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Abstract

Gravity does not naturally fit well with canonical quantization.
Affine quantization is an alternative procedure that is similar to canon-
ical quantization but may offer a positive result when canonical quan-
tization fails to offer a positive result. Two basic examples given
initially illustrate the power of affine quantization. These examples
clearly point toward an affine quantization procedure that vastly sim-
plifies a successful quantization of the most difficult part of quantum
general relativity.

1 Introduction

In order to offer a credible analysis of quantum gravity it is first necessary
to carefully review several common questions: (1) Are the rules of canonical
quantization the full story of how to quantize any particular classical theory?
(2) Is the standard assumption that the correct set of basic, phase space
classical variables to promote to operator variables are Cartesian coordinates?
(3) How do we choose Cartesian, phase space coordinates when phase space
has no metric? (4) Is it necessary when taking the classical limit of a quantum
theory to choose ~ → 0 while the classical world around us chooses ~ > 0?
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1.1 From canonical to affine vaiables

Canonical quantization generally works well, but it turns out that there is
more to the story that can help when problems arise. We start simply. For
a single degree of freedom, canonical quantization involves Q and P which
(ideally) are self-adjoint operators that satisfy the commutator [Q,P ] = i~I.
It automatically follows that

Q [Q,P ] = [Q,QP ] = [Q, (QP + PQ) + (QP − PQ)]/2

= [Q, (QP + PQ)/2] ≡ [Q,D] = i~Q . (1)

As usual, Q and P are irreducible, but Q and D are reducible in that D and
Q > 0 is irreducible along with D and Q < 0; a third case where Q = 0 is
less important. If Q > 0 (or Q < 0), then P cannot be made self adjoint;
however, in that case both Q and D are self adjoint. The operator D is called
the dilation operator because it dilates Q rather than translates Q as P does;
in particular,

eiqP/~Qe−iqP/~ = Q + qI , ei ln(|q|)D/~Qe−i ln(|q|)D/~ = |q|Q = q|Q| , (2)

where in the second relation q 6= 0, and q, as well as Q, are normally chosen
to be dimensionless.

Observe: According to (1), the existence of canonical operators guaran-
tees the existence of affine operators!

1.2 Canonical and affine coherent states

The canonical coherent states are well known and generally given by

|p, q〉 ≡ e−iqP/~eipQ/~|0〉 , (3)

where the fiducial vector |0〉 satisfies (ωQ+ iP )|0〉 = 0. These vectors admit
a resolution of unity given by

I =
∫

|p, q〉〈p, q| dp dq/2π~ . (4)

The affine coherent states are less well known and they are generally
given, for q > 0 and Q > 0, by

|p, q〉 ≡ eipQ/~e−i ln(q)D/~|β〉 , (5)
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where the fiducial vector |β〉 satisfies [(Q− 1) + (iD/β)]|β〉 = 0; we choose a
common notation for the two sets of coherent states, but the different range
of variables helps set them apart. The affine vectors admit a resolution of
unity given by

I =
∫

|p, q〉〈p, q| dp dq/2π~C , (6)

where C = [1−~/2β]−1, which requires that β > ~/2. A similar story applies
to q < 0 and Q < 0, or a combination so that q 6= 0, but we focus on q > 0
which has more relevance for gravity.

1.3 Classical/quantum connection

The connection between classical and quantum variables, while sometimes
difficult in conventional canonical quantization, has a clear relationship in the
program of Enhanced Quantization [1]. Schrödinger’s equation for canonical
quantization arises from stationary variations of the normalized Hilbert state
vectors |ψ(t)〉 in the action functional

AQ =
∫ T

0
〈ψ(t)|[i~(∂/∂t)− H(P,Q) ]|ψ(t)〉 dt , (7)

and the variational result is given by

i~ ∂|ψ(t)〉/∂t = H(P,Q)|ψ(t)〉 . (8)

A similar study applies to affine quantization for which Schrödinger’s
equation arises by stationary variations of normalized Hilbert space vectors
from the action functional

A′
Q =

∫ T

0
〈ψ(t)|[i~(∂/∂t) − H′(D,Q]|ψ(t)〉 dt , (9)

and the variational result is given by

i~ ∂|ψ(t)〉/∂t = H
′(D,Q)|ψ(t)〉 . (10)

