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Abstract. We discuss effects of loss of coherence in low energy quantum systems

caused by or related to gravitation, referred to as gravitational decoherence. These

effects, resulting from random metric fluctuations, for instance, promise to be accessible

by relatively inexpensive table-top experiments, way before the scales where true

quantum gravity effects become important. Therefore, they can provide a first

experimental view on gravity in the quantum regime. We will survey models of

decoherence induced both by classical and quantum gravitational fluctuations; it will be

manifest that a clear understanding of gravitational decoherence is still lacking. Next

we will review models where quantum theory is modified, under the assumption that

gravity causes the collapse of the wave functions, when systems are large enough. These

models challenge the quantum-gravity interplay, and can be tested experimentally. In

the last part we have a look at the state of the art of experimental research. We will

review efforts aiming at more and more accurate measurements of gravity (G and g) and

ideas for measuring conventional and unconventional gravity effects on nonrelativistic

quantum systems.

Submitted to: Class. Quantum Grav.

1. Introduction

The unification of quantum physics with general relativity is perhaps the most important

and ambitious open problem in modern physics. Both theories work excellently when

taken separately; when rigidly patched together to explain the evolution of the universe,

they give impressive results, the discovery of the cosmic microwave background and its

properties being the most important one, although the resolution of the dark matter

and dark energy puzzle might ultimately show that such patching was wrong in the first

place [1]. Yet, a coherent unified theory does not exist.
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The general attitude is to quantize gravity in some way, which produced a variety

of sophisticated formulations, string theory [2] and loop quantum gravity [3] arguably

being the most prominent ones. A minority of the scientific community favors the

opposite approach, to “gravitize” quantum mechanics [4], or to radically reconsider

both theories [5, 6, 7].

From the experimental point of view, not much is really known. We know that

matter is quantum and, when in a classical (i. e. localized in space) state, it reacts

to gravity as predicted by Newton or by Einstein. This has been verified for source

masses ranging from 10−2 kg [8] to stars, galaxies, and beyond, and from distances

ranging from 10−2 m [8] to cosmological distances (but here again, the resolution of

the dark matter/energy problem might reveal surprises). We also know that matter in

spatial quantum superpositions responds to an external classical gravitational field as

predicted by simply adding the Newtonian gravitational potential to the Schrödinger

equation [9, 10, 11].

However, the answers, both theoretical and experimental, to the big questions are

still missing: Is gravity quantum? Do gravitons, the quantum counterpart of the recently

discovered classical gravitational waves [12], really exist? What is the gravitational field

generated by a quantum superposition of matter? Does quantum mechanics still hold

true in presence of sufficiently strong gravitational fields? The fact that after almost

one century of intense theoretical research we do not have a solid clue about the above

questions, is perhaps the indication that radically new thinking is required to approach

the problem of unifying quantum mechanics and gravity. And it certainly is not a

viable option to simply wait until the Planck scale (`Pl = 10−35 m, tPl = 10−44 s,

mPl = 10−8 kg) becomes accessible experimentally in order to have an indication on

how to proceed theoretically, as this will require a long time.

In recent years, however, pushed by the impressive technological developments,

the scientific community is exploring the possibility that the quantum-gravity interplay

can be seen far away from the Planck scale, in nonrelativistic quantum systems and in

table-top experiments [13]. This is the context of this review article.

Whatever the final outcome of the quantum gravity riddle, one prediction seems to

be rather robust: spacetime as a dynamical variable fluctuates, and these fluctuations

cause decoherence in quantum systems, which can be revealed, at least in principle, in

matter-wave interferometers, for example. These fluctuations can be classical, quantum,

or both. Classical fluctuations can be a relic of primordial gravitational waves, generated

during the early evolution of the universe, a relic of the big bang together with the cosmic

microwave background, or the sum of the gravitational waves randomly produced by

the large variety of physical sources scattered through the universe. Their spectrum is

estimated theoretically, and constrained by observations [12]. Quantum fluctuations

arise from the quantization procedure, as for any field. Not much is known, as a

consistent quantum theory of gravity is missing.

Gravitational decoherence, as any noise, modifies the evolution of quantum

systems with respect to what is predicted by the Schrödinger equation applied to
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isolated systems. Under general assumptions, Gorini–Kossakowski–Sudarshan [14] and

independently Lindblad [15], proved that the general structure of the master equation

for the density matrix ρt describing a quantum system interacting with an external

environment is

d

dt
ρt = − i

~
[ρt, H] +

∑
n

λn

(
LnρtL

†
n −

1

2
ρtL

†
nLn −

1

2
L†nLnρt

)
, (1)

where H is the standard quantum Hamiltonian, possibly containing a corrective term

arising from the interaction with the environment, the Lindblad operators Ln generate

decoherence and dissipation, and the positive coefficients λn set the strength of these

effects. The goal of theoretical research on gravitational decoherence is to derive an

explicit expression for the Lindblad operators and the coefficients, by assuming that

quantum matter interacts with a stochastic gravitational background. We will review

some of the models which have been presented in the literature.

A remark is due concerning the notion of “gravitational decoherence”, which is used

in quite different contexts with different meanings. For the purpose of this review article,

we use it in a rather broad sense, referring to any loss of coherence of quantum matter

fields, whose cause can be related to gravitational effects—be it due to a classical or

quantum gravitational background (as discussed in section 2) or due to modifications of

quantum mechanics motivated from gravity (as in section 3). As the main focus of this

review article are experiments which are feasible in the laboratory (see section 4), our

main concern are effects in the limit of nonrelativistic systems and weak gravitational

fields.

The emergence of a classical spacetime structure from quantum gravity, as it is

discussed, for instance, in minisuperspace models [16, 17] where the Friedmann universe

acts as “system” and higher multipoles are treated as the “environment”, is also often

referred to as “gravitational decoherence”. This, however, is an effect on where the

quantized spacetime itself decoheres, rather than quantum matter in the laboratory, and

is beyond the scope of this review article in which we are interested in understanding

the effects of gravity on such laboratory quantum systems.

In section 2 we will consider the standard setup: (nonrelativistic) quantum

mechanical matter interacting with a random gravitational field. It turns out that

there exist a large number of quite different approaches towards this problem, many

of them motivated by quantum gravitational fluctuations but nonetheless applicable

to perturbations of a classical spacetime background. All the approaches we present

make use of simplifications and approximations such as only considering the effect of

conformal metric fluctuations. A general treatment of decoherence due to classical

spacetime fluctuations is still lacking.

We will proceed to the discussion of quantum gravity effects as a possible sources

of spacetime fluctuations causing decoherence. Many such proposals exist, and we will

review effects of a thermal graviton bath, of a minimal length scale, and of fluctuations

of the time variable.
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Finally, we have a look into a recently proposed decoherence effect due to

gravitational time dilation which has been the starting point of an ongoing controversy.

This effect is somewhat different from the previously discussed decoherence effects, as

decoherence occurs due to a coupling of the center-of-mass motion (acting as “system”)

to internal degrees of freedom (acting as “bath”) of a complex quantum system, and

gravity (or rather relativity) solely enters in the role of a transmitter which enables this

coupling.

In section 3 we will go beyond the standard quantum formalism. Quantum theory

has originated a lively debate about its meaning, as it gives a fundamental and distinctive

role, in its very formulation, to measurements and observations, while these should

represent only a subclass of all possible physical events, described at least in principle

by the dynamical equations of the theory. This is not the case with quantum mechanics.

Several solutions to this conundrum have been proposed, among which is the idea

that the Schrödinger equation should be modified and supplemented with nonlinear

and stochastic terms, which end up in a collapse of the wave function in specific

situations, like measurement processes. The phenomenology of models of spontaneous

wave function collapse is well understood, and experiments are placing stronger and

stronger bounds on the collapse parameters. However a relevant question remains open:

if the collapse is real as predicted by these models, what is its origin? Of course one

can always claim that it is an intrinsic property of nature, but intuition tells that there

should be an explanation.

People, most notably Roger Penrose, proposed the idea that gravity might be the

ultimate explanation for the collapse of the wave function. Gravity is universal, and

its magnitude increases with the mass, which matches the requirements of the collapse,

which is also universal, if quantum theory is, and becomes relevant when macroscopic

systems are involved. In addition, there is no evidence thus far, nor a consensus among

theoretical physicists, whether gravity should be quantized, therefore the possibility

remains open for it to give the required nonlinear coupling to break quantum linearity

and the associated measurement problem.

We will review four major attempts to link the collapse of the wave function to

gravity: the Diósi–Penrose model, Adler’s model, Károlyházy’s model, and the Schrö-

dinger–Newton equation.

The Diósi–Penrose model falls within the class of models of spontaneous wave

function collapse, and it is specified by setting the correlation function of the noise equal

to the Newtonian gravitational potential. The model was first proposed by Diósi, and

later revived by Penrose, based on independent arguments on the behavior of spacetime

in presence of quantum superpositions.

