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On the Nature of Discrete Space-Time
The distance formula, relativistic time dilation and length

contraction in discrete space-time

DAVID CROUSE and JOSEPH SKUFCA

Abstract

In this work, the relativistic phenomena of Lorentz-Fitzgerald contrac-
tion and time dilation are derived using a modified distance formula that is
appropriate for discrete space. This new distance formula is different than
the Pythagorean theorem but converges to it for distances large relative to
the Planck length. First, four candidate formulas developed by different
people over the last 70 years will be discussed. Three of the formulas are
shown to be identical for conditions that best describe discrete space. It is
shown that this new distance formula is valid for all size-scales – from the
Planck length upwards – and solves two major problems historically asso-
ciated with the discrete space-time (DST) model. One problem it solves
is the widely believed anisotropic nature of most discrete space models.
Just as commonly believed is the second problem – the incompatibility of
DST’s concept of an immutable atom of space and the length contraction of
this atom required by special relativity. The new formula for distance in
DST solves this problem. It is shown that length contraction of the atom
of space does not occur for any relative velocity of two reference frames. It
is also shown that time dilation of the atom of time does not occur. Also
discussed is the possibility of any object being able to travel at the speed of
light for specific temporal durations given by an equation derived in this
work. Also discussed is a method to empirical verify the discreteness of
space by studying any observed anomalies in the motion of astronomical
bodies, such as differences in the bodies’ inertial masses and gravitational
masses. The importance of the new distance formula for causal set theory
and other theories of quantum gravity is also discussed.

Keywords: Distance formula · discrete space · discrete time · Pythagorean
theorem · special relativity · general relativity · quantum gravity · causal set
theory · dark energy · dark matter · logical positivism
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1 Introduction

Ever since the Greek andmedieval philosophers Parmenides, Zeno of Elea (Ha-
gar 2014, 9) and Maimonides (Maimonides (1190)) proposed that space and
time are discretized, debate on this subject has waxed and waned. In the mod-
ern age, Werner Heisenberg had a continued interest in discrete space, along
with his contemporaries: Arthur March, Henry Flint, Arthur Ruark and others
(Hagar 2014, 70, 99-103). Over the last 40 or so years, the idea that space and
time are discretized, or atomized, has received increased interest by scientists
in the fields of mathematical physics (Hagar (2014), Finkelstein (1969)), loop
quantum gravity (Pullin (2011), Rovelli (2003), Collins (2004)), causal set the-
ory (Henson (2008), Sorkin (2005)), and pure mathematics (Forrest (1995), Weyl
(1949), Van Bendegem (1987; 1995)).

Our interest in discrete space-time (DST) started fromamuchdifferent topic:
a simple exercise where we examined a possible source of inertial anomalies of
astronomical bodies – anomalies that are normally attributed to dark matter
and dark energy (Crouse (2016a)). In that work, we treated John A. Wheeler’s
quantum foam that ostensibly pervades all space (Wheeler (1957)) as a solid-
state material, and then studied the motion of particles and astronomical bod-
ies traveling within this material. The important thing we realized was that
Wheeler’s assumption of the foambeing a randomdistribution of particles (each
of Planckmassmp = 2.18×10−8 kg) with an average particle-to-particle spacing
of the Planck length (lp = 1.62× 10−35 m) cannot be correct. Instead, if space is
discretized in spatial units of lp, then the foammust be a crystal with a particle-
to-particle spacing of exactly lp. We then used simple crystal physics to calcu-
late the energy bands (due to a spatially periodic gravitational potential energy)
and the effective inertial masses of particles traveling within this universe-wide
gravity crystal. As discussed in Section 5, we found that the crystal supports
particle behavior that mimics the effects of dark matter and dark energy. Ob-
serving and quantifying such behavior can provide a realizable way to verify
that space is discrete.

However, while we were investigating the use of the DST model to justify
the ordering of the quantum foam, we came across something even more inter-
esting: HermannWeyl’s tile argument and the unresolved problems associated
with DST – see (Hagar (2014)) and (Weyl 1949, p. 43). We found it astounding
that after 2500 years, the formula to calculate distances 1 is still debated. As the
matter largely stood before this paper, one either had to accept the Pythagorean
theorem1 or the discretization of space, but not both2. We thought that for hu-

1More specifically, the calculation of distances in flat-space using the Pythagorean theorem.
2It is noted that significant progress wasmade prior to this paper by Van Bendegem, Forrest and

others in reconciling DST and the Pythagorean theorem, as discussed throughout this work.
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manity’s oldest mathematical theorem to still be in doubt was an embarrass-
ment for us all, and needed to be resolved posthaste. We also realized that a
solution to the problemwith the Pythagorean theorem1 would resolve many of
the simple problems with DST, and any problems that remained would be ex-
traordinarily interesting andworthy of additional study. Thus, in this paper we
solve the problems: conservation of the invariant nature of the atom of space
(the hodon χ) and of the atom of time (the chronon τ ), maintaining isotropy
in DST, causality issues with DST, and the calculation of distances at all size-
scales (from the Planck scale to macro-geometric scales) using a single general
formula. The only issue that remains with DST is the conservation of energy-
momentum, and as will be discussed in Section 6, this sole remaining issue is
rich with implications on our conceptions of motion, energy, and mass.

We were also interested in this topic for one particular purely philosophical
reason: to see if there is any chance to resuscitate Henri Bergson’s once stellar
reputation as the authority on the subject of time – a renown that diminished
to the point of obscurity after Albert Einstein’s introduction of the special the-
ory of relativity (SR). Bergson strongly opposed equating scientists’ “measured
time” with what he believed to be a more important and human-experienced
time that he called “real time”, “psychological time”, “lived time”, duration,
or simply Time (Canales (2015)). Even though he later came to accept the time
dilation of physicists’ time, he thought that his Time is “not altered according to
the velocity of a system” (Canales 2015, p. 25). To further this view, he quipped
“We shall have to find another way of not aging” (Canales 2015, p. 11) (Bergson
1926, p. 77). Albert Einstein, however, famously stated that “the time of the
philosophers does not exist” (Canales 2015, p. 19). Thus, we were interested
to see if there is some compromise that DST may allow between these two op-
posing views. Does DST contain some aspect of time that is not dilated and
is universally experienced by all entities? Unfortunately for Bergson, what we
found in this work is that the only aspect of time that is not affected by veloc-
ity is the chronon. And while the chronon (determined later in this work to be
τ = 2τp = 1.08×10−43swith τp being the Planck time) does not experience time
dilation, it is far removed from any human-experienced time, and ironically, it
is the physicists’ time that is the human-experienced time.

Having resolved all but one of the commonly cited problems with DST, one
way to view this paper is simply as a strong defense of the DST model against
the continuous model. However, we view this paper as more than just this.
Having a correct expression of the formula to calculate distances in space is im-
portant for many reasons, with different reasons being important for different
communities of scientists and philosophers. For the relativists 3, this paper will
be important for the formulas describing the distance formula, Lorentz factor,

3We mean the physics version of relativists – those who study special and general relativity.
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time dilation and length contraction in DST. For the quantum gravity, astron-
omy, and cosmology scientists, this paper will be important for how it imposes
order upon Wheeler’s quantum foam, as well as its impact on quantum loop
gravity and causal set theory. For the mathematicians, it will be important be-
cause it defines a new pseudo-metric that violates the triangle inequality theo-
rem in interesting ways. I know that as a materials engineer, I am interested
in further investigating the universe-wide gravity crystal, how it forms, the
growth dynamics in its bulk and at its facets, the properties of defects in the
crystal, and the drift and diffusion of mobile particles (e.g., black holes) within
the crystal. And finally for philosophers, this paper will be important for its de-
fense/elevation of the DST model, and its philosophical implications on space,
time, and motion. However, we are confident that we are overlooking many
other fields of study for which this most basic tool, the distance formula, is im-
portant now and increasingly so in the future as humanity probes, studies and
exploits phenomena that occur at ever smaller size-scales.

This paper is organized as follows. In Section 2, four different versions of the
distance formula applicable to discrete space are discussed - those proposed by
HermannWeyl (Weyl (1949)), Jean Paul Van Bendegem (Van Bendegem (1987)),
Peter Forrest (Forrest (1995)) andDavid Crouse (Crouse (2016b)). It is discussed
how three of these formulas, with some slight modifications and reinterpreta-
tions, are identical for conditions that best describe DST, and how this formula
differs from the Pythagorean theorem for small size-scales but converges to it
for any distance significantly larger than lp. In Section 3, the standard deriva-
tions of time dilation and length contraction found in any textbook on SR are
performed, with the only change being that the modified distance formula is
used in the derivations instead of the Pythagorean theorem. It is in this section
that we develop a new Lorentz factor γ that eliminates the contraction of the
hodon and the dilation of the chronon that are predicted by conventional SR.
An interesting consequence of these results is discussed in Section 4, namely,
how SR in DST allows objects to travel at the speed of light over a specific tem-
poral duration. In Section 5, the universe-wide gravity crystal is discussed, and
howDSTwill impact the calculation in additional ways not previously done by
Crouse in Crouse (2016a). Additional items are discussed in Section 6, includ-
ing causality in DST, conservation of energy and momentum, whether space is
absolute or non-absolute, Mach’s principle, gravity’s impact on the DSTmodel,
and a discussion of the importance of our DST model to causal set theory.
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2 Proposed Distance Formulas for Discrete Space

2.1 Hermann Weyl’s Distance Formula

In 1949, HermannWeyl constructed his famousWeyl-tile argument against dis-
crete space (Weyl 1949, p. 43). The argument starts by modeling DST as a fixed
grid of identical “tiles" with a tile-to-tile spacing of χ (Fig. 1), with χ being na-
ture’s ostensibly minimum length, i.e. the hodon, which we determine later in
this paper to be χ = 2lp = 3.24 × 10−35 m. Weyl then argued that the length
of the hypotenuse of an isosceles right triangle (i.e., c) is equal to the length of
the sides of the triangle (i.e., a). The important point in his argument is that c
and a are equal regardless of the size of the triangle, and because we measure (in
actuality) the hypotenuse of any such triangle to be

√
2 times the length of its

side, spacemust not be discrete. Even thoughWeyl did not do so, one can easily
develop a distance formula based on Weyl’s construction:

d = mχ. (1)

where d is the distance between two points, and m is the integer number of
steps of the shortest path, with each step going from the center of one tile to the
center of an adjacent tile either at its side or diagonal to it. An example is shown
by the dashed line in Fig. 1 from point p to swith a length ps = 3χ.