Classical observers, however, can not explore all the variations that lead
to Schrödinger’s equation. In particular, allowed variations involve simple
translations and constant velocities which, according to Galileo invariance,
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can be made by moving the observer rather than moving the object. Using
canonical coherent states, the reduced (R) action functional leads to

AQ(R) =
∫ T

0
〈p(t), q(t)|[i~(∂/∂t)− H(P,Q)]|p(t), q(t)〉 dt

=
∫ T

0
[p(t)q̇(t)−H(p(t), q(t)] dt . (11)

For the affine story we use affine coherent states which lead to

A′
Q(R) =

∫ T

0
〈p(t), q(t)|[i~(∂/∂t)− H′(D,Q)]|p(t), q(t)〉 dt

=
∫ T

0
[−q(t)ṗ(t)−H ′(p(t), q(t)] dt . (12)

Equation (12) applies as well when q 6= 0, which makes it more similar to
Eq. (11).

Notice that the canonical and affine versions of the reduced action func-
tionals are effectively identical in that they both appear as classical action
functionals! In fact, they are ‘better’ than classical expressions because they
still involve ~ which is not zero. To recover the usual classical story from the
quantum story in conventional canonical quantization requires that ~ → 0,
but that is highly unphysical because the world we all live in is one where
~ > 0. Indeed, we prefer to refer to the Hamiltonians in (11) and (12) as
enhanced classical Hamiltonians because they each retain ~ > 0.

The expressions for the enhanced classical actions for both the canoni-
cal and affine stories have the property that if phase space coordinates are
changed, such as (p, q) → (p̄, q̄), where p dq = p̄ dq̄ + dḠ(p̄, q̄), the coher-
ent state vectors satisfy |p̄, q̄〉 = |p, q〉 because the original point in phase
space must be mapped to the same vector in Hilbert space. This property
ensures that even though the phase space variables are changed all of the
quantum aspects remain unchanged; this favorable property works whether
the underlying operators are canonical or affine.

The common behavior of the enhanced classical stories implies that a clas-
sical theory can be quantized by either canonical or affine procedures with the
same justification. If one approach fails, try the other one!

1.4 “Cartesian coordinates”

Canonical quantization ‘promotes’ classical variables to operators, e.g., p→
P and q → Q, and builds its operator Hamiltonian from H(p, q) → H(P,Q).
But which pair of classical variables should be promoted to operators. The

4



standard answer to this question is that the proper classical phase space
variables should be ‘Cartesian coordinates’, according to Dirac [2] (page 114,
in a footnote).

Enhanced quantization offers a clear connection of quantum and classical
variables. For the canonical case, the enhanced classical Hamiltonian is given
by

H(p, q) = 〈p, q|H(P,Q) |p, q〉

= 〈0|H(P + p,Q+ q)|0〉

= H(p, q) +O(~; p, q) . (13)

If, for clarity, H is a polynomial, ~ → 0, and (c) refers to the normal classical
limit, it follows thatHc(p, q) = H(p, q), i.e., the quantum function of variables
should follow the classical function of variables, which, initially, points exactly
toward the goal of choosing ‘Cartesian coordinates’ !

Phase space has no metric by which to determine Cartesian coordinates so
that may cause problems. However, Hilbert space has a metric which can be
used to examine the question. Consider the Fubini-Study metric [3] for the
canonical coherent states that evaluates the distance-squared between two
infinitesimally close ray-vectors (minimized over any simple phase), which
leads to

dσ(p, q)2 ≡ 2~[ || d|p, q〉||2 − |〈p, q| d|p, q〉|2] = ω−1dp2 + ωdq2 , (14)

and offers a flat space that already involves Cartesian coordinates, thereby
confirming Dirac’s rule!

For the case of affine variables, with q > 0 as our example, the enhanced
classical Hamiltonian is given by

H(p, q) ≡ H ′(pq, q) = 〈p, q|H′(D,Q)|p, q〉

= 〈β|H′(D + pqQ, qQ)|β〉 (15)

= H
′(pq, q) +O(~; p, q) .