Adler’s model also falls within the class of models of spontaneous wave function

collapse, but now the assumption is that gravity has an irreducible, complex, rapidly

fluctuating component. The correlation function of this noise is left unspecified, and

eventually has to be explained by a yet-to-be-formulated underlying theory.

Károlyházy’s model is based on the assumption that spacetime is fuzzy below a
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specific scale, and this fuzziness causes a lack of quantum coherence in space (and time)

for material systems, which is the stronger, the larger the systems. The quantum-gravity

coupling is not modified, therefore it is linear and so technically this model falls under

the class of decoherence models discussed in section 2, not under the class of collapse

models. However, since Károlyházy’s motivations spring more from the analysis of the

quantum measurement problem, rather than from an attempt of arriving at a quantum

theory of gravity, it is better discussed in context of the other models in section 3.

Finally, the Schrödinger–Newton equation is discussed, which is based on the

assumption that matter is fundamentally quantum but gravity is fundamentally

classical. Then the most natural way to couple matter and gravity leads to a

nonlinearly modified Schrödinger equation of the solitonic type, where gravity attracts

gravitationally different parts of the wave function. This equation does not fall within

the class of models of spontaneous wave function collapse, although it also causes its

“collapse” in a way which we will discuss.

In section 4 we move from theory to experiment, and we will review the state

of the art in experimental research of the quantum-gravity interplay at low energy,

typically in table-top experiments. We will summarize the most advanced and

precise Newtonian and non-Newtonian gravity measurements by torsion pendulum type

experiments, and also by matter-wave interferometry. Matter-wave interferometers,

such as neutron, atom, and molecule interferometers, are sensitive to phase shifts

triggered by gravitational effects, while the source mass, from which the gravitational

field originates, is typically larger than 1 kg and usually not closer than 1 m to the

test mass. Interestingly, gravity experiments involving source and test bodies with the

smallest gravitational force between each other are torsion pendulum experiments. We

will further summarize proposals for tests of gravity which aim to go beyond the present

limitations in decreasing mass and distance in gravitational force sensing, as well as in

increasing the mass in spatial quantum superpositions, and which aim to test general

relativistic effects and even quantum gravity effects, amongst which are the tests of

collapse type effects and gravitational decoherence.

2. Classical and quantum spacetime fluctuations

Any quantum state subject to some environment will become entangled to this

environment, and undergo decoherence when environmental degrees of freedom are

traced out. The gravitational interaction with the spacetime background will lead to

decoherence as well. It is, however, different from the usual decoherence sources in at

least two respects:

• The gravitational interaction cannot be omitted, contrary to the interaction with,

for instance, gas particles and radiation which can—at least in principle—be

evacuated or shielded completely.

• As, to date, gravity is only understood classically, the theoretical description of

gravitational decoherence is necessarily incomplete, and predictions may depend
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on assumptions about the correct behavior of gravity at the quantum scale.

These distinctive features of gravitational decoherence make it very interesting to

understand the details of the possible decoherence mechanisms. Does gravitational

decoherence put an ultimate bound on the scales at which quantum features of nature

can be observed? And are there predictions that differ depending on whether the

gravitational background is treated classically or quantum mechanically? Could such

predictions even lead to observable consequences which give insight into a quantum

theory of gravity?

On the other hand, due to the lack of a consistent and broadly accepted quantum

theory of gravity from which decoherence effects at low energies could be derived in a

rigorous way, there is no unanimous theoretical description for gravitational decoherence.

Even the theoretical tools within quantum field theory on curved spacetime [18, 19] are

not far enough developed for definite predictions at the level of low energy laboratory

physics.

Decoherence effects are, therefore, discussed in very different contexts, where

quantum gravitational features are introduced in a rather ad-hoc manner. Many of

these ideas are based on either some specific quantum gravitational model, and are then

model dependent, or on general ideas about gravity at the Planck scale, such as the

existence of a minimal length and time scale, or spacetime fluctuations which can be

implemented in multiple ways.

The latter idea of a fluctuating spacetime is often introduced in terms of stochastic

perturbations of the classical background metric. Such perturbations can be of

fundamental origin, e. g. as a consequence of quantum gravitational fluctuations. They

can also stem from gravitational wave noise which itself may be modeled classically or

in terms of quanta of the gravitational field, i. e. gravitons. However, as the theoretical

description of laboratory quantum systems on curved spacetime background itself still

poses many questions, the respective models are based on highly simplified assumptions,

and the resulting predictions can differ considerably depending on the choice of these

assumptions.

We first review some of the predictions and models for effects resulting from

fluctuations of the classical spacetime background in section 2.1. Then, in section 2.2, we

discuss how these classical fluctuations can be linked to quantum gravitational effects,

and how decoherence is described in the formalism of perturbative quantum gravity.

Finally, we review the recent discussion about a decoherence effect which has been

attributed to gravitational time dilation [20] in section 2.3. This effect is different

in some regards from the previously mentioned ones, as it occurs in a homogeneous

gravitational field, and gravity acts as a transmitter of entanglement between center of

mass and internal degrees of freedom. Hence, the role of the environment which allows

for decoherence is not played by gravity itself in this case.
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2.1. Classical spacetime fluctuations

Decoherence can already occur in the straightforward approach of a quantum wave

function that is evolving on a curved spacetime metric, if this spacetime background

contains stochastic fluctuations. A common feature of all approaches to model such

fluctuations is that they assume a weak gravitational field, such that the linear

approximation to general relativity applies, i. e. the metric tensor can be written as

gµν = ηµν + ε hµν with a small parameter ε.

2.1.1. Gravitational phase changes for matter-waves At the lowest significant order,

gravitational effects on matter-waves reveal themselves in the form of a phase shift of the

wave function. An instructive derivation can be given in terms of the Wentzel-Kramers-

Brillouin (WKB) approximation [21, 22, 23]. For this, we start from the Klein-Gordon

equation for a scalar field φ in a curved spacetime:

0 =

[
gµν ∇µ∇ν +

m2c2

~2

]
φ

=

[
gµν

(
∂

∂xµ
∂

∂xν
− Γλµν

∂

∂xλ

)
+
m2c2

~2

]
φ , (2)

where the covariant derivatives ∇µ in the first line are expressed in terms of the

Christoffel symbols and partial derivatives in the second line. Throughout this

review article we adopt the mostly minus metric signature (+,−,−,−). The WKB

approximation is based on the ansatz

φ = e
i
~ϕ (3)

for the field, followed by a series expansion in terms of ~. Inserting this ansatz into (2)

yields

0 = gµν
(

i

~
∂

∂xµ
∂

∂xν
ϕ− i

~
Γλµν

∂

∂xλ
ϕ− 1

~2

∂

∂xµ
ϕ

∂

∂xν
ϕ

)
+
m2c2

~2
, (4)

which at lowest order in ~ results in

gµν
∂

∂xµ
ϕ

∂

∂xν
ϕ = m2c2 . (5)

(5) is the equivalent to the eikonal equation in the case of geometrical optics (i. e. the

case m = 0 [24]). Now, in the linear approximation gµν = ηµν + ε hµν , the phase can be

split as ϕ = ϕ(0) + ε ϕ(1) which results in the following set of two equations at the zeroth

and first order in ε [25]:

m2c2 = ηµν
∂

∂xµ
ϕ(0) ∂

∂xν
ϕ(0) (6a)

0 = 2 ηµν
∂

∂xµ
ϕ(0) ∂

∂xν
ϕ(1) + hµν

∂

∂xµ
ϕ(0) ∂

∂xν
ϕ(0) . (6b)

(6a) is simply the eikonal equation in flat Minkowski space. Defining the constant

vector ξµ = (E/c, p1, p2, p3), where E is the energy and pi the momentum of the
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particle described by (2), the relativistic energy-momentum relation takes the form

ξµξµ = E2/c2 − p2 = m2c2, and it is evident that

ϕ(0) = ηµν ξ
µ xν + ϕ

(0)
0 , (7)

with constant ϕ
(0)
0 solves (6a).

It can then be shown [25] that the gravitational contribution to the phase along

the particle trajectory, parametrized by τ as xµ = τ ξµ + xµ0 , satisfies the differential

equation

dϕ(1)

dτ
=

1

2
hµν ξ

µ ξν . (8)

According to Linet and Tourrenc [25] (cf. also Refs. [26, 27]), the total phase

difference resulting after integration along the particle trajectory can be categorized

into three different types of gravitational phase shift effects:

(i) The term resulting from the h00 metric element is the contribution of the Newtonian

gravitational potential,

∆ϕ =
E

2

∫ t1

t0

h00 dt . (9)

In the Earth’s homogeneous potential this yields the experimentally confirmed [9]

phase factor ∆ϕ = mg∆z t.

(ii) The contribution from the h0i metric elements is

∆ϕ = c

∫ t1

t0

h0i p
i dt . (10)

This effect can be understood as stemming from the rotation of the gravitational

source (i. e. the Lense-Thirring effect [28]), which is closely related to the Sagnac

effect [29] (phase shift in a rotating interferometer).

