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Abstract

The past decade has seen a tremendous effort toward unraveling the relationship between
entanglement and emergent spacetime. These investigations have revealed that entanglement
between holographic degrees of freedom is crucial for the existence of bulk spacetime. We
examine this connection from the other end of the entanglement spectrum and clarify the
assertion that maximally entangled states have no reconstructable spacetime. To do so, we
first define the conditions for bulk reconstructability. Under these terms, we scrutinize two
cases of maximally entangled holographic states. One is the familiar example of AdS black
holes; these are dual to thermal states of the boundary CFT. Sending the temperature to the
cutoff scale makes the state maximally entangled and the respective black hole consumes the
spacetime. We then examine the de Sitter limit of FRW spacetimes. This limit is maximally
entangled if one formulates the boundary theory on the holographic screen. Paralleling the
AdS black hole, we find the resulting reconstructable region of spacetime vanishes. Moti-
vated by these results, we prove a theorem showing that maximally entangled states have no
reconstructable spacetime. Evidently, the emergence of spacetime is endemic to intermedi-
ate entanglement. By studying the manner in which intermediate entanglement is achieved,
we uncover important properties about the boundary theory of FRW spacetimes. With this
clarified understanding, our final discussion elucidates the natural way in which holographic
Hilbert spaces may house states dual to different geometries. This paper provides a coherent
picture clarifying the link between spacetime and entanglement and develops many promising
avenues of further work.
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1 Introduction

It is believed that dynamical spacetime described by general relativity is an emergent phenomenon

in the fundamental theory of quantum gravity. Despite this pervasive idea, the materialization

of spacetime itself is not fully understood. Holography posits that a fundamental description of

quantum gravity resides in a non-gravitational spacetime whose dimension is less than that of the

corresponding bulk spacetime [1–3]. In this paper, we study the emergence of gravitational space-

time in the context of holography, using the renowned anti-de Sitter (AdS)/conformal field the-

ory (CFT) correspondence [4] and a putative holographic theory of Friedmann-Robertson-Walker

(FRW) spacetimes [5].

In this paper, we expound on the intimate relationship between the emergence of spacetime and

the lack of maximal entanglement in the boundary state. Through this, we see that the existence

of spacetime is necessarily non-generic and that nature seizes the opportunity to construct local

spacetime when states deviate from maximal entanglement. A reason why this viewpoint is not

heavily emphasized (see, however, e.g. Refs. [6,7]) in the standard context of AdS/CFT is that one

almost always considers states with energy much lower than the cutoff (often sent to infinity). The

restriction to these “low energy” states implicitly narrows our perspective to those automatically

having non-maximal entropy. However, in a holographic theory with a finite cutoff scale (or a

fundamentally nonlocal theory), the regime of maximal entropy is much more readily accessible.

This happens to be the case in FRW holography, and perhaps holography in general. Through

this lens, we analyze the emergence of spacetime both in the familiar setting of Schwarzschild-AdS

spacetime with an infrared cutoff and in flat FRW universes. We explicitly see that the directly

reconstructable region of spacetime [6, 8] emerges only as we deviate from maximally entangled

states. This implies that a holographic theory of exact de Sitter space cannot be obtained as a

natural limit of theories dual to FRW spacetimes by sending the fluid equation of state parameter,

w, to −1. In addition to analyzing these two examples, we prove a theorem demonstrating the lack

of directly reconstructable spacetime in the case that a boundary state is maximally entangled.

After surveying the relationship between spacetime and (the lack of) entanglement, we then

analyze the deviation from maximal entropy itself. The size of the subregions for which deviations

occur reveals valuable information about the underlying holographic theory, and observing the

corresponding emergence of spacetime in the bulk provides a glimpse into the mechanism by which

nature creates bulk local degrees of freedom. In the case of Schwarzschild-AdS, reconstructable

spacetime (the region between the horizon and the cutoff) appears as the temperature in the

local boundary theory (the CFT) is lowered, and the resulting entanglement entropy structure

(calculated holographically) is consistent with a local theory at high temperature. However, this

entanglement structure is not observed in the case of FRW spacetimes as we adjust w away from

−1; additionally, the reconstructable region grows from the deepest points in the bulk outward.
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This suggests that the manner in which entanglement is scaffolded is unlike that of AdS/CFT. In

fact, this aberrant behavior leads us to believe that the holographic theory dual to FRW spacetimes

has nonlocal interactions.

The relationship between spacetime and quantum entanglement between holographic degrees

of freedom is no secret [9–15], but what is spacetime? Undoubtedly, entanglement is a necessity for

the existence of spacetime. But, it is indeed possible to have too much of a good thing. The analysis

here exposes the inability to construct spacetime from maximally entangled boundary states. Since

typical states in a Hilbert space are maximally entangled [16], this implies that states with bulk dual

are not typical. We see that spacetime is an emergent property of non-generic states in the Hilbert

space with both non-vanishing and non-maximal entanglement for subregions. The existence of

entanglement allows for the construction of a code subspace of states [17] in which local, semi-

classical bulk degrees of freedom can be encoded redundantly. Simultaneously, the lack of maximal

entanglement allows for a code subspace with subsystem recovery—hence partitioning the bulk into

a collection of local Hilbert spaces. With this perspective, we see that holographic theories are

exceedingly enterprising—once deviating from maximal entanglement, nature immediately seizes

the opportunity to construct spacetime. In this sense, spacetime is the byproduct of nature’s

efficient use of intermediate entanglement to construct codes with subsystem recovery.

For a given spacetime with a holographic boundary, one can calculate the von Neumann en-

tropies for all possible subregions of the boundary via the Hubeny-Rangamani-Ryu-Takayanagi

(HRRT) prescription [9, 10, 15]. The corresponding entanglement structure heavily constrains the

possible boundary states, but by no means uniquely specifies it. In fact, given an entanglement

structure and a tensor product Hilbert space, one can always find a basis for the Hilbert space in

which all basis states have the desired entanglement structure. If one considers each of these basis

states to be dual to the spacetime reproducing the entanglement, then by superpositions one could

entirely change the entanglement structure, and hence the spacetime. This property naturally

raises the question of how the boundary Hilbert space can accommodate states dual to different

semiclassical geometries. Fortunately, for generic dynamical systems, the Hilbert space can be

binned into energy bands, and canonical typicality provides us with the result that generic states

within these bands have the same entanglement structure, regardless of the energy band’s size. This

allows the holographic Hilbert space to contain states dual to many different spacetimes, each of

which can have bulk excitations encoded state independently. Importantly, this is contingent on

the result that typical states have no spacetime.

Outline

Section 2 walks through the statement that maximally entangled (and hence typical) states have

no reconstructable spacetime. This is broken down into parts. First, we must define what we mean
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by reconstructable; this is detailed in Section 2.1, and is very important toward understanding the

framework of the rest of the paper. We then use this construction in Section 2.2 to investigate

the reconstructable region of AdS with a black hole. We see the expected behavior that the

reconstructable region of spacetime vanishes as the temperature of the black hole reaches the

cutoff scale, making the state typical. In Section 2.3, we show that de Sitter states are maximally

entangled by finding their HRRT surfaces. In Section 2.4, we combine numerical results for flat

FRW universes and use the additional property that de Sitter’s HRRT surfaces lie on a null cone to

show that the reconstructable region vanishes in the de Sitter limit of FRW spacetimes. Motivated

by these results, in Section 2.5 we prove a theorem showing that if a state is maximally entangled,

then its HRRT surfaces either wrap the holographic space or live on the null cone. This is then

used to present the general argument that maximally entangled states have no spacetime.

Section 3 compares the emergence of spacetime in the two theories we are considering. Sec-

tions 3.1 and 3.2 present results comparing the entanglement structure of AdS black holes and

FRW spacetimes, respectively. Section 3.3 interprets these results and argues that the appropriate

holographic dual of FRW spacetimes is most likely nonlocal.

In Section 4, we put together all of the previous results and explain how one Hilbert space can

contain states dual to many different semiclassical spacetimes. Here we discuss the lack of a need

for state dependence when describing the directly reconstructable region.

In Appendix A, we analyze two-sided black holes within our construction and discuss how a

version of complementarity works in this setup. Appendices B and C collect explicit calculations

for Schwarzschild-AdS and the de Sitter limit of FRW spacetimes, respectively.

2 Maximally Entropic States Have No Spacetime

In this section, we see that maximally entangled states in holographic theories do not have directly

reconstructable spacetime. First we lay out the conditions for reconstructability in general theories

of holographic spacetimes. Then we examine the familiar example of a large static black hole in

AdS and determine its reconstructable region. We then discuss the de Sitter limit of flat FRW

spacetimes. Finally, we prove a theorem establishing that maximally entropic holographic states

have no reconstructable spacetime.

2.1 Holographic reconstructability

In order to argue that typical states have no reconstructable region, we must first present the

conditions for a region of spacetime to be reconstructed from the boundary theory. We adopt

the formalism presented first in Ref. [8] but appropriately generalized in Ref. [6] to theories living
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on holographic screens [18] (which naturally includes the boundary of AdS as in the AdS/CFT

correspondence).

The question to answer is: “given a boundary state and its time evolution with a known gravita-

tional bulk dual, what regions of the bulk can be reconstructed?” This may sound tautological, but

it is not. Settings in which this question is nontrivial include spacetimes with black holes and other

singularities. From entanglement wedge reconstruction, we know that the information of a pure

black hole is contained in the boundary theory but whether or not the interior is reconstructable

is unknown. In holographic theories of general spacetimes, we are interested in describing space-

times with big bang singularities and a natural question is whether or not the theory reconstructs

spacetime arbitrarily close to the initial singularity.

To answer this question, Ref. [8] proposed that reconstructable points in a spacetime are pre-

cisely those that can be localized at the intersection of entanglement wedges. This is similar to

the proposal in Ref. [19] which advocates that reconstructable points are those located at the

intersection of HRRT surfaces anchored to arbitrary achronal subregions of the AdS conformal

boundary. However, this construction lacks the ability to localize points in entanglement shadows,

which can form in rather tame spacetimes (e.g. a neutron star in AdS), while using the intersection

of entanglement wedges allows us to probe these regions.

In order to generalize this to theories living on holographic screens, an essential change is that

one can only consider HRRT surfaces anchored to the leaves of a given holographic screen (usually

associated to a fixed reference frame) [6]. This is because holographic screens have a unique

foliation into leaves that corresponds to a particular time foliation of the holographic theory. Thus

the von Neumann entropy of subregions in the holographic theory only makes sense for subregions

of a single leaf. Note that despite the lack of a unique time foliation of the conformal boundary,

this subtlety is also present in AdS/CFT. Namely, one should consider only a single time foliation

of the boundary and the HRRT surfaces anchored to the associated equal time slices even in

asymptotically AdS spacetimes [6].1 This issue becomes manifest when the boundary contains

multiple disconnected components, as we discuss in Appendix A.

Thus we conclude that the reconstructable region of a spacetime is the union of all points

that can be localized at the boundary of entanglement wedges of all subregions of leaves of the

holographic screen. Henceforth, we will refer to the regions of spacetime constructed in this way

as the directly reconstructable regions (or simply the reconstructable regions when the context is

clear), and our analysis will primarily focus on these regions. For a more detailed study of directly

reconstructable regions in general spacetimes, see Ref. [6]. In particular, this definition only allows

for the reconstruction of points outside the horizon for a quasi-static one-sided black hole, since such

1This is related to the work in Ref. [20], which studied the breakdown of the HRRT formula in certain limits of
boundary subregions. These breakdowns correspond to disallowed foliations of the boundary theory.
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a horizon acts as an extremal surface barrier [21].2 This also prevents the direct reconstruction of

points near singularities such as big bang singularities and the black hole singularity of a two-sided

black hole.

Now that we have detailed the conditions for regions of spacetime to be directly reconstructable,

we must determine a measure of “how much” spacetime is reconstructable. This allows us to see

the loss of spacetime in the limit of states becoming typical. In the language of information theory,

we are analyzing the size of the code subspace [17] on each background. A natural measure of this

may be related to the spacetime volume of the reconstructable region. Without any symmetry,

we do not expect any spacetime region to be directly reconstructed from a single leaf of a screen.

However, in the case of (d+1)-dimensional flat FRW spacetimes, we see that a codimension-0 region

can be reconstructed from a single leaf because of the high degree of symmetry. Furthermore, in

any static spacetime, all HRRT surfaces anchored to one leaf live in the same time slice in the

bulk, and hence their intersections reconstruct a codimension-1 surface of the bulk. This is the

case in an AdS black hole.

