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time, generalizing a model that has been previously proposed by Aschieri and Castellani.

The twist deformation entails an enlargement of the gauge group, and leads to the introduc-

tion of new gravitational degrees of freedom. In particular, the tetrad degrees of freedom

must be doubled, thus leading to a bitetrad theory of gravity. The model is shown to exhibit

new duality symmetries. The introduction of the Holst term leads to a dramatic simplifica-

tion of the dynamics, which is achieved when the Barbero-Immirzi parameter takes the value

β = −i, corresponding to a self-dual action. We study in detail the commutative limit of the

model, focusing in particular on the role of torsion and non-metricity. The effects of space-

time noncommutativity are taken into account perturbatively, and are computed explicitly

in a simple example. Connections with bimetric theories and the role of local conformal

invariance in the commutative limit are also explored.
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INTRODUCTION

Spacetime noncommutativity may represent one of the key features characterizing the geometric

structure of spacetime at the Planck scale, thus marking a radical departure from the standard

description of spacetime as a Riemannian manifold. The need to go beyond the classical concept

of a spacetime manifold is shared by several different approaches to quantum gravity [1–6]. From a

classical point of view, the extension of the framework of Riemannian geometry has been considered

in some classes of modified gravity theories [7–9]. Noncommutative gravity models are being

investigated since many years and from several perspectives [10–24]. The crucial step is to build a

dynamical theory of gravity which is consistent with the particular noncommutative structure one

assumes, and which is able to recover general relativity in the regime where it has been tested.

In the present paper we elaborate on a noncommutative generalization of the Palatini action

for general relativity which has been originally proposed in [11] and further developed in [12]. In

the following, we consider the full Palatini-Holst action, within the same geometric framework.

The noncommutative structure is obtained via a twist-deformation of the differential geometry

[17, 25, 26], which allows to build from first principles a modified theory of gravity having Planck

scale modifications naturally built-in. There are two independent sources of new physical effects

that may arise in such theories. Firstly, there are correction terms that become relevant close

to the noncommutativity scale; in gravity models based on a twist-deformation, such as those in

Refs. [11, 27–29] and the one considered in this work, such corrections are readily obtained from an

asymptotic expansion of the twist operator and lead to higher-derivative interactions. Secondly, the

commutative limit will be in general a modified theory of gravity, which extends general relativity

with new degrees of freedom and extra terms in the action. This is indeed the case for the model

presented in this work, where the introduction of extra fields is required for the consistency of the

noncommutative theory. Such degrees of freedom survive in the commutative limit, and may thus

have an impact on the behaviour of the gravitational interaction on large scales.

Following [11], the theory we consider is formulated as a gauge model for a suitable exten-

sion of the Lorentz group, with twist-deformed spacetime. Noncommutativity of the algebra
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of fields defined over spacetime is therefore achieved through a so-called twist operator F =

exp
(
− i

2θ
αβXα ⊗Xβ

)
, such that the pointwise product f · g ≡ µ ◦ (f ⊗ g) is replaced by a star-

product f ⋆ g = µ ◦ F−1(f ⊗ g). The parameters θαβ determine the noncommutativity scale.

Due to noncommutativity, the gauge group must be centrally extended in order for the gauge

parameters to close under the Lie bracket. This is typical for noncommutative gauge theories and

represents a non-trivial consistency requirement, which constrains the symmetry of the theory. As

a result, the Lorentz group is here centrally extended to GL(2,C). The ensuing action functional is

shown to be invariant under diffeomorphisms as well as ⋆-diffeomorphisms. Because of the enlarged

symmetry, new degrees of freedom have to be added to the model. Specifically, the Lorentzian

spin connection must be replaced by a gl(2,C) gauge connection. Similarly, the tetrad must be

replaced by a bitetrad. In Ref. [11] those extra degrees of freedom are assumed to vanish in the

commutative limit, where the standard Palatini action is recovered; this is achieved by imposing

extra constraints. In subsequent papers the problem of finding solutions has been further addressed,

mainly through the Seiberg-Witten map, or by perturbative expansion in the noncommutativity

parameters [12, 29–34]. A generalization of the model entailing dynamical noncommutativity was

studied in Ref. [27], where the vector fields Xα entering the definition of the twist are promoted to

dynamical variables.

Our model contains a new term, which is obtained as a twist-deformation of the Holst term [35].

The coupling associated to it is the (inverse) Barbero-Immirzi parameter. The undeformed limit

of the Holst term is known to be topological if there are no sources of torsion, in which case it does

not affect the field equations. Nonetheless, such term becomes dynamically relevant when torsion

is taken into account. In the commutative theory, torsion is indeed non-vanishing when spinor

fields are coupled to the gravitational field1; the Barbero-Immirzi parameter β then determines

the strength of an effective four-fermion interaction [36, 37]. However, when there are no sources

of torsion (e.g. in vacuo), the commutative theory is exactly equivalent to general relativity. This

is not the case for the noncommutative extension of the model: in fact, as a consequence of the

bimetric nature of the theory, torsion is in general non-vanishing even in vacuo. A further extension

of the Holst action, obtained by promoting the parameter β to a dynamical field (scalarization)

was first considered in Ref. [38], where it was hinted that it could provide a natural mechanism for

k-inflation. The consequences of a dynamical β have been further examined in Ref. [39], whereas

the running of β in the context of Asymptotic Safety was studied in Ref. [40].

The Barbero-Immirzi parameter β is well-known for playing an important role in loop quan-

1Minimally coupled fermions to gravity in the noncommutative Palatini theory were studied in Ref. [11, 12].
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tum gravity, where it enters the definition of the Ashtekar-Barbero variables [41–43]. In the early

formulation of the theory it was assumed to take either of the two values β = ∓i. Such values

correspond, respectively, to self-dual and anti-self dual spin connections [41]. Self-dual variables

have also been considered more recently in loop quantum cosmology models in Refs. [44]. The La-

grangian formulation of the Palatini-Holst theory with self-dual variables was obtained in Refs. [45].

Such theory is inherently complex and suitable reality conditions must be imposed on solutions to

the field equations. We shall see in this work that the noncommutative extension of the model is

entirely analogous in this regard. More specifically, for β = ∓i the noncommutative Palatini-Holst

theory only depends on a self-dual (resp. anti self-dual) gl(2,C) gauge connection. The notion

of duality in this context is closely related to the chirality operator, and reduces to the standard

Hodge dual for the Lorentz component of the gauge connection. The choice of self-dual variables

turns out to be particularly convenient to study the dynamics in our model since it reduces the

number of extra dynamical degrees of freedom, thus leading to a considerable simplification in the

equations of motion. In relation to the original model presented in Ref. [11] a self-dual connection

was already considered in Ref. [32], although the self-duality request was limited to the Lorentz

component of the gauge connection, as a working assumption to find solutions to the equations of

motion. This is to be contrasted with self-duality of the full gl(2,C) gauge connection, which is

naturally enforced in our model for β = −i.

An interesting feature of noncommutative extensions of general relativity such as the one we

consider here is the much greater richness of the underlying geometric structure, which survives in

the commutative limit. In fact, as we will discuss more in detail later, such theories are generally

bimetric, featuring both torsion and non-metricity. Bimetric theories of gravity are particularly

interesting since they can be used to formulate ghost-free massive theories of gravity (reviewed in

Refs. [46]); their applications in cosmology have also been extensively studied, see e.g. Refs. [47].

Bimetric (commutative) theories with gauge group GL(2,C) have been previously considered in

Ref. [48]. Such symmetry group implies in particular invariance under local Weyl rescalings; this

feature is recovered in our model in the commutative limit. The framework we consider is also

a generalization of that of metric-affine theories [8], where the metric and the affine connection

(or, equivalently, the tetrad and the spin connection) are regarded as independent dynamical

variables, thus allowing for non-vanishing torsion and non-metricity. In our case the independent

dynamical variables are the bitetrad and the gl(2,C) gauge connection. The physical properties

and the possibility of detecting such departures from Riemannian geometry are discussed e.g. in

Refs. [7] for torsion and in Refs. [49] for non-metricity. Torsion is also particularly relevant for its
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potential role in Lorentz violation [50]. A particular type of non-metric connection, namely the

Weyl connection, can be used to formulate extended theories of gravity that are locally conformally

invariant and without higher-derivatives [9]. This type of non-metricity is naturally realized in the

model considered in this work; indeed, we will show that one of the components of the gl(2,C)

connection can be identified with the Weyl one-form.

Let us outline the main analysis and results of our study. We provide a detailed analysis of the

dynamics and symmetries of the noncommutative Palatini-Holst theory in the pure gravity case.

Fixing the value β = −i for the Barbero-Immirzi parameter, we obtain the equations of motion for

the model with self-dual variables. This choice leads to a dramatic simplification in the dynamics

and reduces the number of extra degrees of freedom required by the noncommutative deformation.

We examine the commutative limit of the theory and solve the equations of motion for the gauge

connection, showing that both torsion and non-metricity will be non-vanishing in general. This

is essentially due to the fact that we are dealing with a bimetric theory. The non-metricity is of

the Weyl type and is related to the extra component in the gauge connection. The gravitational

field equations in this limit turn out to be equivalent to Einstein-Cartan equations, with the field

strength of the Weyl vector acting as a source for torsion. We perform an asymptotic expansion of

the equations of motion up to second order in the deformation parameters θαβ. In order to better

elucidate the physical implications of the noncommutative corrections, we adopt a perturbative

scheme to solve the equations. We then determine the perturbative corrections to a very simple

solution of the model, in which the two tetrads are related by a constant scale transformation. In

this particular case, the commutative limit yields vanishing torsion and vanishing field strength for

the Weyl vector. However, our results show that the noncommutative corrections would in general

give rise to a non-vanishing torsion to first order in θαβ.

The model exhibits three different kinds of discrete symmetries (dualities), which are essentially

due to its chiral nature. One of them is an obvious generalization of the Hodge duality of the

Palatini-Holst action. The remaining two dualities are new features of this model, and crucially

hinge on the doubling of the tetrad degrees of freedom. This is particularly interesting in relation to

the general framework of double field theory [51], and may pave the way for further investigations

of non-geometric structures in noncommutative gravity models [52].

The remainder of the paper is organized as follows. In Section 1, we review the formulation of

Palatini-Holst action in the tetrad formalism, stressing the role of the Lorentz group as an internal

gauge symmetry. We discuss the self-dual and anti self-dual theories obtained for β = −i, +i ,

respectively. We start in Section 2 by reviewing deformed gauge transformations and discuss the
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new gravitational degrees of freedom. Then we adapt the formalism introduced in Ref. [11] to

the Palatini-Holst action. We establish a relation with bimetric theories of gravity and examine

the possibility of introducing bitetrad interactions. Higher-order invariants are also discussed.

Section 3 is devoted to the self-dual noncommutative case. It is shown that some well-known

results concerning the decomposition of a gauge connection into its self-dual and anti self-dual

components continue to hold in the noncommutative case, thereby showing that the anti-self dual

component of the gauge connection is projected out for β = −i. In Section 3 3.1, we derive the

equations of motion from the self-dual action. In Section 3 3.2, we analyse the symmetries of

the model. We show that, besides being invariant under diffeomorphisms, ⋆-diffeomorphisms, and

deformed GL(2,C) gauge transformations, the noncommutative Palatini-Holst theory turns out to

be invariant also under duality transformations; we identify three different types of such dualities.

Our focus, in Section 4, is on the dynamics of the self-dual theory in the commutative limit. We

solve the equations of motion for the gauge connection, showing that torsion will be in general non-

vanishing. We show that the gravitational field equations obtained from the model can be recast

in a form that is similar to Einstein-Cartan theory. The extra component in the gl(2,C) gauge

connection is identified with the Weyl one-form and acts as a source for torsion. In Section 5, we

expand the noncommutative equations of motion to second order in the deformation parameters.

In Section 5 5.1, we adopt a perturbative scheme to solve the equations of motion for the gauge

connection in the case of conformally related tetrads, showing that noncommutativity is a source

of torsion to first order in θαβ. In Section 6 we discuss further extensions of the model. Finally, in

Section 7, we highlight our concluding remarks. Five appendices containing technical details and

review material complete the paper.