(iii) Finally, the third contribution from the spatial hij terms results from planar

gravitational waves. The phase shift is

∆ϕ =
c2

E

∫ t1

t0

hij p
i pj dt . (11)

In the transverse traceless (TT) gauge, where only the spatial components hij of

the metric perturbation are nonzero, gravitational waves can be described by a mode

decomposition [30]:

hij(x) =
∑
σ∈±

εσij

∫
d4k

(2π)4
hσ(k) e−ikµxµ , (12)

where ε is the polarization tensor for the two possible polarizations σ ∈ ± and hσ are the

coefficients of the expansion for the respective polarizations. Reynaud et al [30] consider

the special case of unpolarized, isotropic waves, in which case the metric components

can be characterized by a spectral distribution S(ω), e. g. for the xy-component:

〈h12(t)h12(0)〉 =

∫
dω

2π
S(ω) e−iωt . (13)
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The phase difference then becomes a stochastic variable, δϕ. If this gravitational noise

is assumed to be Gaussian, the fringe visibility in an interferometer will be reduced as

follows:

V = 〈exp

(
i

~
δϕ

)
〉 = exp

(
−〈(δϕ)2〉

2~2

)
≡ exp

(
−∆ϕ2

2~2

)
. (14)

The variance in the exponent depends not only on the spectrum of the gravitational wave

background S, but also on the geometry of the interferometer, encoded in an “apparatus

response function” A. It can then be written in the frequency domain as [31]

∆ϕ2 =

∫
dω

2π
S(ω)A(ω)F (ω) , (15)

where F is a filter function ensuring that the integral only runs over the relevant

(unobserved) frequencies.

The apparatus function A(ω) generally has a complicated form. In the idealized

case of a rhombic Mach-Zehnder interferometer of arm length L, with small aperture

angle α, and particles with nonrelativistic velocities v � c, it is given by [31]

AMZ(ω) =
4m2 v4

~2 ω2
sin2(α)

(
1− cos

(
ω L

v

))2

(16)

Lamine et al [31] argue that for a measurable decoherence effect, i. e. a variance ∆ϕ2

of the order of unity, even under ideal conditions in a wide angle (90◦) Mach-Zehnder

interferometer one would need, for instance, a femtogram particle with a velocity of

1 km/s and 1 m arm length (see section 4.4 C).

Nonetheless, such order of magnitude estimations can only provide a first

impression, and the many approximations that need to be made in the course of arriving

at this result (isotropy, Gaussianity, specific interferometer design, etc.) leave room for

unexpected effects.

2.1.2. Conformal metric perturbations In order to go beyond the discussion based on

the semi-classical WKB approximation and the phase change of a wave function on a

gravitational background, one is looking for simple models for quantum matter in a

fluctuating spacetime.

One possible approach is to model fluctuations of spacetime in the form of conformal

transformations of the metric, in which case only a single scalar field determines the

metric structure. This has been done by Sánchez-Gómez [32] for a non-propagating

fluctuation and by Power and Percival [33] for conformal gravitational waves.

Conformal fluctuations of the flat Minkowski metric are such transformations which

can be obtained by a local rescaling (Weyl transformations):

gµν = Ω(x)2 ηµν , (17)

with some spacetime function Ω. Generally, Einstein’s field equations can be derived

from the Einstein-Hilbert action

S =
1

16 π G

∫
d4x
√
−gR , (18)
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where R is the Ricci curvature scalar [28, 34]. In order to rewrite the Einstein-Hilbert

action in a more suitable form, it is convenient to define A(x) = Ω(x) − 1. The action

then takes the form of the Klein-Gordon action‡
3

8π G

∫
d4x ηµν

∂

∂xµ
A(x)

∂

∂xν
A(x) , (19)

and by variation of this action one finds that the “conformal field” A(x) satisfies the

massless, flat space Klein-Gordon equation ηµν∂µ∂νA(x) = 0. The wave solutions of this

equations can be interpreted as gravitational waves traveling at the speed of light c.

A matter-wave evolving in this curved spacetime will, at lowest order, be evolving

in a Newtonian gravitational potential Φ, which is related to the metric in the usual

way [34] by g00 = 1 + 2Φ/c2. The evolution is then described by a nonrelativistic

potential

V (x) = mΦ =
mc2

2
(g00 − 1) = mc2A(x) +

mc2

2
A(x)2 . (20)

Note that the gravitational constant G does not appear anywhere in (20). In general

relativity, Einstein’s field equations which follow from the action (18) ascertain that the

metric components in the Newtonian limit depend on G, e. g. g00 = 1− 2Gm/(rc2). In

contrast, the Klein-Gordon equation which follows from the variation of the conformal

action (19) does not depend on G. This is not surprising, as the conformal approach

violates Einstein’s field equations. The easiest way to see this is by noting that the

continuity equation ∇νTµν = 0 for the stress-energy tensor, which must be satisfied for

a solution of general relativity, is invariant under conformal transformations gµν → Ω2gµν
only for trace free stress-energy tensors, i. e. for T µµ = 0 [34], which is usually not the

case. The conformal gravitational waves modeled by the field A(x), therefore, should be

considered as fluctuations of the Minkowski vacuum rather than solutions of Einstein’s

equations.

If the conformal A(x) is supposed to be only a stochastic fluctuation around

the Minkowski metric, then its average values must satisfy 〈A(x)〉 = 〈∂µA(x)〉 =

〈A(x)∂µA(x)〉 = 0. The first relation is due to the fact that there should not be an

overall imprint of the stochastic fluctuations, and the last two relations are consequences

of the conformal symmetry [35].

With the assumption of a Gaussian white noise in all four dimension, i. e.

〈A(x)A(x′)〉 = A2
0 exp

(
− 1

L2

3∑
µ=0

(xµ − xµ′)2

)
, (21)

Sánchez Gómez [32] derives the (one-particle) master equation

∂

∂t
ρ(x,x′; t) = − i

~
[H0, ρ(x,x′; t)]− 8m2c3A2

0L

~2
min

(
(x− x′)2

L2
; 1

)
ρ(x,x′; t) , (22)

where the first term is the standard unitary quantum evolution term for the Hamiltonian

H0 without the stochastic fluctuations.

‡ We are only interested in the physical case of D = 4 dimensions, for D 6= 4 the redefinition of Ω(x)

must be chosen differently.
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The gravitational constant enters again when the field amplitude A0 is associated

with the Planck scale—thus, by bringing quantum gravity argument into the game

(cf. also section 2.2.3). The largest distance of two points which behave coherently

under a metric fluctuation is the length scale L. Given the Gaussian distribution of

the length rescalings, the uncertainty of this length scale due to the metric fluctuation

will be A2
0L

2. Requiring that this amount equals the Planck length `2
Pl = ~G/c3 yields

A2
0 ≈ ~G/(L2c3). The pre-factor in (22) then is of the order of Gm2/(~L).

For a single particle, effects are minuscule (e. g. for L = 1 µm one finds a coherence

over 1 cm for more than 1030 s). For a macroscopic system, however, the pre-factor

Gm2/L3 in (22) becomes Gmρ, and can provide a significant amount of decoherence.

Fluctuations that are caused by astrophysical gravitational waves rather than quantum

gravity can of course become arbitrarily large, in principle, depending on their source,

and there is no a-priori reason for them to be related to the Planck length in any way.

The fluctuations considered above are isotropic and can be thought of as non-

propagating. Contrary to these non-propagating fluctuations, Power and Percival [33]

consider conformal waves that are directed in positive and negative x-direction, traveling

with velocity c. For this purpose, they split the wave A(x) in the parts propagating in

those two directions:

A(t, x) = A0

(
ξ+(ct− x) + ξ−(ct+ x)

)
, (23)

where A0 is the amplitude and ξ± are the fluctuations for the two propagation directions.

The average values must vanish as before, specifically 〈ξ±〉 = 0. The first order

correlation is 〈ξ+(x)ξ−(x′)〉 = 0 and 〈ξ+(x)ξ+(x′)〉 = 〈ξ−(x)ξ−(x′)〉 = g(1)(x − x′).

Power and Percival [33] use a Dyson expansion in order to determine the time evolution

of the stochastic operator:

ρ(t) = ρ(0)− i

~

∫ t

0

dt′
(
〈H(t′)〉ρ(0) + ρ(0)〈H†(t′)〉

)
− 1

~2

∫ t

0

dt′
∫ t′

0

dt′′
(
〈H(t′)H(t′′)〉ρ(0) + 〈H(t′)ρ(0)H†(t′′)〉

+ρ(0)〈H†(t′)H†(t′′)〉
)

+ . . . , (24)

where H is the Hamiltonian describing the dynamics of the conformal field A. It turns

out that the first order terms cancel completely, as one would expect, as they only yield

an overall phase for the wave function.