The dependence of the directly reconstructable region on the symmetries of particular space-

time of interest may seem to cause issues when trying to compare the loss of spacetime in dif-

ferent systems. Namely, it seems difficult to compare the loss of reconstructable spacetime in

Schwarzschild-AdS as we increase the black hole mass to the loss of spacetime in the w → −1 limit

of flat FRW spacetimes. However, in all cases, the spacetime region directly reconstructable from

a small time interval in the boundary theory is codimension-0. We can then examine the relative

loss of spacetime in both cases (black hole horizon approaching the boundary in AdS space and

w → −1 in FRW spacetimes) by taking the ratio of the volume of the reconstructable region to

the reconstructable volume of some reference state (e.g. pure AdS and flat FRW with some fixed

w 6= −1). In static spacetimes, this will reduce to a ratio of the spatial volumes reconstructed on

a codimension-1 slice, allowing us to consider only the volume of regions reconstructed from single

leaves.

2.2 Large AdS black holes

Here we will see how spacetime disappears as we increase the mass of the black hole in static

Schwarzschild-AdS spacetime, making the corresponding holographic state maximally entangled.

We consider a holographic pure state living on the (single) conformal boundary of AdS. We intro-

duce an infrared cutoff r ≤ R in AdS space and consider a d+1 dimensional large black hole with

2This does not exclude the possibility that the holographic theory allows for some effective description of regions
other than the directly reconstructable one, e.g. the black hole interior (perhaps along the lines of Ref. [22]). This
may make the interior spacetime manifest, perhaps at the cost of losing the local description elsewhere, and may
be necessary to describe the fate of a physical object falling into a black hole. We focus on spacetime regions that
can be described by the boundary theory without resorting to such descriptions.
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Figure 1: The volume V (r+, R) of the Schwarzschild-AdS spacetime that can be reconstructed from the
boundary theory, normalized by the corresponding volume V (R) in empty AdS space: f = V (r+, R)/V (R).
Here, R is the infrared cutoff of (d+1)-dimensional AdS space, and r+ is the horizon radius of the black
hole.

horizon radius r = r+.

As discussed in Section 2.1, the size of the spacetime region directly reconstructable from the

boundary theory is characterized by V (r+, R), the spatial volume between the black hole horizon

and the cutoff. We normalize it by the volume of the region r ≤ R in empty AdS space, V (R), to

get the ratio

f
(r+
R

)

≡ V (r+, R)

V (R)
= (d− 1)

rd−1
+

Rd−1

∫ R
r+

1

xd−2

√

1− 1
xd

dx, (1)

which depends only on r+/R (and d). As expected, it behaves as

f
(r+
R

)

{

≃ 1 (r+ ≪ R)
→ 0 (r+ → R),

(2)

in the two opposite limits. The details of this calculation can be found in Appendix B.1. Here, we

plot f(r+/R) in Fig. 1 for various values of d.

In the limit r+ → R, the HRRT surface, γA, anchored to the boundary of subregion A of a

boundary space (a constant t slice of the r = R hypersurface) becomes the region A itself or the

complement, Ā, of A on the boundary space, whichever has the smaller volume.3 This implies

that the entanglement entropy of A, given by the area of the HRRT surface as SA = ‖γA‖/4ld−1
P ,

3We do not impose a homology constraint, since we consider a pure state in the holographic theory.
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becomes exactly proportional to the smaller of the volumes of A and Ā in the boundary theory:

SA =
1

4ld−1
P

min{‖A‖, ‖Ā‖}. (3)

Here, ‖x‖ represents the volume of the object x (often called the area for a codimension-2 surface in

spacetime), and lP is the (d+1)-dimensional Planck length in the bulk. Via usual thermodynamic

arguments, we interpret this to mean that the state in the boundary theory is generic, so that

it obeys the Page law [16].4 This in turn implies that the temperature of the system, which is

identified as the Hawking temperature TH, is at the cutoff scale.5 TH is related to r+ by

r+
R

=
4πl2

dR
TH, (4)

where l is the AdS radius. Hence, the cutoff scale of the boundary theory is given by [23]

Λ =
dR

4πl2
. (5)

This allows us to interpret the horizontal axis of Fig. 1 as TH/Λ from the viewpoint of the boundary

theory.

We finally make a few comments. First, it is important to note that by the infrared cutoff, we

do not mean that the spacetime literally ends there as in the scenario of Ref. [24]. Such termination

of spacetime would introduce dynamical gravity in the holographic theory, making the maximum

entropy of a subregion scale as the area, rather than the volume, in the holographic theory. Rather,

our infrared cutoff here means that we focus only on the degrees of freedom in the bulk deeper than

r = R, corresponding to setting the sliding renormalization scale to be ≈ R/l2 in the boundary

theory. In particular, the boundary theory is still non-gravitational.

Second, to state that spacetime disappears in the limit where the holographic state becomes

typical, it is crucial to define spacetime as the directly reconstructable region. This becomes

clear by considering a large subregion A on the boundary theory such that A and its HRRT

surface γA enclose the black hole at the center. If we take the simple viewpoint of entanglement

wedge reconstruction [25, 26], this would say that spacetime does not disappear even if the black

hole becomes large and its horizon approaches the cutoff surface, since the black hole interior is

within the entanglement wedge of A so that it still exists in the sense of entanglement wedge

reconstruction. We, however, claim that such a region does not exist as a localizable spacetime

region, as explained in Section 2.1.

4Page’s analysis tells us that for a generic state (a Haar random state) in a Hilbert space, the entanglement
entropy of a reduced state is nearly maximal. In fact, at the level of the approximation we employ in this paper,
‖A‖/ld−1

P
→ ∞, such a state has the maximal entanglement entropy for any subregion, Eq. (3).

5When we refer to a high temperature state, we do not mean that the whole holographic state is a mixed thermal
state. What we really mean is a high energy state, since we focus on pure states.
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Third, the curves in Fig. 1 are not monotonically decreasing as r+ increases for d > 2. One

might think this is at odds with the fact that

d

dr+

{

SA,max − SA,BH(r+)
}

< 0. (6)

Here, SA,max and SA,BH(r+) are the maximal entropy and the entropy corresponding to the black

hole geometry of subregion A, given by

SA,max =
‖A‖
4ld−1

P

, SA,BH(r+) =
‖A‖
4ld−1

P

rd−1
+

Rd−1
. (7)

This is, however, not a contradiction because we expect that the volume V (r+, R) is related with

Scode(r+): the logarithmic size of the code subspace (the Hilbert space for semiclassical excitations

without leading to a significant back reaction to spacetime). Since

Scode(r+) ≪ SA,max − SA,BH(r+), (8)

the dependence of Scode(r+) on r+ need not follow that of SA,max−SA,BH(r+) in Eq. (7), and hence

need not be monotonic.

Finally, the statement that spacetime disappears as the holographic state approaches typicality

persists for two-sided black holes. In this setup, there is a new issue that does not exist in the

case of single-sided black holes: the choice of a reference frame associated with a relative time shift

between the two boundaries. The discussion of two-sided black holes is given in Appendix A.

2.3 de Sitter states are maximally entropic

We have seen that a large black hole in AdS with r+ → R corresponds to CFT states at the cutoff

temperature, and that the holographic states in this limit have the entanglement entropy structure

of Eq. (3). Below, we refer to states exhibiting Eq. (3) as the maximally entropic states. Is there

an analogous situation in the holographic theory of FRW spacetimes, described in Ref. [5]? Here

we argue that the de Sitter limit (w → −1) in flat FRW universes provides one.6

We first see that the holographic state becomes maximally entropic in the case that a universe

approaches de Sitter space at late times [15]. This situation arises when the universe contains

multiple fluid components including one with w = −1, so that it is dominated by the w = −1

component at late times. This analysis does not apply directly to the case of a single component

with w = −1 + ǫ (ǫ→ 0+), which will be discussed later.

In the universe under consideration, the FRW metric approaches the de Sitter metric in flat

slicing at late times

ds2 = −dt2 + e
2t
α

(

dr2 + r2dΩ2
d−1

)

, (9)

6For a simple proof applicable to 2 + 1 dimensions, see Appendix C.1.
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Figure 2: The Penrose diagram of de Sitter space. The spacetime region covered by the flat-slicing
coordinates is shaded, and constant time slices in this coordinate system are drawn. The codimension-1
null hypersurface Σ′ is the cosmological horizon for an observer at r = 0, to which the holographic screen
of the FRW universe asymptotes in the future.

where α is the Hubble radius, and we have taken the spacetime dimension of the bulk to be d+1.

The Penrose diagram of this spacetime is depicted in Fig. 2, where constant time slices are drawn

and the region covered by the coordinates is shaded; future timelike infinity I+ corresponds to

t = ∞, while the null hypersurface N corresponds to t = −∞. At late times, the past holographic

screen of the FRW universe asymptotes to the codimension-1 null hypersurface Σ′ depicted in the

figure. This hypersurface is located at

r = α e−
t
α , (10)

which corresponds to the cosmological horizon for an observer moving along the r = 0 geodesic.

We can now transform the coordinates to static slicing

ds2 = −
(

1− ρ2

α2

)

dτ 2 +
1

1− ρ2

α2

dρ2 + ρ2dΩ2
d−1. (11)

In Fig. 3, we depict constant τ (red) and constant ρ (blue) slices, with the shaded region being

covered by the coordinates. This metric makes it manifest that the spacetime has a Killing sym-

metry corresponding to τ translation. Using this symmetry, we can map a leaf of the original

FRW universe to the τ = 0 hypersurface, Σ. Since the leaf of the universe under consideration

approaches arbitrarily close to Eq. (10) at late times, the image of the map, Ξ′, asymptotes to the

bifurcation surface Ξ at

ρ = α, (12)

for a leaf at later times.
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Figure 3: Constant time slices and the spacetime region covered by the coordinates in static slicing of
de Sitter space. Here, Σ is the τ = 0 hypersurface, and Ξ is the bifurcation surface, given by ρ = α with
finite τ .

Consider an arbitrary subregion A on Ξ′ and the minimal area surface γA on Σ anchored to

the boundary of A, ∂A. Since the geometry of Σ is Sd with Ξ being an equator, the minimal area

surface γA becomes the region A itself (or its complement on Ξ′, whichever is smaller) in the limit

Ξ′ → Ξ. Strictly speaking, this statement does not apply for a small subset of subregions, since

Ξ′ is not exactly Ξ unless the leaf under consideration is at strictly infinite time. (For subregions

in this subset, the minimal area surfaces probe ρ ≪ α. For spherical caps, these subregions are

approximately hemispheres.) However, the fractional size of the subset goes to zero as we focus

on later leaves. Continuity then tells us that our conclusion persists for all subregions.

The surface γA found above is in fact an extremal surface, since the bifurcation surface Ξ is an

extremal surface, so any subregion of it is also extremal. It is easy to show that this surface is indeed

the HRRT surface, the minimal area extremal surface. Suppose there is another extremal surface

γ′A anchored to ∂A. We could then send a null congruence from γ′A down to Σ, yielding another

codimension-2 surface γ′′A given by the intersection of the null congruence and Σ. Because γ′A is

extremal, the focusing of the null rays implies ‖γ′A‖ > ‖γ′′A‖, and by construction ‖γA‖ < ‖γ′′A‖.
This implies that γA is the HRRT surface, and hence

SA =
1

4ld−1
P

min{‖A‖, ‖Ā‖}. (13)

Namely, the holographic state representing an FRW universe that asymptotically approaches de Sit-

ter space becomes a maximally entropic state in the late time limit.

The global spacetime structure in the case of a single fluid component with w 6= −1 is qualita-

tively different from the case discussed above. For example, the area of a leaf grows indefinitely.
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However, for any finite time interval, the behavior of the system approaches that of de Sitter space

in the limit w → −1. In fact, the numerical analysis of Ref. [5] tells us that the holographic

entanglement entropy of a spherical cap region becomes maximal in the w → −1 limit. We show

in Appendix C.2 that this occurs for an arbitrary subregion on a leaf.

2.4 Spacetime disappears as w → −1 in the holographic FRW theory

We have seen in our AdS/CFT example that as the holographic state approaches typicality, and

hence becomes maximally entropic, the directly reconstructable region disappears. On the other

hand, we have shown that the entanglement entropies for flat FRW universes approaches the

maximal form as w → −1. Does this limit have a corresponding disappearance of reconstructable

spacetime? Here we will show that the answer to this question is yes.