Notation and Conventions. We use capital Latin letters to denote internal Lorentz indices. Small

Latin letters denote spacetime tensor indices in Penrose abstract index notation. Greek indices

will be used to label non-dynamical background structures (e.g. the fields Xα and the parameters

θαβ) introduced by the twist-deformation. Moreover, given a Lie group G, we shall denote with

g its Lie algebra. We will be often working with the universal covering SL(2,C) of the Lorentz

group SO(1, 3), as well as with SO(1, 3) itself; to keep the notation as simple as possible we shall

identify the two. The hatted objects Ĝ and ĝ will indicate the (infinite dimensional) group and

the algebra of gauge transformations, respectively; e.g. Ĝ = {Λ : M → G}, where M indicates the

spacetime manifold and Λ is a smooth map. Our metric convention for the Minkowski metric will

be η = diag(+,−,−,−). The conventions adopted for the Riemann and the torsion tensors are
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given in Appendix E.

1. THE PALATINI-HOLST ACTION

It is well known that the Einstein-Hilbert action for general relativity can be given a first order

formulation, the Palatini action, where there is an internal ̂SO(1, 3) gauge symmetry. The internal

space is specified by the tetrad frame eIa. The theory is clearly also invariant under the group of

spacetime diffeomorphisms Diff(M), where M is the spacetime manifold. The Palatini action can

be generalized by supplementing a new term, known as the Holst term [35], which does not have

any effect on the equations of motion as long as torsion vanishes. In fact, in the torsion-free case,

such term plays for the classical theory an analogue role to topological contributions in Yang-Mills

theories. However, the situation is different when torsion is non vanishing [36].

Let us review the Palatini-Holst theory in the commutative case. The action reads as

S[e, ω] = −
1

16πG
PIJKL

∫
eI ∧ eJ ∧ FKL(ω) , (1.1)

where eI are tetrad one-forms, and the field strength F IJ is the gauge curvature of the spin

connection one-form ω

F IJ(ω) = dωIJ + ωIK ∧ ω J
K . (1.2)

PIJKL denotes the following tensor in the internal space

PIJKL =
1

2
εIJKL +

1

β
δIJKL , (1.3)

where δIJKL is the identity on the space of rank-two antisymmetric tensors in the internal space

δIJKL = δI[KδJL] . (1.4)

The Palatini action is recovered from (1.1) for 1/β = 0. The β parameter is complex-valued and

is known as the Barbero-Immirzi parameter [42, 43].

When there are no sources of torsion (e.g., in the pure gravity case), the dynamics which follows

from the Holst action is equivalent to the standard Palatini theory2. In fact, this is a consequence

of the existence of a torsion topological invariant, namely the Nieh-Yan invariant [54]

d(eI ∧ TI) = T I ∧ TI − eI ∧ eJ ∧ FIJ . (1.5)

2This statement holds true only in the classical theory. In fact, in loop quantum gravity the Barbero-Immirzi parameter

gives rise to a quantization ambiguity which affects the spectrum of geometric operators [53].
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Thus, in the torsion-free case, the dynamics is not affected by the particular value of the Barbero-

Immirzi parameter, which can be a priori an arbitrary complex number.

The action (1.1) can also be recast in the following form, by explicitly writing spacetime tensor

indices3

S[e, ω] =
1

16πG

(∫
d4x e eaIe

b
JF

IJ
ab −

1

β

∫
d4x e eaIe

b
J ∗H F IJ

ab

)
, (1.6)

where ∗H denotes the Hodge star operator with respect to the internal space. The Holst dual of

the field strength is thus defined as

∗H F IJ =
1

2
εIJKLF

KL . (1.7)

The field strength of the gauge connection ωIJ is related to the Riemann curvature of the corre-

sponding affine connection via

F IJ
ab = R IJ

ab . (1.8)

In analogy with Yang-Mills gauge theories, we can reformulate the theory in index-free form by

introducing Lie algebra valued differential forms. Following [11] we use the spinorial representation

of the Lorentz group, generated by the commutators of Dirac gamma matrices (see Appendix B for

useful formulae concerning the Clifford algebra). Thus, the Lie algebra valued connection one-form

reads as

ω =
1

2
ωIJΓIJ , (1.9)

with ΓIJ = i
4 [γI , γJ ], while its curvature two-form (field strenght) is given by

F (ω) =
1

2
F IJ(ω)ΓIJ = dω − iω ∧ω . (1.10)

Moreover, tetrads are associated to vector valued one-forms [11] according to

e = eIγI (1.11)

The definition (1.10) of the field strength can be easily checked to be completely equivalent to the

standard one represented by Eq. (1.2). Then the action can be recast in the form

S[e,ω] = −
i

32πG

∫
Tr

[
e ∧ e ∧

(
∗HF +

1

β
F

)]
(1.12)

3When the spin connection is on-shell, the action (1.6) reduces to a functional of the metric gab = ηIJe
I
ae

J
b given

by S[gµν ] = − 1

16πG

∫
d4x

√
−g R. The overall sign factor is chosen consistently with our convention for the metric

signature.
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where Tr[. . . ] represents the trace over the Lie algebra and use has been made of the following

identity (cf. Ref. [11])

∗H F = −iF γ5 . (1.13)

The behaviour of dynamical fields under gauge transformations Λ ∈ ̂SO(1, 3), representing

Lorentz transformations in the internal space, is the following

e → ΛeΛ−1 (1.14)

ω → ΛωΛ−1 + iΛdΛ−1 (1.15)

F → ΛFΛ−1 (1.16)

with the gauge transformation Λ given by

Λ(x) = exp(−iǫ(x)) , with ǫ(x) =
1

2
ǫIJ(x)ΓIJ . (1.17)

The action (1.12) is invariant under gauge transformations (1.14)–(1.16). Expanding (1.14)–(1.16)

to first order in the gauge parameter ǫ, we have the following infinitesimal form of gauge transfor-

mations

e → e+ i[e, ǫ] (1.18)

ω → ω − (dǫ− i[ω, ǫ]) (1.19)

F → F + i[F , ǫ] . (1.20)

In our analysis of the dynamics of the noncommutative generalization of the Holst action in the

following sections, a key role will be played by self-duality of the gauge connection. The self-dual

Palatini action was first studied in Ref. [45], where it was used to derive Ashtekar’s Hamilto-

nian formulation of general relativity [41, 55] starting from a Lagrangian formulation (see also

Refs. [56, 57]). In the context of noncommutative Palatini gravity, it has been already consid-

ered in Ref. [32] as a simplifying assumption in order to find solutions for the model proposed in

Ref. [11]. In the Palatini-Holst theory, a theory of a self-dual gauge connection is naturally obtained

by choosing a particular value for the Barbero-Immirzi parameter β. In the next section, where

the noncommutative extension of the Holst action is proposed, self-duality will result in a powerful

simplification of the model, which will allow for a systematic study of the dynamics and solutions

of the equations of motion. Let us therefore briefly review the definition and fix the notation.
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A gauge connection is said to be self-dual (resp. anti self-dual) if it is a solution to the eigenvalue

equation4

∗H ω± = ±iω± , (1.21)

with ∗Hω := −iωγ5. An analogous definition holds for for the field strength. In particular, we

can decompose the gauge connection and the field strength into their self-dual and anti self-dual

parts as ω = ω+ + ω− , F = F+ + F− . Thus, it is possible to show that the self-dual (resp.

anti self-dual) part of the field strength is given by the field strength of the self-dual (resp. anti

self-dual) part of the gauge connection

F±(ω) = dω± − iω± ∧ ω± = F±(ω±). (1.22)

The projectors onto the self-dual (anti self-dual) part are5

P± =
1

2
(1∓ γ5) (1.23)

with usual properties such as (P±)
2 = P±, P+ + P− = 1, P+P− = P−P+ = 0. Note that

they coincide with the projectors onto the left-handed and the right-handed components of a Dirac

spinor, respectively. For instance, the self-dual part of the gauge connection is given by

ω+ = P+ω P+ = (P+)
2
ω =

1

2
(ω − γ5ω) =

1

2
(ω − i ∗H ω) . (1.24)

A similar relation holds for the anti self-dual connection. In the second equality we used the fact

that γ5 commutes with the generators of the Lorentz group. The components of ω± in the internal

space read

ωIJ
± =

1

2

(
ωIJ ∓

i

2
εIJKLω

KL

)
. (1.25)

Introducing the projectors onto the space of self-dual and anti self-dual two-forms (with regard to

the internal space)

p± IJ
KL =

1

2

(
δIJKL ∓

i

2
εIJKL

)
, (1.26)

equation (1.25) can be rewritten as

ωIJ
± = p± IJ

KLω
KL . (1.27)

4We recall that ∗2H = −1 on a four dimensional manifold with Lorentzian signature.
5The ± subscripts for the projectors here refer to the sign of the eigenvalues of the Hodge star operator ∗H. With our

conventions, the corresponding eigenvalues of the chirality operator γ5 have the opposite sign, see Appendix B.
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The tensors p± IJ
KL can thus be regarded as the components counterpart of the operators P± . It is

worth remarking the correspondence between self-duality and chirality, which is made transparent

by the spinorial representation of the connection one-form (cf. Ref. [58]).

Having introduced the definition and some basic properties of self-dual connections, we come

back to the action (1.12). We observe that for β = −i the anti self-dual component of the spin

connection is projected out. Thus the action reduces to a functional of the tetrad and the self-dual

connection only

S[e,ω+] = −
i

32πG

∫
Tr [e ∧ e ∧ (∗HF + iF )] = −

i

16πG

∫
Tr

[
e ∧ e ∧

(
∗H F+(ω+)

)]
. (1.28)

Note that this is formally equal to twice the Palatini action for a self-dual connection. Similarly,

for β = +i, a theory of an anti self-dual connection is obtained. For definiteness, in the rest of

this work we will only be concerned with self-dual connections, although it is evident that similar

results can be obtained in the anti self-dual case.

Some additional remarks on the action (1.28) are now in order. Although it is formally equivalent

to the action for Palatini theory, the self-duality of the connection makes it inherently complex.

Thus, the solution space of the theory is much enlarged. Equivalence with the standard Palatini

theory is then attained only after imposing suitable reality conditions. More precisely, one must

require that that the tetrad eI be real, and that ωIJ
+ be the self-dual part of a real connection

one-form

ωIJ
+ =

1

2

(
ωIJ − i ∗H ωIJ

)
. (1.29)

Equation (1.29) is equivalent to

ℜ{ωIJ
+ } = ∗H

(
ℑ{ωIJ

+ }
)
. (1.30)

2. NONCOMMUTATIVE EXTENSION

Noncommutative field theories are defined in terms of fields which are elements of a noncom-

mutative algebra over space-time, with a noncommutative, associative product. This is generally a

deformation of a commutative algebra, which is recovered when the noncommutativity parameter

is set to zero. It is a general feature of noncommutative gauge theories that the Lie algebra of the

structure group has to be extended in order for the algebra of gauge parameters to close. This is

also the case for the Lorentz algebra of noncommutative gravity, as it has already been shown in

[11]. Let us shortly review the derivation.
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2.1. Deformed gauge symmetry and symmetry enlargement

Ordinary gauge theories with gauge group Ĝ are modified by replacing the pointwise product of

fields with a noncommutative product indicated with ⋆. Here we use the noncommutative product

defined in Eq. (A.1), which is based on an Abelian twist. We refer to the Appendix A and to

Ref. [11] for more details. The resulting field theories are invariant under the deformed gauge

transformations

φ(x) −→ g⋆(x) ⊲⋆ φ(x) = exp⋆
(
i ǫi(x)Ti

)
⊲⋆ φ(x) , (2.31)

where φ(x) denotes a generic field in the theory, while ⊲⋆ indicates generically the action of the

group. As an illustrative example, for non-Abelian gauge groups in their fundamental represen-

tation, the group action ⊲⋆ entails a combination of matrix multiplication with the ⋆-product. In

equation (2.31) Ti are the Lie algebra generators, Ti ∈ g, and the gauge group elements g⋆(x) are

defined as star exponentials6

g⋆(x) = exp⋆
(
i ǫ(x)iTi

)
= 1 + iǫi(x)Ti −

1

2
(ǫi ⋆ ǫj)(x)TiTj + . . . (2.33)

At the infinitesimal level we have then7

φ(x) −→ φ(x) + i(ǫ ⊲⋆ φ)(x) , (2.34)

with

(ǫ ⊲⋆ φ)(x) =
(
ǫj ⋆ (Tj ⊲ φ)

)
(x) (2.35)

and Tj is in the appropriate representation to the field φ.