Without further specification of the function g(1), the evolution of the density matrix

is found to follow the equation

ρ(x, x′; t) = ρ(x, x′; 0) +
m2A4

0

~2

×
(∫ t

0

dt′
∫ t

0

dt′′g(1)(ct′ − ct′′ − x+ x′)g(1)(ct′ − ct′′ + x− x′)ρ(x, x′; 0)

−2

∫ t

0

dt′
∫ t′

0

dt′′
(
g(1)(ct′ − ct′′)

)2
ρ(x, x′; 0)

)
+ . . . (25)
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Note that although the second order terms in (24) in principle depend on the second

order correlations g(2) as well, only the first order correlation function g(1) appears in

(25). For a Gaussian correlation, g(1)(x) = exp(−x2/L2), the second order master

equation (25) takes the much simpler form

∂

∂t
ρ(x,x′; t) = − i

~
[H0, ρ(x,x′; t)]−

√
π

2

m2c3A4
0L

~2

(
1− e−2

(x−x′)2

L2

)
ρ(x,x′; t) . (26)

The main differences compared to the non-propagating fluctuations (22) are in the

exponential dependence on spatial separation rather than the sharp cut-off in (22), as

well as in that the field amplitude enters only with the fourth power instead of second,

due to the fact that all first order terms cancel.

Both (22) and (26) exhibit the typical structure known also from collisional

decoherence [36]: a quadratic decay for short distances which goes to zero (exponentially

or incontinuously through the cut-off) for longer distances. This structure is also found

in collapse models, and is discussed in section 3.1 in context of the Diósi–Penrose model.

2.1.3. Effective Schrödinger equation in a fluctuating spacetime Going beyond the

conformal fluctuations in the previous section and considering generic fluctuations of

the metric, Göklü and Lämmerzahl [37] derive an effective Schrödinger equation by

considering a Klein-Gordon field on a fluctuating spacetime. The scalar field is coupled

minimally to gravity, yielding the usual curved spacetime Klein-Gordon equation

gµν∇µ∇νφ+
m2c2

~2
φ = 0 , (27)

where ∇µ denotes the covariant derivative. Using the method of Kiefer and Singh [38],

the Klein-Gordon equation is expanded in powers of 1/c2, yielding

i~∂tψ = − ~2

2m
∇2ψ +

m

2

(
δlmh

il
(0)h

jm
(0) − h

00
(0)

)
ψ +

1

2

{
i~∂i, hi0(1) + δlmh

il
(0)h

m0
(1)

}
ψ

− i~
4
∂t

(
δijh

ij
(0) −

1

2
δijδlmh

il
(0)h

jm
(0)

)
ψ +

i~
4
hi0(1)∂iδijh

ij
(0)ψ , (28)

where ∇2 = ∂i(
√
g(3)gij∂jψ)/

√
g(3) is the Laplace–Beltrami operator in the three-

dimensional spatial hypersurface, and g(3) is the determinant of the spatial part of the

metric. A simultaneous transformation of both the wave function and the Hamiltonian

according to

ψ → (g(3))1/4ψ , H → (g(3))1/4H(g(3))−1/4 +
i~
4
∂t ln g(3) (29)

turns this into a Hermitian “flat-space form”. An effective Schrödinger equation of the

form i~∂tψ = (H0 + Hp(t))ψ is obtained after averaging over the spatial fluctuations,

where H0 corresponds to the usual, unperturbed evolution, and the term Hp(t) encodes

the effect of the time-dependent metric fluctuations.

Under the assumption that these fluctuations are isotropic, Breuer et al [39] arrive

at the master equation

∂

∂t
ρ(t) = − i

~
[H0, ρ(t)]− τc

8m2 ~2

[
p2,
[
p2, ρ(t)

]]
, (30)
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where τc is a free parameter corresponding to the magnitude of the random metric

fluctuations. This master equation is quite different from those discussed in the previous

section. Although also being in Lindblad form, it describes localization in energy rather

than position, implying energy conservation: d
dt
〈H0〉 = 0.

The origin of these differences remains unexplained, and the large variety of

approaches with seemingly different outcomes makes a further investigation of the

question how classical spacetime fluctuations should be modeled desirable.

2.2. Quantum spacetime fluctuations

Although there is no unanimously accepted high-energy quantum theory of gravity, it

is often assumed that the perturbative quantization of general relativity is applicable at

low energies. It is then treated as an effective field theory, the limiting case of the yet

unknown full quantum gravity theory. In this regime, the non-renormalizability of said

theory does not pose an immediate problem. One must, however, keep in mind that this

treatment of gravity in analogy to the known quantum field theories for matter fields is

a hypothesis which is, so far, lacking experimental evidence.

Even in a quantum theory of gravity, general relativity must emerge as a classical

limit. In this regime, the semi-classical Einstein equations

Rµν −
1

2
gµνR =

8πG

c4
〈Ψ | T̂µν |Ψ〉 (31)

are valid, i. e. quantum matter enters as a source of spacetime curvature as an

expectation value of the stress-energy operator. However, since this stress-energy

operator is derived from quantized fields, one must account for quantum fluctuations

which lead to corrections to (31). A rigorous approach towards modeling these

fluctuations and their consequences is provided by stochastic gravity, a review of which

is given in [40].

2.2.1. Thermal graviton background If perturbative quantum gravity is assumed to be

correct, decoherence effects arise due to background gravitons, in a very similar fashion

in which photons are a source for decoherence. Such a decoherence effect due to a

thermal spectrum of gravitons has been studied by Blencowe [41].

A scalar field φ of mass m on a spacetime with the metric gµν can be described by

the action

S =

∫
d4x
√
−g
(

R

16π G
− 1

2
gµν∂µφ∂νφ−

m2c2

2~2
φ2

)
, (32)

where g denotes the metric determinant. The first term is the Einstein-Hilbert action,

describing the spacetime dynamics, and the second and third term describe the dynamics

of the field evolving on the curved spacetime.§

§ Note that for a scalar field the covariant derivative is simply the partial derivative and, hence, there

is no need for writing a covariant derivative in (32).
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In the linear approximation, where gµν = ηµν + ε hµν , the action can then be

decomposed [42] into a sum S = Smatter + Sgrav + Sint with the flat space Klein-Gordon

action

Smatter =

∫
d4x

(
−1

2
ηµν∂µφ∂νφ−

m2c2

2~2
φ2

)
, (33)

and the graviton action

Sgrav =
ε2

32π G

∫
d4x

(
− 1

2
ηαβ∂αh

µν∂βhµν + ηαβ∂νh
µν∂αhµβ − ηαβ∂µh∂νhµν

+
1

2
ηµν∂µh∂νh

)
+ O(ε3) , (34)

where hµν = ηµαηνβhαβ and h = ηµνhµν . The interaction term is

Sint =

∫
d4x

(
ε

2
T µνhµν +

ε2

4
Uµναβhµνhαβ

)
+ O(ε3) . (35)

The stress energy tensor of the scalar field is

Tµν = ∂µφ∂νφ−
1

2
ηµνη

αβ∂αφ∂βφ−
m2c2

2~2
ηµνφ

2 , (36)

and the tensor U is given by

Uµναβ = −2ηνα∂µφ∂βφ+ ηµν∂αφ∂βφ

+

(
1

2
ηµαηνβ −

1

4
ηµνηαβ

)(
ηρσ∂ρφ∂σφ+

m2c2

~2
φ2

)
. (37)

Blencowe [41] now uses the closed time path integral approach [43], from which the

evolution equation for the density matrix follows immediately:

ρmatter[φ, φ
′; t] =

∫
dφ0 dφ′0

∫ φ

φ0

dφ+

∫ φ′

φ′0

dφ−ρmatter[φ0, φ
′
0; 0]

× exp

(
i

~
(
Smatter[φ

+]− Smatter[φ
−] + SFV[φ+, φ−]

))
, (38)

where SFV[φ+, φ−] is the Feynman–Vernon influence action [44, 43].

In the case where the environment action Sgrav is quadratic in the fields hµν , the

initial density matrix of the environment is Gaussian, and the interaction term Sint

is bilinear, i. e. both hµν and φ appear linearly, the influence action takes a simpler

form [43, 45]. The explicit calculation is straightforward but tedious, following chapter

3 of [43].

Blencowe [41] uses the Born approximation, i. e. the assumption that the

environment is approximately constant over the time intervals of interest, and obtains

the master equation

∂

∂t
ρ(t) = − i

~
[Hmatter, ρ(t)]

−
∫ t

0

dτ

∫
d3r d3r′

(
N(τ, r− r′)

(
2
[
Tµν ,

[
T̃ µν , ρ(t)

]]
−
[
T µµ ,

[
T̃ νν , ρ(t)

]])
−iD(τ, r− r′)

(
2
[
Tµν ,

{
T̃ µν , ρ(t)

}]
−
[
T µµ ,

{
T̃ νν , ρ(t)

}]))
, (39)
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where we simply write ρ ≡ ρmatter now, and define Tµν = Tµν(τ, r), T̃µν = Tµν(−τ, r′).
The expressions N and D are the noise and dissipation kernels [41], respectively

N(t, r) =
G

4π2

∫
d3k

exp(i k · r)

k
(1 + 2n(k)) cos kt (40a)

D(t, r) =
G

4π2

∫
d3k

exp(i k · r)

k
sin kt , (40b)

where n(k) is the Bose-Einstein occupation number at a given temperature T . These

functions are a consequence of the assumption that the background field is described by

a thermal distribution of gravitons.