Thus, with a polynomial Hamiltonian for clarity, and in the normal classical
limit (c) when ~ → 0, it follows that

H ′
c(pq, q) = H

′(pq, q) . (16)

Equation (16) establishes the fact that the quantum function of affine quan-
tum variables should be the same as the classical function of classical affine
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variables, a connection for affine quantization that is the analog of Dirac’s
initial rule for canonical quantization!

In the affine case, the Fubini-Study metric leads to

dσ(p, q)2 ≡ 2~[ || d|p, q〉||2 − |〈p, q| d|p, q〉|2] = β−1q2 dp2 + βq−2 dq2 , (17)

which describes a Poincaré half plane which has a constant negative curva-
ture, −2/β, and is geodesically complete [4]! Observe that the ‘quadratic
coefficient’ terms in (17) yield unity when they are multiplied together; this
property for affine metrics will arise again. Indeed, this feature is required
because p and q are phase space variables for which the factor dp dq is an
invariant term.

The simple expressions of the two metrics is partly due to the choice of
fiducial vectors. However, more general fiducial vectors still lead to fairly
simple metric expressions.

Do affine spaces of constant negative curvature have ‘favored coordinates’
for quantization like the Cartesian coordinates in flat space? A positive
answer to that question follows from the fact that the chosen coordinates of
the constant negative curvature space in (17) are the same coordinates in
which (16) holds true, and those coordinates also pass directly to the favored
Cartesian coordinates in flat space as q → q + (β/ω)1/2 and β → ∞.1

Note that the phase space metrics arose from a Hilbert space and not from
the phase space. Nevertheless, the metrics may be added to the phase space
if one chooses.

1.5 An example

The harmonic oscillator with the classical Hamiltonian H(p, q) = 1
2
[p2 + q2],

where (p, q) ∈ R
2, and its canonical quantization is so well known we rely

on the reader for its behavior; moreover, for this example, we concede that
canonical quantization beats affine quantization. However, the identical clas-
sical Hamiltonian which is now restricted so that q > 0, i.e., (p, q) ∈ R×R

+,
cannot be correctly quantized by canonical procedures because the proposed
operator P cannot be made self adjoint, and P † has a larger domain than P .

1Incidentally, a similar story of favored coordinates applies to three-dimensional spin
coherent states with a metric in which a spherical space with a constant positive curvature
passes to a metric in a flat space expressed in favored Cartesian coordinates as the spin
value s → ∞ [1].
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As one set of possibilities, this leads to 1
2
[p2+q2] becoming either 1

2
[P †P+Q2]

or 1
2
[PP † + Q2].2 The first version has eigenfunctions for (the positive half

of) odd Hermite functions and eigenvalues given by (1, 3, 5,· · ·)/2, while
the second version has eigenfunctions for (the positive half of) even Hermite
functions and eigenvalues given by (0, 2, 4,· · ·)/2, either form being accept-
able. Moreover, a valid quantization example could have mixed eigenvalues
such as (1, 3, 4, 6, 8, 9,· · ·)/2, which, for arbitrary mixing, implies there are
infinitely many different mixed solutions offered by canonical quantization.
Clearly, infinitely many mixed solutions is not acceptable!

Let us try affine quantization. The classical affine variables are d = pq and
q. Thus the classical Hamiltonian is now given as H ′(d, q) = 1

2
[dq−2d + q2],

and its affine quantization is given by H′(D,Q) = 1
2
[DQ−2D + Q2]. The

enhanced classical Hamiltonian is given by

H(p, q) = 1
2
〈p, q|DQ−2D +Q2|p, q〉

= 1
2
〈β|(D + pqQ)(qQ)−2(D + pqQ) + (qQ)2|β〉

= 1
2
[p2 + q2(1 +O(~)) + F (~)/q2] , (18)

where F (~) = 〈β|DQ−2D|β〉 > 0. The conventional classical (c) result is
given by

Hc(p, q) = lim
~→0

H(p, q) = 1
2
[p2 + q2] , q > 0 (19)

as expected.

1.6 Schrödinger’s representation and equation

The Schrödinger representation for Q > 0 is x > 0, where x is simply a posi-
tive real number, and for D is −(i~/2)[x(∂/∂x)+(∂/∂x)x] or −i~[x(∂/∂x)+
1/2]. Wave functions are ψ(x), which may be normalized:

∫∞

0
|ψ(x)|2 dx = 1.