The deformed Lie bracket reads

[ǫ1, ǫ2]⋆(x) = (ǫ1 ⋆ ǫ2)(x)− (ǫ2 ⋆ ǫ1)(x) , (2.36)

Consistency of the theory demands that the algebra of infinitesimal gauge transformations must

close under the ⋆-commutator defined by Eq. (2.36). However, it is evident that in noncommutative

field theory algebra closure is not guaranteed, since we have from the definition (2.36)

(ǫ1 ⋆ ǫ2)(x)− (ǫ2 ⋆ ǫ1)(x) =
1

2

(
(ǫi1 ⋆ ǫ

j
2)(x) + (ǫj2 ⋆ ǫ

i
1)(x)

)
[Ti, Tj ]

+
1

2

(
(ǫi1 ⋆ ǫ

j
2)(x)− (ǫj2 ⋆ ǫ

i
1)(x)

)
{Ti, Tj} ,

6For example, the action on tetrad fields given in Eq. (1.14) becomes here

e(x) −→ Λ⋆(x) ⊲⋆ e(x) = Λ⋆ ⋆ e ⋆Λ
−1

⋆ (x) (2.32)

with Λ⋆(x) = exp⋆(−iǫ(x)) and ǫ(x) = 1

2
ǫIJ (x)ΓIJ .

7For notational simplicity, here we are using the same symbol ⊲⋆ to denote the corresponding Lie algebra action

induced by the group action defined in Eq. (2.31).
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which contains the anticommutator of the algebra generators. In fact, we note that in general

the anticommutators of the generators of a given Lie algebra (for a given representation) are not

elements of the algebra. Particular examples of Lie algebras which include the anticommutators are

given by the Lie algebras of the unitary groups U(N), for any N , in the adjoint and fundamental

representations. However, for the case under consideration, where we have chosen to represent

the Lie algebra of the Lorentz group in the bispinor representation, the anticommutators of the

generators do not belong to the algebra, namely, the algebra closure is not attained. Thus, we

need to extend the sl(2,C) algebra in such a way as to include the anticommutators. Indeed, in

the bispinor representation of sl(2,C), the anticommutators involve two further elements, namely

14 and γ5, which do not belong to the sl(2,C) algebra. In fact, we have for the case at hand

(cfr. Eq. (B.11))

{Ti, Tj} → {ΓIJ ,ΓKL} = ηI[KηL]J1+
i

2
εIJKLγ5. (2.37)

Thus, the sought for extended algebra is the gl(2,C) algebra in its bispinor representation.

(ΓIJ ,1, γ5) is a set of generators of the (reducible) representation of gl(2,C) on Dirac spinors,

with 1 and γ5 being central elements. Thus, we are led to enlarge the gauge algebra and consider

more general infinitesimal gauge transformations of the form [11]

ǫ(x) =
1

2
ǫIJ(x)ΓIJ + ǫ(x)1+ ǫ̃(x)γ5 . (2.38)

2.2. New gravitational degrees of freedom

Next we study the transformation properties of the dynamical fields, namely the tetrad and

the gl(2,C) gauge connection, under a gauge transformation (cf. Ref. [11]). The generalization of

Eq. (1.18) to the noncommutative case is

δe := i[e, ǫ]⋆ , (2.39)

which is formally obtained from the corresponding transformation law in the commutative case

by replacing the commutator with a ⋆-commutator (see Section 2). If e is assumed to have the

expression (1.11) as in the commutative case, evaluation of the r.h.s. of Eq. (2.39), with ǫ given by

Eq. (2.38), gives

δe = −
1

2

(
eI ⋆ ǫ J

I + ǫ J
I ⋆ eI

)
γJ −

1

2

(
eI ⋆ (∗Hǫ)

J
I − (∗Hǫ)

J
I ⋆ eI

)
γJγ5 + (eI ⋆ ǫ− ǫ ⋆ eI)γI . (2.40)
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We observe that terms proportional to γIγ5 are generated under gauge transformations of the

tetrad. Such terms cannot be expressed as a linear combination of Dirac γI matrices. Thus, we

are led to consider more general objects of the form

e := eIγI + ẽIγIγ5 (2.41)

Such object belongs to a representation of gl(2,C), which can be split into two irreducible repre-

sentations of the Lorentz algebra sl(2,C). In fact, the two terms in Eq. (2.41) define a polar and

an axial vector, respectively

eP = eIγI (2.42)

eA = ẽIγIγ5 . (2.43)

The generator γ5 acts on e by exchanging its polar and axial components. Since eI and ẽI identify

two a priori independent sets of four differential forms, or tetrad frames, we will refer to e as

the bitetrad one-form. It is straightforward to show that the definition of the bitetrad e given

in Eq. (2.41) is consistent with gl(2,C) ⋆-gauge symmetry, i.e. the variation δe under a gauge

transformation defined by Eq. (2.39) is still of the form (2.41).

The general relation between two independent anholonomic frames (not necessarily equivalent)

is given by

ẽI = M I
J e

J , (2.44)

with M I
J a local GL(4,R) transformation, that is M I

J ∈ ̂GL(4,R). In the noncommutative case,

this relation shall be replaced by

ẽI = M⋆
I
J ⋆ eJ (2.45)

with M⋆
I
J defined as a star exponential of gl(4,R) algebra generators, as in Eq. (2.33). Since in

our model the gauge group is ̂GL⋆(2,C), we choose to restrict the freedom expressed by Eq. (2.45)

and allow for M I
⋆ J just to belong to the subgroup ̂GL⋆(2,C) ⊂ ̂GL⋆(4,R). Such a choice is, in

fact, the minimal one that is compatible with deformed gauge invariance. In the commutative

limit, the assumption (2.45) has a clear geometrical interpretation, meaning that the two frames

are unsheared, i.e. they are mapped into each other by means of the composition of local Lorentz

transformations and Weyl rescalings. Therefore, in the commutative limit, such an assumption

implies that the two frames refer to conformally equivalent metrics (see Section 2 2.3).
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As a consequence of the enlargement of the gauge symmetry algebra to ̂gl⋆(2,C), the field

content of the theory is extended as follows:

e = eP + eA = eIγI + ẽIγIγ5 , (2.46)

ω =
1

2
ωIJΓIJ + ωI+ ω̃γ5 . (2.47)

The ordinary spin connection of the commutative theory is given by the Lorentz part of the gl(2,C)

connection ω. The field strength of the gauge connection ω is defined as

F (ω) = dω − iω ∧⋆ ω (2.48)

where the ordinary wedge product has been replaced by the twist-deformed wedge product, result-

ing from the composition with the twist operator (see Eq. (A.9)). We have then

F =
1

2
F IJΓIJ + rI+ r̃γ5 (2.49)

with the field strength components given by

F IJ = dωIJ +
1

2

(
ωI

K ∧⋆ ω
KJ − ωJ

K ∧⋆ ω
KI

)
−

i

2
(ωIJ ∧⋆ ω + ω ∧⋆ ω

IJ)+

1

2

(
∗Hω

IJ ∧⋆ ω̃ + ω̃ ∧⋆ ∗Hω
IJ
)

, (2.50)

r = dω −
i

8
(ωIJ ∧⋆ ωIJ)− i(ω ∧⋆ ω + ω̃ ∧⋆ ω̃) , (2.51)

r̃ = dω̃ +
1

8
ωIJ ∧⋆ ∗Hω

IJ − i(ω ∧⋆ ω̃ + ω̃ ∧⋆ ω) . (2.52)

2.3. The action of internal symmetries on fields

Under an infinitesimal ⋆-deformed gauge transformation, the fields representing the basic dy-

namical variables of the theory transform as

e → e+ i[e, ǫ]⋆ (2.53)

ω → ω − (dǫ− i[ω, ǫ]⋆) (2.54)

F → F + i[F , ǫ]⋆ (2.55)

Equation (2.54) leads us to the following definition of the deformed covariant derivative of the

gauge parameters ǫ

D⋆
ω
ǫ := dǫ− i[ω, ǫ]⋆ . (2.56)
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The physical meaning of the enlarged gauge symmetry becomes transparent in the commutative

limit. To illustrate it, we consider infinitesimal transformations of the bitetrad given by Eq. (2.53),

which, in the commutative limit reduce to (1.18), namely

δe = i[e, ǫ] , (2.57)

with ǫ given by Eq. (2.38). The gauge group has two Abelian subgroups, generated, in the repre-

sentation adopted here, by 1 and γ5. Clearly, Abelian gauge transformations generated by 1 have

no effect on the bitetrad. Computing the commutator in Eq. (2.57) we get

δe = ǫIJe
JγI + ǫIJ ẽ

JγIγ5 + 2iǫ̃
(
eIγIγ5 + ẽIγI

)
. (2.58)

Therefore, under an infinitesimal gauge transformation, the bitetrad components transform as

δeI = ǫIJe
J + 2iǫ̃ ẽI , (2.59)

δẽI = ǫIJ ẽ
J + 2iǫ̃ eI . (2.60)

Thus, a generic gauge transformation acts on the bitetrad as the composition of a Lorentz trans-

formation and a transformation generated by γ5. The former treats both the polar and the axial

components of the bitetrad on the same footing, whereas the latter introduces a mixing between

the two. We note that, if we demand that the tetrads be real, then we must require that ǫ̃ is

pure imaginary as a consistency condition. In the remainder of this section, we will study the

transformation properties of the metric tensors under Abelian gauge transformations generated by

γ5.

The metric tensors can be defined using the two tetrad frames as follows

gab = ηIJe
I
ae

J
b , (2.61)

g̃ab = ηIJ ẽ
I
aẽ

J
b . (2.62)

The relation between the two metrics can be established using Eq. (2.45). In fact, in the commu-

tative limit the assumption M I
J ∈ ̂GL(2,C) amounts to the following no-shear condition

ẽIa = ΩΛI
Je

J
a (2.63)

with ΛI
J a local Lorentz transformation and Ω a real function representing a Weyl rescaling.

Therefore, from Eq. (2.63) and the definitions (2.61), (2.62), one has

g̃ab = Ω2 gab . (2.64)
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Thus, the two metric tensors are conformally related and Ω2 is a positive function representing

their relative scale. The finite form of an Abelian gauge transformation generated by γ5 acts on

the bitetrad components as follows

eIa → cos(2ǫ̃) eIa + i sin(2ǫ̃) ẽIa , (2.65)

ẽIa → cos(2ǫ̃) ẽIa + i sin(2ǫ̃) eIa . (2.66)

Upon defining χ = 2iǫ̃, and assuming that χ be real (see discussion above), we obtain

eIa → coshχ eIa + sinhχ ẽIa , (2.67)

ẽIa → coshχ ẽIa + sinhχ eIa . (2.68)

Consequently, the metric tensors transform as

gab → cosh2 χ gab + sinh2 χ g̃ab + coshχ sinhχ ηIJ(ẽ
I
ae

J
b + eIaẽ

J
b ) , (2.69)

g̃ab → cosh2 χ g̃ab + sinh2 χ gab + coshχ sinhχ ηIJ(ẽ
I
ae

J
b + eIaẽ

J
b ) . (2.70)

Using Eq. (2.63), and considering for simplicity an infinitesimal Lorentz transformation ΛI
J ≃

δIJ + ǫIJ , we obtain from Eqs. (2.69), (2.70) the following transformation laws

gab → (coshχ+Ωsinhχ)2 gab (2.71)

g̃ab → (coshχ+Ω−1 sinhχ)2 g̃ab . (2.72)

Accordingly, the relative scale Ω2 of the two metrics transforms as

Ω2 →

(
Ω+ tanhχ

1 + Ω tanhχ

)2

. (2.73)

We observe that for χ → ±∞ the relative scale approaches unity, i.e. Ω → 1, which is to be

expected from the form of Eqs. (2.67), (2.68). Moreover, for Ω2 < 1 there is a particular value of χ

such that the r.h.s. of (2.73) vanishes. Similarly, for Ω2 > 1 the denominator of the r.h.s. of (2.73)

has a pole for some finite χ.