In the nonrelativistic limit, the dominant contribution to the stress-energy tensor

comes from the component T00 ≈ m2c2

2~2 φ
2, and the master equation (39) simplifies further.

For decoherence effects, only the noise term proportional to N needs to be considered,

while the dissipation term can be neglected.

Blencowe [41] proceeds with the introduction of a basis of coherent states

| α〉 = exp

[
−1

2

∫
d3k |α(k)|2 +

∫
d3k α(k) â†(k)

]
| 0〉 , (41)

with

α(k) = ϕ0R
3

(
m2c2 + ~2k2

4~2

)1/4

e−ik · r0−(kR)2/2 , (42)

which satisfy

〈α | φ(r) | α〉 ∼ exp

(
−(r− r0)2

2R2

)
and 〈α | φ̇(r) | α〉 = 0 , (43)

and can, therefore, be understood as models for macroscopic material objects in the

shape of “Gaussian matter balls”. The radius is supposed to be much larger than the

Compton wavelength, R � λc = h/(mc). One further assumes that these balls have

negligible free spreading. For two such Gaussian matter distributions in a superposition

of distinct rest mass energies E1 − E2 = ∆E one then finds a decoherence rate

Γdec =
kBT

~

(
∆E

EP

)2

, (44)

EP =
√

~c5/G being the Planck energy.

2.2.2. Generic perturbations A more generic approach is taken by Anastopoulos and

Hu [46] who derive a master equation for gravitational decoherence in a more generic

way. Starting from the action (32) for a scalar field interacting with the gravitational

field, the usual Arnowitt–Deser–Misner (ADM) formalism [47] is employed in order to

perform a 3+1 decomposition of the action and the metric. An expansion to first order

in κ = 16π G yields the perturbations hij = δij +κγij for the spatial metric, N = 1 +κn

for the lapse, and N i = κni for the shift function. A Legendre transformation then
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results in the Hamiltonian (in natural units)

H =

∫
d3x

[
1

κ

(
ΠijΠij −

1

2
Π2 + κ2Vg

)
+

1

2

(
π2 + ∂iφ∂

iφ+m2φ2
)

−κ
2
γij∂iφ∂jφ+

κγ

4
(∂iφ∂

iφ+m2φ2 − π2) + nH + niP i
]
, (45)

with γ = δijγij. Πij are the conjugate momenta of the spatial perturbation γij, π is

the conjugate momentum of the scalar field φ, and the self-gravitational potential Vg
(containing the second order terms in γ) is given by

Vg = −1

2
∂kγij∂

iγkj − 1

2
∂kγ∂

kγ + ∂iγ∂kγ
ik +

1

4
∂kγij∂

kγij . (46)

The Hamiltonian and momentum constraints H and P i generate gauge transformations

which correspond to temporal and spatial reparametrizations of the free fields. It is

important to note that such reparametrizations in general relativity are pure gauge.

As pointed out by Anastopoulos and Hu: “Any postulate of dynamical or stochastic

fluctuations that correspond to space and time reparametrizations conflicts with the

fundamental symmetries of GR” [46].

For the quantization of the Hamiltonian (45), Anastopoulos and Hu [46] fix a gauge

in which both the longitudinal part of the metric fluctuation γij and the transverse trace

of the gravitational conjugate momentum Π vanish. This choice ensures that the Lorentz

frame introduced by the 3+1 decomposition remains invariant under reparametrizations

of space and time.

Writing the Hamiltonian operator as Ĥ = Ĥ0 + κV̂g + Ĥint, the interaction

Hamiltonian Ĥint is expressed in terms of creation and annihilation operators b̂†±(k) and

b̂±(k) corresponding to the transverse traceless metric perturbations and their conjugate

momenta. The index ± denotes the two polarizations, and with the operator Ĵ±(k),

derived from the normal ordered stress operator, the interaction Hamiltonian can be

written as‖

Ĥint =
∑
σ∈±

∫
d3k

(2π)3

[
|k| b̂†σ(k)b̂σ(k)− 1

2

√
κ

|k|

(
b̂σ(k)Ĵ†σ(k) + b̂†σ(k)Ĵσ(k)

)]
. (47)

This Hamiltonian models the gravitational environment which consists of harmonic

oscillators coupled to the matter degrees of freedom encoded in Ĵ .

The next step is to derive a master equation for the matter degrees of freedom.

For this purpose, one starts with the assumption that the initial state factorizes

in matter and gravitational degrees of freedom, i. e. ρ = ρmat ⊗ ρgrav, and traces

out the gravitational part. The only issue is the choice of the initial state ρgrav

of the gravitational field. Assuming that it is Gaussian at a “temperature” Θ, the

Hamiltonian (47) straightforwardly yields the master equation¶
∂

∂t
ρmat(t) = −i

[
Ĥ0 +

κ

2
V̂ , ρmat

]
‖ See [46] for the precise definition of Ĵ and b̂.
¶ Note that the derivation of this master equation to second order in

√
κ does not make use of the

Born–Markov approximation.
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−
∑
σ∈±

∫
d3k

(2π)3

κ

4 |k|

[(
coth

(
|k|
2Θ

)
+ 1

)[
Ĵ†σ(k),

[
K̂σ(k), ρ(t)

]]
+

(
coth

(
|k|
2Θ

)
− 1

)[
Ĵσ(k),

[
K̂†σ(k), ρ(t)

]] ]
(48a)

with

K̂σ(k) =

∫ ∞
0

ds e−i|k|se−iĤ0sĴσ(k)eiĤ0s . (48b)

In the limit of a nonrelativistic particle, restricted to one dimension, the momentum

space master equation simplifies considerably, yielding

∂

∂t
ρ(p,p′; t) = − i

2 ~m
[
p2, ρ(p,p′; t)

]
− 4π GΘ

9 ~2m2 c5

[
p2,
[
p2, ρ(p,p′; t)

]]
, (49)

and the decoherence rate

Γdec =
GΘ

~2m2 c5
〈p〉2 ∆p2 (50)

if 〈p〉 is the momentum expectation value and ∆p the variance of a momentum

superposition state. As the decoherence described by (49) is due to a difference in

energy rather than in momentum, a state peaked at +p and −p will not decohere. This

is a feature this model has in common with the previously discussed decoherence effect

due to thermal gravitons [41] discussed above in section 2.2.1.

A remark is necessary concerning the interpretation of the “temperature” variable

Θ. As Anastopoulos and Hu [46] point out, an initial state ρgrav as a thermal state at a

certain temperature makes sense in the case where metric perturbations are of a classical

nature. For fluctuations that are inherently quantum, the natural choice for the initial

state is the quantum field theoretical vacuum state of the graviton field. As gravitons

interact only weakly, their thermalization cannot be taken for granted. In this sense,

the parameter Θ is to be understood as interpolating between classical and quantum

gravitational fluctuations. The previously discussed model of thermal gravitons [41]

should also be seen in this light.

A very similar approach, without the restriction to a scalar field, is followed by

Oniga and Wang [48, 49] who arrive at a rather generic master equation for gravitational

decoherence under minimal assumptions which has a structure similar to (2.2.2).

2.2.3. Minimal length The previously described decoherence effect due to a thermal

graviton background only requires the assumption that gravity is quantized at low

energies in a similar fashion as, e. g., electrodynamics. Another feature which is usually

associated with quantum theories of gravity at high energies is the existence of a minimal

length scale, which is often assumed to be of the order of the Planck length `Pl.

Power and Percival [33] make use of this idea in order to arrive at a master equation

which depends only on this minimal length scale as a free parameter. For the discussion

of this idea, we recall the master equation (26) in section 2.1.2, which resulted from

considering conformal fluctuations of the (classical) spacetime metric. There, the master

equation contained two free parameters: the amplitude A0 of the conformal fluctuation,
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as well as the coherence length scale L. Relating this to quantized gravity, Power and

Percival [33] estimate the amplitude of conformal quantum fluctuations to be of the

order of A0 ≈ (`Pl/lcut-off)2, where the proposed minimal length scale is used as a cut-off

length lcut-off. This result can be directly inserted into the master equation (26) obtained

for the classical conformal fluctuation. The coherence length scale is assumed to coincide

with the cut-off length, i. e. L = lcut-off, resulting in a prediction for the evolution of the

density matrix which has only the cut-off scale as a free parameter:

∂

∂t
ρ(x,x′; t) = − i

~
[H0, ρ(x,x′; t)]−

√
π

2

m2~2G4

c9l7cut-off

(
1− e

−2
(x−x′)2

l2
cut-off

)
ρ(x,x′; t) . (51)

Note that, as in section 2.1.2, it is assumed that fluctuations travel at the speed of light.