χ

χ

χ

χ

χ χ

χ

χ

χ

p

s

r
r’

q

q’

Figure 1: Grid and Solid Lines: TheWeyl construction that includes the a priori
existence of a lattice. All distances from the center of one tile to the center of
any neighboring tile must be χ. Thus the length of the diagonal is equal to the
length of the side of the square (pq = pr = χ) regardless of the size of the
square (e.g., pq′ = pr′ = 3χ). Dashed Line: The distance ps is the shortest path
composed of multiple jumps, with each jump being of extent χ; thus ps = 3χ.
The path shown is only one of several that yield ps = 3χ.

.
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Even thoughEq. (1) leads to demonstrably incorrect results formacro-geometric
distances, Weyl was the first person to suggest any modification of the distance
formula given by the Pythagorean theorem 4. It went unrecognized at that time
and up to now, that even thoughWeyl’s tile argument created one problemwith
theDSTmodel (i.e., disagreementwith the Pythagorean theorem), it solved two
problemswith themodel. Namely,Weyl’s result of the length of the hypotenuse
being χ for the smallest sized triangle (i.e., a = b = χ) solved the problems of
length contraction of the hodon and time dilation of the chronon (see Section
3). Even if this had been recognized, it would have produced little consolation,
since Weyl’s argument seemed to be otherwise so damning for the DST model.
For the next 35 years the situation changed little. Then in 1987, Jean Paul Van
Bendegem pointed us all in the right direction towards a proper resolution of
the Weyl-tile argument (Van Bendegem (1987)).

2.2 Jean Paul Van Bendegem’s Distance Formula

In a 1987 paper on Zeno’s paradoxes and the Weyl-tile argument, Van Ben-
degemmade the four following assumptions about lines in discrete space (Van
Bendegem 1987, pp. 296-298):

1. In a discrete geometry, all lines must have a constant nonzero width (of
integer ND).

2. A line consists of all the squares that are touchedduring the act of drawing
the line (see Fig. 2).

3. The size of the squares is small compared to the macroscopic width of the
lines.

4. The length of a line is the sumof the squares constituting that line,modulo
the width.

with ND being an integer, and the actual width of a line in units of length be-
ing NDχ, with χ being the minimum length as before. In his later works (Van
Bendegem (1995; 2017)), Van Bendegem dropped the necessity of Assumption
3 and even considered the case with m = ND = 1 as resolving the Weyl-tile
argument. Applying this procedure to straight lines, saym rectangles long and
ND rectangles wide, one obtains the expected result (Van Bendegem (1987)):

Length = m ·ND (div ND) = m. (2)
4In this paper we are not considering a curved space structure promoted by general relativity.

As discussed in Section 2.4.1, in the model developed in this paper there is no a priori existing space
to curve!
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Figure 2: Van Bendegem’s method involves a grid and lines with widths ND.
The distance from point a to point c is the sum of all the squares (with red dots)
within or touched by the line, divided by ND.

Thus, the length of the base of the triangle shown in Fig. 2 ism and the height is
p. Now concerning the hypotenuse, Van Bendegem states that “the hypotenuse
can be considered as a vertical pile of p layers” (Van Bendegem (1987)). This
leads to the equation, given in (Van Bendegem (1987)) and more clearly in (Van
Bendegem (2017)):

d(a, c) = p ·
⌊
ND
sinα

⌋
div (ND) . (3)

Note that Eq. (3) is not quite the same as Assumption 2, but is better because it
removes any ambiguity as to which rectangles to include in the sumused to cal-
culate d(a, c). Importantly, in (Van Bendegem (1995)) Van Bendegem expressed
Eq. (3) in a slightly different way: he placed the factor p in the floor operation
in Eq. (3), resulting in:

d(a, c) =

⌊
p · ND

sinα

⌋
div (ND) . (4)

This change is significant because it is a step towards connectingVanBendegem’s
approach to the approach taken by Crouse in which he rejected the a priori exis-
tence of a grid (Crouse (2016b)). To fully connect the two approaches, we must
take the additional step of letting ND = 1 in Eq. (4) (which seems most appro-
priate for discrete space). Equation (4) then becomes

d(a, c) =
⌊ p

sinα

⌋
=
⌊√

m2 + p2
⌋
. (5)
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It is seen that Eqs. (4) and (5) (but not Eq. (3)) converge to the Pythagorean
theorem for large m or large p. Importantly though, one can interpret Eq. (5)
somewhat differently, namely, as the number of complete rectangles (includ-
ing the rectangle centered about a) included along one tilted column along the
hypotenuse (see Fig. 3). The benefit of this modification is that it suggests a
solution to the supposed anisotropy problem with DST: when an entity trav-
els from a to b, the grid manifests locally as appropriate to that direction of
travel, when traveling from a to c, the grid manifests locally as appropriate to
this different direction of travel. Namely, the grid does not exist a priori from
the perspective of a particle. One may then be tempted to say that the grid ex-
ists a posteriori, and comes into existence and remains in existence only locally
(i.e., within the immediate neighborhood of the particle). However, with the
grid being so ephemeral (along with its inability to affect a particle’s direction
of travel), it is logical to want to discard the grid entirely; this was done by
Crouse in (Crouse (2016b)). However, before describing Crouse’s grid-less ap-
proach, we discuss below another important grid-based method developed by
Peter Forrest (Forrest (1995)).

a b

c

α

m

p

Figure 3: An alternative form of Van Bendegem’s distance formula (i.e., Eq. (5)
that uses ND = 1) suggests that the grid does not have a preferred direction.
Isotropy is maintained in this model and the distances Eq. (5) predicts converge
to those given by the Pythagorean theorem.
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2.3 Peter Forrest’s Distance Formula

In 1995, Peter Forrest (Forrest (1995)) sought to develop a distance formula ap-
propriate for discrete space that uses “only a single dyadic relation of adja-
cency”; he pointedly rejected Van Bendegem’s approach that he thought did
not “define distance in terms of adjacency”. Forrest’s approach is interesting
and rests on an intriguing, but we think problematic definition of adjacency.
Forrest states that the distance between two points p and q is the number of
links in the chain, with the first link containing p and the last link containing q
(as shown in Fig. 4). Of themultitude of possible chains connecting p and q, the
appropriate one for the determination/assignment of distance is the chain that
has “the least number of links . . . , the first of which is [contains] p and the last of
which is [contains] q”. A “link” in Forrest’s model is a collection of points that
he states are all “adjacent” to each other, with any two points 〈u, v〉 and 〈x, y〉
in E2,m being adjacent if they satisfy the equation

(u− x)
2

+ (v − y)
2 ≤ m2, (6)

where m is a scale factor for which Forrest proposes a value of 1030 as being
appropriate for the real space in which we live. Two links are said to be “con-
nected” if they have one or more points 〈u, v〉 in common. He calls the links
“balls of adjacency” (BoAs), and each BoAmay contain a large number of points
all “adjacent” to each other. Again, the distance from p to q is the number of
links in the shortest chain connecting p to q.

A note is in necessary concerning the classification and labeling of points
in Forrest’s method. There are two types of points in Forrest’s approach: grid
points and link points. Grid-points are single identifiable and unique entities
(the black dots in Fig. 4) that can be specified by their x and y components
within angled brackets 〈u, v〉. Link-points, or just links or BoAs, contain a mul-
titude of grid-points, examples of which are the blue, red and green circles in
Fig. 4. Confusion can occur with this nomenclature however, since we will
sometimes refer to a point as both a grid-point and a link-point; by this wemean
a grid-point, say a, and all the other grid-points adjacent to a (according to Eq.
(6)), or in other words, within one of the BoAs/links associated with grid-point
a. Additionally, in Section 2.6 we need to make use of a labeling system for
the link-points that specifies their x and y components in link-points. What this
means is that a link-point e is labeled as e = [g, h] using square brackets where
g is the number of link-points one has to translate in the x direction, followed
by an h link-point translation in the y direction to arrive at link-point e after
starting from the link-point origin [0, 0].

Two benefits of Forrest’s approach are: the anisotropic nature of the grid
can be minimized by letting m be large, and the distances it predicts for large
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triangles converge to those predicted by the Pythagorean theorem. However,
one major problem with Forrest’s method is that, as formulated, the distances
it calculates are generally at least one integer larger than those predicted by Eq.
(5). It will be shown in the next section that because of this, Forrest’s method
leads to one very important non-physical result.

χ

c

ba

Figure 4: In Forrest’s approach, a grid is constructed (black dots) and the
BoAs/links (with m = 2 in this example) are shown along the base (dashed
red circles), height (dashed green circles) and hypotenuse (dashed blue circles).
Particular grid-points that “connect” two link-points are shown in orange.

One way to fix this discrepancy is to first letm→∞ and then construct For-
rest’s BoAs slightly differently, as shown in in Fig. 5. This difference exploits
the ambiguity in the placement and orientation of c’s BoA (the link colored in
black in Fig. 5). The difference is, when calculating d(a, c), (where a and c are
link-points), place and orient grid-point c’s BoA such that grid-point c is at one
side of the BoA, and the opposite side of this BoA is oriented towards grid-point
a, as shown in Fig. 5. In this configuration, the last link in the shortest chain
need only contain one grid-point in c’s BoA rather than grid-point c itself. The
grid-points that are in both the last link and c’s BoA are shaded in purple in Fig.
5. This approach eliminates the anisotropy that existed whenm is a finite num-
ber and yields distances matching those predicted by Eq. (5). However, even
though this modification results in agreement between Van Bendegem’s and
Forrest’s approaches, one would be justified in feeling uneasy with the foun-
dations of these approaches that rely on grids and/or balls of adjacency. As
described next, in a 2016 paper (Crouse (2016b)) Crouse derived Eq. (5) in a
way that did not involve the a priori existence of a grid, or BoAs with interior
structure/features (i.e., grid-points).
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{New Method{Original Method
χ

c

ba

Figure 5: A schematic showing a different way of interpreting Forrest’s ap-
proach. First, let the spacing between the grid-points go to zero, i.e., the grid is
infinitely dense. The grid then disappears, and with it, the anisotropy of For-
rest’s construction. Also, we rethinkwhen the “chain” (in blue) has reached the
end point c. We do not require the last link in the chain to contain the grid-point
c but only to be within c’s BoA (the black/gray shaded circle). The grid-points
common to both BoA’s (i.e., those of c and of the last link in the chain) are shaded
in purple. The dotted black lines and �markers at link-points [1, 1] and [2, 2] are
to assist the reader in studying the model’s adherence to the triangle inequality
theorem.