2.4. Action Principle

The reformulation of the Holst action using the spinorial representation of the Lorentz group,

Eq. (1.12), admits a straightforward generalization to the noncommutative case

S[e,ω] = −
i

32πG

∫
Tr

[
e ∧⋆ e ∧⋆

(
∗HF +

1

β
F

)]
(2.74)
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where the Hodge star operator is now defined by Eq. (1.13) through the matrix γ5 and ∧⋆ is given

by Eq. (A.9). The dynamical variables are the bitetrad e, defined in Eq. (2.46), and the gl(2,C)

gauge connection ω, defined in Eq. (2.47). The field strength of the latter was defined in Eq. (2.49).

The action (2.74) is invariant under the gauge transformations (2.53)–(2.55) (see Section 3 3.2).

Moreover, it is invariant with respect to diffeomorphisms and ⋆-diffeomorphisms. The latter can

be easily shown by trivially extending the proof given in [32] in Appendix A.3 to the complete

Palatini-Holst action. The reader is referred to Ref. [32] for details.

As shown in the previous section, the enlargement of the internal gauge symmetry from the

Lorentz symmetry to gl(2,C) is the minimal choice which is compatible with the twist. This in

turn leads to the introduction of new gravitational degrees of freedom, represented by the extra

components of e and ω, which, thanks to simple requirements of mathematical consistency have

led to a bimetric theory of gravity. Therefore, differently from Ref. [11] we shall not impose that

the extra degrees of freedom vanish in the commutative limit, but we shall retain all the extra

fields as physical and provide an interpretation in the framework of the bimetric theory envisaged

above. We note that the theory will naturally feature higher-order derivatives as a consequence of

the twist deformation (see Appendix A).

3. NONCOMMUTATIVE GRAVITY WITH A SELF-DUAL CONNECTION

It is well known that in the commutative Palatini-Holst theory the choice β = −i leads to a

theory of a self-dual connection. This result also holds in the noncommutative theory considered.

The generalization of the notion of self-duality of the gauge connection to the noncommutative

case is straightforward. In fact, the definition given in the commutative case, ∗Hω := −iωγ5, is

still a sound one after enlarging the gauge symmetry, with the gl(2,C) gauge connection ω given

by Eq. (2.47). Also in this case, any connection ω is uniquely decomposed into its self-dual and

anti self-dual parts as

ω = ω+ +ω− , (3.75)

with ω+, ω− defined as in Eq. (1.24), and satisfying Eq. (1.21). Again, it can be shown that the

field strength can be uniquely decomposed as

F (ω) = (dω − iω ∧⋆ ω) = (dω+ − iω+ ∧⋆ ω+) + (dω− − iω− ∧⋆ ω−) ≡ F+(ω+) + F−(ω−) ,

(3.76)
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where we defined, respectively, the self-dual and the anti self-dual field strengths

F+(ω+) = dω+ − iω+ ∧⋆ ω+ , (3.77)

F−(ω−) = dω− − iω− ∧⋆ ω− . (3.78)

Self-duality of the F+ can be proved by observing that

P+F+P+ = d(P+ω+)− i(P+)
2
ω+ ∧⋆ ω+ = dω+ − i(P+ω+) ∧⋆ (P+ω+) = F+ . (3.79)

Similarly, it can be shown that F− is anti self-dual. We observe that there are no mixed terms in

Eq. (3.76), since

ω+ ∧⋆ ω− = (ωP+) ∧⋆ (ωP−) = (P+P−)ω ∧⋆ ω = 0 . (3.80)

Similarly, it can be shown that ω−∧⋆ω+ = 0. The result expressed by Eq. (3.76) crucially depends

on the fact that all of the gl(2,C) algebra generators commute with the γ5 matrix and, hence, with

the projectors P+, P−.

A self-dual gl(2,C) connection and its field strength must satisfy the following algebraic equa-

tions

ω+ = −ω+γ5 (3.81)

F+ = −F+γ5 , (3.82)

which follow from Eq. (1.21). We remark that Eqs. (3.81), (3.82) are clearly preserved under

deformed gauge transformations (2.54), (2.55). These equations imply that a self-dual gl(2,C)

connection has the following expansion in components

ω+ =
1

2
ωIJ
+ ΓIJ + ω+(I− γ5) , (3.83)

with ωIJ
+ being a self-dual spin connection, i.e. satisfying

ωIJ
+ = −

i

2
εIJKL ωKL

+ . (3.84)

Direct comparison between Eq. (3.83) and the general expression (2.47) shows that we also have

ω̃ = −ω, which explains the second term in Eq. (3.83). Since the field strength F+ of ω+ is also

self-dual, it admits the following expansion in components

F+ =
1

2
F IJ
+ ΓIJ + r+(I− γ5) , (3.85)
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with

F IJ
+ =dωIJ

+ +
1

2

(
(ω+)

I
K ∧⋆ ω

KJ
+ − (ω+)

J
K ∧⋆ ω

KI
+

)
− i(ωIJ

+ ∧⋆ ω+ + ω+ ∧⋆ ω
IJ
+ ) (3.86)

r+ =dω+ −
i

8
(ωIJ

+ ∧⋆ (ω+)IJ)− 2i(ω+ ∧⋆ ω+) . (3.87)

The reader may appreciate the remarkable simplifications following from the self-duality condition

by comparing Eqs. (3.86), (3.87) with the components expressions of a general gl(2,C) gauge

connection, Eqs. (2.50), (2.51), (2.52).

Having clarified the relation between self-duality of the gl(2,C) gauge connection and left-

handedness, it is convenient to use the projectors P+, P− to decompose the bitetrad (1.11) in order

to show how they couple to the field strength. Thus, we have the following decomposition

e = P+ uP− + P− v P+ , (3.88)

where we defined

u = uIγI , uI = eI + ẽI , (3.89)

v = vIγI , vI = eI − ẽI . (3.90)

Going back to the action (2.74), we observe that for β = −i it depends only on the self-dual

part of the gauge connection. Thus, we obtain

S[e,ω+] =
1

16πG

∫
Tr [e ∧⋆ e ∧⋆ F+(ω+)] =

1

32πG

∫
Tr [u ∧⋆ v ∧⋆ F+(ω+)] . (3.91)

Evaluating the trace in Eq. (3.91) we can recast the action in the form

S[e,ω+] = −
i

8πG

∫
uI ∧⋆ v

J ∧⋆

[
(F+)IJ + 2iηIJr+

]
. (3.92)

Similarly, for β = i the action (2.74) turns out to depend only on the anti self-dual part of the

gauge connection, thus leading to

S[e,ω−] = −
1

16πG

∫
Tr [e ∧⋆ e ∧⋆ F−(ω−)] =

i

8πG

∫
vI ∧⋆ u

J ∧⋆

[
(F−)IJ + 2iηIJr−

]
. (3.93)

3.1. Equations of motion

Henceforth we will focus on the self-dual case. We can obtain the first set of equations of motion

in this theory by varying the action (3.92) w.r.t. uI and vI . Thus, we get the deformed self-dual

field equations

vJ ∧⋆

[
(F+)IJ + 2iηIJ r+

]
= 0 , (3.94)

[
(F+)IJ − 2iηIJ r+

]
∧⋆ u

J = 0 . (3.95)
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Before deriving the next set of equations of motion we introduce the following shorthand notation

for the symmetric and the antisymmetric parts (w.r.t. the internal indices) of uI ∧⋆ v
J

KIJ = u(I ∧⋆ v
J) . (3.96)

BIJ = u[I ∧⋆ v
J ] , (3.97)

Recalling (3.86), (3.87), we compute the variation of the action w.r.t. ω+, which yields

dKI
I − 2i

(
ω+ ∧⋆ K

I
I −KI

I ∧⋆ ω+

)
−

1

2

[
(ω+)IJ ∧⋆ B

IJ −BIJ ∧⋆ (ω+)IJ
]
= 0 . (3.98)

Similarly, variation w.r.t. ωIJ
+ leads to

dBIJ+ω
[J |K
+ ∧⋆B

I]
K−B

[J
K ∧⋆ω

K|I]
+ −i

(
ω+ ∧⋆ B

IJ −BIJ ∧⋆ ω+

)
+
1

4

(
ωIJ
+ ∧⋆ K

L
L −KL

L ∧⋆ ω
IJ
+

)
= 0 .

(3.99)

Equation (3.99) represents a generalization of the equation of motion for the spin connection in

standard Palatini gravity, as we will discuss in more detail in Section 4.

3.2. Symmetries: deformed gauge invariance and duality

The noncommutative gravity theory given by the action (2.74) exhibits several symmetries,

both continuous (space-time and gauge symmetries) and discrete (dualities). We will start with a

brief review of the gauge symmetries of the theory. This will be followed by a discussion of novel

dualities exhibited by the model, which will be the main focus of this Section.

Gauge symmetries of the theory are noncommutative generalizations of the symmetries of the

standard Palatini theory. In particular, as shown in Section 2, consistency with the noncommu-

tative product of fields requires an enlargement of the internal symmetry group from the Lorentz

group to GL(2,C). The theory also exhibits two different kinds of spacetime symmetries. In fact,

the action (2.74) is clearly diffeomorphism invariant. However, it fails to be background indepen-

dent due to the presence of the non-dynamical background fields Xα, which appear in the definition

of the twist (see Appendix A). Moreover, the theory is also invariant under the action of deformed

diffeomorphisms. These are ⋆-deformations of infinitesimal diffeomorphisms, obtained by compos-

ing the Lie derivative with the twist [17, 25]. The proof of the invariance of the action (2.74) under

infinitesimal ⋆-diffeomorphisms is a straightforward generalization of the one given in Refs. [11, 32]

for the noncommutative Palatini action.

Infinitesimal gauge transformations of the basic dynamical variables are given by Eqs. (2.53),

(2.54), (2.55). We observe that the generalization of the standard Hodge duality is compatible
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with deformed gauge symmetry. In fact, the dual of the field strength transforms as

δ ∗H F = δ(−iF γ5) = ∗HδF , (3.100)

since the generators of the gauge group commute with γ5. We introduce the shorthand notation

KF := ∗HF +
1

β
F . (3.101)

Thus, we have

δ(KF ) = KδF . (3.102)

It is then staightforward to compute the variation of the action (2.74) under a gauge transformation,

which gives

δS[e,ω] = −
i

32πG

∫
Tr [δe ∧⋆ e ∧⋆ KF + e ∧⋆ δe ∧⋆ KF + e ∧⋆ e ∧⋆ KδF ] = (3.103)

=
1

32πG

∫
Tr

[
[e, ǫ]⋆ ∧⋆ e ∧⋆ KF + e ∧⋆ [e, ǫ]⋆ ∧⋆ KF + e ∧⋆ e ∧⋆ K[F , ǫ]⋆

]
= 0 .

(3.104)

In the last step we used the ciclicity of the trace and the graded ciclicity property (A.14) of the ∧⋆

product, along with properties (A.11), (A.12).

The theory described by the action (2.74) exhibits three different kinds of dualities. These are

all target space dualities. In the following we discuss them separately.

i) The first duality is a straightforward generalization of the usual Hodge duality of the Holst

theory.