From the analysis of Section 2.3, we see that a leaf at late times in universes approaching

de Sitter space can be mapped to a surface on the τ = 0 hypersurface Σ, which asymptotes to

the bifurcation surface Ξ in the late time limit. From the Killing symmetry, the HRRT surfaces

anchored to this mapped leaf must all be restricted to living on Σ. Mapping the HRRT surfaces

back to the original location, we see that they asymptote to living on the null hypersurface Σ′.

Thus, we find that the HRRT surface for any subregion of a leaf σ∗ asymptote to the future

boundary of the causal region Dσ∗ , which we denote by ∂D
(+)
σ∗ , as a universe approaches de Sitter

space. A similar argument holds for universes where w → −1. In Appendix C.3, we present some

examples where we can see this behavior using analytic expressions for HRRT surfaces.

What does this imply for the reconstructable region in de Sitter space? Using the prescription

outlined in Section 2.1, we find that spacetime points on the future causal boundary of a leaf,

∂D
(+)
σ∗ , can be reconstructed. This is a codimension-1 region in spacetime. One might then think

that we can reconstruct a codimension-0 region by considering multiple leaves, as was the case in

a Schwarzschild-AdS black hole. However, the holographic screen of de Sitter space is itself a null

hypersurface, with future leaves lying precisely on the future causal boundary of past leaves. This

means that even by using multiple leaves we cannot reconstruct any nonzero measure spacetime

region in the de Sitter (and w → −1) limit.

We will now compute the reconstructable region in (2+1)-dimensional flat FRW spacetimes. As

discussed in Section 2.1, this region is comprised of points that can be localized as the intersection

of edges of entanglement wedges. We will be considering the reconstructable region associated to

a single leaf, and hence this prescription reduces to finding points located at the intersection of

HRRT surfaces anchored to the leaf. This alone gives us a codimension-0 reconstructable region.

In (2+1)-dimensional FRW spacetimes, HRRT surfaces are simply geodesics in the bulk spacetime,

and this problem becomes tractable.

For a (2 + 1)-dimensional flat FRW universe filled with a single fluid component w, the leaf of
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Figure 4: The spacetime volume of the reconstructable region in (2 + 1)-dimensional flat FRW universes
for w ∈ (−0.9,−1), normalized by the reconstructable volume for w = −0.9.

the holographic screen at conformal time η∗ is located at coordinate radius

r∗ =
a

ȧ

∣

∣

∣

∣

η=η∗

= wη∗. (14)

Let us parameterize the points on the leaf by φ ∈ [0, 2π). Consider an interval of the leaf at time

η∗ centered at φ0 with half opening angle ψ. The HRRT surface of this subregion is simply the

geodesic connecting the endpoints of the interval: (η, φ) = (η∗, φ0 − ψ) and (η∗, φ0 + ψ). It is clear

from the symmetry of the setup that if we consider a second geodesic anchored to an interval with

the same opening angle but with a center φ′
0 ∈ [φ0 − 2ψ, φ0 + 2ψ], then the two geodesics will

intersect at a point, specifically where φ = (φ0 + φ′
0)/2. Using these pairs of geodesics, it is clear

that we can reconstruct all points on all geodesics anchored to the leaf. The union of these points

gives us a codimension-0 region.

Can we get a larger region? In (2 + 1)-dimensional flat FRW spacetimes, the answer is no. In

higher dimensions, knowing the HRRT surfaces for all spherical cap regions may not be sufficient

to figure out reconstructable regions; for example, one may consider using disjoint regions in hopes

that the new HRRT surfaces would explore regions inaccessible to the previous HRRT surfaces

(although we do not know if this really leads to a larger reconstructable region). However, in 2+1

dimensions, both connected and disconnected phases of extremal surfaces are constructed from the

geodesics already considered, so we gain nothing from considering disconnected subregions. We

thus find that the set of all points on HRRT surfaces anchored to arbitrary subregions on a leaf is

exactly the reconstructable region from the state on the leaf.

In Fig. 4, we show a plot of the reconstructable spacetime volume as a function of w. It shows
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(a) w = 1, η∗ = 1 (b) w = 0, η∗ = 1 (c) w = −4/5, η∗ = −1

Figure 5: Reconstructable spacetime regions for various values of w in (3 + 1)-dimensional flat FRW
universes. The horizontal axis is the distance from the center, normalized by that to the leaf. The vertical
axis is the difference in conformal time from the leaf, normalized such that null ray from the leaf would
reach 1. The full reconstructable region for each leaf would be the gray region between the two lines
rotated about the vertical axis.

a qualitatively similar behavior to that of Fig. 1, where the reconstructable volume increases and

then sharply declines to zero as the holographic state becomes maximally entropic.

We can also perform a similar analysis in higher dimensions. Due to the numerical difficulty in

finding extremal surfaces, here we restrict ourselves to the region reconstructable by spherical cap

regions (which may indeed be the fully reconstructable region) and to only a few representative

values of w. The results are plotted in Fig. 5 for (3+1)-dimensional FRW universes. These demon-

strate the behavior that the extremal surfaces, and hence the reconstructable region, becomes more

and more null as w → −1.

The discussion in this subsection says that the reconstructable spacetime region disappears in

the holographic theory of FRW spacetimes as the holographic state becomes maximally entropic in

the de Sitter limit. While a microstate becoming maximally entropic does not directly mean that

states representing the corresponding spacetime become typical in the holographic Hilbert space

(since the number of independent microstates could still be small), we expect that the former indeed

implies the latter as usual thermodynamic intuition suggests; see Section 4 for further discussion.

In any event, since typical states in a holographic theory are maximally entropic, we expect that

the reconstructable spacetime region disappears as the holographic state becomes typical.

An important implication of the analysis here is that a holographic theory of de Sitter space

cannot be obtained by taking a limit in the holographic theory of FRW spacetimes. A holographic

theory of exact de Sitter space, if any, would have to be formulated in a different manner.7

7Another instance in which spacetime disappears is when the holographic description changes from that based on
a past holographic screen (foliated by marginally anti-trapped surfaces) to a future holographic screen (marginally
trapped surfaces). Such a change of description may occur in a spacetime with a late-time collapsing phase, e.g. in
a closed FRW universe with the holographic screen constructed naturally in an observer-centric manner. (For an
interpretation of such spacetime, see Ref. [5].) Since the leaf at the time of the transition is extremal, the analysis
here indicates that the spacetime region reconstructable from a single leaf disappears at that time. This makes the
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2.5 Maximally entropic states have no spacetime

In this subsection, we provide a proof for the statement that the directly reconstructable region

of a maximally entropic leaf is either the leaf itself or a subset of its null cone. We use this result

to argue that maximally entropic states have no spacetime. This heavily utilizes the maximin

techniques developed in Ref. [27].

Theorem 1. Consider a compact codimension-2 spacelike surface, σ, with area A, living in a

spacetime that satisfies Rabv
avb ≥ 0 for all null vectors va. Suppose HRRT surfaces can consistently

be anchored to σ.8 Letm(Γ) denote the HRRT surface anchored to the boundary, ∂Γ, of a subregion

Γ of σ.

If ‖m(Γ)‖ = min{‖Γ‖, ‖Γ̄‖}, ∀Γ ⊂ σ, then either σ is a bifurcation surface or all of the HRRT

surfaces of σ lie on a non-expanding null hypersurface connected to σ.

Proof. If Γ1 and Γ2 are subregions of σ, we will abbreviate Γ1 ∪ Γ2 as Γ1Γ2. Let m(Γ)Σ denote

the representative of m(Γ) on a complete achronal surface Σ, defined by the intersection of Σ

with a null congruence shot out from m(Γ). From the extremality of m(Γ), Rabv
avb ≥ 0, and the

Raychaudhuri equation, ‖m(Γ)Σ‖ ≤ ‖m(Γ)‖.
Consider three connected subregions A, B, C of σ such that ∂A∩ ∂B 6= ∅, ∂B ∩ ∂C 6= ∅ where

both such intersections are codimension-3, and ‖A ∪ B ∪ C‖ ≤ ‖σ‖/2; see Fig. 6 for a diagram.

By Theorem 17.h of Ref. [27], take m(ABC) and m(B) to be on the same achronal surface, Σ.

Now, consider the representatives m(AB)Σ and m(BC)Σ. From the properties of representatives

and maximin surfaces, we have

S(AB) + S(BC) ≥ ‖m(AB)Σ‖
4ld−1

P

+
‖m(BC)Σ‖

4ld−1
P

≥ S(ABC) + S(B). (15)

The assumption of maximal entropies then tells us that strong subadditivity is saturated, and

hence
‖m(AB)Σ‖ = ‖m(AB)‖,
‖m(BC)Σ‖ = ‖m(BC)‖.

(16)

Additionally, m(AB)Σ ∩m(BC)Σ 6= ∅.
We have two cases depending on the nature of Σ.

Case 1: m(ABC), m(B), m(AB)Σ, and m(BC)Σ live on Σ which is a non-null hypersurface.

necessity of the change of the description more natural.
8This requires the expansion of the two null hypersurfaces bounding D(σ) to have θ ≤ 0, where D(σ) is the

interior domain of dependence of some achronal set whose boundary is σ. These HRRT surfaces are guaranteed to
exist and satisfy basic entanglement inequalities; see Ref. [15].
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Figure 6: Diagrams representing the achronal surface Σ in which two HRRT surfaces, m(ABC) andm(B),
live. m(AB)Σ and m(BC)Σ are the representatives of m(AB) and m(BC), respectively. They are shown
to be intersecting at p. On a spacelike Σ, one could deform around this intersection to create two new
surfaces with smaller areas.

Suppose m(AB)Σ∩m(BC)Σ is a codimension-3 surface, meaning they intersect through some

surface, p, depicted in Fig. 6. One could then smooth out the “corners” around p to create

new surfaces homologous to ABC and B. This is depicted through the maroon lines in Fig. 6.

By the triangle inequality, these new, smoothed out surfaces, w(ABC) and w(B), would have

less total area than m(ABC) ∪ m(B) because the p ∈ Σ which is spacelike. However, this

contradicts the minimality of m(ABC) and m(B):

(‖A‖+ ‖B‖+ ‖C‖) + ‖B‖ = ‖m(ABC)‖ + ‖m(B)‖ ≤ ‖w(ABC)‖+ ‖w(B)‖
< ‖m(AB)Σ‖+ ‖m(BC)Σ‖ = (‖A‖+ ‖B‖) + (‖B‖ + ‖C‖). (17)

Therefore, m(AB)Σ and m(BC)Σ cannot intersect through some codimension-3 surface, yet

they must still intersect. This requires m(AB)Σ and m(BC)Σ to coincide somewhere, a

neighborhood of x, and by Theorem 4.e of Ref. [27] these two surfaces must coincide at every

point connected to x. This means that m(AB) = m(A)∪m(B) and m(BC) = m(B)∪m(C).

The only way this can consistently occur for all possible A, B, and C is for m(Γ) ⊂ σ. This

means that σ itself is extremal, and hence is a bifurcation surface.

Case 2: m(ABC), m(B), m(AB)Σ, and m(BC)Σ live on hypersurface Σ which is at least partially

null.

Supposem(AB)Σ∩m(BC)Σ is a codimension-3 surface, p. If at p, Σ is null and non-expanding,

then smoothing out the intersection will not result in new surfaces with smaller area. This

16



Figure 7: This depicts how one can scan across the representative m(BC)Σ by bipartitioning BC on the
achronal surface Σ. At each of these intersections, p(xi), θu = θv = 0 if the state on the leaf is maximally
entropic and Σ is null and non-expanding.

is the condition that θu = 0 on the null hypersurface, Σu, coincident with Σ at p, where

u is the null vector generating Σu at p. Hence, the representatives can intersect at p and

simultaneously saturate strong subadditivity. Additionally, because ‖m(BC)Σ‖ = ‖m(BC)‖,
we know that θv = 0 along the hypersurface generating the representatives of m(BC), where

v is the null vector generating this hypersurface. Therefore at p, θu = θv = 0.

We can now scan across m(BC)Σ by considering its intersection with m(AB′)Σ where (B′, C ′)

is a bipartition of B ∪ C where ∂B′ ∩ ∂A 6= ∅, and then considering all such bipartitions.