2.4 David Crouse’s Distance Formula

In 2016, upon completing the analysis of the impact of theDSTmodel onWheeler’s
quantum foam (Crouse (2016a)), Crouse considered howone could fix the prob-
lems with DST. Being at the time unburdened by any knowledge of any previ-
ous work on DST (besides Weyl’s work), or the fact that logical positivism (LP)
and the concept of non-absolute space have fallen out of favor with physicists,
mathematicians and philosophers, it took little time for us to derive Eq. (5) us-
ing a different approach. We knew from the offset that our approach solved the
anisotropy problem that is said to exist with DST, and it took little longer for us
to realize that it also solved the problems of length contraction of χ and time
dilation of τ . The calculation involved two steps: the derivations of χ and τ ,
and the derivation of the new distance formula Eq. (5) or (10). Both steps are
described in detail in this section.

11



2.4.1 The Atoms of Space and Time

We start the derivations of the atoms of space and time by invoking a restrictive
form of LP and non-absolute space (NA-space). While there are a lot of prob-
lems with LP in general, (as evidenced by some of Ernst Mach’s beliefs (?, p.
232)), I am an strong believer of a restrictive form of LP. This form of LP is so
restrictive that is not of much use as a general philosophical school of thought,
but, fortuitously, it is exactly what we need to determine the atoms of space and
time, and it is so conservative that one can have a highdegree of confidencewith
the approach. Specifically, the form of LP used in this paper involves a strin-
gent test for a thing’s exclusion from reality: a thing is excluded from reality
only if it cannot be measured by (or make its presence known to): anybody (i.e.,
any measurement system), anywhere, anytime using the best technology that
is physically possible to employ 5. I have found that this high bar for exclusion
from reality is achieved by very few things, but importantly, we shown in this
section that it is clearly achieved for spatial extents less than 2lp = 3.24× 10−35

mand temporal durations less than 2τp = 1.08×10−43 s, where lp = 1.62×10−35

m and τp = 5.39 × 10−44 s are the Planck length and Planck time respectively.
What follows is the derivation of this smallestmeasurable length and this short-
est measurable temporal duration and their subsequent associations with the
atom of space and the atom of time respectively 6. First however, a note is in
order on the use of NA-space.

NA-space is required because it solves the anisotropy problem normally en-
countered with (or inherent to) other DST models that include the a priori ex-
istence of a grid. However, the concept of NA-space is not new to the study
of DST. Rather than calling it NA-space, Silberstein avoids those words and in-
stead calls it a mere “labeling”, as recounted by Kragh (Kragh 1994, 459) 7:

Time and space were viewed merely as a system of labeling [sic]
events by numbers (x,y,z;t). If these labels were restricted to inte-
gers, spacetime was said to be discrete. This is a more radical, but
also a logically more satisfactory view than the one held by time-
atomists such as Pokrowski. In particular, it avoided the problem

5All three criteria should be taken to their limits together for an entity to fully pass the test for
nonexistence. Take for example the “anytime” criteria. Consider not the present, but the technology
we have been able to develop/harness billions of years in the future, such that technologywill truly
be at the limits that the laws of physics allow.

6From a LP perspective, proving that there is a minimal spatial extent and a minimal temporal
duration implies discreteness of space and time respectively. Outside of LP, these connections of
minimal extent and duration to discreteness of ST is problematic (Kragh 1994, 438).

7We agree with Silberstein and view space and time coordinates as simple parameters in the
wavefunction describing a particle. However, one should be careful to note that distances in any
direction come in steps of χ, not just distances along arbitrarily chosen x, y or z directions.
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of how to define durations and extensions without making use of
continuous spacetime as a background reference (Schild (1949)).

Now back to the heuristic derivation of χ and τ . One first considers how
distances are measured. Einstein instructed us that the best way to measure a
distance is with light, by having one probe (PA) emit a signal photon (PS) and
another probe (PB) receive PS, as shown in Fig. 6. The distance between PA and
PB is then equal to the transit time divided by the speed of light c. One then
constructs the probes such that they measure the shortest possible distance.
Besides placing the probes as close to each other as possible (Fig. 7), you would
also strive to make PA and PB as small as possible. This is because one does
not know from where within PA the probe signal PS is created or where PS is
received within PB. According to quantum mechanics, with its concept of a
particle’s Compton wavelength (λc = ~/mc), to make PA and PB as small as
possible, you would choose very massive particles to serve as these probes. But
if they are too massive, they will be black holes from which PS cannot escape
and perform the measurement. The balance between localizing the probes PA

and PB while still allowing the PS to travel from one probe to the other is struck
when the diameters of the probes (Dmin) equal their Comptonwavelengths and
equal twice the Schwartzchild radius Rs = 2Gm/c2. Thus, setting λc = 2RS

yields a miminum diameter for PA and PB of:

Dmin = 2
√
~G/c3 = 2lp (7)

PA PBPS
∆x

Figure 6: Tomeasure distances, themost accurate “ruler” consists of two probe-
particles PA and PB between which the spatial interval ∆x is to be measured.
PA emits the signal particle PS , and PB receives PS .

As stated before, to measure the shortest possible length, one places the
two probes PA and PB as close as possible to each other while ensuring that
they remain distinct (Fig. 7). The center-to-center separation of the two probes

13



is then the smallest measurable length, namely, the hodon χ. With χ, one can
calculate the mass of the probemo. Both χ andmo are given below.

χ = 2

√
~G
c3

= 2lp = 3.23× 10−35m (8a)

mo =
1

2

√
~c
G

=
1

2
mp = 1.09× 10−8kg (8b)

Now that χ has been determined, there are a couple of approaches that can
be used to determine the shortest measurable temporal duration τ . One ap-
proach is to strictly adhere to LP and state that since one does not know from
“where” within each spatial atom the photon is emitted, the resolution of tem-
poral measurements is at best τ = χ/c = 2τp. Another approach involves ar-
guing that since we have not observed any particle that travels faster than the
speed of light, the speed of light is indeed the maximum possible velocity 8.
And because the fastest travel possible in DST is a particle translating one χ for
every duration τ , the chronon is simply τ = χ/c. Both approaches yield:

τ =
2lp
c

= 2τp = 1.08× 10−43s, (9)

∆x0 ∆x1 ∆x2 ∆x3

x0
~ x1

~ x2
~ x3

~
(Bottom)

(Top) PA PB
SR

Figure 7: Top: A system tomeasure the smallest spatial separation between two
distinct probe-particles (in darker gray). Note that PS is not shown in this fig-
ure. The probe-particles need to remain entirely distinct, as spatially compact
as possible, and be able to emit a signal particle PS . Bottom: The sets of all con-
tinuous space x-values (denoted as ∆xn) within each sphere that are mapped
to single x-values in discrete space, namely x̃n.

8If a particle is found to travel faster than light, then its velocity would replace c in the Lorentz
factor. This is because this speedier particle would replace the photon in the ideal clocks used
to calculate the Lorentz factors. However, time dilations (for durations much larger than τp) have
been experimentally verified and are in agreementwith a Lorentz factor that has c for themaximum
velocity. Thus, we can safely assume c is the maximum allowable velocity.
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If one is unhappywith his LP-basedderivation, one can consider other deriva-
tions given by (Sorkin (1983), Riggs (2009), Ng (1995), Misner (1973)) that yield
similar values. Even though I believe in the restrictive form of LP described in
this paper, I view the calculation developed in this section as a simple heuristic
argument and derivation of χ and τ . I provide it more as a salve to those mar-
ried to the conventional view of space and time; it is preferred to view χ and
τ not as derived quantities, but rather as constants of nature 9, or within loop
quantum gravity, as the minimal eigenvalues of quantum observables (Rovelli
(2003)).

2.4.2 Leopold’s Theorem

With the value of χ now in hand, we can start our approach in developing the
DST distance formula. To start, we reject the first step in Weyl’s construction
where he assumed absolute space and drew a grid – we instead assume NA-
space. In NA-space, a particle can travel in any direction as long as the magni-
tude of any individual translation is χ. We then construct a system to measure
the distances of a triangle’s sides and hypotenuse. The system is composed of
three particles PA, PB , PC at positions A, B, and C respectively, with PA, PB
and PC able to emit or receive a signal-particle PS (Fig. 8). The particles PA,
PB , PC , and PS all have diameters equal to χ.

We first construct the smaller right triangle shown in Fig. 8 such that the du-
ration between emission (at A) and reception (at B) of PS is τ 10. This duration
corresponds to a length for the path AB of χ. Additionally, the system is con-
structed such that a similar measurement yields a length of χ for the length of
the pathBC. Thus the system is an isosceles right triangle withAB = BC = χ.
However the length of the hypotenuse AC is not

√
2χ. To see this, consider

a signal-particle PS emitted by PA (centered about A) towards PC (centered
about C). PS makes its first discrete jump of χ and already the sphere that spec-
ifies the position of PS partially overlaps with the sphere defining the position
C. Hence, PS has arrived at C and has been received by PC . This process takes
the same duration τ as that required by PS traveling along the path PA → PB .
Therefore, the length of the hypotenuse is equal to the lengths of the sides, all
being χ, and thus the Pythagorean theorem is violated.

Next, we consider an arbitrarily large isosceles right trianglewith the lengths
of the two sides asmχ and pχ, shown in Fig. 9. It is easy to derive an equation

9At least viewing χ and τ as constants when gravity is absent. As we talk about in Section 6,
perhaps gravity can affect the values of χ and τ . This wouldmake the atomic picture of space being
more granular than atomistic, with each grain potentially being of different size depending on the
amount of mass or gravitational potential energy within the grain.