Namely, the transformation

ω → ∗Hω (3.105)

has the effect of exchanging the Palatini and the Holst term in the action (2.74), and is

equivalent to the following transformation of the couplings of the model

G → βG (3.106)

β → −
1

β
. (3.107)

The transformation (3.107) has two fixed points at β = ±i, which correspond to the (anti)

self-dual theory.
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ii) The second type of duality corresponds to the exchange of the polar and axial components

of the bitetrad

eP → eA , (3.108)

eA → eP , (3.109)

which can be expressed more compactly as

e → eγ5 . (3.110)

An alternative form for the transformation laws (3.108), (3.109) is

u → u , (3.111)

v → −v . (3.112)

It follows from Eq. (3.110) that

e ∧⋆ e → −e ∧⋆ e . (3.113)

Hence, the action is invariant (up to a sign) and the dynamics of the pure gravity theory is

clearly invariant.

iii) Lastly, we consider the transformation

u → γ0vγ0 , (3.114)

v → γ0uγ0 , (3.115)

F → γ0F γ0 . (3.116)

The matrix γ0 implements parity in the internal space. Such a transformation has the effect

of exchanging the roles of u and v, while flipping the chiralities of all fields. Equations

(3.114), (3.115) imply

e → γ0eγ0 , (3.117)

which can be expressed in components as

e0 → e0 , ei → −ei , (3.118)

ẽ0 → −ẽ0 , ẽi → ẽi . (3.119)
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Under such a transformation, the integrand in the action (2.74) transforms as

Tr

[
e ∧⋆ e ∧⋆

(
∗HF +

1

β
F

)]
→ −Tr

[
e ∧⋆ e ∧⋆

(
∗HF −

1

β
F

)]
, (3.120)

where we used

∗H F → −i(γ0F γ0)γ5 = −γ0(−iF γ5)γ0 = −γ0(∗HF )γ0 . (3.121)

Hence, the transformation laws (3.114), (3.115), (3.116) determine a new duality symmetry,

which leaves the equations of motion invariant while flipping the sign of the Barbero-Immirzi

parameter β → −β. As a particular case, the self-dual action obtained for β = −i is dual to

the anti self-dual one corresponding to β = +i.

4. THE COMMUTATIVE LIMIT

The commutative limit of the theory is formally obtained by letting the deformation parameter

tend to zero θαβ → 0. In this limit, Eqs. (3.97), (3.96) become

KIJ = −2 e(I ∧ ẽJ) , (4.122)

BIJ = eI ∧ eJ − ẽI ∧ ẽJ . (4.123)

Thus, the equations of motion (3.98), (3.99), (3.94), (3.95) boil down to

dKI
I = 0 (4.124)

dωB
IJ := dBIJ + ω

[J |K
+ ∧B

I]
K −B

[J
K ∧ ω

K|I]
+ = 0 (4.125)

uJ ∧
[
(F+)IJ + 2iηIJ r+

]
= 0 (4.126)

vJ ∧
[
(F+)IJ − 2iηIJ r+

]
= 0 . (4.127)

Let us examine these equations in detail in the following subsections.

4.1. Bitetrad constraint

The first equation of motion, Eq. (4.124), represents a dynamical constraint on the two tetrads,

which reads as

d
(
eI ∧ ẽI

)
= 0 . (4.128)
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Equation (4.128) means that the two-form eI ∧ ẽI is closed; hence, it is locally exact. Therefore,

we have (at least locally)

eI ∧ ẽI = dp . (4.129)

Writing spacetime indices explicitly, Eq. (4.129) reads as

ηIJe
I
[aẽ

J
b] = ∂[apb] . (4.130)

The two-form dp can be decomposed using the anholonomic basis obtained from the tetrad eI

dp = λIJ e
I ∧ eJ , (4.131)

where the components λIJ are given by

λIJ = ea[Ie
b
J ]∂[apb] . (4.132)

We recall that the second tetrad ẽI is related to the first tetrad via the no-shear condition (2.63)

ẽI = M I
Je

J = ΩΛI
Je

J , (4.133)

where Ω and ΛI
J are both spacetime dependent. Plugging Eq. (4.133) in Eq. (4.129), we obtain

dp = M[IJ ]e
I ∧ eJ . (4.134)

Therefore, comparing Eq. (4.131) and Eq. (4.134), and using Eq. (4.132), we conclude

M[IJ ] = λIJ = ea[Ie
b
J ]∂[apb] . (4.135)

This result shows that the antisymmetric part of the matrix MIJ in Eq. (4.133) is determined once

a one-form p is assigned.

4.2. Connection Equation

From the equation of motion (4.125), adopting the definitions T I := dωe
I , T̃ I := dωẽ

I , we obtain

e[I ∧ T J ] − ẽ[I ∧ T̃ J ] = 0. (4.136)

Equation (4.136) is a generalization of the equation of motion for the spin connection in standard

Palatini theory. Using the no-shear condition (4.133), equation (4.136) implies

(
δIJHK − Ω2ΛI

[HΛJ
K]

)
eH ∧ TK +Ω2ΛI

[HΛJ
K]d(log Ω) ∧ eH ∧ eK = 0 . (4.137)
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It is convenient to define

QIJ
HK = δIJHK − Ω2Λ

[I
HΛ

J ]
K . (4.138)

Thus, Eq. (4.137) can be recast in the following form

QIJ
HK

(
eH ∧ TK − d(log Ω) ∧ eH ∧ eK

)
+ d(log Ω) ∧ eI ∧ eJ = 0 . (4.139)

The solution of Eq. (4.139) requires a detailed analysis. To begin with, we investigate the relation

between a non-vanishing torsion T I and the dilation factor Ω.

i) Firstly, we assume T I = 0 identically in a spacetime region U . Then, Eq. (4.139) simplifies

to

Ω2Λ
[I
HΛ

J ]
Kd(log Ω) ∧ eH ∧ eK = 0 , (4.140)

which in turn implies

d(log Ω) ∧ eI ∧ eJ = 0 . (4.141)

Since the tetrad eI is assumed to be non-degenerate, we conclude d(log Ω) = 0 in U . There-

fore, T I = 0 implies that Ω is constant.

ii) We assume that Ω be a constant in a spacetime region U . In this case, Eq. (4.139) leads to

QIJ
HKeH ∧ TK = 0 . (4.142)

a) If Ω 6= 1, the operator QIJ
HK does not admit zero modes. Therefore, the only solution

in this case is T I = 0 identically in U .

b) The case Ω = 1 identically requires more care. In fact, in this case the operator

QIJ
HK may admit zero modes, depending on the particular Lorentz transformation

ΛI
J (assumed to be non-trivial) entering the definition (4.138). The problem is thus

reduced to finding invariant bivectors (i.e. skew-symmetric tensors) under the Lorentz

transformation ΛI
J at a spacetime point x. A point x where such invariant bivectors

exist will be referred to as a critical torsion point. We denote by AIJ an invariant

bivector8 in the internal space; i.e. a solution to the equation

Λ
[I
HΛ

J ]
KAHK = AIJ . (4.143)

8Given a (non-trivial) Lorentz transformation, the space of invariant bivectors is at most one-dimensional. Examples

are given by: a rotation in the (1,2) plane, which leaves the plane (0,3) invariant; a boost in the 1 direction, which

leaves the plane (2,3) invariant. The corresponding bivectors are skew-symmetric matrices with the only non-zero

entries in correspondence with the invariant planes. We stress that a generic Lorentz transformation does not admit

invariant bivectors.
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Let σ be an arbitrary three-form, which we may expand in the tetrad basis as

σ = σIJKeI ∧ eJ ∧ eK . (4.144)

Thus, the solution of Eq. (4.142) in this case is given by

e[I ∧ T J ] = AIJσ . (4.145)

Going back to Eq. (4.139), we observe that a simple solution can be obtained for a trivial

Lorentz transformation ΛI
J(x) = δIJ . With this assumption, Eq. (4.139) reduces to

(1− Ω2)e[I ∧ T J ] +Ω2d(log Ω) ∧ e[I ∧ eJ ] = 0 . (4.146)

Non-degeneracy of the tetrad implies, assuming Ω 6= 1:

T J = (1−Ω2)−1Ω2 d(log Ω) ∧ eJ . (4.147)

Note that, in this particular case, vanishing torsion implies constant Ω, and vice versa.

Next, we seek more general solutions of Eq. (4.139) featuring both a non-constant Ω and non-

vanishing torsion, assuming a non-trivial Lorentz transformation ΛI
J . We consider a first order

expansion of ΛI
J around the identity

ΛI
J ≃ δIJ + ǫIJ . (4.148)

Plugging this expansion in Eq. (4.139) we obtain

(1− Ω2)e[I ∧ T J ] − Ω2
(
e[I ∧ ǫ

J ]
HTH + eHǫ

[I
H ∧ T J ]

)
+

Ω2d(log Ω) ∧
(
e[I ∧ eJ ] + e[I ∧ ǫ

J ]
HeH + eHǫ

[I
H ∧ eJ ]

)
= 0 .

(4.149)

Adopting a perturbative scheme, we expand the torsion around the solution corresponding to the

ǫIJ = 0 case

T I = T I
(0) + T I

(1) + . . . , (4.150)

where it is assumed T I
(0) = O(ǫ0) and T I

(1) = O(ǫ). To zero-th order in perturbation theory, we

have

(1− Ω2)e[I ∧ T
J ]
(0) +Ω2d(log Ω) ∧ e[I ∧ eJ ] = 0 , (4.151)

whose solution is given by Eq. (4.147). To first order we have

(1−Ω2)e[I∧T
J ]
(1)−Ω2

(
e[I ∧ ǫ

J ]
HTH

(0) + eHǫ
[I
H ∧ T

J ]
(0)

)
+Ω2d(log Ω)∧

(
e[I ∧ ǫ

J ]
HeH + eHǫ

[I
H ∧ eJ ]

)
= 0 .

(4.152)
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From Eqs. (4.151) and (4.152) we obtain

(1− Ω2)e[I ∧ T
J ]
(1) = e[I ∧ ǫ

J ]
HTH

(0) + eHǫ
[I
H ∧ T

J ]
(0) . (4.153)

Thus, the effect of a Lorentz transformation in the general relation (4.133) between the two tetrads

is to give an extra contribution to the torsion. In the solution scheme adopted here, to zero-th order

the torsion is determined by the relative scale Ω of the two tetrads and its spacetime variations,

whereas the first order correction depends on the relative orientation of the two tetrads, given by

the infinitesimal Lorentz transformation in (4.148).

4.3. Gravitational Field Equations

The remaining two equations of motion (4.126), (4.127) can be conveniently recast in the fol-

lowing form

eJ ∧ (F+)IJ − 2i ẽI ∧ r+ = 0 (4.154)

ẽJ ∧ (F+)IJ − 2i eI ∧ r+ = 0 . (4.155)

Wedge multiplying of (4.154) by the tetrad eI , and of Eq. (4.155) by the tilde tetrad ẽI , gives

eI ∧ eJ ∧ (F+)IJ − 2idp ∧ r+ = 0 (4.156)

ẽI ∧ ẽJ ∧ (F+)IJ + 2idp ∧ r+ = 0 . (4.157)

Equations (4.154), (4.156) also imply

ẽI ∧ eJ ∧ (F+)IJ = 0 . (4.158)

Using the definition of the Nieh-Yan invariant, we get from Eqs. (4.156), (4.157)

d(eI ∧ T I) + 2idp ∧ r+ = TI ∧ T I (4.159)

d(ẽI ∧ T̃ I)− 2idp ∧ r+ = T̃I ∧ T̃ I , (4.160)

where T̃ I := dω ẽ
I . Using the no-shear condition (4.133) and Eq. (4.160), we have

d(eI ∧ T I)− 2iΩ−2dp ∧ r+ = TI ∧ T I . (4.161)

Thus, comparing Eqs. (4.159) and (4.161) we deduce

dp ∧ r+ = 0 (4.162)

d(eI ∧ T I) = TI ∧ T I . (4.163)
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Equation (4.163) can be conveniently recast in the form

eI ∧ dωT
I = 0 . (4.164)

Thus, going back to Eqs. (4.156), (4.157) and using Eq. (4.162), we obtain that the the Holst

densities are identically vanishing for both tetrads

eI ∧ eJ ∧ (F+)IJ = 0 (4.165)

ẽI ∧ ẽJ ∧ (F+)IJ = 0 . (4.166)

Using the self-duality of the field strength F IJ
+ , we can recast Eq. (4.154) in the equivalent form

1

2
F IJ
+ ∧ eKεIJKL + 2ẽL ∧ r+ = 0 . (4.167)

Writing spacetime indices explicitly and after some algebraic manipulations (cf. e.g., [59]), we are

led to the following form of the field equations9

Gab
+ + 2eaI ẽ

I
c(∗r+)

cb = 0 , (4.168)

where the Hodge dual ∗ of r+ is defined with respect to its spacetime indices as

(∗r+)ab :=
1

2
ε cd
ab (r+)cd . (4.169)

Gab
+ denotes the (contravariant) Einstein tensor in a spacetime endowed with torsion (see Ap-

pendix E) and metric tensor given by gab = ηIJe
I
ae

J
b . Similar equations as (4.167), (4.168) can be

written down for the dual geometry given by ẽIa starting from Eq. (4.157).