This is illustrated in Fig. 7 by splitting up B ∪ C at a few points labeled by xi; for example,

B′ = [b, x3] and C
′ = [x3, c] is one such allowable bipartition. By continuity, all of m(BC)Σ

will be scanned.9

By the argument in the previous paragraph, all intersection points along m(BC)Σ must then

have θu = θv = 0. Assuming nondegeneracy, m(BC)Σ must therefore be the HRRT surface

m(BC). Additionally, every point of m(BC) lives on some null, non-expanding hypersurface

and at ∂m(BC) this surface connects to σ. Hence, at ∂m(BC), σ must be marginal. This

argument can be repeated for any set of appropriate subregions. This tells us that all HRRT

surfaces have the previously stated properties.

Now, by Theorem 17.h of Ref. [27], we can construct an achronal surface, Σ, that is foliated

by HRRT surfaces. Each point of Σ must now be null and non-expanding. Additionally, the

9We believe this is sufficient to scan over the whole surface assuming the spacetime is smooth. Additionally,
Eq. (16) requires there to be no energy density between an HRRT surface and its representative, this will preclude
jumps in the representatives due to entanglement shadows and the like.
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boundary of Σ, σ, must be marginal. Let k denote the vector in this local marginal direction.

This uniquely specifies Σ as the null non-expanding hypersurface generated by k. This is true

for all Σ foliated by HRRT surfaces, and each HRRT surface can belong to some foliation

of a Σ.10 Hence all extremal surfaces anchored to σ must belong to a non-expanding null

hypersurface.

Back to the beginning, if the intersection of m(AB)Σ and m(BC)Σ is codimension-2, then

the argument from Case 1 applies and σ must be extremal.

This concludes the proof of Theorem 1.

Corollary 1. Consider a codimension-2 surface, σ, with area A, living in a spacetime satisfying

Rabv
avb ≥ 0. Let m(Γ) denote the HRRT surface anchored to ∂Γ.

If σ is not marginal, then it cannot satisfy ‖m(Γ)‖ = min{‖Γ‖, ‖Γ̄‖}, ∀Γ ⊂ σ.

Proof. The contrapositive of this statement is proven by Theorem 1.

Consider the case that σ is a leaf of a past holographic screen. If the leaf is extremal and the

screen is not null, then the directly reconstructable spacetime is just the leaf itself. Additionally,

this tells us the holographic screen must halt at this point. This indicates the end of a holographic

description based on the past holographic screen. At this point, one can stitch the beginning

of a new future holographic screen that starts at a bifurcation surface, patching together two

holographic descriptions. This occurs in collapsing universes; see footnote 7.

In the other case, if all of the HRRT surfaces of σ have area corresponding to the maximal

entropy, then all of the extremal surfaces must lie on the future null cone of the leaf, where

this null cone is non-expanding and compact. This cone itself is the limit of a past holographic

screen because θk = 0. Barring the existence of a continuum of compact, non-expanding, null

hypersurfaces, the holographic screen then follows along this null surface from the leaf. Hence the

directly reconstructable region will only be the screen itself, exactly as we observed in the case of

de Sitter space. Again, we see that maximal entanglement corresponds to the end of a holographic

description, but in this case the screen does not end; this corresponds to a stable final state.

In Section 2.2, we took the boundary to be at some large, fixed radius in AdS space. One

may be concerned that this cutoff surface is not marginal, and hence Theorem 1 does not apply.

However, in the limit that the black hole radius approaches the boundary, then the statement

holds because the horizon of the black hole satisfies the needed properties. Note that until this

final limit, Corollary 1 tells us that the entanglement of the boundary cannot be maximal.

Finally we are prepared to make a statement about typicality. Typical boundary states are

maximally entangled, and hence the argument shows us that for holographic theories living on

10Under the assumption of the theorem, the HRRT surface of disconnected subregions will always be disconnected.
This is because the disconnected surface is extremal.
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screens (an instance of which is AdS/CFT), typical states have no directly reconstructable space-

time.

3 Spacetime Emerges through Deviations from Maximal

Entropy

We have seen that when the holographic state becomes maximally entropic, spacetime defined

as the directly reconstructable region disappears. Conversely, bulk spacetime emerges when we

change parameters, e.g. the mass of the black hole or the equation of state parameter w, deviating

the state from maximal entropy. In this section, we study how this deviation may occur and find

qualitative differences between the cases of Schwarzschild-AdS and flat FRW spacetimes. This has

important implications for the structures of holographic theories representing these spacetimes.

3.1 CFT with subcutoff temperatures

Consider the setup discussed in Section 2.2: a large black hole in asymptotically AdS space. The

holographic theory is then a local quantum (conformal) field theory. When the temperature of

the system is at the cutoff scale, the holographic state has maximal entropies, Eq. (3). As we

lower the temperature, the state deviates from a maximally entropic one, and correspondingly

bulk spacetime emerges—the horizon of the black hole recedes from the cutoff surface, and the

reconstructable spacetime region appears; see Fig. 1.

Suppose the temperature of the system T is lower than the cutoff scale, T < Λ. We are

interested in the behavior of von Neumann entropies of subregions of characteristic length L in the

boundary theory. These entropies are calculated holographically by finding the areas of the HRRT

surfaces anchored to subregions of the cutoff surface r = R. We analyze this problem analytically

for spherical cap regions in Appendix B.2. For sufficiently high temperature, T ≫ (Λd−2/l)1/(d−1),

we find that the entanglement entropy for a subregion A behaves as

SA ≈
{

cAd−2L
d−2Λd−2 for L≪ L∗,

cAd−2
rd−1
+ Ld−1

l2d−2 ≈ c
(

T
Λ

)d−1
Ad−2L

d−1Λd−1 for L≫ L∗.
(18)

Here,

L∗ ≈
l2Rd−2

rd−1
+

≈ Λd−2

T d−1
, (19)

c ≈ (l/lP)
d−1 is the central charge of the CFT, and Ad−2 is the area of the (d − 2)-dimensional

unit sphere. We find that the scaling of the entanglement entropy changes (smoothly) from an

area law to a volume law as L increases. For T ≪ (Λd−2/l)1/(d−1), i.e. L∗ ≫ l, the entanglement

entropy obeys an area law for all subregions. We note that the length in the boundary theory is
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T =

T <

T <

L

1

QA

Figure 8: A schematic depiction of the entanglement entropy in the Schwarzschild-AdS spacetime, nor-
malized by the maximal value of entropy in the subregion, QA = SA/SA,max, and depicted as a function
of the size L of subregion A; see Eq. (21). The scales of the axes are arbitrary. As the mass of the black
hole is lowered (the temperature T of the holographic theory is reduced from the cutoff Λ), QA deviates
from 1 in a specific manner.

still measured in terms of the d-dimensional metric at infinity with the conformal factor stripped

off. The cutoff length is thus 1/Λ ≈ O(l2/R), and the size of the boundary space is ≈ O(l).

While we have analyzed spherical cap subregions, the behavior of the entanglement entropy

found above is more general. When the temperature is lowered from the cutoff scale, the entan-

glement entropy SA deviates from the maximal value. Defining

QA =
SA

SA,max
=

SA

‖A‖/4ld−1
P

, (20)

we find that

QA ≈
{

1
LΛ

for L≪ Λd−2

T d−1 ,
(

T
Λ

)d−1
for L≫ Λd−2

T d−1 .
(21)

Here, we have assumed that subregion A is characterized by a single length scale L, and that the

temperature is sufficiently high, T ≫ (Λd−2/l)1/(d−1). (If T ≪ (Λd−2/l)1/(d−1), QA ≈ 1/LΛ for all

subregions.) This behavior is depicted schematically in Fig. 8.

We find that as the temperature is lowered from the cutoff scale, two things occur for entan-

glement entropies:

• For sufficiently large subregions, the entanglement entropies still obey a volume law, but the

coefficient becomes smaller.

• The more the temperature is lowered, the further subregions have entanglement entropies

obeying an area law. This occurs from shorter scales, i.e. subregions with smaller sizes.
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Figure 9: The entanglement entropy in the holographic theory of flat FRW spacetimes normalized by
the maximal value of entropy in the subregion, Qw(ψ) = Sw(ψ)/Smax(ψ), as a function of the size of the
subregion, a half opening angle ψ. As the equation of state parameter w is increased from −1, Qw(ψ)
deviates from 1 in a way different from the Schwarzschild-AdS case.

These make the entanglement entropies deviate from the maximal value and lead to the emergence

of reconstructable spacetime: the region between the black hole horizon and the cutoff surface,

r+ < r ≤ R.

3.2 FRW universes with w > −1

As spacetime emerges by reducing the mass of the black hole in the Schwarzschild-AdS case,

a codimension-0 spacetime region that is reconstructable from a single leaf appears when w is

increased from −1. As in the AdS case, this appearance is associated with a deviation of en-

tanglement entropies from saturation. However, the manner in which this deviation occurs is

qualitatively different in the two cases.

To illustrate the salient points, let us consider flat FRW spacetimes with a single fluid compo-

nent w and a spherical cap region A on a leaf parameterized by the half opening angle ψ. Below,

we focus on entanglement entropies Sw(ψ) of the regions with ψ ≤ π/2. Those with ψ > π/2 are

given by the relation Sw(ψ) = Sw(π − ψ).

As before, we define

Qw(ψ) =
Sw(ψ)

Smax(ψ)
=

Sw(ψ)

‖A‖/4ld−1
P

. (22)

This quantity was calculated in Ref. [5] in 3 + 1 dimensions, which we reproduce in Fig. 9. The

basic features are similar in other dimensions. In particular, Qw(ψ) satisfies the properties given

in Eqs. (58, 59) in Appendix C.1.

21



We find that the way Qw(ψ) deviates from 1 as w is increased from −1 is qualitatively differ-

ent from the way the similar quantity QA deviates from 1 in the Schwarzschild-AdS case as the

temperature is reduced from the cutoff scale. In particular, we find that in the FRW case

• The deviation from Qw(ψ) = 1 occurs from larger subregions. Namely, as w is raised from

−1, Qw(ψ) is reduced from 1 first in the vicinity of ψ = π/2.

• There is no regime in which the entanglement entropy obeys an area law, Qw(ψ) ∼ 1/ψ, or a

volume law with a reduced coefficient, Qw(ψ) = const. < 1.

As we will see next, these have profound implications for the nature of the holographic theory of

FRW spacetimes.

3.3 Locality vs nonlocality

In the following discussion, we assume that the dynamics in the holographic theory are chaotic

and non-integrable as expected in a theory of quantum gravity; see, e.g. Ref. [28]. Such systems

are expected to satisfy the eigenstate thermalization hypothesis (ETH) [29, 30], so generic high

energy eigenstates reproduce the behavior of a thermal Gibbs density matrix. In addition, we note

that the dimension of the holographic Hilbert space is large (A/4ld−1
P ≫ 1) and finite size effects

causing deviations from the thermodynamic limit can be ignored.

We have already seen that one way to obtain a maximally entropic state is to look at high energy

states in a local theory. In the context of AdS/CFT, this corresponds to examining black holes

with temperature near the cutoff scale. To deviate from maximal entropy, one can then simply

lower the energy of the states being considered. For subregions beyond the correlation length, the

reduced density matrix is well approximated by a Gibbs density matrix, and hence the entropy

obeys a volume law but with a prefactor dependent on the temperature T . For length scales

below the correlation length, the von Neumann entropy is dominated by the area law contribution.

Together, these combine to give entanglement entropy curves that have the qualitative behavior

shown in Fig. 8. Note that in a local theory, lowering the temperature shows deviation from thermal

behavior originating at small length scales. Namely, the slope of QA begins deviating from 0 at

small scales. This entropy deviation at small scales is expected to be a general phenomenon of

equilibrium states governed by a local Hamiltonian.

However, the entanglement entropy curves calculated for holographically FRW universes show

drastically different behavior; see Fig. 9.11 Namely, the deviations from maximal entropy originate

11It should be emphasized that we are calculating the entanglement entropy of the boundary state on the holo-
graphic screen, not the entropy associated with any bulk quantum fields. We refer to the degrees of freedom on the
screen that govern the background gravitation dynamics as the gravitational degrees of freedom. Any low energy
bulk excitations (which may include gravitons) are higher order corrections to the entanglement entropy and we do
not discuss them.
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at large length scales, and the entanglement entropy for small subregions is maximal regardless

of the fluid parameter w. Additionally, these entropy curves are invariant under time translation.