Wang et al [50] provide a discussion which is based on the model by Power and

Percival [33]. They add further degrees of freedom to the gravitational field allowing

also for shearing actions. For this purpose, the metric is rewritten as gµν = (1+A)2 γµν ,

where A is the conformal field known from the previous discussion, but the rescaled

metric γµν takes the place of the Minkowski metric. Its time components are the same

as in the Minkowski case, γ00 = 1 and γ0i = 0, while the spatial components γij vary

and are normalized such that det(γij) = −1. In contrast to the conformal approach,

this ansatz does not violate Einstein’s equations.

Instead of the free Klein-Gordon equation ηµν∂µ∂νA(x) = 0, the dynamics of the

field A then are given by the conformal constraint Hamiltonian [50]

H(CF) = − 3c2

8π G

(
Ȧ2 + c2 γij

∂

∂xi
A

∂

∂xj
A

)
. (52)

This is almost the Hamiltonian for a massless, scalar Klein-Gordon field, however

belonging to negative energy due to the positive sign between temporal and spatial

derivatives. The total Hamiltonian can be re-written as a sum of the conformal

Hamiltonian and a second term describing gravitational waves: H = H(CF) +H(GW).

Assuming that quantum fluctuations lead to a gravitational background for times

shorter than τ0 = λtPl, i. e. a multiple of the Planck time defined by the factor λ, and

modeling these fluctuations as standing waves in a box of unit volume with a frequency

cut-off at ω0 = 2π/τ0, one can calculate the zero point energy

H
(GW)
0 ≈ 2π2 c2mPl

λ4 `3
Pl

, (53)

which would be of the order of λ−4 × 1098 kg/m3. However, Wang et al [50] point

out that the conformal field gives a contribution of equal magnitude and opposite sign:

H(CF) = −H(GW)
0 . The interpretation they provide is that every pair of zero point

energy gravitons of opposite helicities carries the energy ~ω/2 but is accompanied by

a quantum of the conformal field with negative energy −~ω. The gravitational wave

terms, being of first post-Newtonian order, give no contribution in the Newtonian limit.

The conformal field, on the other hand, leads to a Newtonian gravitational potential

and decoherence effects as discussed in section 2.1.2. From (52) together with the
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condition H(CF) = −H(GW)
0 one can show that the amplitude of the conformal field

is A2
0 = 4π/(3λ2). This can be inserted into (26) and yields a lower bound on λ

by comparison with experimental observations, where the dependence on experimental

parameters is λ ∼ m2/3 (δρ/ρ0)−1. From atom interferometric data [51] one concludes

that λ ≥ 7600. Under the assumption that this model is an accurate description of

reality, this implies that the scale where quantum gravitational effects become relevant

cannot be lower than about four orders of magnitude above the Planck scale, and refined

experiments would further increase this value.

Garay [52, 53] provides a model for decoherence based on the assumption of a

spacetime foam [54]. The spacetime foam leaves an imprint also at low energies as a

consequence of assumed nonlocal interactions. Specifically, given a basis {hi[t]}i of the

local, gauge-invariant interactions, the dominant contribution in the Euclidean action

comes from bilocal interactions

Iint =
1

2

∫
dt dt′ cij(t− t′)hi[t]hj[t′] . (54)

Garay considers three separate scales which are assumed to separate: the Planck scale

`Pl, the scale l of low energy physics, and the scale r beyond which gravitational

fluctuations are of relevance. The parameter ε ∼ e−(r/`Pl)
2
(r/`Pl)

4(l/`Pl)
−2 is introduced,

which suppresses both gravitational fluctuations (r � `Pl) and low energy scales

(l � `Pl) far from the Planck scale. It can be shown that the interactions for a scalar

field φ are of the order hi[t] ∼ φ2/`2
Pl and the bilocal interaction term is of the order

Iint ∼ e−(r/`Pl)
2
(r/`Pl)

4, while further terms are of higher order in both ε and r/l.

Assuming that the correlation function cij(t− t′) is Gaussian, after a Wick rotation

back into the Lorentz frame and making use of the influence functional formalism

(cf. (38)) the resulting master equation at lowest order is

∂

∂t
ρ(t) = − i

~
[H0, ρ]−

∫ ∞
0

dτ cij(τ) [hi, [hj, ρ]] (55)

where the second term describes the effect of the fluctuations while the first term is

the usual Hamiltonian evolution. Dissipation terms are absent from (55), as they are of

higher order in r/l. The correlation functions cij are not predicted by this model but

are associated with a thermal bath, quite similar to the model by Blencowe [41]. The

reasoning behind this approach comes from the comparison of the master equation (55)

with the equations for quantum Brownian motion [55].

A critical view at this result [56] raises the question whether the performed

separation of scales is physically reasonable, given that in general relativity the local

structure of spacetime is strongly linked with the locality of interactions. It is also

pointed out that the nonlocal interaction (54) is, at the level of the resulting master

equation, indistinguishable from the effect of local additional phenomenological fields.

The Born–Markov approximation may not be a good assumption for the dynamics

induced by a spacetime foam. If the approximation does not hold, the resulting master

equation could be of a vastly different shape. Similar criticisms [56] apply to a related
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derivation [57] of decoherence in the flavor sector for neutrinos due to a spacetime foam

motivated by string theory.

2.2.4. Time fluctuations A different approach to introduce quantum fluctuations of

spacetime in quantum mechanics is through the effect of such fluctuations on the time

parameter in the Schrödinger equation.

Intuitively speaking, a free quantum system evolves along a geodesic with the proper

time τ given by the metric, for instance

| ψ〉 → eiωτ | ψ〉 , (56)

with some frequency ω. If the metric is considered a quantum object itself, which is in

a quantum state | gµν〉, then one expects the quantum state of the system to become

entangled with the state of the metric: | ψ〉⊗ | gµν〉. Specifically, if one allows for linear

superposition states of metric fluctuations, i. e. 1
2
(| gµν〉+ | g′µν〉), then the system state

| ψ〉 becomes entangled to the metric state and evolves according to

| ψ〉 ⊗ 1

2

(
| gµν〉+ | g′µν〉

)
→ 1

2

(
eiωτ | ψ〉⊗ | gµν〉+ eiωτ ′ | ψ〉⊗ | g′µν〉

)
, (57)

where τ and τ ′ are the proper times corresponding to the metrics gµν and g′µν ,

respectively. The fluctuations of the metric propagate to the system state and lead

to a loss of coherence. Kok and Yortsever discuss decoherence on the grounds of these

considerations [58].

A slightly more sophisticated model by Milburn [59] treats the dynamics of quantum

states as probabilistic, finite jumps rather than a continuous unitary evolution. This

is put on more rigorous mathematical grounds, motivated from time as a statistical

variable, by Bonifacio [60], however with essentially identical physical implications.

Instead of the continuous evolution of the density matrix,

ρ(t+ τ) = exp

(
− i

~
H τ

)
ρ(t) exp

(
i

~
H τ

)
, (58)

one assumes that a change of the system occurs with a certain probability, specifically

that there is a probability pn(τ0, τ) that n random time shifts by τ0 lead to a total time

shift of τ . The density matrix then satisfies an equation

ρ(t+ τ) =
∞∑
n=0

pn(τ0, τ) exp

(
− i

~
H nτ0

)
ρ(t) exp

(
i

~
H nτ0

)
. (59)

In the limit τ0 → 0 this yields the continuous equation (58). For the specific choice of

a Poisson distribution,

pn(τ0, τ) =
τn

τn0 n!
e−τ/τ0 , (60)

the master equation takes the form

∂

∂t
ρ(t) =

1

τ0

(
exp

(
− i

~
H τ0

)
ρ(t) exp

(
i

~
H τ0

)
− ρ(t)

)
, (61)
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or after expansion in the, presumably small, parameter τ0 which indicates the time scale

where deviations from continuous evolution become apparent:

∂

∂t
ρ(t) = − i

~
[H, ρ(t)]− τ0

2~2
[H, [H, ρ(t)]] . (62)

As pointed out by Anastopoulos and Hu [61], these considerations are in fact

more general, and the semigroup equation (59) follows quite generally for any physical

quantity and its corresponding generator. For example, the above results remain valid

if time is replaced by position and the time translation generator H by the momentum

p. They criticize that in Milburn’s formalism there is no requirement to relate the

incremental random time shifts with gravity or the Planck scale. This association is a

mere intuitive hypothesis, and considering that many quantum effects are only poorly

modeled by classical statistics, not necessarily a very compelling one.

Note also that, as Milburn points out himself [59], Lorentz invariance requires

the random time shifts to be accompanied by a similar spatial structure, because the

temporal jumps will appear as position fluctuations in another reference frame.