10Note that PS is only shown along the segment A → C, but signal-particles also traverse the
segments A→ B and B → C when the measurement of these segments are performed.
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χPS

Figure 8: Distances are measured along each path according to the rules de-
scribed in the text. For this particular triangle with AB = BC = χ, AC equals
χ as well. This is because only one jump of χ is needed along the diagonal for
the sphere defining PS to partially overlap the sphere centered about C, and
therefore be at the same position in discrete space.

for the distances fromA to αn and fromA to θ, where n is the jump number, αn
is the leading edge of the translating point, and θ is the trailing edge of point C
in Fig. 9. Then using these equations, one can determine the smallest number
of jumps (n) necessary for PS to arrive at point C:

n >
√
m2 + p2 − 1, (10)

where m and p are integers, mχ and pχ are the lengths of base and height re-
spectively, and n is the smallest integer that satisfies Eq. (10). It is seen that
for m = p = 1 and m = p = 2, the lengths of the hypotenuses are equal to
the lengths of the sides. However, as the sides of an isosceles right triangle be-
come larger (as m and p become large), the hypotenuse converges to

√
2 times

the length of the side and the Pythagorean theorem is restored. Also, it is easy
to see that Eq. (10) is identical to Eq. (5). How this equation conserves the
immutability of the atoms of space and time is discussed in Section 3.

Already, we see that this model contains several attractive properties:

1. It fully embraces the concept of NA-space, thereby maintaining isotropy.

2. Measurements of lengths are performed in ways accepted by science and
adheres to the tenets of a conservative form of LP.

3. A single equation applies to all size-scales and accommodates both the
Pythagorean theorem for any practical distance, and the requirement of
discretized space (i.e., distances being integer multiples of χ).

The three-dimensional version of the newdistance formula (calledLeopold’s
theorem) in units of distance is
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nχ >
√

(mχ)2 + (pχ)2 + (sχ)2 − χ, (11)

where m, p and s are integers, mχ, pχ and sχ are the lengths of the three con-
stituent segments, and n is the smallest integer that satisfies Eq. (11).

χ

χ

d=
nχ

∆x=mχ

h=pχ

A

C

B

α4

Figure 9: For an arbitrarily large triangle, the distance formula Eq. (10) is easily
derived by determining howmany translations are required alongAC such that
the leading edge of the translated point along the hypotenuse (denoted by αn)
overtakes the trailing edge (denoted by θ) of the sphere that defines point C.

2.5 Comparison of the Three Distance Formulas

It is seen that all three approaches, while using different starting points and as-
sumptions, lead to the same equation for the calculation of distances in discrete
space (Eqs. (5) or (10)). After assigning ND to be equal to one, and allowing
the grid to change orientation dependent on the direction of a particle’s travel,
Van Bendegem’s approach matches that of Crouse’s. Also, it is seen that within
Forrest’s approach are aspects of Van Bendegem’s and Crouse’s approaches.
Forrest’s identification of points 〈u, v〉 creates a de facto and a priori existing grid
similar to, but playing a lesser role than the grid in Van Bendegem’s approach.
Finally, Forrest’s BoAs are similar to the “atoms of space” used by Crouse. Con-
trary to Crouse’s approach however, within Forrest’s BoAs are a multitude of
identifiable and unique grid points - something we believe is entirely inconsis-
tentwith the concept of an atomof space. Even if the grid is only amathematical
tool, the use of it clouds important aspects of the true nature of DST (e.g., in-
herent isotropy and DST’s non absolute nature). Before using Eq. (10) in the
new derivation of time dilation and length contraction, we briefly discuss an
interesting mathematical property of the new distance formula.
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2.6 Violation of the Triangle Inequality Theorem

The triangle inequality (TI) theorem is one of the most sacrosanct theorems in
all of mathematics. The inviolable nature of the TI theorem is inculcated into
everyone, from beginning students of mathematics: “the single most impor-
tant inequality in analysis is the triangle inequality” (Kaye (2015)), to seasoned
practitioners of the craft: Forrest in pure mathematics (Forrest 1995, 329) and
Brightwell in causal set theory (Brightwell (1991)) to name only two of many.
The TI theorem states that the distances between points d(e, f), d(f, g) and
d(e, g) satisfy the inequality d(e, g) ≤ d(e, f) + d(f, g). Forrest was no differ-
ent than everyone else in testing his model’s adherence to the TI theorem, and
being reassured by its passing. Forrest achieves compliance with the theorem
because the distances hismethod yield are generally larger than those predicted
by Eq. (10). However, we will see in this section and the next that all metrics
that adhere to the TI theorem yield non-physical distances in DST and cannot
be used to accurately calculate distances in the real space in which we live.

The non-adherence of Eq. (10) to the TI theorem may be somewhat unex-
pected, but it is necessary to conserve the the immutability of atoms of space
and timewhile also havingdistances converge to values predicted by the Pythagorean
theorem at macro-geometic scales. To see this, consider three collinear link-
points e = [0, 0], f = [1, 1] and g = [3, 3] in Fig. 5 (see Section 2.3 for a descrip-
tion of the labeling system). Upon studying Fig. 5, one sees that Forrest’s orig-
inal approach yields d(e, f) = 2, d(f, g) = 3 and d(e, g) = 5, thus satisfying the
TI theorem. However, Van Bendegem’s, Crouse’s, and Forrest’s modified ap-
proaches (all resulting in Eq. (10)) yield d(e, f) = 1, d(f, g) = 2 and d(e, g) = 4

which does not satisfy the TI theorem 11. One can speculate that Forrest was
pleased with his result (namely, adherence to the TI theorem for the smallest
possible distances) because in (Forrest 1995, 329) he states “to be sure, wewould
not call a quantitative relation distance unless it satisfied the triangle inequality”.
However, Forrest’s result of d(e, f) = 2 should have raised red flags; it will be
shown in the next section that such a result does not conserve the immutable
nature of the atom of space, in contradistinction to Eq. (10). In fact, upon fur-
ther study, one realizes that the only models of DST that conserve the atoms of
space and time are ones that violate the TI theorem. Namely, in flat-space, one
will always encounter cases (especially at the Planck scale) where a larger value
is obtained for the sum of the distances of component segments relative to the
value of the distance of the parent segment 12.

11This only occurs for segments off of the arbitrarily chosen x, y, z axes; the metric defined by Eq.
(10) always gives d(e, g) = d(e, f) + d(f, g) for points e, f and g all being on one of the three axes.

12Again, we are only considering flat-space in this paper.
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3 TimeDilation and Length Contraction inDiscrete
Space-Time

Consider the standard derivation for time dilation given in any textbook on SR
(Helliwell 2010, chap. 4) that involves two observers and an ideal “light-clock”
on a train traveling in the x̂ direction, as shown in Fig. 10. We update this
calculation slightly by replacing the mirror that is typically used in the clock
with a photon receiver (R). Similar to the mirror in the standard derivation,
R is placed above the photon emitter (P) in Fig. 10. This change allows us to
assess shorter time durations. Also, instead of one light-clock with a height
h, we consider a collection of light-clocks with h = pχ with p ∈ {1, 2, . . . }, as
shown in Fig. 10. All the clocks are at x = x′ = 0 at t = t′ = 0, and are
identified from here on according to their value of p. Unprimed values ∆t and
∆x correspond to temporal durations and spatial extents in the moving frame
(RF1), as recorded by an observer (O1) alongside and stationary relative to the
train tracks (i.e., the clocks are moving relative to O1). Primed values are used
for the rest reference (RF2), namely, values that are recorded by an observer
(O2) on the train (i.e., the clocks are at rest relative to O2).

Now consider the trajectory of a photon from O1’s and O2’s perspectives,
remembering the fact that a photon travels at a velocity c in both RFs. For any
clock p, the time elapsed while a photon travels from the emitter to the receiver
is ∆t′ = pχ/c in RF2 and ∆t = nχ/c in RF1, during which time the clock has
moved ∆x = mχ = v∆t where v is the velocity of the train (again, see Fig. 10).
Also, and as typical, ∆y = ∆y′ = pχ. Thus, we have the standard isosceles
right triangle with the lengths of the sides as mχ and pχ and the length of the
hypotenuse as nχ, with v and γ = ∆t/∆t′ given by

v =
m

n
c (12a)

γ =
n

p
. (12b)

At this point in the conventional calculation, one would use the distance for-
mula given by the Pythagorean theorem: n2χ2 = m2χ2 + p2χ2. After using the
relations mχ = v∆t, nχ = c∆t, pχ = c∆t′, we can easily solve for the relation
between ∆t and ∆t′ as first derived by Einstein, Poincaré and Lorentz:

∆t =
1√

1− v2/c2
∆t′ = γE∆t′. (13)

where the subscript E stands for Einstein. It is important to note that γE in Eq.
(13) is independent of p and only dependent on v. Thus all temporal durations
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∆t′ measured by all the clocks on the train are dilated by this same factor in
RF1. The arguments given in any textbook on SR can then be used to describe
length contraction:

∆l = γE∆l′. (14)

where ∆l is the length of a rod (or a distance), as measured by an observer
stationary relative to the rod, i.e., the “proper length" of the rod. The term
∆l′, this is the observed length of the rod, namely, the length measured by an
observer traveling at a velocity v relative to the rod.

(b)

h=c∆t’

P

R

h=c∆t’d=
c∆
t

R

P

(c)

(a)
x

y

h1
h2

h3
h4

Clock:1 2
3 4

Figure 10: (a): An array of light clocks on a train traveling at a velocity v. The
clocks have values of h as integer multiples of χ. (b): One of the clocks from the
perspective of an observer in RF2. (c): One of the clocks from the perspective
of an observer in RF1.

.