This behavior cannot be achieved by a local theory. One may think that a Lifshitz type theory

with large z may be able to accommodate such behavior due to large momentum coupling, but

the leading order contribution to the entanglement entropy in d dimensions is believed to be

proportional to (L/ǫ)d−1−1/z for weakly coupled theories [31], where L is the characteristic length

of the entangling region and ǫ is the cutoff length. Thus entanglement entropy is proportional

to the volume only in the limit that z → ∞, which would be a nonlocal field theory. Indeed,

entanglement entropy being maximal for small subregions is observed in a number of nonlocal

theories [32–36] and is likely a generic phenomenon in such theories.

This leads us to believe that an appropriate holographic description of FRW universes would

be nonlocal.12 This provides us with a few possibilities of theories that have the desired qualitative

features, all of which have a freedom to tune a parameter which corresponds to changing w (and

hence the entropy):

(I) a nonlocal theory with a characteristic length scale below the system size, changing the

nonlocal length scale of the theory or energy of the state;

(II) a nonlocal theory coupling sites together at all length scales (like a long-range interacting spin

chain or a variant of the Sachdev-Ye-Kitaev model [37–39] with all-to-all random coupling

between a fixed number, q, of sites, SYKq), changing the energy of the state;

(III) a nonlocal theory with a fundamental parameter controlling the coupling at all scales in which

variations can change the entropy; for example, changing the number of sites coupled to each

other in each term of the Hamiltonian (analogous to changing q in SYKq).

The ground states of theories in case (I) are explored in Refs. [32,33] in string theory frameworks.

This case can also be realized as a spin chain with interactions that couple all sites within a distance

smaller than the characteristic nonlocal length scale. Above the nonlocal length scale an area law

term starts to pick up and will eventually dominate. However, because of this eventual turn-on of

an area law, the qualitative features of the entropy normalized by volume are different than those

exhibited by FRW entropy curves. Namely, the concavity of the QA plot beyond the nonlocal

length scale is opposite to that observed in the FRW case. This is because beyond the nonlocal

length scale the entropy approaches an area law, hence the second derivative of QA will be positive,

unlike that observed in the FRW case. Raising the temperature will only add an overall constant

asymptotic value to QA. Hence, the concavity of QA forbids the holographic theory of FRW

12It is a logical possibility that a local theory could exhibit volume law entropy behavior due to open dynamics.
Since the size of the leaf is constantly growing, there are degrees of freedom constantly being added to the system,
which could already have long range entanglement. This seems to be an ad hoc solution, and we will not elaborate
on this possibility further.
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spacetimes from being a theory with a characteristic nonlocal length scale smaller than the system

size.

This reasoning leaves us with nonlocal theories with characteristic interaction lengths com-

parable to the system size—what does this mean? It simply means that a site can be coupled

to any other site. For simplicity we will consider SYK-like theories but rather than being zero

dimensional we split up the degrees of freedom to live on a lattice but keep the random couplings

between them. At first thought, one may think that because of the random, all-to-all coupling

the entanglement entropy for all subregions would always be maximal. However this is not the

case. The entanglement entropy for small regions is indeed maximal, but then deviates at large

length scales [35,36]. One can intuitively understand this by thinking about the SYK2 model and

Bell pairs. The SYK couplings are random, and some sites will have significantly higher coupling

than average. In the ground state, these pairs have a high probability of being entangled, so if the

subregion of interest contains only half of one of these special pairs, this will raise the entanglement

with the outside. However, once the subregion becomes larger there is a higher probability that a

complete Bell pair is contained, and this will drop the entanglement entropy.

From this intuition, one can see that the ground state of SYK-like theories have near maximal

entanglement for small regions, which then deviates at large length scales. At higher energies, the

probability of minimizing the term in the Hamiltonian coupling these special sites (and creating

the effective Bell pair) will be lowered, and hence the entanglement entropy of all subregions will

monotonically increase [36,40]. This behavior is reminiscent of that observed in FRW entanglement

entropy if we relate the fluid parameter, w, to the energy of the nonlocal state: the case (II) listed

above. The limit of T → ∞ would then correspond to w → −1.

The third possibility (III) is similar to the one just discussed, but with the difference that w

is dual not to temperature but to a fundamental parameter dictating the “connectivity” of the

boundary theory. In the language of SYKq, this would correspond to changing q, where q is the

number of coupled fermions in each interaction term of the Hamiltonian. As q increases, the ground

state entanglement monotonically increases and as q → ∞ becomes maximal. This would be the

limit corresponding to w → −1. However, any possibility like this, which employs a change of a

fundamental parameter of the Hamiltonian, will require us to manufacture the whole Hilbert space

of the boundary theory by considering the collection of only the low energy states for each value

of q. We would like one related class of spacetimes to be dual to one boundary theory, which is

not the case in this option. We thus focus on option (II) as the best candidate, but we cannot

logically exclude option (III).

It is interesting to observe the relationship between where the deviation from volume law

entropy occurs and where the corresponding spacetime emerges. In the Schwarzschild-AdS case,

QA drops from 1 immediately at small subregions, and the spacetime that emerges is precisely that
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which is reconstructed from small subregions. Hence the directly reconstructable region appears at

the boundary and grows inwards as the temperature of the state is lowered. The converse is true

in the case of FRW spacetimes. As we move away from w = −1, the entanglement entropy drops

from maximal at large subregions and the corresponding spacetime that emerges is constructed by

intersecting large surfaces. This is because the HRRT surfaces of small subregions of leaves with w

near −1 all lie on the same codimension-1 surface, the future causal boundary of the leaf, analogous

to the small surfaces in Fig. 13 in Appendix C.3. The HRRT surfaces for large subregions deviate

from this and hence allow for reconstructing a codimension-0 region starting with points deepest

in the bulk.

The language of quantum error correction [17] and tensor networks [11, 41, 42] allows for a

nice interpretation of this phenomenon. The loss of entanglement in pure gravitational degrees

of freedom affords nature the opportunity to redundantly encode local bulk degrees of freedom

in the boundary. In AdS, short range entanglement is lost first, and hence there is “room” for

the information of local bulk degrees of freedom to be stored. In the case of FRW, long range

entanglement is lost first, and subsequently points in the bulk that require large subregions to

reconstruct emerge first.

4 Holographic Hilbert Spaces

The analysis of the previous sections brings us to a suitable position to discuss the structure of

holographic Hilbert spaces.

Let us assume that the entanglement entropy of subregions of a boundary state dual to a

semiclassical geometry is calculated via the HRRT prescription. Given a bulk spacetime, one can

then find the corresponding entanglement entropies for all subregions of the boundary. Note that

here we consider the “classical limit.” Namely, all the subregions we consider contain O(N ) degrees

of freedom, where

N =
A

4ld−1
P

, (23)

with A being the volume of the holographic space. The collection of all boundary subregions and

their corresponding entanglement entropies will be referred to as the entanglement structure of the

state, which we denote by S(|ψ〉).
From here, it is natural to ask whether or not all states with the same entanglement structure

are dual to the same bulk spacetime. This might indeed be the case, but it leads to some undesirable

features. These primarily stem from the fact that given a particular entanglement structure, one

can find a basis for the Hilbert space in which all basis states have the specified entanglement

structure. For a Hilbert space with a local product structure, one can do this by applying local

unitaries to a state—these will retain the entanglement structure and yet generate orthogonal
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states. This would imply that by generically superposing eO(N ) of these states, one could drastically

alter the entanglement structure and create a state dual to a completely different spacetime. Hence,

geometric quantities could not be represented by linear operators. If this were the case, a strong

form of state dependence would be necessary to make sense of dynamics in the gravitational degrees

of freedom [6].

However, this is not required. There is no need for every state with the same entanglement

structure to be dual to the same spacetime. How can this consistently happen? Given an entan-

glement structure and a set of boundary basis states with the specified entanglement, we expect

the existence of a subspace spanned by a small fraction of these basis states in which generic states

in the subspace have an identical entanglement structure up to O(N p) with p < 1. This is obvious

if the dimension of the subspace is eO(N p) (p < 1), since we expect

S

( eM
∑

i=1

ci|ψi〉
)

= S(|ψ〉) +O(M), (24)

where S(|ψi〉) = S(|ψ〉) for all i. What we are saying here is that we expect the existence of such

a subspace with the dimension of eO(N ), spanned by some basis states |ψi〉 (i = 1, · · · , eQN ):

S

(eQN

∑

i=1

ci|ψi〉
)

= S(|ψ〉) +O(N p; p < 1), (25)

where Q does not scale with N . This rationale is supported by the thermodynamic statement of

canonical typicality [43], which tells us that generic states from a subspace spanned by states in

an energy interval have the same reduced density matrix up to small corrections. This is a highly

nontrivial statement because the size of the subspaces in question is large enough that one would

naively think that superpositions would ruin the entanglement structure at O(N ).13

The quantity Q in Eq. (25) is related with von Neumann entropies characterizing the whole

state, e.g. QA in Section 3.1 with A being the half boundary space and Qw(π/2) in Section 3.2. This

intuition stems from the statement that the thermal entropy density and entanglement entropy

density for states in the thermodynamic limit are approximately equal. For generic states within

some energy interval subspace, this holds by canonical typicality, and this statement is true for

eigenstates assuming the system satisfies the ETH (like in AdS/CFT). SYK models do not strictly

satisfy the ETH; however, it remains true thatQA at half system size gives a good approximation for

the thermal entropy density, and the discrepancy vanishes as the energy of the states is increased.

For these reasons, we expect Qw(π/2) to well approximate the thermal entropy density of states

dual to an FRW spacetime with fluid parameter w.

13Note that if one fine-tunes coefficients and selects states in this subspace carefully, one could construct a state
with lower entanglement via superposition.
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Consider a holographic Hilbert space of a given theory, e.g. a CFT with a finite cutoff or the

holographic theory of FRW spacetimes. If there are multiple superselection sectors in a given

theory, then we focus on one of them. In such a Hilbert space, the effective subspace with Q =

1 corresponds to typical sates. Applying Page’s analysis, we can then conclude that the only

entanglement structure consistent with Eq. (25) where Q = 1 must be that of maximal entropy.

For example, the number of microstates for a large black hole approaches the dimension of the

boundary Hilbert space as T → Λ, and these states are maximally entangled. Similarly, using

the argument in the previous paragraph, the number of independent microstates in the de Sitter

limit approaches the dimension of the boundary Hilbert space, and these states are maximally

entangled. As shown in Section 2, the directly reconstructable spacetime region vanishes in these

cases—an effective subspace with Q = 1 does not have reconstructable spacetime.

On the other hand, if Q < 1, the corresponding entanglement structure S(|ψ〉) can be non-

maximal, and generic states in this subspace may be dual to some bulk spacetime. As discussed in

Section 3.3, we expect that dynamics of the boundary theory can naturally select these subspaces,

for example by simply lowering the energy of the system in the case of the boundary CFT.

The structure discussed here allows for a single holographic Hilbert space to harbor effective

subspaces dual to different geometries, allows for a “generically linear” spacetime operator, and

hence eliminates the need for any strong form of state dependence. By strong state dependence,

we mean a theory that would require state dependence to describe bulk excitations in the directly

reconstructable region of a boundary state formed as a generic superposition of states dual to a

given spacetime. Because this “spacetime operator” is identical for states of a given entanglement,

it will obviously act linearly on generic superpositions of states within one of these dynamically

selected, entanglement-invariant subspaces. We suspect that it is only in this thermodynamic sense

that classical spacetime emerges from the fundamental theory of quantum gravity.

5 Conclusion

5.1 Discussion

Our understanding of the relationship between spacetime and entanglement seems to be converging.

The necessity of entanglement between boundary degrees of freedom for the existence of spacetime

has been known for some time, but this fact may have mistakenly established the intuition that

the fabric of spacetime itself is purely this entanglement. However, this cannot be the case. A

one-to-one mapping between the entanglement structure of a boundary state and the directly

reconstructable bulk spacetime cannot be upheld in a state independent manner. In addition, we

see that as boundary entanglement approaches maximality the reconstructable region of the bulk

vanishes.
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In hindsight, this should not be too surprising. Let us recall Van Raamsdonk’s discussion [12]

relating spacetime to entanglement by examining the link between mutual information and corre-

lations in a system. The mutual information between two boundary subsystems A and B is defined

as

I(A,B) = S(A) + S(B)− S(A ∪ B). (26)

This quantity bounds the correlations in a system between operators OA and OB, supported solely

on A and B via the relation

I(A,B) ≥ (〈OAOB〉 − 〈OA〉〈OB〉)2
2|OA|2|OB|2

. (27)

Hence, when the mutual information between two subregions A and B vanishes, the correlation be-

tween local operators supported within the subregions must also vanish. Assuming that subregion

duality holds, this implies that correlation functions of bulk fields vanish. Generally, correlators

between two bulk fields go as

〈O1(x1)O2(x2)〉 ∼ af(L), (28)

where L is the distance of the shortest geodesic connecting x1 and x2, a is some theory dependent

constant, and f(z) is a decreasing function of z. One can then make the argument that decreasing

entanglement between regions will drop the mutual information between the regions, and hence

make L effectively infinite. This implies that the spacetime regions dual to subregions A and B

are disconnected when the entanglement (and hence mutual information) vanishes. For intuition’s

sake, one can imagine two subregions of the AdS boundary which are in a connected entanglement

phase—increasing the distance between these two subregions will drop the mutual information.