For the problem at hand, Schrödinger’s equation is given by

i~ ∂ψ(x, t)/∂t = 1
2
{−~

2[x(∂/∂x) + 1/2]x−2[x(∂/∂x) + 1/2]

+m2
0 x

2} ψ(x, t) (20)

= 1
2
{−~

2∂2/∂x2 + (3/4)~2 x−2 +m2
0 x

2} ψ(x, t) .

2The choice 1

2
[P †P † + Q2] and its adjoint (both with Q > 0) are not self-adjoint and

may have complex eigenvalues. The sum of these two examples, divided by 2, is self-adjoint
and even has the correct classical limit; we leave its quantization as an exercise for the
reader.
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We will continue to focus on Schrödinger’s representation to present the
operators and relevant equations for the remaining examples.

2 A Field Theory Example

2.1 Canonical quantization

As a more complex example we suggest the classical Hamiltonian, where
x ∈ R, given by

H(π, φ) =
∫

{φ(x)π(x)2 + (∇φ)(x)2} dx , (21)

subject to the restriction that φ(x) > 0. These fields satisfy the Poisson
bracket {φ(x), π(x′)} = δ(x − x′). Canonical quantization promotes π(x)
to the operator π̂(x) and φ(x) to the operator φ̂(x) > 0, which obey the
commutator [φ̂(x), π̂(x′)] = i~ δ(x− x′)I.

These two field operators should be self-adjoint operators when smeared
with test functions. However, the positivity of φ means that π cannot be self
adjoint. This situation complicates canonical quantization, and we do not
discuss it further. We will find that affine quantization is more friendly!

2.2 Affine quantization

To proceed we introduce the classical affine field κ(x) ≡ π(x)φ(x), with
φ(x) > 0, and observe that the principal Poisson bracket is given by

{φ(x), κ(x′)} = δ(x− x′)φ(x) , (22)

with φ(x) > 0. These classical fields are promoted to operators such that the
principal commutator is

[φ̂(x), κ̂(x′)] = i~ δ(x− x′) φ̂(x) , (23)

subject to the condition that φ̂(x) > 0.

2.3 Affine coherent states

The affine coherent states for this model are given by

|π, φ〉 = e(i/~)
∫

π(x)φ̂(x) dx e−(i/~)
∫

ln[φ(x)]κ̂(x) dx |ν〉 . (24)
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The fiducial vector is formally given by

Πx [(φ̂(x)− 1) + iκ̂(x)/ν~] |ν〉 = 0 . (25)

This relation leads to 〈ν|φ̂(x)|ν〉 = 1 and 〈ν|κ̂(x)| ν〉 = 0.
As before, and for a suitable factor K, the affine coherent states generate

a resolution of unity such as

∫

|π, φ〉〈π, φ| Πx dπ(x) dφ(x)/2π~K = I , (26)

and for the present set of coherent states, the Fubini-Study metric becomes

dσ(π, φ)2 ≡ 2~
∫

[ || d|π(x), φ(x)〉||2 − |〈π(x), φ(x)| d|π(x), φ(x)〉|2] dx

=
∫

[(ν~)−1φ(x)2 dπ(x)2 + (ν~)φ(x)−2 dφ(x)2 ] dx . (27)

Evidently, this affine metric is an infinite set of separate constant negative
curvature spaces, specifically −2/ν~, for every value of x. It is also note-
worthy that the product of the coefficients of the two differential terms, i.e.,
coefficients of dπ(x)2 and dφ(x)2, is unity for all x.

2.4 Enhanced classical operators

Following the single degree of freedom model, it follows that

〈π, φ|φ̂(x)|π, φ〉 = 〈ν|φ(x) φ̂(x)|ν〉 = φ(x) , (28)

and

〈π, φ|κ̂(x)|π, φ〉 = 〈0, φ|π(x) φ̂(x))|0, φ〉

= 〈ν|π(x)φ(x)φ̂(x)|ν〉 = π(x)φ(x) . (29)

The enhanced classical Hamiltonian for this model is given by

H(π, φ) = 〈π, φ|{
∫

[κ̂(x)φ̂(x)−1κ̂(x) + (∇φ̂)(x)2 ] dx }|π, φ〉 . (30)