Everything done so far in the calculation leading to Eqs. (13) and (14) is cur-
rently accepted by the scientific community almost without question 13. How-
ever, Eqs (13) and (14) are the roots of the oft-cited problem concerning the
variability of χ and τ (Hagar 2014, 69-71). Using the standard derivation of time
dilation, the atom of time τ in RF2 is dilated to a larger value in RF1 and the
atom of space χ in RF1 is contracted to smaller value in RF2. These problems,

13This was not the case prior to the 1922 Einstein-Bergson debate, when many philosophers and
physicists viewed Einstein’s theory and interpretation with a high degree of skepticism (Canales
(2015)).
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namely, the velocity dependent extent (duration) of the atom of space (time),
are solved using the new distance formula.

The newderivation of time dilation starts the sameway, with light-clocks on
the train. However, in the newderivation, each light-clock of different height pχ
assesses a different temporal duration ∆t′ = pχ/c, starting from ∆t′ = χ/c = τ

(the shortest possible duration) to progressively larger integer multiples of τ .
The only other change in the derivation is the use of Eq. (10) instead of the
Pythagorean theorem. To start, you decide the velocity v for which you will
calculate γ; let us consider v = 0.5c as an example (note that γE = 1.15 for this
velocity). Note that for particular durations it is not always possible to have v
be exactly equal to this, or some other desired value. In these cases, we adopt a
conventionwherewe choose the value ofm such that v is as close to, but smaller
than the desired value. But this convention is not necessary, and one is free to
choose a different convention. The rest of the procedure is described next.

R

P

hd=
c∆
t

R

P
pχ

χm

χn

Figure 11: Left: One of the clocks from the perspective of an observer in RF2.
Center: The same clock from the perspective of an observer in RF1. Right: The
path that is traced out by a photon in the clock as observed by O1.

Once the velocity is chosen, one next sets all the clocks to t = t′ = 0, at
which time all their emitters P emit a single photon towards their receivers R.
Then one assesses the situation when the receiver for clock p = 1 detects the
photon at ∆t′ = τ . From the perspective of O1, the clock could either have
made a spatial translation of extent ∆x = χ or not moved at all - these are the
only two possibilities. If it did move by χ, then this corresponds to a velocity of
v = c over this duration; if it did not move, the velocity is assessed to be zero.
To be consistent with our convention of v being less than or equal to 0.5c, we
choose the v = 0 case. Solving Eq. (10) yields n = 1; and with γ = n/p, we find
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that γ = 1 for this duration. Even if we had chosen the case where v = c, Eq.
(10) yields n = 1. Therefore γ = 1 for a duration of ∆t′ = τ regardless of the
relative velocity of the two RFs (again, v = 0 and v = c are the only two possible
velocities for a time duration of τ ).

We next assess the situation at ∆t′ = 2τ when the receiver of clock p = 2

detects its photon. A solution exists for Eq. (10) with p = 2, m = 1 and n = 2,
corresponding to a velocity of v = 0.5c and γ = 1. Thus, a duration of ∆t′ = 2τ

in RF2 corresponds to the same duration ∆t = 2τ in RF1. For clock p = 3,
no solution to Eq. (10) exists that has v = 0.5c. Two solutions with v closest
to v = 0.5c are: {p,m, n} = {3, 1, 3} with v = 0.33c, and {p,m, n} = {3, 2, 3}
with v = 0.67c. We choose the {3, 1, 3} solution. We finish this procedure by
recording the results from the first 15 clocks in Table 1 and the first 50 clocks
in Fig. 12. Figure 13 shows γ for clock durations of 1τ → 15τ for all possible
velocities, including v = c (note that travel at the speed of light is possible in
DST, as discussed in Section 4).

Table 1: The height, base and hypotenuse (relative to χ) of the triangles traced
out by the photons in the light-clocks, the velocity (relative to c), and γ. The
correspondence between the ticks of the clocks in RF1 and RF2 is also given.

Height (p) or Base Hypotenuse (n) or v γ(v,∆t′ = pτ)

tick of RF2’s clock (m) tick of RF1’s clock
1 0 1 0 1
2 1 2 0.5 1
3 1 3 0.33 1
4 2 4 0.5 1
5 2 5 0.4 1
6 3 6 0.5 1
7 3 7 0.43 1
7 4 8 0.5 1.14
8 4 8 0.5 1
9 4 9 0.44 1
9 5 10 0.5 1.11
10 5 11 0.45 1.10
11 6 12 0.5 1.09
12 6 13 0.46 1.08
13 7 14 0.5 1.08
14 7 15 0.47 1.07
14 8 16 0.5 1.14
15 8 17 0.47 1.13
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One encounters a curious situation in DST that has no continuous space-
time equivalent: lack of a one-to-one correspondence of the ticks of RF1’s clock
to those of RF2’s clock. In continuous space-time, one can always imagine
clocks in RF1 with the necessary tick rate to have a one-to-one tick correspon-
dence. In DST, the highest tick rate allowed is one tick per τ of duration. Thus,
it is not surprising to find instances where two ticks of RF1’s clocks occur for
one tick of RF2’s clock, for example, the 9th and 14th tick of RF2’s clock. What
is surprising though, is that even though in the long-term RF1’s clocks tick rate
is faster, there are instances where two ticks of RF2’s clock can transpire for a
single tick of RF1’s clock. This occurs for the 8th tick of RF1’s clock.

1
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Figure 12: The correspondence between the ticks of the clocks in RF1 to the
ticks of the clocks in RF2. The RFs have a relative velocity of 0.5c. The red line
shows γE = 1.15. Inset: No time dilation occurs for the first seven ticks (each
of duration τ ), but then the clocks on the train start trailing the clocks at the
station.

For the reader’s convenience, the following list contains the steps needed to
calculate γ as a function of v and ∆t′ 14:

1. Decide what velocity you want to use in the calculation 15.

2. Choose a particular value of p, corresponding to the duration ∆t′ = pτ

that will be used in the calculation.

3. Use this value of p (from Step 2) and an array of m values (i.e., m =

0, 1, 2, · · · ) to calculate an array of corresponding n values using Eq. (10).
14AMatlab program to implement the procedure is available upon request.
15Again, note that it will not always be possible to have this velocity, and youmay have to choose

between a velocity less than, or greater than the desired value.
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4. Choose them value (and its associated n value from Step 3) that yields a
velocity (v = mc/n) closest to the desired value (from Step 1).

5. Calculate the Lorentz factor using the equation γ = n/p.

6. For any instance where a n value is skipped, you flip this method – rather
than setting p and then finding m and n, one sets n to the desired value
and then finds the appropriate values for m and p. This happens for n
values of 10 and 16 in Table 1.
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Figure 13: The values of γ versus duration and velocity (colored solid lines)
with allowable values indicated by the markers “◦”, and γcritical shown with
the dotted black line. Also shown is γE versus v (solid black). Velocity is given
relative to c, and duration is relative to τ . Note that a velocity equal to c is
allowed for any duration, even for a particle with nonzero rest mass. Also note
that while c is the maximum velocity, γ can increase without limit as ever more
energy is imparted to the system.

Two important results can be gleaned at this point. First, γ converges to
γE for temporal durations large relative to τ . It is interesting though, that this
convergence is not monotonic. Second, a temporal duration of τ in RF2 is not
dilated in RF1, i.e., it has a value of τ in RF1. This will be true regardless of the
velocity of the clocks, namely, γ(v, τ) = 1 for the only two possible values for
velocity for this duration: v = 0 and v = c. Thus, the immutability of the atom
of time is conserved. This is not the case if one uses the distance formula derived
by Forrest (his original formulation shown in Fig. 4); doing so yields a γ factor
of γ(c, τ) = 2, and hence the atom of time is dilated by a factor of two. Thus
Forrest’s original formulation leads to this very important non-physical result;
the modified approach (Fig. 5) does not suffer this problem. Weyl’s distance
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formula (Eq. (1)) does conserve the immutability of the atom of time, but it
leads to demonstrably incorrect results for time dilation for any duration larger
than a few τ (i.e., it predicts no time dilation, regardless of a system’s velocity).

While slightly more complicated, the same basic argument used in conven-
tional SR to connect length contractionwith time dilation can be used for length
contraction in DST. Doing so yields Eq. (14) but with γE replaced by γ. Collect-
ing this formula along with the new time dilation formula, we have:

∆t = γ (v,∆t′) ∆t′, (15)

∆l = γ

(
v,∆t′ =

∆l′

c

)
∆l′. (16)

with ∆t′ = pτ , ∆t = nτ , ∆l′ = pχ, ∆l = nχ and γ = n/p, where n and p are
integers. For the shortest possible spatial extent in RF2, namely, ∆l′ = χ, one
uses γ(v,∆t′ = τ) in Eq. (16). But since γ(v, τ) = 1 regardless of the relative
velocities of the two RFs, a ∆l′ of χ in RF2 is measured as being χ by observers
in RF1. Thus, no length contraction occurs and the immutability of the atom of
space is conserved.

We can now revisit Bergson and his view that we all experience his Time,
with time durations that do not experience dilation. The results of this section
show that only very short durations, on the order of a few integer multiples
of τ , do not experience dilations. However, all important chemical, biological,
neurological, and physiological effects transpire over much longer time dura-
tions – durations that experience dilations according to Einstein’s theory. Thus,
we can close the book on this debate once and for all. Einstein did indeed find
a “way of not aging” – just be fleet of foot.