This is an argument demonstrating the need for entanglement in a holographic theory dual to

spacetime, so long as the holographic theory has subregion duality.

However, there is a different (quite the opposite) way to make the mutual information between

small (less than half of the system) subregions vanish, and consequently kill the bulk correlations.

This is by considering maximally entropic boundary states—in these, the mutual information will

vanish for any pair of subregions. This is the case both in cutoff temperature AdS black holes and

in the de Sitter limit of the holographic theory of FRW universes. In these, the boundary states are

maximally entropic and hence the bulk correlators must vanish; however, there exist finite length

geodesics in the bulk (even if restricted only to the directly reconstructable region) which connect

all points on the boundary. This means that the prefactor, a, of Eq. (28) must vanish, making the

bulk theory ultralocal. In these cases, the maximal entropy implies that there cannot be an extra

emergent bulk dimension. This is because the ground state of any quantum field theory quantized

on spacelike hypersurfaces must be entangled at arbitrarily short scales, which is violated by the

assumption that a = 0. However, this is not necessarily unexpected—in both de Sitter space and
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cutoff temperature black holes, the directly reconstructable regions are codimension-1 null surfaces

of the bulk (the de Sitter horizon and black hole horizon respectively). A natural description of

the fields on this surfaces would be through null quantization, which is known to be ultralocal [44].

Accordingly, we see a breakdown in the holographic description.

From the above arguments one can convince themselves that it is not entanglement itself which

allows for the construction of spacetime, but rather something related to intermediate entangle-

ment.

How can this be better understood? The framework of tensor networks provides some intuition

behind this. Here, a maximally entropic boundary state is most naturally represented by a single

bulk node with one bulk leg and multiple boundary legs.14 Hence the “spacetime” is just one

non-localizable bulk region, a “clump” as defined in Ref. [8]. This bulk point can be reconstructed

once a subregion of the boundary contains more than half of the boundary legs. Here it is clear

that a maximally entropic boundary state has no dual “spacetime,” and yet it is possible to encode

a bulk code subspace with full recovery once more than half of the boundary is obtained. Note that

these typical states will all satisfy (in fact saturate) the holographic entropy cone inequalities [45]

simply because a random tensor network accurately describes the state, but this does not mean

that there is a reconstructable region of the spacetime.

Additionally, if maximally entropic states did have reconstructable spacetime, then state depen-

dence would be necessary in order to describe bulk excitations in these states, under the assumption

that subregion duality holds. This is because the number of microstates with maximal entropy

is approximately the dimension of the full boundary Hilbert space, and by the argument in Sec-

tion V.C. of Ref. [6], it is impossible to find a boundary representation of a bulk operator that has

support only on a subregion of the boundary and acts approximately linearly on all microstates

of a given spacetime. Intuitively, this is because the operator will be over-constrained by insisting

it both have support on a subregion of the boundary and act linearly on D microstates, when the

dimension of the full boundary space is D. This means that if we require state independence, then

the only possible boundary operators representing bulk excitations for a maximally entropic state

must have support on the full boundary space.15 Therefore, the minimum possible subregion in

which bulk excitations can be encoded state independently is the whole boundary space; hence

there is no directly reconstructable spacetime. This directly highlights the tension between recon-

structing spacetime for maximally entropic states (in any manner), and requiring both subregion

duality and state independence.

14Any attempt to create a bulk by artificially including more nodes with extremely large bulk bond dimension
can be reduced to the case of one bulk node.

15This is not contradicting the statement in the previous paragraph that the sole bulk node’s state in a random
tensor can be recovered with just more than half of the boundary. In that case, only the recovery of the bulk code
subspace for one microstate was considered. State independence would require us to have an operator that acts
linearly on all microstates of a given spacetime.
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But what happens if we lower the entanglement of the boundary state while keeping the di-

mension of the boundary Hilbert space constant? Again, we turn to tensor networks for intuition.

In these situations, a natural way to encode sub-maximal entanglement (while fixing the bulk leg

dimension) is by including more bulk nodes. Therefore, by reducing the boundary entanglement,

it is possible to create a bulk code subspace in which subsystem recovery is possible. It seems that

quantum gravity naturally utilizes this sub-maximal entanglement in order to encode information

via subregion duality. This suggests that perhaps entanglement is not the fundamental constituent

of spacetime per se, but rather the avenue by which subregion duality manifests.

5.2 Future directions

This paper has attempted to clarify the nature of spacetime in holographic theories and it naturally

raises interesting questions to be investigated in future work.

Reconstructability and generalized holographic renormalization

The analysis of this paper utilized the condition for reconstructable spacetime presented in Ref. [8],

but appropriately generalized for use in the context of holographic screens [6]. This paper illu-

minated some highly desirable properties of the directly reconstructable region defined in this

manner—namely that one can describe this region state independently. It would be extremely

beneficial to attempt to find an explicit way to construct bulk operators using this method, per-

haps uniting it with the methods of entanglement wedge reconstruction [46, 47].

It would also be interesting to try and develop new tools for reconstructing the bulk. The

relationship between the depth in the bulk and the scale in the boundary theory in AdS/CFT

suggests that it may be possible to define the reconstructable region of spacetime as that which is

swept through a renormalization procedure. How this manifests in general holography is not clear,

but it is suggestive that there exists at least one foliation where one can “pull” the leaf inward

while retaining the ability to consistently apply the HRRT prescription. Because the area of these

renormalized leaves are monotonically decreasing, it is natural that this “pulling” may correspond

to some renormalization procedure. The decrease in area also happens locally, which can be seen

by generalizing the spacelike monotonicity theorem of Ref. [5].

One guess as to how to construct the renormalized leaf is to first pick the coarse graining scale

of the boundary, and then define the new leaf as the collection of all of the deepest points of the

extremal surfaces anchored to subregions with the size of the coarse graining scale. In AdS/CFT

this will pull the boundary in along the z direction as expected, while in FRW spacetimes this will

pull the leaf along the null direction if the coarse graining scale is small. Using this method, one

can renormalize to a given scale in a number of different ways. For example, one could perform

many small renormalization steps or one large one. The renormalized leaves in the two cases will
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generically differ, and this may correspond to the difference between one-shot renormalization and

a renormalization group method. The collection of all renormalized leaves may then determine the

reconstructable region.16 Theorem 1 tells us that once the renormalized state becomes maximally

entropic, the renormalization procedure must halt. Furthermore, because HRRT surfaces for non-

maximally entropic states probe the bulk, Corollary 1 tells us that this renormalization procedure

will continue until the leaf becomes marginal. This renormalization group flow will halt only once

a bifurcation surface or a null non-expanding surface is reached. In this language, maximally

entropic states correspond to fixed points. This is speculation, but may shed some light on the

nature of renormalization in general holographic theories.

Cosmic equilibration

In Section 2.5, we proved that maximally entropic states have no directly reconstructable spacetime.

Additionally, we argued that if one desires a state on a holographic screen to be maximally entropic

and evolve in time, then the holographic screen is a null non-expanding surface and the directly

reconstructable region is no more than the screen itself. This suggests that in a holographic theory

of cosmological spacetimes, if a state becomes maximally entropic and the screen does not halt,

then the holographic description approaches that of de Sitter space. Consequently, the area of

the screen is constant. It would be interesting to investigate the result from the other direction.

By first assuming that the screen approaches a constant area, one may be able to argue that the

leaves would then approach maximal entropy, and hence the holographic description approaches

that of de Sitter space. This could provide another way to consider equilibrating to de Sitter type

solutions; see Ref. [48].

Complementarity

In Appendix A, we highlighted the dependence of the reconstructable region on the frame of

reference. In the case of the two-sided AdS black hole, we considered different reference frames

corresponding to different time slicings in the same boundary theory—as one shifts the difference

in the two boundary times, one recovers more and more of the black hole interior. This is an

example of complementarity. It would be interesting to pursue this idea further and investigate

the directly reconstructable region of a two-sided black hole.

One intriguing aspect of the two-sided black hole is that the directly reconstructable region

does not extend beyond the extremal surface barrier; this is a macroscopic distance away from

the future singularity, regardless of the boundary frame. Does this mean that the boundary CFT

cannot describe semiclassical physics behind this barrier, even where curvature is small? Perhaps

16Using this construction, it is not possible to extend reconstruction beyond horizons, but it is possible to reach
behind entanglement shadows.
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this means that there is a different description for the interior, living on a different holographic

space.

Fundamentality of subregion duality

In many of the discussions throughout this paper, we either required subregion duality or saw

that it naturally arose from other considerations. This seems to suggest that subregion duality is

a fundamental characteristic of general holography. Investigating the manner in which subregion

duality arises in AdS/CFT may shed light on holography in general spacetimes.

Holographic theory of flat FRW spacetimes

One of the most obvious open problems is that of finding an effective holographic theory applicable

beyond asymptotically AdS spacetimes. In this paper and throughout previous work, we have

focused on the case of flat FRW universes and assumed that a theory exists on the holographic

screen in which the generalized HRRT prescription holds. Investigations into this has led to a

deeper understanding of the nature of entanglement in constructing spacetime, along with (the

lack of) state dependence in holographic theories.

It seems that a consistent theory is possible, and the most promising candidate for a theory

describing the gravitational degrees of freedom is a theory with long-range interactions in which

the energy of the states are dual to the fluid parameter of the FRW universe. We know that

it cannot be entirely nonlocal because this would prohibit the existence of entanglement phase

transitions. A theory with long range interactions would accurately reproduce the entanglement

entropy structure we observe for FRW universes and would allow for a universal theory describing

the single class of spacetimes. Beyond this, we have some additional data about the properties of

the boundary theory.

We know that a code subspace of states manifests, and these states are dual to bulk excitations.

Assuming subregion duality holds, one can ask the question of whether or not nonlocality/very

long-range interactions in the gravitational degrees of freedom prohibits the local propagation of

bulk excitations in the boundary theory. We expect that the operators dual to bulk excitations

are weakly coupled to the gravitational degrees of freedom, and that a local description of these

bulk operators exists in the boundary. In fact, this is what happens when one renormalizes the

AdS boundary down to a single AdS volume [49]. This renormalization induces an infinite set of

interactions which makes the resulting theory on the renormalized boundary nonlocal. Despite

this, the renormalized theory still describes bulk physics through subregion duality. Hence, the

nonlocality of the boundary theory does not seem to be a fundamental obstacle in describing low

energy excitations using local dynamics in the boundary theory.17 The dynamics of boundary

17It would be interesting to study this effective boundary theory, induced in AdS/CFT by renormalizing all the
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operators dual to bulk excitations in flat FRW spacetimes was studied in Ref. [50] and it was

determined that regardless of dimension and fluid parameter, the spread of these operators was

characteristic of a theory with z = 4 Lifshitz scaling. This provides extra constraints for finding a

candidate theory.

Holographic theory for general spacetimes

It might appear that defining quantum gravity using holography, as envisioned here, is background

dependent. Namely, the holographic theory is given for each class of background spacetimes, e.g.

asymptotically AdS spacetimes and flat FRW spacetimes. This situation is analogous to defining

string theory on the worldsheet, which is defined separately on each target space background. From

the perspective of the worldsheet, different backgrounds correspond to different theories living on

the two dimensional spacetime. Nevertheless, we believe there exists some unified framework

encompassing all these possibilities. Similarly, in the case of holographic theories, it is plausible

that the resultant theories for different background spacetimes correspond to different sectors

described within a single framework.
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A Reconstructability of Two-sided Black Holes and Com-

plementarity

In the main part of the text, we have focused on spacetimes having a simply connected boundary.

It is interesting to consider when this is not the case and examine which (if any) results persist.