This relation ‘reduces’ so that

H(π, φ) =
∫

{〈ν|[κ̂(x) + π(x)φ(x)φ̂(x)][φ(x)φ̂(x)]−1

×[κ̂(x) + π(x)φ(x)φ̂(x)] + (∇[φ(x)φ̂(x)])2}|ν〉} dx . (31)
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Finally, we find that

H(π, φ) =
∫

[φ(x)π(x)2 + (∇φ)(x)2(1 +O(~)) +G(~)/φ(x)] dx , (32)

where G(~) = 〈ν|κ̂(x)φ̂(x)−1κ̂(x)|ν〉 > 0 and G(~) ∝ ~
2. The truly classical

expression becomes

Hc(π, φ) = lim
~→0

H(π, φ) =
∫

[φ(x)π(x)2 + (∇φ)(x)2] dx , (33)

with φ(x) > 0, as expected.

2.5 Schrödinger’s representation and equation

The Schrödinger representation for the principal operators is given by φ̂(x) =
φ(x) > 0 , and

κ̂(x) = −i(~/2)[φ(x)(δ/δφ(x)) + (δ/δφ(x))φ(x)] . (34)

The Hilbert state vectors are given as functionals such as Ψ(φ), and are
formally normalized by

∫

|Ψ(φ)|2 Dφ = 1. Schrödinger’s dynamical equation
is now given by

i~ ∂Ψ(φ, t)/∂t = {
∫

[κ̂(x)φ(x)−1κ̂(x) + (∇φ)(x)2] dx}Ψ(φ, t) . (35)

Regularization, by limiting the number of variables to a large but finite
number of variables, enables such expressions to be investigated more clearly.

3 Quantum Gravity

The present paper is intended to be an introductory story to a more complete
and higher level version of the study of quantum gravity that is available in
[5]. That article offers more complex examples and the reader may wish
to start with the more accessible story offered in the present article. In our
present study we emphasize the importance of choosing an affine quantization
rather than a conventual canonical quantization. In so doing, we will not offer
here a complete story of quantizing gravity but rather focus on some basic
issues; to see a more complete story, the article [5] can be recommended.

One of the most difficult problems in quantum gravity deals with the
choice of classical variables picked to promote to quantum operators. To
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briefly see that problem up close we first choose the classical phase space
version of the gravitational action functional described in [6]. In particular,
we introduce

A =
∫ T

0

∫

{−gabπ̇
ab −NH −NaHa} d

3x dt . (36)

In this expression we have the symmetric-index metric field gab(x, t), which
is constrained such that as a 3×3 matrix it is strictly positive as denoted by
{gab(x, t)} > 0, along with the symmetric-index momentum field πab(x, t)
(which has a time derivative here). We concentrate on a 3-dimensional
space and indices a, b, · · · = 1, 2, 3 which are automatically summed in pairs.
The positive metric tensor leads to the determinant g(x, t) ≡ det[gab(x, t)]
which will also be positive, i.e., g(x, t) > 0 for all (x, t). The other terms
are Ha(x, t) = πb

a |b(x, t), which is the diffeomorphism constraint and in-
volves a covariant derivative of the mixed-index, momentum tensor given
by πb

a(x, t) ≡ πbc(x, t) gac(x, t). This mixed-index tensor will be a very im-
portant variable in our analysis, and we name it the momentric field which
stems from themomentum and metric components. The Hamiltonian density
(at fixed time) is given by

H(x) = g(x)−1/2[πa
b (x)π

b
a(x)−

1
2
πa
a(x)π

b
b(x)] + g(x)1/2 (3)R(x) , (37)

where (3)R(x) is the spatial, three-dimensional scalar curvature. The remain-
ing terms, Na(x, t) and N(x, t), are Lagrange multipliers which enforce the
set of four constraints, namely Ha(x, t) = 0 and H(x, t) = 0 for all (x, t).

In a nutshell, this survey outlines the various quantities that determine
the properties of classical gravity.