4.4. Reality Conditions

We now impose reality conditions, i.e. we shall assume that the two tetrads eI and ẽI and

the Weyl vector w = −4i ω+ be real (see Appendix D), and that the spin connection satisfies

ωIJ = 2ℜ{ωIJ
+ } (see Section 1).

Thus, the tensorial form of the gravitational field equations is obtained from Eq. (4.154), by

splitting it into its real and imaginary parts. Respectively, they read as

eJ ∧ FIJ + ẽI ∧ dw = 0 , (4.170)

1

2
F IJ ∧ eKεIJKL = 0 . (4.171)

9Note that the tetrad is assumed eIa to be invertible in the derivation of Eq. (4.168).
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Using the first Bianchi identity

dωT
I = F I

J ∧ eJ , (4.172)

we can recast Eq. (4.170) in the following form

dωT
I + ẽI ∧ dw = 0 . (4.173)

Similarly, from the real part of Eq. (4.155) we obtain

dωT̃
I + eI ∧ dw = 0 . (4.174)

Equation (4.170) can be recast in tensor form as

R d
[abc] − (dw)[abẽ

I
c]e

d
I = 0 . (4.175)

Using the Bianchi identity (E.17), we can rewrite Eq. (4.175) as

∇[aT
d
bc] − T e

[abT
d
c]e = (dw)[abẽ

I
c]e

d
I , (4.176)

where ∇a indicates a metric compatible torsionful affine connection. Equation (4.171) gives the

gravitational field equation

Gab = 0 , (4.177)

where the Einstein tensor Gab includes torsion contributions, see Appendix E.

To summarize, the set of coupled equations (4.128), (4.136), (4.176), (4.177) describes the dy-

namics of eIa, ẽ
I
a, T

a
bc and wa. Solutions to the equations of motion (4.128), (4.136) have been

explictly obtained above. We note that Eq. (4.177) has the same form as the field equation in

vacuum Einstein-Cartan’s theory. Equation (4.176) shows that torsion is sourced by non-metricity,

their interaction being mediated by the tensor ẽIae
b
I . Thus, even in vacuo, torsion would be dynam-

ical in general. This result signifies an important departure from Einstein-Cartan’s theory, and is

essentially due to the bimetric nature of the theory and to the presence of non-metricity.

5. PERTURBATIVE EXPANSION IN θ

In the previous section, we solved the equations of motion (3.98), (3.99) in the commutative

case, obtained for θ = 0. Such equations determine the relation between the two tetrads, and

the spin connection, respectively. In particular, we found that the latter admits solutions which
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entail significant departures from standard pure Palatini gravity. Such departures ultimately stem

from the extra gravitational degrees of freedom. Our aim in this section will be to determine

further corrections introduced by the noncommutative deformation. This will be done by means of

a perturbative expansion in the deformation parameter θ, which is a valid approximation at scales

much larger than the noncommutativity scale.

We start by expanding the two-form uI∧⋆v
J to second order in θ using the asymptotic expansion

of the twisted wedge product ∧⋆, see Eq. (A.17)

uI ∧⋆ v
J = uI ∧ vJ +

i

2
θαβLXαu

I ∧ LXβ
vJ −

1

4
θαβθγδLXαLXγu

I ∧ LXβ
LXδ

vJ +O(θ3) . (5.178)

Thus, its symmetric and antisymmetric and parts read as

KIJ = −2e(I ∧ ẽJ) +
i

2
θαβ

(
LXαe

I ∧ LXβ
eJ − LXα ẽ

I ∧ LXβ
ẽJ

)
+

1

2
θαβθγδLXαLXγe

(I ∧ LXβ
LXδ

ẽJ) +O(θ3) ,

(5.179)

BIJ = eI ∧ eJ − ẽI ∧ ẽJ −
1

4
θαβθγδ

(
LXαLXγe

I ∧ LXβ
LXδ

eJ − LXαLXγ ẽ
I ∧ LXβ

LXδ
ẽJ

)
+O(θ3) .

(5.180)

Note that only the trace over Lorentz indices of the two-form KIJ appears in the equation of

motion (3.98). Its expression is

KI
I = −2eI∧ẽI+

i

2
θαβ

(
LXαe

I ∧ LXβ
eI − LXα ẽ

I ∧ LXβ
ẽI
)
+
1

2
θαβθγδLXαLXγe

I∧LXβ
LXδ

ẽI+O(θ3) .

(5.181)

Let us proceed by evaluating all the terms in Eq. (3.98) separately. We have for the term in round

brackets

ω+ ∧⋆ K
I
I −KI

I ∧⋆ ω+ =

− 2iθαβ
(
LXαω+ ∧ LXβ

(eI ∧ ẽI)
)
+

−
1

2
θαβθρσLXβ

[
LXαω+ ∧

(
LXρe

I ∧ LXσeI − LXρ ẽ
I ∧ LXσ ẽI

)]
+O(θ3) .

(5.182)

The expansion of the last two terms in Eq. (3.98) gives

(ω+)IJ ∧⋆ B
IJ −BIJ ∧⋆ (ω+)IJ = iθαβ

(
LXαω

IJ
+ ∧ LXβ

B̄IJ

)
+O(θ3) , (5.183)

where we defined

B̄IJ = eI ∧ eJ − ẽI ∧ ẽJ . (5.184)
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Hence, up to third order terms in θ, Eq. (3.98) reads as

dKI
I − 4θαβ

(
LXαω+ ∧ LXβ

(eI ∧ ẽI)
)
+ iθαβθρσLXβ

[
LXαω+ ∧

(
LXρe

I ∧ LXσeI − LXρ ẽ
I ∧ LXσ ẽI

)]
+

−
i

2
θαβ

(
LXαω

IJ
+ ∧ LXβ

B̄IJ

)
= 0 ,

with KI
I given by Eq. (5.181).

We shall proceed similarly for Eq. (3.99). For the terms in the first round bracket, we obtain

ω+ ∧⋆ B
IJ −BIJ ∧⋆ ω+ = iθαβ

(
LXαω+ ∧ LXβ

B̄IJ
)
+O(θ3) . (5.185)

The second round bracket in Eq. (3.99) gives

ωIJ
+ ∧⋆ K

L
L −KL

L ∧⋆ ω
IJ
+ =

− 2iθαβ
(
LXαω

IJ
+ ∧ LXβ

(eL ∧ ẽL)
)
+

−
1

2
θαβθρσLXβ

[
LXαω

IJ
+ ∧

(
LXρe

L ∧ LXσeL − LXρ ẽ
L ∧ LXσ ẽL

)]
+O(θ3) .

(5.186)

The expansion of the second and third term in Eq. (3.99) reads as

ω
[J |K
+ ∧⋆ B

I]
K −B

[J
K ∧⋆ ω

K|I]
+ =

ω
[J |K
+ ∧ B̄

I]
K − B̄

[J
K ∧ ω

K|I]
+ + ω

[J |K
+ ∧ B̆

I]
K − B̆

[J
K ∧ ω

K|I]
+ +

1

2
θαβθγδ

(
LXαLXγ (ω+)

[I
K ∧ LXβ

LXδ
B̄J ]K

)
+O(θ3) ,

(5.187)

where

B̆IJ = −
1

4
θαβθγδ

(
LXαLXγe

I ∧ LXβ
LXδ

eJ − LXαLXγ ẽ
I ∧ LXβ

LXδ
ẽJ

)
. (5.188)

Thus, Eq. (3.99) reads as

0 = d
(
B̄IJ + B̆IJ

)
+ ω

[J |K
+ ∧ B̄

I]
K − B̄

[J
K ∧ ω

K|I]
+ + ω

[J |K
+ ∧ B̆

I]
K − B̆

[J
K ∧ ω

K|I]
+ +

1

2
θαβθγδ

(
LXαLXγ (ω+)

[I
K ∧ LXβ

LXδ
B̄J ]K

)
+ θαβ

(
LXαω+ ∧ LXβ

B̄IJ
)
+

−
i

2
θαβ

(
LXαω

IJ
+ ∧ LXβ

(eL ∧ ẽL)
)
−

1

8
θαβθρσLXβ

[
LXαω

IJ
+ ∧

(
LXρe

L ∧ LXσeL − LXρ ẽ
L ∧ LXσ ẽL

)]

(5.189)

Equation (5.189) is clearly not covariant under internal Lorentz transformations, due to the θ-

dependent correction terms10. In fact, in the noncommutative case, ωIJ
+ is only a component

of the gl(2,C) gauge connection ω+; as such, it gets mixed with the component ω+ under gauge

transformations (see Eqs. (3.83), (2.54)). From a phenomenological point of view, this is interpreted

as a violation of Lorentz symmetry in the dynamics of the spin connection.

10More precisely, this is due to the appearance of the Lie derivatives, which do not transforms covariantly under internal

gauge transformations.
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5.1. Perturbative solutions

We are now in a position to solve (5.185), (5.189) perturbatively. We will determine perturbative

corrections to solutions of the θ = 0 case, up to second order terms in θ. We start by expanding

the second tetrad ẽI and torsion T I around a solution of the commutative case

ẽI = ẽI(0) + ẽI(1) + . . . , (5.190)

T I = T I
(0) + T I

(1) + . . . . (5.191)

where it is assumed that the remainder is O(θ2). Recalling the expansions (5.179), (5.180), and

using the perturbative expansion (5.190) we obtain

BIJ = eI ∧ eJ − ẽI(0) ∧ ẽJ(0) − 2ẽ
[I
(0) ∧ ẽ

J ]
(1) +O(θ2) , (5.192)

KI
I = −2eI ∧ ẽI(0) − 2eI ∧ ẽI(1) +

i

2
θαβ

(
LXαe

I ∧ LXβ
eI −LXα ẽ

I
(0) ∧ LXβ

ẽ(0)I

)
. (5.193)

Thus, to first order in θ the equation of motion (5.185) reads as

d

[
−2eI ∧ ẽI(0) − 2eI ∧ ẽI(1) +

i

2
θαβ

(
LXαe

I ∧ LXβ
eI − LXα ẽ

I
(0) ∧ LXβ

ẽ(0)I

)]
+

−4θαβLXαω+ ∧ LXβ
(eI ∧ ẽI(0))−

i

2
θαβLXα(ω+)IJ ∧ LXβ

(
eI ∧ eJ − ẽI(0) ∧ ẽJ(0)

)
= 0 ,

(5.194)

Similarly, from Eq. (5.189) we obtain the equation for the spin connection ωIJ
+

dBIJ +ωJK
+ ∧BI

K −B J
K ∧ωKI

+ −
i

2
θαβ

(
LXαω

IJ
+ ∧LXβ

(eL ∧ ẽL(0))
)
+ θαβ

(
LXαω+∧LXβ

BIJ
)
= 0 ,

(5.195)

which can be recast in a more compact form as

dωB
IJ −

i

2
θαβ

(
LXαω

IJ
+ ∧ LXβ

(eL ∧ ẽL(0))
)
+ θαβ

(
LXαω+ ∧ LXβ

BIJ
)
= 0 , (5.196)

with BIJ given by Eq. (5.192) and its covariant derivative defined as

dωB
IJ := dBIJ + ωJK

+ ∧BI
K −B J

K ∧ ωKI
+ . (5.197)

5.2. A simple example: conformally related unperturbed tetrads

We shall apply our perturbative scheme to a particularly simple case, in which the two tetrads

are conformally related11

ẽI(0) = Ω eI . (5.198)

11Recall the more general relation given by the no-shear condition (2.63). Equation (5.198) then corresponds to a

trivial Lorentz transformation ΛI
J = δIJ .
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This is achieved when the one-form p introduced in Eq. (4.129) is closed, i.e. dp = 0, see Eqs. (4.133),

(4.135). Moreover, we assume that Ω is constant and Ω 6= 1. Thus, from the analysis of the

commutative case given in Section 4 4.2, we have T I
(0) = 0. Therefore, equation (5.194) implies in

this case

d

[
−2eI ∧ ẽI(1) +

i

2
θαβ(1− Ω2)LXαe

I ∧ LXβ
eI

]
−

i

2
(1− Ω2)θαβLXα(ω+)IJ ∧ LXβ

(eI ∧ eJ) = 0

(5.199)