2.3. Decoherence due to gravitational time dilation

Decoherence can occur even in a classical and completely static spacetime, where the

gravitational field itself exhibits no quantum or stochastic fluctuations. Instead, this

type of decoherence effect stems from a coupling of internal and external degrees of

freedom in a complex quantum system, which can be triggered by gravity.

This has been discussed as a consequence of time dilation in a quite intuitive

fashion by Pikovski et al [20], based on earlier work by the same authors [62] on

the interference of clocks; their results have since been the starting point of an ongoing

controversy [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73].

A “clock” in this context refers to any system which can be modeled as point-

like (i. e. with a single center-of-mass coordinate) and contains some oscillatory internal

degrees of freedom. Quantum mechanically, such a “clock” is typically described by a

product state

|Ψ〉 =| ψcm〉⊗ |Ψclock〉 , (63)

with ψcm the center-of-mass position wave function and Ψclock the internal clock state.

In nonrelativistic settings, the clock undergoes a dynamical evolution described by a

Hamiltonian H = Hcm +Hclock. Hence, the evolution strictly separates into the center-

of-mass motion and the internal dynamics (“ticking”) of the clock:

|Ψ(t)〉 = e−
i
~ H t |Ψ〉0 = e−

i
~ Hcm t | ψcm〉0 ⊗ e−

i
~ Hclock t |Ψclock〉0 . (64)

In relativistic contexts, however, this strict separation does no longer hold.

The proper time measured by a clock between two spacetime events A and B

depends on the spacetime trajectory the clock takes from A to B. In special relativity,

this is of course known as the “twin paradox”, the reason for which is special relativistic

time dilation, i. e. the fact that moving clocks tick at a slower rate. On the other hand,
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general relativity predicts that clocks in a stronger gravitational field tick at a slower

rate (and, therefore, clocks on Earth tick the faster the higher their altitude).

Two clocks moving from A to B on different spacetime trajectories will,

consequently, show a proper time difference ∆τ . For a quantum superposition of two

clocks—assuming that the linear superposition principle for wave functions remains valid

in this relativistic context—one expects constructive interference if ∆τ is an integer

multiple of both the period E/~ of the clocks center-of-mass matter-wave and the

oscillation period of the clock. The first condition is simply the equivalent to the

nonrelativistic requirement for the optical path length to be an integer multiple of

the wavelength. The second condition poses an additional coherence criterion which is

absent in the nonrelativistic limit.

If the considered system is not a “clock”, containing one single internal degree of

freedom, but rather a complex system (such as a large molecule) with many degrees

of freedom of different proper frequencies, coherent superpositions become increasingly

unlikely for proper time differences ∆τ 6= 0, leading to an effective decoherence of wave

functions due to the time dilation effect [20].

Attempting to put this intuitive expectation on rigorous mathematical grounds,

one faces several difficulties. Quantum mechanics, strictly speaking, makes no sense in

a relativistic context as any interacting quantum theory is facing the problem that it

must account for particle creation and annihilation [74]. In principle, relativistic effects

should be described in the language of quantum field theory—and in the gravitational

case in terms of quantum field theory on curved spacetime [18, 19].

In situations where the particle number is approximately conserved, the single

particle Schrödinger equation can, nonetheless, be obtained from a relativistic Klein-

Gordon field as the c → ∞ limit, either by making use of the Foldy-Wouthuysen

transformation [75], or by a WKB like expansion [38, 76]. Extending this derivation

to the next order in 1/c2 one obtains an O(1/c2)-Hamiltonian for a single particle which

includes relativistic corrections. In the special relativistic case, these corrections are

well known, for instance from the theory of the hydrogen atom. In a homogeneous

gravitation potential the same method yields the Hamiltonian+

Hone-particle =
p2

2m
+

p4

8m3c2
− g mz +

g

4mc2

{
z, p2

}
. (65)

In nonrelativistic physics one would assume the same single particle Hamiltonian to also

describe the center of mass of a system with internal degrees of freedom. In the context

of relativity, however, the internal energy contributes to the (inertial and gravitational)

mass of the system. The rest mass energy mc2 must then be replaced by the full

relativistic energy mc2 + Hintern of the system, which contains the Hamiltonian for the

internal degrees of freedom. The full Hamiltonian to O(1/c2) reads:

H =
p2c2

2(mc2 +Hintern)
+

p4c4

8(mc2 +Hintern)3

+ The Hamiltonian given here is the one following for a Rindler spacetime, while Lämmerzahl [76]

derives the Hamiltonian in a Schwarzschild spacetime. The differences are discussed in [71].
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− g
c2

(mc2 +Hintern) +
g

4mc2

{
z, p2

}
+Hintern

=
p2

2m
− g mz +Hintern +

p4

8m3c2
+

g

4mc2

{
z, p2

}
− Hintern

mc2

(
p2

2m
+ g mz

)
. (66)

The nonrelativistic part of this Hamiltonian strictly separates into center of mass and

internal motion, as expected. The relativistic O(1/c2) corrections, on the other hand,

contain a special relativistic coupling of Hintern to the center-of-mass energy, as well as

a gravitational coupling term −g z Hintern/c
2. This coupling is the starting point for the

derivation of the gravitationally induced decoherence effect [20].

A remark is at order concerning the meaning of the Hamiltonian (66): It is

well known that the notion of center-of-mass coordinates is ambiguous in relativistic

contexts [77]. Specifically, a definition of center-of-mass coordinates which satisfy

canonical commutation relations, and at the same time transform covariantly under

Lorentz transformations does not exist. One consequence is that any choice of center-

of-mass coordinates that allows for a straightforward canonical quantization is frame

dependent. Such a definition of center-of-mass coordinates based on the form of the

Poincaré group generators has been introduced by Krajcik and Foldy [78] for Minkowski

space, and recently has been extended to the situation of an accelerated observer (or a

homogeneous gravitational field) [71]. The result is indeed the Hamiltonian (66).

Once the existence of the coupling term Hcoup = −g z Hintern/c
2 between center

of mass and the internal degrees of freedom is accepted, the quantum mechanical

description is quite straightforward, and follows the usual prescription of open quantum

systems. The full Hamiltonian can then be written as H = Hcm +Hintern +Hcoup, where

the center of mass plays the role of the system and the internal degrees of freedom act

as a bath. In the Born–Markov approximation, after tracing out the bath degrees of

freedom, the master equation for the system is obtained as [20]

∂

∂t
ρcm(t) = − i

~

[
Hcm +

g

c2
z 〈Hcoup〉, ρcm(t)

]
− ∆E2

~2c4

×
∫ t

0

dt′
[(
g z +

p2

2m2

)
,

[
e−

i
~ Hcm t′

(
g z +

p2

2m2

)
e

i
~ Hcm t′ , ρcm(t)

]]
, (67)

with ∆E2 = 〈H2
coup〉 − 〈Hcoup〉2. Assuming that the center-of-mass motion is slow

compared to decoherence, momentum terms can be neglected, and only the linear term

in t is considered, which leads to

∂

∂t
ρcm(t) = − i

~

[
Hcm +

g

c2
z 〈Hcoup〉, ρcm(t)

]
− ∆E2 g2

~2c4
t [z, [z, ρcm(t)]] , (68)

and a decoherence rate

Γdec =
∆E g∆z√

2 ~ c2
, (69)

which depends on both the variance of the internal energy and the variance in the width

of the center-of-mass wave-function.

It is also interesting to assess to which extent this gravitationally induced

decoherence effect can be detected in the lab. Equation (69) tells that one needs to
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prepare a system with a large energy spread, and largely delocalized in space. A vacuum

chamber is needed in order to decrease decoherence from gas particles, and a refrigerator

in order to decrease thermal decoherence. An analysis performed in [68] shows that

current technology cannot sufficiently suppress competing decoherence effects in order

to allow for a detection of the time dilation induced decoherence; new schemes must be

designed.

In addition to the question whether or not this decoherence effect is observable in

practice, its compatibility with the equivalence principle has been questioned [64, 63, 65].

In the case of a free falling system, there is no contradiction, as long as one accepts

that an accelerated observer can see effects which are absent in inertial frames—a fact

that is well known, for instance, in the case of the Unruh effect [79, 80, 81]. The

equivalence principle simply states that for a free falling particle both an accelerated

observer (in empty space) and an observer at constant altitude on Earth (“earthbound”)

agree on their observations. It does not require these observations to be identical with

the expectation in an inertial frame.

The requirement of a stationary system (in order to disregard the momentum terms

in (67)), however, implies that not only the observer is earthbound but the system is as

well. Then the full Hamiltonian must also include some external potential which keeps

the system from falling and which, for a consistent description, must include relativistic

corrections up to O(1/c2). A-priori, there is no reason to exclude the possibility that

these correction terms contribute to the coupling of internal degrees of freedom and

the center of mass, and thus can overshadow or even cancel the gravitational coupling.