3.1 Basic variables

The phase space variables (at a fixed time) are the metric field gab(x) and
the momentum field πcd(x). These variables have a Poisson bracket given
by {gab(x), π

cd(x′)} = 1
2
δ3(x − x′)[δcaδ

d
b + δdaδ

c
b ]. With the requirement that

the proposed self-adjoint metric operators satisfy {ĝab(x)} > 0, as well as
ĝ(x) ≡ det[ĝab(x)] > 0, it is impossible to ensure that any proposed momen-
tum operator π̂cd(x) could become self adjoint. This situation means that
canonical quantization is difficult if not appropriate. To remedy this situa-
tion, different variables have been chosen as new, basic canonical operators.
That may resolve the mathematical issues, but the new variables, which may
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involve aspects of the metric and/or momentum, would most likely fail the
implicit requirement of being ‘Cartesian coordinates’.3

Let us now entertain an affine point of view. The classical momentric
field, πa

b (x) ≡ πac(x) gbc(x), and the metric field, gab(x), become the new
basic variables. These two variables have a joint set of Poisson brackets
given by

{πa
b (x), π

c
d(x

′)} = 1
2
δ3(x− x′)[δad π

c
b(x)− δcbπ

a
d(x)] ,

{gab(x), π
c
d(x

′)} = 1
2
δ3(x− x′)[δcagbd(x) + δcbgad(x)] , (38)

{gab(x), gcd(x
′)} = 0 .

Unlike their canonical version, these Poisson brackets suggest that they are
equally valid if gab(x) → −gab(x), and thus there could be separate realiza-
tions of each choice.

Passing to operator commutators, promoted from the Poisson brackets,
we are led to consider

[π̂a
b (x), π̂

c
d(x

′)] = i 1
2
~ δ3(x− x′)[δad π̂

c
b(x)− δcb π̂

a
d(x)] ,

[ĝab(x), π̂
c
d(x

′)] = i 1
2
~ δ3(x− x′)[δcaĝbd(x) + δcb ĝad(x)] , (39)

[ĝab(x), ĝcd(x
′)] = 0 .

Indeed, there are two irreducible representations of the metric tensor opera-
tor: one where the matrix {ĝab(x)} > 0, which we accept, and one where the
matrix {ĝab(x)} < 0, which we reject. After being smeared with suitable test
functions, the result is that both the metric and the momentric tensors can
be self-adjoint operators, and the metric operators will satisfy the required
positivity requirements. It appears that affine quantization has accomplished
something that canonical quantization could not do!

Of course, critics may suggest that these operators may not have been
promoted from favorable classical coordinates. In the next subsection we
will show that the basic affine gravity operators are indeed promoted from
favored coordinates, just like the earlier examples in this paper.

3An aside: By analogy, the present situation would be like quantizing an harmonic os-
cillator, which normally maps the classical Hamiltonian 1

2
[p2+ q2] to the quantum Hamil-

tonian 1

2
[P 2+Q2]. Instead, someone first changes the classical canonical coordinates, e.g.,

p = p̄/q̄2 and q = q̄3/3, and next, takes the classical Hamiltonian H̄(p̄, q̄) expressed in the

new variables, which are no longer ‘Cartesian’, and then promotes it directly to ˆ̄H(P̄ , Q̄).
The new operators would satisfy [Q̄, P̄ ] = i~I, and likely be self adjoint, but clearly the
spectrum of the Hamiltonian operator would be different and thus the physics would be
different.

12



3.2 Affine coherent states for gravity

We choose the basic affine operators to build our coherent states for gravity;
specifcally,

|π, η〉 = e(i/~)
∫

πab(x)ĝab(x) dx e−(i/~)
∫

ηa
b
(x)π̂b

a(x) dx |α〉 [= |π, g〉]. (40)

The fiducial vector |α〉 has been chosen so that the matrix η(x) ≡ {ηab (x)}
enters the coherent states solely in the form given by

〈π, η|ĝab(x)|π, η〉 = [eη(x)/2]ca 〈α|ĝcd(x) |α〉 [e
η(x)/2]db ≡ gab(x) . (41)

A companion relation is given by

〈π, η|π̂a
b (x)|π, η〉 = πac(x) gcb(x) ≡ πa

b (x) , (42)

which involves the metric result from (41). These relations permit us to
rename the coherent states from |π, η〉 to |π, g〉.