4 Travel at the Speed of Light

Besides the modifications to length contraction and time dilation, a straight-
forward consequence of the new distance formula is that it allows objects to
travel at light speed over certain temporal durations. This should not be sur-
prising, becausemotion inDST involves a particle undergoing a certain number
of sequential spatial jumps, with each jump being of extent χ over a duration τ .
This sequence of jumps is then followed by one or more durations of τ where
the particle does not move. But how many sequential jumps of χ can be done,
and at what price, in terms of energy delivered to system? To answer these
questions, consider the right side of Fig. 11 that shows an isosceles right trian-
gle. The conventional distance formula given by the Pythagorean theorem does
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not admit a solution where the lengths of the base and hypotenuse are equal.
However, the new distance formula given by Eq. (10) does, as long as the hy-
potenuse and base are long enough relative to the triangle’s height. To see this,
let the velocity of the light-clock be v = c by setting m = n in Eq. (10). Next,
choose a particular duration in the rest reference frame ∆t′ = pτ ; this sets h to
h = pχ. Finally, use Eq. (10) to solve for the critical value of n for which n = m

is possible for this and all greater integer values:

ncritical >
1

2

(
p2 − 1

)
. (17)

For large p, Eq. (17) yields p ≈
√

2ncritical, this, alongwith γcritical = ncritical/p,
∆t′ = pτ , and ∆t = γcritical∆t

′ yields

γcritical ≈
√

∆t

2τ
. (18)

For time periods ∆t large relative to τ , we can safely use the conventional equa-
tion relating kinetic energy (KE) of a particle to γ, namely,KE = (γ − 1)mc2 ≈
γmc2. Upon doing so, it is seen that the energy a particle needs such that it can
be measured as traveling at a speed c over a particular duration ∆t is

KEcritical =
(√

∆t/2τ − 1
)
mc2 ≈

√
∆t/2τmc2. (19)

It is important to note that we are not predicting faster-than-light travel, or
even travel at the speed of light for any situation normally encountered or even
possible given modern-day technology. Concerning the former, the rule that a
particle transits at most one χ per τ is built into the model from the very be-
ginning, corresponding to a maximum velocity of c. Concerning the later, let
us consider what is necessary to have a measurement of an electron’s velocity
yield v = c. Imagine that we can fabricate two detectors tips that can precisely
determine the time that an electron has passed underneath them, but otherwise
not perturb the speed or trajectory of the electron – for example two nanofab-
ricated atomic force microscope tips. With currently available nanofabrication
techniques, a separation between the tips of 10 nm can be achieved. If the elec-
tron is traveling at a speed c, then ∆t = ∆d/c ≈ 0.1 fs. Equation (19) then yields
a value of approximately 5,000,000 TeV. This value exceedswhat is possiblewith
the most powerful existing particle accelerators by a factor of 106, but may be
possiblewith accelerators constructed in the far future. Amore realizable test is
described in the next section, namely, analyzing any anomalousmotion of black
holes and other astronomical bodies or groups of bodies. (Crouse (2016a;b)).
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5 Anomalous ParticleMotion in the Discrete Space:
using Quantum Black Holes as Planckscopes

In 1957 John A. Wheeler sought to show that all of classical physics, particle
physics included, is “purely geometrical and based throughout on the most
firmly establishedprinciples of electromagnetismandgeneral relativity" (Wheeler
(1957)). Wheeler made use of well developed concepts in quantum electrody-
namics, and hypothesized (he may say proved) that the fine structure of space
is composed of a random array of quantum “wormholes”, with each worm-
hole having a pair of charges, qp = ±

√
4πεo~c, and each charge having a mass

m = mp = E/c2 =
√

~c/G = 2.18× 10−8 kg. He stated that these charges (i.e.,
Planck particles) have an average spacing of the Planck length lp = 1.62×10−35

m. Otherwise the particles are randomly distributed; hence he called this sys-
tem a “quantum foam”. However, if space is discretized, a random distribution
of Planck particles that includes fractional distances of the lattice constant χ
is not allowed. Order must be imposed on the structure, changing the foam
into a crystal (Fig. 14). This structure then forms a gravity crystal (GC) that is
described in detail by Crouse in (Crouse (2016a)).

We include a discussion of particle motion in the GC in this paper because
it may provide the best way, perhaps the only realizable way, to experimentally
confirm the discrete nature of space. There have been other ways proposed to
verify DST. Two in particular are the recent papers by Gudder (Gudder (2017))
andVanBendegem (VanBendegem (2000)). Thework byGudder usedmethods
from quantum field theory and nicely supplements the earlier work by Crouse
in (Crouse (2016a)) that used well established tools in the field of solid-state
physics to analyze the GC. Both works predict similar scattering properties of
theGC and anomalous particlemotion thatmimic effects normally attributed to
darkmatter and dark energy. In (Van Bendegem (2000)), Van Bendegem consid-
ers an interesting constructionwhere the velocity of a particle is proportional to
the distance it has traveled and the distance that remains to be traveled, where
the particle is confined to travel in the range x = 0→ d, namely, an equation of
motion (EoF) of dx/dt = ax · (d− x). Van Bendegem describes how the system
can be constructed with particular values for a and d such that a particle will
tend to either one position (in the limit t → ∞) if space-time is continuous or
chaotically occupy all positions between 0 and d if space and time are discrete.
However, for this process to satisfy various physical requirements (e.g., the ve-
locity must remain less than c), the necessary value of d is extremely small, in
the neighborhood of the Planck length. Specifically, it is seen that Van Ben-
degem’s method requires d to be less than 1.56χ in order for chaotic behavior
to manifest. However, dmust also be an integer multiple of χ; the only integer
multiple of χ that is less than 1.56χ is 1χ. But to be able to construct the system
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Figure 14: Left: The universe-wide gravity crystal that has a cubic lattice, a
lattice constant of χ, and a basis of one particle of mass mc. Right: One unit
cell showing that the nearest, next-nearest and next-next-nearest neighbor dis-
tances are all the same valueχ – this is a result of the newdistance formula. This
aspect will greatly reduce the anisotropy in energy bands and effectivemass ob-
served in Figs. 15 and 16; the curves in these two figures were calculated using
the EPM calculation that itself used the conventional distance formula.

such that it follows, or is governed by the EoF stated above, one needs to be able
to work with a systemmany multiples of χ in extent, not just a single χ. Hence,
this method cannot be used to verify the discrete nature of space and time 16.
This result leads us back to the GC in the hope of finding a method to verify
and empirically study DST.

Since both the gravitational and electromagnetic forces have a 1/r2 depen-
dence, we thought it convenient to use the tools of solid-state physics (Crouse
(2016a), Ashcroft (1976)) to calculate the behavior of particles traveling within
the GC. To do this, let the GC be composed of an array of particles, all with
identical massmc, and with one particle at each lattice position ~R. The GC cre-
ates a potential energy profile Vc that is experienced by a particle (electrically
neutral and massmparticle) traveling within the crystal:

Vc(~r) = −Gmparticlemc

∑
~R

1∣∣∣~r − ~R
∣∣∣ (20)

Any noncrystalline contributions to the potential energy (i.e., Vexternal) that
may be produced by stars, planets, interstellar gas . . . are added separately to

16Matlab code tomodel Van Bendegem’s construction can be obtained fromCrouse upon request.
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Vc to yield the total potential energy term that is used in Schrödinger’s equa-
tion:

− ~2

2mparticle
∇2ψ + (Vc + Vexternal)ψ = Eψ (21)

We now employ the effective mass method to glean information from Eq.
(21) (Ashcroft (1976)). The effective mass method allows one to lump all the
effects of the crystal particles into one parameterminertial that replacesmparticle

in the kinetic energy term in Schrödinger’s equation, and then use this term in
a much simplified form of the equation for the system:

− ~2

2minertial
∇2ψ + Vexternal(~r)ψ = Eψ (22)

An important quantity to calculate is the particle’s dispersion curve that
plots the energy (E of Eq. (21)) of the particle as a function of its wave vec-
tor k (i.e., crystal momentum). To calculate this dispersion curve, one can use
the tight-bindingmethod (TBM), emperical pseudo-potential method (EPM) or
some other well established technique to solve for E as a function of k (Ashcroft
(1976), Vas (2017)) 17. One then uses E to calculateminertial according to:

(
1

minertial

)
i,j

=
1

~2
∂2E(~k)

∂ki∂kj
(23)

where minertial is expressed in its full tensorial form. Besides minertial, many
other interesting properties can be gleaned from a particle’s dispersion curve,
including the existence of bandgaps and Brillouin zones (BZs). Both of these
things provide important information onhowparticles behave in crystals, some-
times predicting seemingly bizarre behavior. For example, energy bandgaps
indicate forbidden energy ranges for particles, but particles can “jump” these
gaps by acquiring the necessary energy from another particle or excitation. BZs
provide information about the range of momentum that a particle can have, in-
cluding an effective maximum momentum.

Let us for the moment consider an analogous system: an electron in sili-
con. It is not at all unusual for an electron in silicon to have a negative value for
minertial for particular energies and momenta 18. A negative value forminertial

indicates that a particle will accelerate in the opposite direction of an applied
17Matlab code for the TBM, EPM and the relativistic Kronig-Penney model is available upon

request.
18minertial being different than mgravitational in this situation is not a violation of Einstein’s

equivalence principal becauseminertial should be consideredmore as a parameter describingmo-
tion, due not only to the particle’s gravitational mass but also to the complex interactions of the
particle with all the crystal particles.
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external force (i.e., a force produced by noncrystalline sources, such as an elec-
tric field produced by a voltage applied between two electrical contacts in this
electron/silicon example). Crystallographers know how to extract information
about the structure of a crystal (e.g., the type of lattice and lattice constant) by
studying the motion and scattering of particles traveling within the crystal (i.e.,
using the spectroscopic methods of electron diffraction or X-ray diffraction).
We will show in this section that quantum sized black holes (BHs) can play the
same role as that played by X-rays or electrons in silicon, namely, as a measure-
ment tool or scope that can be used to glean information about the GC. In other
words, quantum BHs perform a role, not as a microscope to assess features at
the micrometer scale, but rather as a planckscope to study material properties
at the Planck scale.

Wenow return to the discussion about theGCand JohnWheeler. In (Wheeler
(1957)), Wheeler demonstrated that if the constituent crystal particles (again, of
charge qp = ±

√
4πεo~c and massmp =

√
~c/G) are separated from each other

by an average distance of lp, then the positive mass produced by electromag-
netic energy (via E = mc2) is totally compensated by negative mass produced
by gravitational energy, such that “to the extent this compensation holds locally,
nearbywormholes exert no gravitational attraction on remote concentrations of
mass-energy”. In (Crouse (2016a)), we considered a GC where this compensa-
tion does not happen, therefore the particles that compose the crystal all have
a gravitational mass mc = mp. We also assumed that the lattice is cubic with
lattice constant χ = lp. It was seen in (Crouse (2016a)) that a particle travel-
ing within this crystal can exhibit negative and near-zero values for minertial

while its gravitational mass remains a constant mp. However, no justification
was given in (Crouse (2016a)) as to why this compensation does not occur. In
this work however, we have shown that a spacing of lp is not possible, because
lp is less than the fundamental length χ = 2lp in our DST model. If χ = 2lp is
the lattice constant of the GC, then it is easy to show (usingWheeler’s methods
described in (Wheeler (1957))) that there is an uncompensated mass of 3mp/8

for each crystal particle, thus mc = 3mp/8. Regardless or our particular result
formc, we recognize the fact that there is little agreement within the quantum
gravity community on the values of mc and χ. Thus, it is useful to develop an
equation that predicts which mobile particles will be affected by a GC; we do
this next.

