstein’s equations.
The numerical values of the invariants would indeed fix equivalence classes under
the action of the diffeomorphism group, and the algebra could be understood as
representing the factor group of the group of canonical transformations modulo the
group of diffeomorphisms. The Bergmann-Goldberg construction represented this
algebra, but it essentially required knowledge of invariants. Newman made some
progress in an iterative construction. Another alternative, explored by Janis, was to
impose appropriate coordinate conditions. But perhaps the most attractive possi-
bility - to me, at least - was proposed by Komar and then jointly investigated with
Bergmann. It was to use the classical geometry itself to locate spacetime landmarks

46See [22] for further documentation. See also [52] for a magisterial analysis of this early period.
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that could be used as intrinsic spacetime coordinates. All metric components rel-
ative to this intrinsic coordinate system would be invariants. Yet this possibility
was not fully exploited, and I speculate that this might be related to Dirac’s de-
lineation of new gravitational variables in 1958. On the one hand he argued that
what we now know as the gravitational lapse and shift variables ought to be sim-
ply eliminated as canonical phase space variables since their evolution in time was
arbitrary. And on the other hand, and perhaps even more importantly, in 1962
[11] Bergmann interpreted Dirac’s gravitational Hamiltonian as reflecting the fact
that his diffeomorphism generator actually produced canonical variations that cor-
responded to compulsory metric-dependent diffeomorphisms - the decomposition of
infinitesimal diffeomorphisms into true 3-dimensional diffeomorphisms, and metric-
dependent diffeomorphisms in the direction perpendicular to the temporal foliation.
Both of these advances brought into question whether the generator constructed by
Anderson and Bergmann in 1951 actually preserved the full four-dimensional dif-
feomorphism symmetry. This may explain why in the late 1960’s Bergmann and
Komar began to look closely at a Hamilton-Jacobi approach to observables in gen-
eral relativity - a chapter in the Syracuse saga that will appear soon [59]. But they
did continue to seek a group theoretical interpretation of Dirac’s canonical genera-
tor, with a groundbreaking paper BK72 [17]. Referring to D58, Bergmann observed
in 1979 that “At the time of the Dirac papers the nature of the commutators that
he constructed was not entirely clear. Had Dirac merely discovered a new Lie alge-
bra, or was his Lie algebra the germ of a group? If so, what was the nature of the
group? In 1971 A. Komar and I were able to answer that question. There was a
new group.”47 They showed that the generator was that of a transformation group
of the metric variables - including the 3-metric. This came about because of the
appearance of the inverse three-metric eab in (6.3). In fact, as a consequence of
the spatial derivatives - reflected also in the descriptor algebra (6.3) - derivatives
of this metric arose at increasingly higher order with nested commutators. BK72
concluded that the metric dependence was spatially non-local. Bergmann stressed
the compulsory metric dependence in a later essay [12] in which he referred to the
‘fading world point’. Each individual symmetry mapping, viewed as a functional of
the 3-metric, “sends a given point into a cloud of points, depending on the particular
Cauchy data involved . . .What this whole analysis may teach us is that the world
point by itself possesses no physical reality.”48

We witness in this period in the early 1960’s the emergence of a competing quan-
tum gravitational formalism - Wheeler’s geometrodynamics. He was inspired by the
Feynman path integral approach in flat spacetime in which the action served as a
quantum phase. In his vision a quantum transition amplitude between initial and fi-
nal temporal states played a primary role. Although he did recognize that the theory
must take into account the three-dimensional spatial diffeomorphism symmetry, he
believed that the full four dimensional symmetry was lost. It is replaced by what he
called ‘multi-fingered time’, a notion that first appears in print in his 1967 Battelle
lectures [69]. There was a related substantial debate, beginning in 1960, involving
Wheeler, his student Sharp, Misner, Bergmann, and Komar over the so-called thin

47[17], p. 175
48[17], p. 176
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sandwich conjecture in which Wheeler claimed that the 3-geometry already carried
information about time.49 Arnowitt, Deser, and Misner [6] (ADM) of course invented
their own first-order gravitational formalism in this same period, and with a similar
disavowal of four-dimensional covariance. Their view paralleled that of Dirac in this
regard, and in fact their ultimate theory is equivalent to Dirac’s, as interpreted by
Bergmann, whereby the contemplated infinitesimal diffeomorphims are understood
as undergoing a perpendicular decomposition.50 The upshot for all was that the
fourth so-called scalar constraint needed of course to be imposed, but there was no
clear relation to the original four-dimensional diffeomorphism symmetry. Rather,
it acquired a ‘dynamical interpretation’.51 The reference is to Bryce DeWitt’s sug-
gestion in the early 1960’s to Wheeler that the constraint could be implemented in
a Hamilton-Jacobi formalism, in a form that is now known as the Wheeler-DeWiit
equation. This formalism has since the 1960’s overtaken the field, and the reasons
for its dominance certainly merit a careful historical analysis. Granted, related to its
presumptive correctness is the companion so called problem of time which continues
to occupy the minds of physicists and philosophers. I can perhaps not render an
objective judgement as I and my collaborators carry on the Bergmann tradition, but
in my opinion the term renaissance does not apply to quantum general relativity.
Rather, what we encounter, in my opinion, is more analogous to the pre-Renaissance
loss of classical scholarship.
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