For definiteness, we here analyze the case of a two-sided eternal black hole in asymptotically

AdS space. In this case, the holographic screen is the union of the two asymptotic boundaries

at spacelike infinity. The boundary theory comprises two CFTs, CFTL and CFTR, which are

decoupled from each other. Hence, the Hamiltonian for the system is given by

Htotal = HL +HR. (29)

way down to the AdS scale. The holographic theory capturing sub-AdS locality could be very closely related to the
theory on holographic screens.
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The times tL and tR associated respectively with HL and HR run in opposite directions along the

two asymptotic boundaries.

Since the theories are decoupled, it might appear that one could evolve each of the theories

independently—effectively foliating the holographic screen by two independent parameters, (tL, tR).

Per the construction outlined in Section 2.1, the directly reconstructable region would then be the

union of all points localized by intersecting entanglement wedges of HRRT surfaces individually

anchored to “one” leaf, each of which is labeled by (tL, tR). Here, “one” leaf corresponds to picking

a connected, equal time slice of the left boundary and independently a connected, equal time slice

of the right boundary. If this were the case, the reconstructable region would be most of the

spacetime, including a macroscopic portion of the interior (aside from a region near the singularity

with r < r+/2
1/d, where r+ is the horizon radius) [51].

However, a theory described by Hamiltonian dynamics should have a single time parameter.

To make the holographic theory compatible with this, we postulate that there is a single param-

eter t that foliates the multiple disconnected components of the holographic screen. From this

assumption, there are multiple suitable foliations, and among them we must pick one—this cor-

responds to choosing a reference frame, a gauge for the holographic redundancy [52]. In the case

of a two-sided black hole, this gives us a one parameter family of foliations corresponding to the

freedom in choosing the relative time shift between tL and tR in the CFTs, even after choosing a

natural foliation at each boundary.

In general, each of these individual foliations reconstruct a different region of the bulk spacetime.

For example, adopting the usual thermofield double state construction [53] corresponds to choosing

a reference frame

tL = tR = t, (30)

in which the t = 0 slice in the bulk is the one passing through the bifurcation surface. Since

time translation is a Killing symmetry in this spacetime, and the bifurcation surface is invariant

under this translation, the HRRT surfaces for any time t never enter the interior of the black hole.

Connected HRRT surfaces always pass through the bifurcation surface in such a situation (unless

the subregion has support on only one of the boundaries, in which case the HRRT surface stays

in one side of the black hole). The reconstructable region in this reference frame, therefore, does

not include the interior of the black hole.

However, one could alternatively consider a reference frame in which there is a relative shift in

the two times

tL = t+∆, tR = t. (31)

In this case, the connected HRRT surfaces would not necessarily pass through the bifurcation sur-

face and could probe regions of the interior, and hence parts of the interior will be reconstructable.

We can interpret this foliation dependence of the reconstructable region as a version of comple-
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Figure 10: The spacetime regions reconstructable using connected HRRT surfaces anchored to subregions
with support on both asymptotic boundaries within the range t ∈ [t1, t2] are depicted (green shaded
regions) for two different values of black hole horizon radius r+ in a two-sided eternal AdS black hole.
The holographic screen (blue) in both cases is the cutoff surface r = R. Here, we superimpose the
respective Penrose diagrams in the two cases to compare the amount of reconstructable spacetime volume
available by allowing connected HRRT surfaces.

mentarity [54]. In this light, the canonical thermofield double time foliation corresponds to an

entirely exterior description of the black hole, while increasing ∆ allows for more of the region

behind the horizon to be reconstructed. An important point is that we should not consider leaves

with different ∆’s in a single description—they correspond to different descriptions in different

reference frames. We also note that regardless of the foliation, we cannot reconstruct near the

singularity because of the extremal surface barrier located at r = r+/2
1/d. This suggests that in

order to probe physics of the singularity we must use a different method.

With this interpretation of bulk reconstruction, we would like to examine whether or not

spacetime “disappears” as we approach maximal entropy. A priori, it seems that a macroscopic

spacetime region would remain as we increase the black hole radius because some portion of

the interior is reconstructable. However, this apparent contradiction is resolved by considering

a finite coordinate time interval and examining the reconstructable volume as one increases the

temperature.

Consider any foliation where the relative time shift between tL and tR has been fixed. In order

to carry out the analysis analogous to Section 2.2, we fix an interval of coordinate time ∆t and fix

the cutoff surface at r = R. Increasing the temperature of the black hole moves the horizon closer

and closer to the cutoff surface, which can be represented in the Penrose diagram as in Fig. 10.

The allowed range of times is depicted by the constant time surfaces t1 and t2. As we take the
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limit r+ → R, which corresponds to taking the temperature of the black hole TH → Λ where Λ is

the cutoff in the boundary theory, the finite range of time collapses down to the bifurcation surface

on both sides. Thus, the relative reconstructable spacetime volume shrinks to zero.

We find that our claim persists despite the addition of a disconnected boundary region that

allows for the reconstruction of spacetime behind a black hole horizon.

B Calculations for the Schwarzschild-AdS Spacetime

In this appendix, we provide explicit calculations of the spatial volume and HRRT surfaces of the

Schwarzschild-AdS spacetime.

B.1 Reconstructable volume

The Schwarzschild-AdS spacetime in d+ 1 dimensions is described by the metric

ds2 = −
(

r2

l2
+ 1− 2µ

rd−2

)

dt2 +
dr2

r2

l2
+ 1− 2µ

rd−2

+ r2dΩ2
d−1, (32)

where l is the AdS radius, and µ is related with the black hole horizon radius r+ as

2µ =
rd+
l2

(

1 +
l2

r2+

)

. (33)

The Hawking temperature of the black hole is given by

TH =
dr2+ + (d− 2)l2

4πr+l2
. (34)

Consider a large AdS black hole r+ ≫ l. In this limit,

2µ =
rd+
l2
, TH =

dr+
4πl2

, (35)

and the metric is well approximated by

ds2 = −
(

r2

l2
− rd+
l2rd−2

)

dt2 +
dr2

r2

l2
− rd+

l2rd−2

+ r2dΩ2
d−1. (36)

Let us now introduce an infrared cutoff r ≤ R and consider the spatial volume between the black

hole horizon and the cutoff

V (r+, R) = Ad−1

∫ R

r+

rd−1

√

r2

l2
− rd+

l2rd−2

dr

=
2πd/2

Γ(d/2)
l rd−1

+

∫ R
r+

1

xd−2

√

1− 1
xd

dx, (37)
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where Ad−1 = 2πd/2/Γ(d/2) is the area of the (d − 1)-dimensional unit sphere. Here, we have

focused on the spatial volume because the system is static.

We normalize this volume by the volume of the region r ≤ R in empty AdS space

V (R) = Ad−1

∫ R

0

rd−1

√

r2

l2
+ 1

dr

=
2πd/2

(d− 1)Γ(d/2)
l Rd−1, (38)

where we have used R ≫ l in the second line. This gives us the quantity quoted in Eq. (1):

f
(r+
R

)

≡ V (r+, R)

V (R)
= (d− 1)

rd−1
+

Rd−1

∫ R
r+

1

xd−2

√

1− 1
xd

dx. (39)

B.2 HRRT surfaces

Consider a large black hole in asymptotically AdS space. The holographic theory is then a CFT.

Suppose the temperature of the system T is lower than the cutoff scale, T < Λ. Here we study the

behavior of the von Neumann entropy of a spherical cap region A on r = R in this setup.

The region is specified by a half opening angle ψ

0 ≤ θ ≤ ψ, (40)

where θ is a polar angle parameterizing Sd−1 with constant t and r. The HRRT surface γA is then

given by function r(θ), which is determined by minimizing the area functional:

‖γA‖ = min
r(θ)

[

Ad−2

∫ ψ

0

rd−2 sind−2θ

√

r2 +
( dr
dθ
)2

r2

l2
+ 1− 2µ

rd−2

dθ

]

, (41)

with the boundary condition

r(ψ) = R, (42)

where Ad−2 is the area of the (d − 2)-dimensional unit sphere, and µ is given by Eq. (32). Here

and below, we assume ψ ≤ π/2. For ψ > π/2, the entropy of A is determined by S(ψ) = S(π−ψ).
The surface γA is well approximated to consist of two components: (i) a “cylindrical” piece

with θ = ψ, which is perpendicular to the cutoff surface r = R and extends down to r = r0 (< R)

and (ii) the “bottom lid” with r = r0 and 0 ≤ θ ≤ ψ; see Fig. 11. The area of the surface is then

given by

‖γA‖ = min
r0



Ad−2 sind−2ψ

∫ R

r0

rd−2

√

r2

l2
− rd+

l2rd−2

dr + Ad−2 r
d−1
0

∫ ψ

0

sind−2θ dθ



 , (43)
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Figure 11: The HRRT surface γA in the Schwarzschild-AdS spacetime can be well approximated by
consisting of two components: a “cylindrical” piece with θ = ψ and a “bottom lid” piece with r = r0.

where r+ is the horizon radius, and we have used the approximation that r+ ≫ l and hence

Eq. (35). The value of r0 is determined by the minimization condition

√

r20 −
rd+
rd−2
0

=
sind−2ψ

(d− 1)
∫ ψ

0
sind−2θ dθ

l. (44)

As discussed in Section 2.2, the cutoff at r = R in our context simply means that the renor-

malization scale in the boundary theory is lowered; in particular, it does not mean that the theory

is modified by actually terminating space there. The length in the boundary theory, therefore, is

still measured in terms of the d-dimensional metric at infinity, r = ∞, with the conformal factor

stripped off. The radius of the region A is then given by

L = l ψ, (45)

and not Rψ. Since the cutoff length is 1/Λ ≈ l2/R, we should only consider the region ψ & l/R.

The solution of Eq. (44) behaves as

(i) r0 =
l

ψ
(≫ r+) for

l

R
< ψ ≪ l

r+
, (46)

(ii) r0 − r+ =
l2

dψ2r+
(≪ r+

d
) for

l

r+
≪ ψ ≪ 1, (47)

(iii) r0 − r+ = O(1)
l2

r+
for ψ ≈ O(1). (48)
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In the case of (i), ‖γA‖ is dominated by the first term in Eq. (43), so that

‖γA‖ =
Ad−2

d− 2
lRd−2ψd−2. (49)

Here and below, we assume d > 2. We thus obtain an area law for the entropy

SA =
‖γA‖
4ld−1

P

≈ cAd−2L
d−2Λd−2, (50)

where c ≈ (l/lP)
d−1 is the central charge of the boundary CFT.

In the case of (ii), ‖γA‖ is given by

‖γA‖ =
Ad−2

d− 2
lRd−2ψd−2 +

Ad−2

d− 1
rd−1
+ ψd−1. (51)

We find that the first (second) term is larger for

ψ < (>)
d− 1

d− 2

lRd−2

rd−1
+

, (52)

so that the entanglement entropy behaves as

SA ≈
{

cAd−2L
d−2Λd−2 for L≪ L∗,

cAd−2
rd−1
+ Ld−1

l2d−2 ≈ c
(

T
Λ

)d−1
Ad−2L

d−1Λd−1 for L≫ L∗,
(53)

where

L∗ ≈
l2Rd−2

rd−1
+

≈ Λd−2

T d−1
. (54)

For ψ ≈ O(1), i.e. case (iii), we find

SA ≈ c

(

T

Λ

)d−1

Ad−2L
d−1Λd−1. (55)

Combining the results in all three cases gives the expression in Eqs. (18, 19).

C Calculations for the de Sitter Limit of FRW Universes

This appendix collects explicit calculations for entropies and HRRT surfaces in the de Sitter limit

of FRW spacetimes.
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C.1 Entropies in the case of (2 + 1)-dimensional bulk

Here we see that for (2+1)-dimensional FRW spacetimes, the results of Ref. [5] immediately tell us

that the entanglement entropy of an arbitrary (not necessarily connected) subregion A is maximal

in the de Sitter limit:

SA,w→−1 =
1

4lP
min{‖A‖, ‖Ā‖}. (56)

Consider an FRW universe in d + 1 dimensions dominated by a single ideal fluid component

with the equation of state parameter w = p/ρ (|w| ≤ 1). From the analysis of Ref. [5], we know

that the holographic entanglement entropy of a spherical cap region A on a leaf—parameterized

by the half opening angle ψ as viewed from the center of the bulk—scales with the smaller of the

volumes of A and Ā. The proportionality constant

Qw(ψ) ≡
S(ψ)

1

4ld−1
P

min{‖A‖, ‖Ā‖} , (57)

satisfies the properties

Qw(ψ → 0) → 1, Qw→−1(ψ) → 1, (58)

∂Qw(ψ)

∂ψ

∣

∣

∣

∣

ψ=0

= 0,
∂Qw(ψ)

∂ψ

∣

∣

∣

∣

ψ<π
2

≤ 0,
∂Qw(ψ)

∂w
< 0. (59)

(The original analysis was performed for (3 + 1)-dimensional FRW universes, but these properties

persist in arbitrary spacetime dimensions.)