While there is some disagreement on the lattice constant of the GC (i.e., χ),
the values of mc advocated by different research groups span a much wider
range, from 3.78× 10−130 kg (Carroll (2006)) to 3.78× 10−8 kg (Milonni (2013)).
It is therefore useful to have an equation for the lower limit for the mass of an
electrically neutral particle (i.e., mparticle) such that the particle is affected by
the GC. To develop an estimation of this mass, one equates the kinetic energy
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term and the dominant potential energy term of Vc in Eq. (21) 19:

~2k2

2mparticle
=
Gmparticlemc

χ
(24)

The effects of the crystal most often manifest themselves at the BZ boundary,
namely at k = π/χ. Using this value of k in Eq. (24), one arrives at the following
approximation for the mass (mest) of a particle that will interact strongly with
the GC (again, the GC has a basis of one particle of mass mc, a cubic lattice
constant χ, and the mobile particle is electrically neutral):

mest =
π~√

2Gmcχ
(25)

As an example, let us consider two commonly stated values for the vac-
uum energy density, namely ξ1 = 10−9 J/m3 (Carroll (2006)) and ξ2 = 10113

J/m3 (Milonni (2013)), and calculate the correspondingmassmc (viam = E/c2

withE = ξχ3) of each constituent crystal particle assuming a lattice constant of
χ = 2lp. For ξ1 we obtainmc = 3.78×10−130 kg, and using this value in Eq. (25)
we obtainmest = 2.59×1053 kg. In this case,mest is approximately the mass of
the entire universe (Davies (2006)), thus no particle with a realistic mass would
ever feel the effects of this GC. For ξ2 = 10113 J/m3, we obtainmc = 3.78×10−8

kg and mest = 2.59 × 10−8 kg. Particles of this gravitational mass are realis-
tic and would be significantly affected by the GC; their energy bands are non
parabolic (Fig. 15) and their values forminertial can bemuch different than their
gravitational mass, being negative for various ranges of energy and momenta
(Fig. 16). Again, a negative minertial indicates that a particle will accelerate in
the opposite direction of an external force 20. In the case of the universe, the
external force is the cumulative gravitational forces due to all planets, stars and
galaxies . . . , and is in a direction towards the “center” of the universe. Particles
with a negative value ofminertial will be observed to be accelerating in the op-
posite direction, that is, away from the center of the universe – these particles
will be “pushed” by the “pull” of gravity. Such anomalous inertial behavior
of astronomical bodies (serving as the probes in our planckscopes) should be
easily detectable and quantified using the latest telescopes.

The results of this section indicate that black holes (BHs) are more com-
plicated than widely believed. For a bit of background, any current textbook
on general relativity states that BHs have only three properties: total mass,

19To be more accurate, one could include a degeneracy factor in the right side of Eq. (24) to
account for the number of nearest neighbors (e.g.,N = 6 for a cubic lattice).

20Conservation of energy and momentum are still conserved since the system includes not only
the particle but also the entire crystal; the universe-wide GC serves as an near infinite reservoir of
energy and momentum.
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spin, and electric charge. However, the results in this paper predict that the
distribution of the mass within the event horizon is very important in deter-
mining the BH’s motion in response to external gravitational forces. Consider
two cases involving BHs with identical total masses traveling within the GC
(withmc = 3.78× 10−8 kg and a lattice constant of χ = 2lp) – Case 1: a typical
stellar black hole of 10MSun where all the mass is concentrated into the “singu-
larity” of volume VBH = χ3; Case 2: a BH of the samemass as Case 1, butwhere
the BH is composed of a uniform distribution of particles over the BH’s volume
of VBH = (4π/3)R3

s , withRs being the BH’s Schwartzchild radius and equal to
Rs = 2G(10MSun)/c2 = 2.95× 104 m, a value that is thirty-nine orders of mag-
nitude greater than χ. For Case 1, the particle is an elementary particle with a
mass much greater than that provided by Eq. (25), i.e., 10MSun � 2.59× 10−8

kg. Hence, the particlewill experience a strong gravitational binding to a neigh-
boring crystalline particle at a particular lattice site 21,22. Thus, the particle is
tightly bound to this particle and will be largely unresponsive to external grav-
itational forces produced by stars, galaxies and all other non-GC entities. For
Case 2, themass perχ3 of volume is 6.77×10−87 kg –much less than 2.59×10−8.
Therefore, this BH will respond to gravity in the expected way, namely with
minertial ≈ mgravitational. Hence, these two BHs of the same total mass, will be
observed to act very differently in response to gravitational forces.

In the calculations of this section, we have used the property of discretiza-
tion of space to justify the ordering of Wheeler’s foam into a crystal, but have
used the conventional Pythagorean theorem to calculate distances. Futurework
is needed to implement Leopold’s theorem into EPM, TBM and other band di-
agram algorithms. Because the new distance formula predicts equal distances
for a particle’s nearest, next-nearest and next-next nearest neighbors (see Fig.
14), it is reasonable to suspect that the use of Leopold’s theorem will signifi-
cantly reduce the anisotropy of the band diagram and effective inertial mass
observed in Figs. 15 and 16.

21This result is also borne out of the TBMalgorithm, which showsminertial is extremely large for
this BH, much larger than its gravitational mass of 10MSun. We do not show the plot ofminertial,
but the reader can verify this using the available TBMMatlab code.

22Actually, such a massive particle may destroy the crystalline order in the neighborhood of the
mobile particle. Less massive particles should really be considered for Case 1, but with masses still
significantly greater than 2.59× 10−8 kg.
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Figure 15: The dispersion curve (calculated using EPM Crouse (2016a)) for a
particle with mparticle = 2.59 × 10−8 kg traveling within a cubic GC (mc =

3.78 × 10−8 kg and χ = 2lp). The bands are non parabolic, which is indicative
of a minertial that varies with momentum k, as shown in Fig. 16. Inset: One
unit cell of reciprocal space showing the crystal directions.
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Figure 16: The inertial mass minertial (blue line) as a function of momentum
k of a particle (with gravitational mass mparticle = 2.59 × 10−8 kg) traveling
within the cubic GC (mc = 3.78 × 10−8 kg and χ = 2lp). The red dotted line
is the constant gravitational massmparticle and the vertical dotted lines are BZ
boundaries. It is seen that away from the Γ-point,minertial differs significantly
from mparticle, with minertial being much greater than mparticle, near zero, or
even negative.
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6 Discussion

In the prior sections we focused on straightforward consequences of DST and
Eq. (10); in this sectionwe discuss some remaining topics, open questions, spec-
ulate on some issues, and discuss some interesting paths for future study. First,
no work in DST is complete without some discussion on causality. We then dis-
cuss what we think is the sole remaining issue with DST, namely, conservation
of energy-momentum. We will discuss how this issue, now not muddied by
the other superficial problems, is both glaring and extraordinarily interesting.
Next, we discuss possible ways to work gravity into our DSTmodel. And lastly,
we briefly discuss the impact of our DST model on casual set theory.

6.1 Causality in Discrete Space-Time

The issue of violations of causality in DST has been debated for hundreds of
years by a multitude of philosophers, mathematicians and scientists – see (Ha-
gar 2014, 76-81) for a thorough review of the debate on this issue. In our view,
the important point that has been missed in this debate is that either side of the
“atom” of space (in fact the entire volume and surface of the atom) is the same
point in real space (i.e., discrete space) – one only encounters apparent causality
problems when incorrectly viewing the situation from the artificial perspec-
tive of continuous space. Because of this, inquiring about displacements, posi-
tions, mechanics, kinematics or anything elsewithin any one discrete point (i.e.,
within any atom of space) is meaningless. Moot then, is the debate as to how
a force is instantaneously transmitted across one Weyl-tile (or across a sphere
of diameter χ) such that both sides accelerate identically and synchronously in
response to a force (Hagar 2014, 76-81).

6.2 Conservation of Energy-Momentum and Mach’s Principle

With the simple problems associated with DST being solved, what emerges is
a clearer picture of the challenges (or opportunities) that remain for DST. We
see the sole remaining problem, or issue, as being the conservation of energy-
momentum in DST. This issue is rich with implications on motion, inertia and
mass. The problem can be described as follows: over a duration τ , motion in
DST involves one of only two things, a single spatial translation of extent χ or
no translation. However, this leads to the obvious question: when the parti-
cle is not moving, where did its energy and momentum go? It would appear
that conservation of both energy and momentum are regularly violated in the
DSTmodel! Forrest suggests that we reconsider the very nature of momentum.
He proposes that “momentum need not be defined as mass times velocity, but
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rather should be understood as a measure of the tendency of a particle to move”
and that a “particle either stays still or moves along but its propensity to move
could be constant” (Forrest 1995, 337-338). In causal set theory, Henson calls
this phenomenon “swerving away from the geodesic” (Henson (2008)). We on
the other hand, prefer to look at this as an opportunity to reconsider Mach’s
principle, and the nature and origin of inertia and inertial mass. If one accepts
the concept that motion happens in this “jerky” way (Van Bendegem 1995, 142-
143), then inertia, inertial mass, energy andmomentummust be properties that
are emergent at macro spatio-temporal scales. This is very interesting, because
it suggests that inertial mass for a time duration of τ is zero, violating Einstein’s
equivalence principle, and that the laws of conservation of energy andmomen-
tum are not strictly conserved at these small time durations. Thus, one is inex-
orably led to Ernst Mach, D.W. Sciama and George Berkeley and their views on
inertia (Sciama 1969, 16). And while his principle has been much maligned, I
see only artificial problems that are inhibiting its further study and acceptance,
similar to the state of DST before this paper. But including the solutions to the
problems with Mach’s principle is out of the scope of this paper and will need
to be a focus of a future paper 23,24.