Taking the exterior derivative of Eq. (5.199) we have

d
[
θαβLXα(ω+)IJ ∧ LXβ

(eI ∧ eJ)
]
= 0 , (5.200)

which implies that the three-form in bracket is locally exact, i.e. there exists a two-form q such

that

θαβLXα(ω+)IJ ∧ LXβ
(eI ∧ eJ) = dq . (5.201)

Substituting this expression back into Eq. (5.199) we have

d

[
−2eI ∧ ẽI(1) +

i

2
θαβ(1−Ω2)LXαe

I ∧ LXβ
eI −

i

2
(1− Ω2)q

]
= 0 . (5.202)

Equation (5.202) locally implies the existence of a one-form τ such that

− 2eI ∧ ẽI(1) +
i

2
θαβ(1− Ω2)LXαe

I ∧ LXβ
eI −

i

2
(1− Ω2)q = dτ . (5.203)

Thus, in this simple example the first order perturbative correction to the tilde tetrad is given by

the solution of the following algebraic equation

eI ∧ ẽI(1) =
i

4
θαβ(1− Ω2)LXαe

I ∧ LXβ
eI −

i

4
(1− Ω2)q −

1

2
dτ . (5.204)

The one-form τ in Eq. (5.204) is entirely arbitrary and its contribution is not related to spacetime

noncommutativity. Thus, we can set dτ = 0 in order to single out the effects of noncommutativity

in determining the corrections to ẽI . The two-form q is instead obtained by solving the differential

equation (5.201), which admits local solutions for q provided the l.h.s. is a closed three-form. Thus,

Eq. (5.201) also constrains the functional form of (ω+)IJ and eI . Note that in general the second

term in Eq. (5.204) is non-vanishing even when the spin connection (ω+)IJ is pure gauge.

The equation of motion for the connection (5.196) becomes

dωB
IJ + θαβ(1− Ω)2LXαω+ ∧ LXβ

(eI ∧ eJ) = 0 , (5.205)
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which, using Eq. (5.192), can be recast in the form

2(1 − Ω2)e[I ∧ T
J ]
(1) + θαβ(1− Ω)2LXαω+ ∧ LXβ

(eI ∧ eJ ) = 0 . (5.206)

Thus, we have the equation determining the first order perturbative corrections to the torsion

e[I ∧ T
J ]
(1) = −

1

2
θαβLXαω+ ∧ LXβ

(eI ∧ eJ) . (5.207)

Equation (5.207) shows that, already in this simple example, torsion is sourced by spacetime

noncommutativity, provided that ω+ is not a constant. The perturbative corrections are first order

in θ.

6. FURTHER EXTENSIONS OF THE MODEL

6.1. Bitetrad interactions

It is possible to include the following interaction terms in the action

Sint[e
I , ẽI ] =

∫ {
i c1Tr [e ∧⋆ e ∧⋆ e ∧⋆ e γ5]+c2Tr [e ∧⋆ e ∧⋆ e ∧⋆ e]+c3 (Tr [e ∧⋆ e])

2+c4 (Tr [e ∧⋆ e γ5])
2
}

(6.208)

These are the simplest (polynomial) interaction terms in four dimensions that are compatible

with the symmetries of the model, and that do not give rise to higher-order derivatives in the

commutative limit. For generality, in this section we will not make use of the no-shear condition

(2.63), although it will be pointed out when simplifications arise due to such an assumption. It is

straightforward, if tedious, to expand Sint by explicitly evaluating the traces and using the graded

ciclity property of the ∧⋆ product (see Eq. (A.14)). Denoting by Si the term multiplying the

coefficient ci in Eq. (6.208), we obtain

S1 = 4 ǫIJKL

∫ (
eI ∧⋆ e

J ∧⋆ e
K ∧⋆ e

L + ẽI ∧⋆ ẽ
J ∧⋆ ẽ

K ∧⋆ ẽ
L
)
+ (6.209)

− 8 ǫIJKL

∫ (
2eI ∧⋆ e

J ∧⋆ ẽ
K ∧⋆ ẽ

L − eI ∧⋆ ẽ
J ∧⋆ e

K ∧⋆ ẽ
L
)
+

16 i

∫ (
eI ∧⋆ eI ∧⋆ e

J ∧⋆ ẽJ − eI ∧⋆ e
J ∧⋆ eI ∧⋆ ẽJ + eI ∧⋆ e

J ∧⋆ eJ ∧⋆ ẽI
)
+

16 i

∫ (
ẽI ∧⋆ ẽI ∧⋆ ẽ

J ∧⋆ eJ − ẽI ∧⋆ ẽ
J ∧⋆ ẽI ∧⋆ eJ + ẽI ∧⋆ ẽ

J ∧⋆ ẽJ ∧⋆ eI
)

S2 = −4

∫ (
eI ∧⋆ e

J ∧⋆ eI ∧⋆ eJ + ẽI ∧⋆ ẽ
J ∧⋆ ẽI ∧⋆ ẽJ

)
(6.210)

S3 = 16

∫ (
eI ∧⋆ eI ∧⋆ e

J ∧⋆ eJ + ẽI ∧⋆ ẽI ∧⋆ ẽ
J ∧⋆ ẽJ − 2 eI ∧⋆ eI ∧⋆ ẽ

J ∧⋆ ẽJ
)

(6.211)

S4 = 16

∫ (
eI ∧⋆ ẽI ∧⋆ e

J ∧⋆ ẽJ + ẽI ∧⋆ eI ∧⋆ ẽ
J ∧⋆ eJ − 2 eI ∧⋆ ẽI ∧⋆ ẽ

J ∧⋆ eJ
)

(6.212)
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In the commutative limit, many such terms vanish identically. Thus, we have

Sθ=0

1 = 4 ǫIJKL

∫ (
eI ∧ eJ ∧ eK ∧ eL + ẽI ∧ ẽJ ∧ ẽK ∧ ẽL

)
− 8 ǫIJKL

∫ (
eI ∧ eJ ∧ ẽK ∧ ẽL

)

Sθ=0

2 = 0 (6.213)

Sθ=0

3 = 0 (6.214)

Sθ=0

4 = 64

∫
eI ∧ ẽI ∧ eJ ∧ ẽJ (6.215)

The term (6.213) is of the type of consistent interactions in (tetrad) ghost-free bigravity [60]. Note

that the tetrad formulation of bimetric gravity is equivalent to their metric formulation provided

that the Deser-van Nieuwenhuizen condition holds [60, 61] (see also Refs. [62, 63])

eI ∧ ẽI = 0 . (6.216)

In our model, this condition would also imply that the equation of motion (4.124) is automatically

satisfied. When the condition expressed by Eq. (6.216) is satified, the vanishing of the interaction

term (6.215) also follows necessarily. Therefore, we obtain in this case a one-parameter12 bigravity

model, with interaction term given by

Sθ=0

int = 4 c1

∫
ǫIJKL

(
eI ∧ eJ ∧ eK ∧ eL + ẽI ∧ ẽJ ∧ ẽK ∧ ẽL − 2 eI ∧ eJ ∧ ẽK ∧ ẽL

)
. (6.217)

6.2. Higher-order curvature invariants

There are only two possible monomial invariants that can be built using only the field strength

and its dual. The corresponding actions are quadratic in the curvature and read as

SP =

∫
Tr [F ∧⋆ F ] = −

1

2

∫
F IJ ∧⋆ FIJ + 4

∫
(r ∧⋆ r + r̃ ∧⋆ r̃) , (6.218)

SMM =

∫
Tr [F ∧⋆ ∗HF ] =

1

2

∫
F IJ ∧⋆ ∗HFIJ − 4 i

∫
(r ∧⋆ r̃ + r ∧⋆ r̃) . (6.219)

Such action functionals represent the noncommutative extensions of the Pontryagin action and

the MacDowell-Mansouri action [64], respectively. The former reduces to a topological term in the

commutative case. The noncommutative extension of the MacDowell-Mansouri action, Eq. (6.219),

has been previously obtained in Ref. [11]. We observe that, if a self-dual gauge connection is

assumed, then there is a simple relation between the actions (6.218), (6.219) (see Ref. [65] for the

commutative case). This is analogous to the relation between the Palatini and the Holst term in

the self-dual case, which we examined in this paper.

12As far as interactions between the two tetrads are concerned.
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7. CONCLUSIONS

In this work, we generalized the model of Ref. [11] and built a noncommutative extension of

tetrad Palatini-Holst gravity, based on an Abelian twist. In the framework adopted, the noncom-

mutative deformation necessarily leads to the enlargement of the internal gauge symmetry of the

model, which is thus extended from the Lorentz group to GL(2,C). Similar consistency require-

ments demand that the metric degrees of freedom of the theory must be also augmented, thus

replacing the tetrad by a bitetrad. Therefore, the theory obtained is inherently bimetric. We

take the standpoint that the extra degrees of freedom required by the noncommutative extension

are physical. Thus, a modified theory of gravity entailing both higher-order derivatives and new

gravitational degrees of freedom is obtained, which naturally encodes modifications of spacetime

structure at the Planck scale.

The inclusion of the Holst term in the action of the noncommutative theory has important

consequences for the dynamics. In fact, by choosing the value β = −i for the Barbero-Immirzi

parameter13, the action turns out to depend only on the self-dual part of the gl(2,C) gauge con-

nection. This result is a generalization of a well-known property of the corresponding commutative

theory. Moreover, in the noncommutative case, the field strength has a much simpler expression in

the self-dual case and its components are given in Eqs. (3.86), (3.87). This in turn leads to a great

simplification in the equations of motion compared to the general case. The equations of motion

for the self-dual action are given in Eqs. (3.94), (3.95), (3.98), (3.99).

In Section 3 3.2 we studied the symmetries of the model for generic β. These are of two types,

namely gauge symmetries and duality symmetries. In the first class, we have spacetime symmetries

(diffeomorphisms, ⋆-diffeomorphisms), as well as the internal GL(2,C) gauge ⋆-symmetry. In the

second class, we identified three distinct duality symmetries in the target space. One of them is

a straightforward generalization of Hodge duality, while the other two rest on the doubling of the

tetrad degrees of freedom required by the noncommutative deformation.

The commutative limit of the theory was studied in detail in Section 4. In particular, we

showed that the dynamics imposes a constraint on the relation between the two tetrads (4.128),

and determined solutions to the generalized connection equation (4.136). Remarkably, torsionful

connections are admissible solutions even in the pure gravity case. The extra component in the

gl(2,C) gauge connection shall instead be identified with the Weyl one-form, representing a par-

ticular type of spacetime non-metricity. Thus, the commutative limit of the theory turns out to be

13We recall that β is the inverse of the coupling of the Holst term.
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invariant under local scale transformations. Equations (4.154), (4.155) give the gravitational field

equations for the two tetrads, in differential forms notation; they can be recast in the equivalent

tensorial form (4.168). In Section 4 4.4, we imposed reality conditions on physical fields. Thus,

we showed that the form of the gravitational field equations is similar to Einstein-Cartan theory,

with the field strength of the Weyl non-metricity one-form acting as a source of torsion. Therefore,

torsion would be dynamical even in vacuo, in contrast to standard Einstein-Cartan theory.

In Section 5, we study the effects of spacetime noncommutativity by adopting a perturbative

approach. More specifically, by means of an asymptotic expansion of the twist operator in the de-

formation parameter θ, we obtain correction terms to the equations of motion of the commutative

theory. Then, focusing on the connection equation and the bitetrad constraint, we determine cor-

rections to solutions of the commutative theory. We consider as a simple example the unperturbed

solution corresponding to two tetrads related by a constant scale transformation, and vanishing

torsion. We show that even in this simple case there are non-trivial perturbative corrections to

first order in θ; in particular, torsion is shown to receive non-vanishing corrections.