The second relation in Eq. (58) implies that in the de Sitter limit, w → −1, the holographic

entanglement entropy of a spherical cap region is maximal. Now, consider (2 + 1)-dimensional

FRW universes, in which a leaf has only one spatial dimension. We consider a subregion on

the leaf consisting of the union of two small intervals A and B. Note that a similar setup is

often discussed in AdS/CFT, where two possible extremal surfaces homologous to the subregion

compete, so that a phase transition from the disconnected to connected HRRT surfaces occurs as

the regions A and B are taken to be closer; see Fig. 12. We want to understand what happens in

the case of FRW spacetimes.

We denote the areas of two possible extremal surfaces by

Edisconnected(AB) = E(A) + E(B)

= Qw(A) ‖A‖+Qw(B) ‖B‖, (60)

and

Econnected(AB) = E(ABC) + E(C)

= Qw(ABC) ‖ABC‖+Qw(C) ‖C‖, (61)
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(a) (b)

Figure 12: Two possible extremal surfaces anchored to the boundary of a subregion AB on a leaf, given
by the union of two disjoint intervals A and B. The areas of the surfaces depicted in (a) and (b) are
denoted by Edisconnected(AB) and Econnected(AB), respectively.

where A, B, and C are defined in Fig. 12. A phase transition can occur when

Edisconnected(AB) = Econnected(AB). (62)

The condition of Eq. (62) can be satisfied for any w away from the de Sitter limit because of

the second relation in Eq. (59). Since a larger region has a greater volume but also has a smaller

coefficient, it is possible for the two extremal surfaces to compete. However, in the de Sitter limit

the requirement for a phase transition becomes

‖ABC‖+ ‖C‖ = ‖A‖ + ‖B‖, (63)

which is clearly impossible because the left hand side is always greater. Since a general subregion

of the leaf is a union of disconnected intervals, the above argument implies that the entanglement

entropy is merely the sum of each interval’s volume for sufficiently small regions. Extending the

argument to large regions in which their complements matter, we can conclude that arbitrary

subregions have maximal entanglement entropies in a (2 + 1)-dimensional de Sitter universe.

C.2 Entropies in the w → −1 limit of FRW spacetimes

The global spacetime structure in the case of a single fluid component with w 6= −1 is qualitatively

different from the case discussed mainly in Section 2.3, i.e. the case in which a universe approaches

de Sitter space at late times. Nevertheless, here we show that the holographic entanglement entropy

of an arbitrary subregion on a leaf becomes maximal in the w → −1 limit.

Let us consider an FRW universe filled with a single fluid component with the equation of state

w. The scale factor is then given by

a(t) = c t
2

d(1+w) , (64)

where c > 0 is a constant. We focus on a leaf σ∗ at time t∗ and the causal region Dσ∗ associated

with it. Following Ref. [5], we perform t∗-dependent coordinate transformation on the FRW time
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and radial coordinates t and r:

η =
2

d− 2 + dw

{

(

t

t∗

)
d−2+dw
d(1+w)

− 1

}

, (65)

ρ =
2

d(1 + w)
c t

−
d−2+dw
d(1+w)

∗ r. (66)

This converts the metric into the form

ds2 =

( A∗

Ad−1

)
2

d−1
(

d− 2 + dw

2
η + 1

)
4

d−2+dw
(

−dη2 + dρ2 + ρ2dΩ2
d−1

)

, (67)

where Ad−1 is the area of the (d − 1)-dimensional unit sphere, defined below Eq. (37), and A∗ is

the volume of the leaf σ∗

A∗ =

(

d(1 + w)

2

)d−1

Ad−1 t
d−1
∗ . (68)

In these coordinates, Dσ∗ is mapped into the region η ∈ [−1, 1] and ρ ∈ [0, 1− |η|].18
We can now take w = −1 + ǫ in Eq. (67) and expand it around ǫ = 0. This gives

ds2 =

( A∗

Ad−1

)
2

d−1
(

1

(1− η)2
− d

η + (1− η) ln(1− η)

(1− η)3
ǫ+ · · ·

)

(

−dη2 + dρ2 + ρ2dΩ2
d−1

)

. (69)

The leading order term describes the causal region inside a leaf of volume A∗ in de Sitter space

with conformal coordinates. The time translational Killing symmetry in these coordinates is

η → aη + 1− a, (70)

ρ→ aρ. (71)

The expansion in Eq. (69) is not valid when η . 1−ǫ. However, this occurs only for a small subset

of all the subregions on σ∗, which becomes measure zero when ǫ → 0. Continuity then tells us that

the entanglement entropy SA of any subregion A on σ∗ takes the same value as that calculated

in de Sitter space in the ǫ → 0 limit. However, we have already concluded from the argument in

Section 2.3 that the entanglement entropies take the maximal form in de Sitter space, hence

SA −→
w→−1

1

4ld−1
P

min{‖A‖, ‖Ā‖}. (72)

Note that the area of the leaf, A∗, keeps growing indefinitely, so that Dσ∗ at each time t∗ is mapped

to a different auxiliary de Sitter space. The ratio Qw(A) = SA/(min{‖A‖, ‖Ā‖}/4ld−1
P ), however,

depends only on w and not t∗.

18For w ≥ −1+4/d, the region Dσ∗
hits the big bang singularity, so we need to restrict our attention to a portion

of Dσ∗
, e.g. D+

σ∗

= {p ∈ Dσ∗
| t(p) ≥ t∗}. This issue is not relevant to our discussion here.
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C.3 HRRT surfaces

Here we present two examples in which one can analytically see the convergence of the HRRT

surfaces onto the future boundary of the causal region of a leaf in the de Sitter limit.

The de Sitter limit of FRW universes in 2 + 1 dimensions

As the first example, consider the de Sitter limit of FRW universes in 2 + 1 dimensions

ds2 = a2(η) (−dη2 + dx2 + dy2). (73)

Here, η ∈ (−∞, 0) is the conformal time, and the scale factor is given by

a(η) =
c

η
, (74)

where c is a positive constant. In this case, we can obtain an analytic solution for HRRT surfaces,

which are geodesics in 2 + 1 dimensions.

In order to find a spacelike geodesic anchored to two points on the leaf, we can use the symmetry

of the problem to rotate our axes so that the points lie at constant y = y0. To find a geodesic, we

need to extremize the distance functional

D =

∫

dη
c

η

√
ẋ2 − 1, (75)

where ẋ = dx/dη, and we have used the fact that the geodesic lies on the y = y0 hypersurface.

This functional has no explicit dependence on x, which means the existence of a quantity that is

conserved along the geodesic
∂D
∂ẋ

=
cẋ

η
√
ẋ2 − 1

≡ px. (76)

Using this, we obtain a first-order ordinary differential equation

dη

dx
=

√

1− c2

p2xη
2
, (77)

which can be easily solved to give the analytic expression for the geodesic

{

η(x) = −
√

x2 + c2

p2x
,

y(x) = y0.
(78)

The holographic screen of FRW universes in the de Sitter limit lies on

η = −
√

x2 + y2 ≡ −r. (79)
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Figure 13: HRRT surfaces anchored to subregions on a leaf in (2 + 1)-dimensional de Sitter space. They
all lie on the future boundary of the causal region associated with the leaf.

Consider a leaf at η = η∗ = −r∗ and a subregion on it specified by a half opening angle ψ

(0 ≤ ψ ≤ π). The end points of the HRRT surface are then at

(x, y) = (∓η∗ sinψ,−η∗ cosψ). (80)

This can be used to determine px and y0 in Eq. (78), giving the final expression for the geodesic

{

η(x) = −
√

x2 + y20,
y(x) = y0,

(81)

where y0 = −η∗ cosψ. By varying the angle ψ, the HRRT surfaces sweep a codimension-1 surface

in the bulk, which is indeed the future boundary of the causal region of the leaf:

η = −r, 0 ≤ r ≤ r∗ (=−η∗). (82)

These surfaces are depicted in x-y-η space in Fig. 13. We can clearly see that all the HRRT surfaces

are spacelike, except for that corresponding to ψ = π/2 which is null.

Small spherical caps in FRW universes in d + 1 dimensions

Another example in which simple analytic expressions are obtained is the limit of small spherical

cap regions, ψ ≪ 1, on a leaf. Consider a flat FRW universe in d+ 1 dimensions

ds2 = a(η)2
(

−dη2 + dr2 + r2dΩ2
d−1

)

, (83)
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filled with a single fluid component with the equation of state w. We consider the leaf σ∗ at η = η∗,

which is located at

r =
a

ȧ
. (84)

The future boundary F∗ of the causal region Dσ∗ is then given by

F∗ : η(r) = η∗ +
a

ȧ
− r. (85)

Here and below, the scale factor and its derivatives without an argument represent those at η = η∗:

a ≡ a(η∗), ȧ ≡ da(η)

dη

∣

∣

∣

∣

η=η∗

, ä ≡ d2a(η)

dη2

∣

∣

∣

∣

η=η∗

. (86)

We consider a spherical cap region A on the leaf σ∗, specified by a half opening angle ψ

0 ≤ θ ≤ ψ, (87)

where θ is a polar angle parameterizing Sd−1 with constant η and r. Following Ref. [5], we go to

cylindrical coordinates:

ξ = r sin θ, z = r cos θ − a

ȧ
cosψ. (88)

In these coordinates, the null cone F∗ in Eq. (85) is given by

F∗ : η(ξ) = η∗ +
a

ȧ
−

√

ξ2 +
(

z +
a

ȧ
cosψ

)2

, (89)

and the boundary of A, ∂A, is located at

η = η∗, ξ =
a

ȧ
sinψ ≡ ξ∗, z = 0. (90)

The HRRT surface γA anchored to ∂A is on the z = 0 hypersurface [5]. We would like to compare

this HRRT surface with the intersection of F∗ and z = 0:

lA : η(ξ) = η∗ +
a

ȧ
−
√

ξ2 +
a

ȧ
cosψ, (91)

see Fig. 14. Using Eq. (90) and expanding in powers of ψ ∼ ξ/(a/ȧ), this can be written as

lA : η(ξ) = η∗ +
ȧ

2a
(ξ2∗ − ξ2) +

ȧ3

8a3
(ξ2∗ − ξ2)2 + · · · . (92)

For ψ ≪ 1, the HRRT surface can be expressed in a power series form

γA : η(ξ) = η∗ + η(2)(ξ) + η(4)(ξ) + · · · , (93)
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Figure 14: The HRRT surface γA for subregion A of a leaf σ∗ specified by a half opening angle ψ is on
the z = 0 hypersurface. It approaches the surface lA, the intersection of the null cone F∗ and the z = 0
hypersurface, in the de Sitter limit.

where

η(2)(ξ) =
ȧ

2a
(ξ2∗ − ξ2), (94)

η(4)(ξ) =− ȧ

8a3(d+ 1)
(ξ2∗ − ξ2)

×
[

ȧ2
{

(d+ 5)ξ2∗ − (d− 3)ξ2
}

− aä
{

(d+ 3)ξ2∗ − (d− 1)ξ2
}

]

. (95)

In the universe dominated by a single fluid component, the scale factor behaves as

a(η) ∝ η
2

d−2+dw . (96)

Plugging this into Eq. (95), we obtain

η(4)(ξ) =
ȧ3

16(d+ 1)a3
(ξ2∗−ξ2)

[

{

2−(1+3w)d−(1+w)d2
}

ξ2∗−
{

2+(3+w)d−(1+w)d2
}

ξ2
]

. (97)

We find that for w = −1, the surface given by Eqs. (93, 94, 97) agree with lA in Eq. (92). Namely,

the HRRT surface γA is on the null cone F∗.

One can see how γA approaches F∗ as w → −1 by subtracting Eq. (93) from Eq. (92):

ηlA(ξ)− ηγA(ξ) =
ȧ3

16a3
d

d+ 1
(1 + w)(ξ2∗ − ξ2)

{

(d+ 3)ξ2∗ − (d− 1)ξ2
}

≥ 0. (98)

The inequality is saturated only for w = −1 (except at the end points at ξ = ξ∗).
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