6.3 Gravity’s Effect on Discrete Space-Time

One can imagine straightforward ways to work gravity into our model. In this
paper, we will only briefly describe (or speculate on) a couple of ways. One
way is to simply modify Eq. (10) in an obvious way, leading to the following
equation for the distance between points P and Q:

mχi >

∫ Q

P

√
gµνdxµxν − χ (26)

where the repeated indices span the spatial coordinates, and m is the smallest
integer that satisfies Eq. (26). This is very similar to the equation proposed by
Arthur March in 1936 (March (1936)). March himself used a similar method to
the one used in this work, namely, based on the ability to measure. Hagar (Ha-
gar 2014, 101) calls the approach an “operationalist theory”, but it is basically
just the same logical positivism used in this work. March’s equation is:

23One of the main problems commonly cited is that there is no observed velocity dependence of
inertial mass, something contrary to what calculations using Mach’s principle ostensibly predict.
However, one should never expect a velocity dependence. A simple application of the relativity
and cosmological principles eliminates this term, as will be shown in a future paper.

24A zero inertial mass for time periods τ makes sense in the context of Mach’s principle or the
prevailing view of high energy physics. In both cases, for a time duration τ , there may not be
enough time for the particle to interact with the gravitational field (Mach’s principle) or the Higgs
field (prevailing view); it is these interactions that imbue a particle with inertial mass.
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s =

∫ Q

P

√
gµνdxµxν − χ (27)

The left sides of Eqs. (26) and (27) are different: March allows for fractional
multiples of χ while Eq. (26) requires an integer multiple of χ. However, both
Eq. (26) and (27) incorrectly assume an a priori existence of space through their
use of gµν , something not done in the rest of our work in this paper. To correctly
use LP (or operationalist theory) when gravity is present, one should start by
studying gravity’s affect on the probes PA and PB in Figs. 6 and 7, as described
below. Again, we are just speculating in this section, a more detailed analysis
is outside the scope of this paper.

To include gravity in DST in a way consistent with LP, one can consider a
simple modification to the approach used in Section 2.4.1. The modification in-
volves assessing the effect of any excess mass (∆) at a location that is not part of
the probe particle. This excess mass can be considered a parasitic mass because
it does not contribute to the localization of the probe particle as calculated from
the Compton wavelength λc but does add to the mass in the equation for RS ,
the resulting equation for the optimal mass of the probe (m) becomes:

~
mc

= 2
2G (m+ ∆)

c2
(28)

The net result is that the mass of the probe needs to be somewhat smaller than
it is in the absence of gravity (denoted below asmo) such that the signal photon
(PS) can escape both the probe and the excess mass. With the mass of the probe
being smaller, it cannot be as localized as it can be in the absence of gravity.
Denoting mo and χo as the values of the mass of the probe and the hodon re-
spectively in the absence of gravity, the equations for the probemass and hodon
as functions of excess mass (∆) are:

m (∆) =
1

2

√
∆2 +

~c
G
− ∆

2
≈ mo −

∆

2
(29a)

χ (∆) =
~
mc

=
~

(mo −∆/2) c
≈
(

1 +
∆

2mo

)
χo (29b)

We realize that up till this point in the paper we have been arguing that the
atom of space should be considered as a constant of nature, and now we are
saying that it can vary from one position to another depending on the mass at
the positions. However, this seems to be the most promising way to include
gravity into this DST model without sacrificing its philosophically attractive
aspects of non-absolute space and logical positivism.
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Equation (29b) shows the atoms of space may vary in size along any path,
depending on the excess mass along the path. Thus the distance (d) along any
path, where the index i denotes sequential hodons along the path, is:

d =
∑

i∈Path

χi (∆) (30)

The distance formula, i.e., a version of Eq. (10) or Eq. (11) but nowwith gravity
present, can be derived in a straightforward way using Eq. (30) in the calcula-
tions for the lengths of the base, height and hypotenuse of the triangle.

Equations (29a) and (29b) is just a starting point, and they raise many ques-
tions. For example, the equations only account for excess mass at a location.
However, χ should also vary at locations without excess mass but with gravita-
tional fields. Presumably, one could account for gravitation fields by calculat-
ing the gravitational potential energy within each χ3 of volume, then using the
equation E = mc2, one can calculate the excess mass ∆ that would be used in
Eqs. (29). Alternatively, one could just use the stress-energy tensor. An answer
to this and other questions (e.g., how τ is affected by excess mass and gravita-
tional fields) we leave to a future paper.

6.4 DST and Causal Set Theory

Of all the existing approaches to quantum gravity (QG), our DSTmodel is most
closely associated with causal set theory (CST). However, the main problem
with all existing QC theories, CST included, is that they all strive to ensure
Lorentz invariance using the standard forms of the Lorentz transformations,
relativistic velocity boosts of RFs, and the other universally accepted but faulty
equations of conventional SR. Another problem is that most if not all of these
QG models also assume the a priori existence of a space-time manifold. CST is
slightly different in this regard, in that it posits that the ordered causal set (i.e.,
the causet) is the fundamental structure, not the associated continuum mani-
fold. Two important changes in thinking are involved in CST: continuum man-
ifolds are replaced by discrete causets, and volume calculations are replaced
by the counting of elements (i.e., points or elements). From a philosophical
perspective, the four foundational properties of CST are sound: transitivity,
non-circularity, finitarity and reflexivity (Reid (1999)). Unfortunately, after this
auspicious start, rigorous application of sound philosophic methods and prin-
ciples are not strictly followed; some questionable assumptions and overly com-
plicated methods are invoked. Aspects of some of the tools that have been de-
veloped in CST will indeed prove to be useful 25. However some of the tools

25Such as the process of determining a manifold from a causet; CST generally does the reverse –
the causet is determined from the manifold via a random sprinkling using a Poisson process.
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have flaws, especially those involving the calculation of time-like and space-
like distances as well as issues concerning local Lorentz invariance (LLI).

Concerning LLI, CST researchers rightly consider their approach to be supe-
rior to other QG theories because how it achieves LLI can be more convincingly
explained than it can with other theories (Henson (2008)). CST researchers are
also most likely correct in stating that any lattice-based quantum gravity will
not have the property of LLI. However, even in CST, the explanation of LLI re-
sulting from the random nature of the sprinkling of causal elements (using a
Poisson process) leaves one a bit unsatisfied (Henson (2008)). Our DST model is
inherently locally and globally Lorentz invariant – it is not a lattice-base model and
assumes a non absolute nature of space. This results in no preferred direction
and no preferred RF or velocity.

Besides the issues with LLI, the methods used to calculate distances in CST
need to be further developed. There are two accepted methods to calculate
time-like distances in CST. One method involves calculating volumes of hyper-
cones that enclose causal points and then computing the proper time (i.e., time-
like distance) between two points (i.e., events) w and z from this volume for-
mula (Hooft (1979)). A secondmethod is to define the “proper time d (w, z), be-
tween two related elementsw ≺ z to be the number of linksL in the longest chain
between (and including) w and z, yielding d(x, y) := L” (Rideout (2009)). The
distance calculated in thisway is Lorentziandistance, “in Euclidean spaces...one
generally defines distance in terms of shortest paths” (Rideout (2009)). Typi-
cally in CST, a space-like distance d (x, y) is “given by the minimum time-like
distance between an element w in their common past and another z in their
common future” (Rideout (2009)). Thus, w ≺ (x, y) ≺ z, and

d(x, y) = min
w,z

d(w, z) (31)

where the time-like distance d (w, z) is calculated “using either the length of the
longest chain or volume distance” (Rideout (2009)). It is out of the scope of this
paper to instruct the reader in greater detail on how to calculate time-like and
space-like distances in CST; the important point we want to convey is that in
both, counting or determining longest or shortest chains need to be done – our
work shows how to do it accurately.

To conclude this discussion on CST, we reiterate that we believe that CST is
a very promising approach to quantum gravity, and that our DST model ad-
dresses some of the shortcomings of, and errors in, the methods currently used
in CST. It provides tools to accurately calculate time-like and especially space-
like distances. It shows that the standard formula used by CST researchers
(e.g., Myrheim (1978)) and others to express the interval between to events in
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flat space-time, namely ∆s2 = c2∆t2 − c2∆x2 − c2∆y2 − c2∆z2 is not cor-
rect for spatio-temporal scales near the Planck scale. It also shows that CST
researchers should not require adherence to the TI theorem (Brightwell (1991)).
It also allows one to calculate a new set of Lorentz transformation equations that
are used to assess local and global Lorentz invariance. Hence, CST, quantum
loop gravity, spin-foam approaches, dynamical triangulation methods should
allmakeuse of ourDSTmodel’smethodof calculatingdistances, the newLorentz
factor, and the model’s use of NA-space.

7 Conclusion

It was shown in this work that the DSTmodel requires a new distance formula.
We showed how formulas proposed by Van Bendegem and Forrest could be
modified to yield a distance formula thatmatches one developed byCrouse that
is valid at all size-scales. Our derivation uses the precepts of a restrictive form
of logical positivism and assumes non-absolute space that inherently conserves
isotropy. It was shown how the new formula converges to the Pythagorean
theorem for distances large relative to the Planck length, but is significantly
different for larger size-scales. When using the new distance formula in the
otherwise typical derivations of time dilation and length contraction, one sees
that the atomof space and atomof time are indeed immutable - true constants of
nature and independent of the speed of any observer. It was also discussed how
this new distance formula allows for temporary travel at the speed of light, and
how particular empirical tests and observations can be performed to verify the
DST model, in particular, the observation and analysis of anomalous motion of
astronomical bodies. We also suggestedways to include gravity into themodel.
The main conclusion of the paper is that there are no real problems with DST
that cause it to be inferior to the continuous space-time model. Importantly,
the proposed DST model yields a new distance formula that should be used
in mathematical and physical theories at the Planck scale, including work in
the fields of string theory, loop quantum gravity, and causal set theory. And
finally, the model opens up a whole host of new and interesting avenues for
investigation/exploration in the fields of mathematics, cosmology, physics and
philosophy.
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