Lastly, in Section 6, we consider further extensions of the model. Particularly interesting in

this regard are extensions achieved by the inclusion of self-interaction terms of the bitetrad. We

showed that there are only four possible such terms that are polynomial and compatible with the

gauge symmetries of the model. In the commutative limit, they give rise to interaction terms that

are typical of ghost-free bimetric theories of gravity, see Eq. (6.217). It is worth noting that, in the

θ → 0 limit, there is only one free parameter in the interaction term.
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Appendix A: Elements of twisted differential geometry

Twist differential geometry is a powerful tool that allows to construct noncommutative space-

times as deformations of commutative spacetimes, while retaining associativity. The noncommuta-

tive structure underlying the model studied in the present work is the one introduced in Ref. [11];

it is obtained by means of a particular type of Abelian twist, which is used to generalize the Moyal-

Weyl ⋆-product to the exterior algebra of differential forms on a spacetime manifold. Let us shortly

review the setup, while referring to [11] and references therein for further details. The twist will

be denoted by F ∈ UΞ ⊗ UΞ, where UΞ is the universal enveloping algebra of the Lie algebra

Ξ of smooth tensor fields on spacetime14. Using the twist F , a ⋆-product of smooth functions

f, g ∈ C∞(M) can be defined as a deformation of the ordinary pointwise multiplication

f ⋆ g = µ ◦ F−1(f ⊗ g) , (A.1)

which can be easily generalized to fields with non-zero spin. The bilinear operator µ denotes

pointwise multiplication, i.e.

µ(f ⊗ g) = f · g . (A.2)

We will assume a twist of the form

F = e−
i
2
θαβXα⊗Xβ , (A.3)

where {Xα} is a set of mutually commuting vector fields (Abelian twist). The matrix θαβ is

assumed constant and antisymmetric

θαβ = −θβα . (A.4)

If we choose a system of local coordinates {xα} adapted to the vector fields {Xα}, i.e. such that

∂
∂xα = Xα, the ⋆-product defined in Eq. (A.1) reduces to the usual definition of the Moyal-Weyl

product

f ⋆ g = µ ◦ e
i
2
θαβ∂α⊗∂β (f ⊗ g) . (A.5)

The generalization of the definition (A.1) to the twist deformation of more general bilinear

composition laws, such as e.g., the tensor product ⊗ of smooth tensor fields and the wedge product

14Products of Lie algebra elements are generally not Lie algebra elements themselves. The universal enveloping algebra

is an algebra whose elements are all such products. It is infinite-dimensional and contains all representations of the

given Lie algebra.
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∧ of smooth differential forms, is readily obtained from Eq. (A.3) by replacing the vector field Xα

with the corresponding Lie derivative LXα

F = e
− i

2
θαβLXα⊗LXβ . (A.6)

Moreover, we find it convenient to use the standard notation

F = Fα ⊗Fα, F−1 = F̄α ⊗ F̄α (A.7)

with Fα multi-differential operators and α a collective index.

Thus, considering two tensor fields s, t, we can define the twist-deformation of their tensor

product as

s⊗⋆ t = F̄α(s)⊗ F̄α(t) , (A.8)

Similarly, the ⋆-deformed wedge product of two differential forms is defined as

ξ ∧⋆ η = F̄α(ξ) ∧ F̄α(η). (A.9)

The deformed wedge product inherits some of the properties of its commutative counterpart:

i) It is associative, i.e. given three differential forms ξ, η, τ , we have

(ξ ∧⋆ η) ∧⋆ τ = ξ ∧⋆ (η ∧⋆ τ) . (A.10)

ii) The ∧⋆ product of a differential form of arbitrary degree ξ and a 0-form f (i.e. a scalar

function) reduces to the ordinary ⋆-product

f ∧⋆ ξ = f ⋆ ξ (A.11)

ξ ∧⋆ f = ξ ⋆ f (A.12)

iii) The action of the exterior derivative is compatible with the twist, i.e. a graded Leibniz rule

holds

d(σ ∧⋆ τ) = dσ ∧⋆ τ + (−1)deg(σ)σ ∧⋆ dτ (A.13)

iv) The deformed wedge product satisfies a graded ciclicity property

∫
σ ∧⋆ τ = (−1)deg(σ)deg(τ)

∫
τ ∧⋆ σ , (A.14)

where deg(σ) + deg(τ) = D, D being the number of spacetime dimensions, and the equality

holds up to boundary terms.
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v) Compatibility with undeformed complex conjugation

(σ ∧⋆ τ) = (−1)deg(σ)deg(τ) τ ∧⋆ σ . (A.15)

In the Moyal-Weyl case and for real forms, complex conjugation of the wedge product on

the l.h.s. of Eq. (A.15) is equivalent to the sign reversal of θαβ; thus implying

σ ∧⋆−θ
τ = (−1)deg(σ)deg(τ) τ ∧⋆θ σ . (A.16)

Finally, it is convenient for perturbative computations to express the ∧⋆ product as a series

expansion in the parameters θαβ. From the definitions (A.9), (A.6) we find, after expanding the

exponential in the definition of the twist

ξ ∧⋆ η = ξ ∧ η +
i

2
θαβLXαξ ∧ LXβ

η +
1

2!

(
i

2

)2

θαβθρσLXρLXαξ ∧ LXσLXβ
η +O(θ3) . (A.17)

We remark that, unlike the ordinary wedge product, the ∧⋆ product fails to satisfy a graded

anticommutativity property. In fact, it is clear from the expansion (A.17) that, due to the θ-

dependend corrections, one has ξ ∧⋆ η 6= (−1)deg(ξ)deg(η)η ∧⋆ ξ in general.

Appendix B: Useful formulae involving Dirac Gamma matrices

{γI , γJ} = 2ηIJ , ηIJ = (+,−,−,−) (B.1)

γI = ηIJγJ = γ0γIγ0 (B.2)

γ5 := iγ0γ1γ2γ3 = −
i

4!
εIJKLγIγJγKγL (B.3)

γIγJγKγL = −iεIJKLγ5 (B.4)

γIγJγK = ηIJγK − ηIKγJ + ηJKγI + iεIJKLγ
Lγ5 (B.5)

ΓIJ =
i

4
[γI , γJ ] (B.6)

ΓIJγ5 =
i

2
εIJKLΓ

KL (B.7)
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P± =
1∓ γ5

2
(B.8)

ΓIJP± =
1

2

(
ΓIJ ∓

i

2
εIJKLΓ

KL

)
= p±IJKLΓ

KL . (B.9)

[ΓIJ ,ΓKL] = i (ηILΓJK − ηIKΓJL + ηJKΓIL − ηJLΓIK) (B.10)

{ΓIJ ,ΓKL} = ηI[KηL]J +
i

2
εIJKLγ5 (B.11)

[γK ,ΓIJ ] = i(ηKIγJ − ηKJγI) (B.12)

[γ5,ΓIJ ] = 0 (B.13)

{γI ,ΓJK} = −εIJKLγ
Lγ5 (B.14)

Tr [γIγJ ] = 4ηIJ (B.15)

Tr [γIγJγ5] = 0 (B.16)

Tr [γIγJγKγL] = 4 (ηIJηKL − ηIKηJL + ηILηJK) (B.17)

Tr [γIγJγKγLγ5] = −4iεIJKL (B.18)

Tr [γIγJΓKL] = −4i ηI[LηK]J (B.19)

Tr [γIγJΓKLγ5] = 2εIJKL (B.20)

Appendix C: Tetrad identities

gabeIae
J
b = ηIJ (C.1)

ηIJe
I
ae

J
b = gab (C.2)
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e := det e =
√

− det g (C.3)

The Levi-Civita symbol is defined so as to satisfy the conventions ε0123 = −1 and ε0123 = 1.

εabcdeIae
J
b e

K
c eLd = −εIJKL e (C.4)

εIJKLε
abcdeIae

J
b e

K
c eLd = 4! e (C.5)

εabcdeIae
J
b = −εIJKLe ecKedL (C.6)

εIJKLε
abcdeIae

J
b = 4e ec[KedL] (C.7)

Appendix D: Weyl connection

The Weyl connection can be introduced by means of the following compatibility condition15

between the affine connection (specified by the assignment of the connection coefficients Γc
ab) and

the spin connection (specified by ω I
a J and wa)

∇ae
I
b + ω I

a Je
J
b −

1

2
wae

I
b = 0 (D.1)

Antisymmetrising over the pair of indices (a, b) and using differential forms notation, we obtain

from Eq. (D.1)

deI + ωI
J ∧ eJ −

1

2
w ∧ eI = CI , (D.2)

where CI
ab = ΓI

[ab]. This relation can be written more compactly by introducing a new spin con-

nection, which includes a contribution that is symmetric in the internal space

ω̄IJ := ωIJ −
1

2
ηIJw . (D.3)

The Weyl vector introduces a particular type of non-metricity (pure trace). In fact, we have

QIJ := dω̄ηIJ = dηIJ − ω̄ K
I ηKJ − ω̄ K

J ηIK = −ω̄IJ − ω̄JI = ηIJw . (D.4)

The curvature of the connection (D.3) is defined as

F̄ IJ(ω̄) = dω̄IJ + ω̄I
K ∧ ω̄KJ . (D.5)

The quantity F̄ IJ(ω̄) is both Lorentz and Weyl invariant. A straightforward calculation gives

F̄ IJ(ω̄) = F IJ(ω)−
1

2
ηIJdw . (D.6)

15Sometimes this condition is improperly referred to as ‘tetrad postulate’.
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Appendix E: Torsionful Geometry

In this Appendix we review the geometry of a spacetime with curvature and torsion16 [7, 66].

Let us consider a torsionful affine connection ∇a. The torsion tensor is defined by the following

relation

[∇a,∇b]f = −T c
ab∇cf , (E.1)

where f is a scalar function. The connection ∇a is assumed to be metric compatible, i.e. it satisfies

∇c gab = 0 . (E.2)

The corresponding connection coefficients are

Γc
ab = Γ

c
ab +Kc

ab , (E.3)

where the first term is a Christoffel symbol and Kc
ab is the contortion tensor, defined as

Kc
ab :=

1

2
(T c

ab + T c
a b + T c

b a) . (E.4)

Thus, we have

Γc
[ab] = Kc

[ab] =
1

2
T c

ab . (E.5)

With our conventions, the contortion tensor is antisymmetric w.r.t. to its first and third indices

Kabc = −Kcba . (E.6)

It is convenient to define the following contraction of the torsion tensor

Ta =: T c
ac . (E.7)

The contraction of the contortion tensor over its first and third indices vanishes due to Eq. (E.6)

Kc
ac = 0 . (E.8)

We also have

Ka
ab = −Tb , (E.9)

16The reader must be aware of some differences between our conventions and those adopted in the above references.

For instance, the relation between our definition of the torsion tensor and the one used in Ref. [7a] is T c
ab = 2S c

ab .
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while contraction with the inverse metric gives

gabKcab = Tc . (E.10)

The Riemann tensor of a torsionful connection can be defined through its action on a vector

field V a as

R d
abc V c = (∇a∇b −∇b∇a)V

d + T c
ab∇cV

d . (E.11)

For a one-form ωa we have instead

−R d
abc ωd = (∇a∇b −∇b∇a)ωc + T e

ab∇eωc (E.12)

The Riemann curvature tensor of the torsionful connection ∇a can be expanded in terms of the

curvature of the metric connection and terms involving the torsion. An overline is used to denote

the Levi-Civita connection and the corresponding curvature tensor, as well as its contractions

(cf. e.g. Ref. [66])

R d
abc = R

d
abc +∇aK

d
bc −∇bK

d
ac +Kd

aeK
e
bc −Kd

beK
e
ac (E.13)

Rab := R c
cab =Rab +∇cK

c
ab +∇aTb − TcK

c
ab −Kc

aeK
e
cb

(E.14)

R := gabRab = R+ 2∇aT
a − T aTa −KabcK

cab . (E.15)

The Einstein tensor is defined as usual

Gab := Rab −
1

2
gabR , (E.16)

with the Ricci tensor Rab and the Ricci scalar defined by Eqs. (E.14) and (E.15), respectively.

Note that unlike in general relativity the Einstein tensor Gab is not symmetric. Lastly, the Bianchi

identities in a spacetime endowed with torsion read as (see Ref. [67])

R d
[abc] = ∇[aT

d
bc] − T e

[abT
d
c]e , (E.17)

∇[aR
e

bc]d = T l
[abR

e
c]ld . (E.18)
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