As a consequence, the inner product of two gravity coherent states is
given by

〈π′′, g′′|π′, g′〉 = exp
{

−2
∫

b(x) d3x (43)

× ln {
det{1

2
[g′′ab(x) + g′ab(x)] + i 1

2~
b(x)−1[π′′ab(x)− π′ab(x)]}

det[g′′ab(x)]1/2 det[g′ab(x)]1/2
}
}

.

Here the scalar density function b(x) > 0 ensures the covariance of this
expression.

To test whether or not we have ‘favorable coordinates’ we examine, with
a suitable factor J , the Fubini-Study metric, given by

dσ(π, g)2 ≡ J~[ ‖ d|π, g〉‖2 − |〈π, g| d|π, g〉|2 ]

=
∫

{(b(x)~)−1gab(x) gcd(x) dπ
bc(x) dπda(x) (44)

+(b(x)~) gab(x) gcd(x) dgbc(x) dgda(x)} d
3x .

This metric, like the one in the previous section, represents a multiple family
of constant negative curvature spaces. The product of coefficients of the
differential terms is proportional to a constant rather like the previous affine
metric stories. Based on the previous analysis we accept that the basic affine
quantum variables have been promoted from basic affine classical variables.
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3.3 Schrödinger’s representation and equation

The Schrödinger representation is given by ĝab(x) = gab(x) with {gab(x)} > 0,
as well as ĝ(x) = g(x) = det[gab(x)] > 0,

π̂a
b (x) = −1

2
i~[gbc(x) (δ/δgac(x)) + (δ/δgac(x)) gbc(x)] , (45)

and a state functional is given by Ψ({g}), the argument referring to the whole
metric tensor rather than just the determinant. A normalization is formally
given by

∫

+
|Ψ({g})|2D{g} = 1, where the subscript + limits the integration

to positive metric tensors, {gab(x)} > 0.
Schrödinger’s equation is given by

i~ ∂Ψ({g}, t)/∂t = {
∫

[ π̂a
b (x) g(x)

−1/2 π̂b
a(x)−

1
2
π̂a
a(x) g(x)

−1/2 π̂b
b(x)

+g(x)1/2 (3)R(x) ] d3x } Ψ({g}, t) . (46)

We emphasize that solutions of this equation involve smooth metrics gab(x)
for all elemants at each value of x; this ensures the finiteness of the metric
derivatives at every point of space. This result is at odds with certain different
formulations of quantum gravity.

It is noteworthy that π̂a
b (x) g(x)

−1/2 = 0, which implies that the Hamil-
tonian density in (46) is given by

H
′(π̂a

b (x), gab(x))

= g(x)−1/2[π̂a
b (x)π̂

b
a(x)−

1
2
π̂a
a(x)π̂

b
b(x)] + g(x)1/2 (3)R(x) , (47)

and, when viewed as a constraint, leads to physical Hilbert space vectors
Φ({g}) that satisfy

0 = {[π̂a
b (x)π̂

b
a(x)−

1
2
π̂a
a(x)π̂

b
b(x)] + g(x) (3)R(x)}Φ({g}) . (48)

A crude way to seek solutions to this equation could be to choose a smooth
physical Hilbert state Φ({g}) function and use it to isolate (3)R(x), followed
by variations to make it close to the proper value of (3)R(x). Moreover,
if Φ({g}) is a solution so is Φ′({g}) = Φ({g})Πx|g(x)|

−1/2, modulo proper
normalization.

Of course, these expressions are made more manageable with suitable
regularization such as used in [5].
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4 Summary, and Outlook

The equations above are fundamental to quantum gravity. Their validity for
a large spatial realm implies the validity of every arbitrarily small region of
space, as well as the validity of the quantum Hamiltonian density H(x, t). In
a certain sense, the difficulty of defining the quantum Hamiltonian density
function is the most difficult hurdle to overcome in any quantum gravity
study. If a suitable examination of (48) reveals further positive results, then
the doors are open to complete the study of quantum gravity. The ingredients
of a successful quantization include enforcing the classical constraints, with
proper treatment of second-class constraints if there are any, reducing the
kinematical Hilbert space to the all-important physical Hilbert space, and
calculating some issues of importance.

To go further there are a number of analytical suggestions available in
[5]. No doubt there are numerous other procedures in the literature that can
flesh out one or another approach to advance the story of quantizing gravity.
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