Whether or not the decoherence effect also exists in a system that is held at constant

height by an external potential is still subject of a debate [71, 72, 73].

3. Spontaneous wave function collapse and the role of gravity

In the previous section we discussed decoherence effects induced by gravity, within the

standard framework of quantum physics. In this section, we will review proposals which

attempt to modify quantum theory, motivated from gravity.

The reason for such modifications is that, despite the success of Quantum Mechanics

in explaining the structure of matter, the debate about its meaning and limits of validity

never ceased. The main reason of concern lies in a straightforward consequence of the

linearity of the Schrödinger equation, which is the superposition principle. It implies

that superpositions of matter states are possible, and this is what one actually observes

in experiments with atoms and molecules [82, 83, 84]. More than this, multi-particle

superpositions, namely entangled states, show how different quantum physics can be

from classical physics, in the form of non-locality [85, 86, 87]. They are also the basis

for the new quantum technologies [88].

Quantum Mechanics contains no inner limit of validity, and it seems natural, until

experiments prove the contrary, to extend it also to the description of the macroscopic

domain of ordinary objects. In the end, macroscopic objects are made of atoms, which
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are quantum. But this poses a problem, first addressed by Schrödinger himself [89]:

situations can occur, according to the Schrödinger equation, where macroscopic quantum

superpositions of matter can be created, in plain contradiction with our daily experience.

Therefore, a straightforward application of the Schrödinger equation to macroscopic

object seems inconsistent.

The standard formulation of Quantum Mechanics provides a tentative resolution

of the conflict by assuming the collapse of the wave function at the end of a

measurement [90]. But clearly this is a phenomenological recipe, which cannot be

accepted at the fundamental level. Weinberg among many, wrote: “The Copenhagen

interpretation assumes a mysterious division between the microscopic world governed by

quantum mechanics and a macroscopic world of apparatus and observers that obeys

classical physics. During measurement the state vector of the microscopic system

collapses in a probabilistic way to one of a number of classical states, in a way that is

unexplained, and cannot be described by the time-dependent Schrödinger equation.” [91]

To cope with this problem, the scientific community provided alternative

formulations and theories: Bohmian mechanics [92, 93, 94, 95, 96, 97], many

worlds [98, 99, 100] and models of spontaneous wave function collapse (collapse

models) [101, 102, 103, 104] are among the most popular. Here we will review the

third option, because of its potential relation to gravity.

The fundamental idea behind collapse models is that the Schrödinger equation

is only approximately valid. It should be supplemented with additional stochastic

and nonlinear terms, which account in a dynamical way for the collapse of the wave

function in measurement-like situations, instead of assuming it phenomenologically

as the Copenhagen interpretation does. Here a first problem arises: how can one

consistently modify such a fundamental equation as the Schrödinger equation, without

running into theoretical and experimental inconsistencies?

After decades of research [105, 106, 107, 108, 109], the situation seems now rather

clear [108]. If one asks for i) norm conservation and ii) no superluminal signaling,

then the structure of the modified Schrödinger equation is fixed, as we will now show.

But first a comment about these two requirements. Norm conservation is needed if

one wants to interpret the wave function in a reasonable way as objectively describing

the state of a quantum systems. One consequence of its violation would be that

mass or number of particles spontaneously decays in time. The second requirement,

that no signal should be able to be sent faster than the speed of light, is needed for

consistency with special relativity. A collapse that does not meet this requirement

would allow for instantaneous communication at arbitrarily large distances [105], which

is in contradiction to relativistic causality. Note that this instantaneous signaling has

nothing to do with the fact that the Schrödinger equation is a nonrelativistic equation;

it is only due to the nonlocality of the collapse.

The requirement of no superluminal signaling has a precise formulation [105]:

whatever the evolution for the state vector, the dynamics for the density matrix

must be linear. This basically implies that the master equation is of the Lindblad
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type [15, 14, 36], with possibly negative coefficients [109]. By adding complete positivity,

one has the true Lindblad structure with positive coefficients.

This also implies that when adding nonlinear terms to the Schrödinger equation,

one has to include appropriate stochastic terms, which wash away any nonlinearity at

the density matrix level. Nonlinear and deterministic evolutions for the state vector

unavoidably imply a nonlinear evolution for the density matrix. In other words,

nonlinearity and stochasticity have to go hand in hand to have a consistent dynamics

for the wave function. This is the basic reason why the structure of consistent nonlinear

modifications of the Schrödinger equation is uniquely identified.

Let us then consider the modified Schrödinger equation, written in the Itô

language [110]:

dφt =
[
−iĤ0 dt+

√
λ Â dWt + Ô

]
φt, (70)

with ~ = 1. The term
√
λ Â dWt encodes the coupling of the quantum system

(represented by the wave function φt) with the noise Wt (a Wiener process being the

first and easiest choice), via the self-adjoint operator Â, on whose eigenstates the state

will eventually collapse. The coupling constant λ sets the strength of the collapse

mechanism. Note the absence of the imaginary unit in front of this term, which makes

the dynamics non standard. This is necessary, in order to arrive at a nonlinear equation

of the collapse type. The operator Ô will be fixed by the requirement of no superluminal

signaling.

The norm of φt is not conserved. Using Itô calculus, one can easily write down the

equation for the normalized vector ψt = φt/‖φt‖:

dψt =

[
−iĤ0dt+

√
λ(Â− 〈Â〉t)dWt + λ

(
3

2
〈Â〉2t −

1

2
〈Â2〉t − Â〈Â〉t

)
dt

+

(
Ô − 1

2
〈(Ô† + Ô)〉t

)
dt

]
ψt, (71)

with 〈Â〉t = 〈ψt|Â|ψt〉. As expected, the normalized vector evolves according to a

nonlinear stochastic dynamics. The stochastic ensemble of pure states ρWt = |ψt〉〈ψt|
obeys the following dynamics:

dρWt = −i[H, ρWt ]

+λ
(

4〈Â〉2tρWt − 〈Â2〉tρWt − 2Â〈Â〉tρWt − 2ρWt Â〈Â〉t − ÂρWt Â
)

dt

+
(
Ô†ρWt + ρWt Ô − 〈(Ô† + Ô)〉tρWt

)
dt

+(extra terms) dWt. (72)

When taking the expectation value to compute the dynamics for the density matrix

ρt = E[ρWt ], the ‘extra terms’ average to 0, while the remaining terms generate a

nonlinear evolution for the ensemble, as already stated. This leads to superluminal

signaling, which can be avoided by choosing Ô = −(λ/2)Â2 + 2λ(Â − 〈Â〉t)〈Â〉t, in
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which case all nonlinear terms cancel, and the equation for ρt becomes of the Lindblad

type:

d

dt
ρt = −i[Ĥ0, ρt]−

λ

2
[Â, [Â, ρt]]. (73)

In turn, the equation for the normalized state vector ψt reads:

dψt =

[
−iĤ0dt+

√
λ(Â− 〈Â〉t)dWt −

λ

2
(Â− 〈Â〉t)2dt

]
ψt, (74)

This is the structure of all collapse models. One can also proceed backwards [109] and

show how, given (73), one unravels (74). It is not difficult to show that the new terms

stochastically drive the state vector toward one of the eigenstates of the operator Â, with

a probability equal to the Born rule [102, 111]. The above equation can be generalized

to include more than one operator, therefore more than one noise [102]; non-self-adjoint

operators [102]; more general noises, either complex [112], non white [113, 114, 115], or

both [116].

So far, we presented the abstract formulation of collapse models. A physical model

of spontaneous wave function collapse must justify the classical world emerging from an

underlying quantum world: wave functions of macro-objects should be well-localized in

space. The collapse should be negligible for microscopic system, and grow in strength

with the mass/size of the system. This suggest taking for the collapse operator the local

mass density m̂(x) =
∑

imiδ
(3)(x− x̂i), coupled to a white noise w(x, t) spread through

space. Then (74) becomes

dψt =

[
− i

~
Ĥ dt+

√
λ

∫
d3x (m̂(x)− 〈m̂(x)〉t) dWt(x)

−λ
2

∫
d3x

∫
d3y G(x− y)(m̂(x)− 〈m̂(x)〉t)(m̂(y)− 〈m̂(y)〉t) dt

]
ψt, (75)

(now we have re-introduced ~) where Wt(x) is a family of Wiener processes, with spatial

correlation function equal to G(x − y). We assume that G(x − y) = G(|x − y|),
to respect translational and rotational symmetries. This equation was first proposed

by Ghirardi, Pearle and Rimini and is the mass-proportional version [117, 118] of

the Continuous Spontaneous Localization (CSL) model [102], if one takes a Gaussian

correlation function: G(x − y) = exp(−(x − y)2/4r2
C), where the correlation length

rC (with dimension [L]) is a phenomenological parameter, and λ = λCSL/m
2
0, with m0

a reference mass—equal to the mass of a nucleon, which is added to the definition of

lambda to make the model mass-dependent—and λCSL (with dimension [T−1]) is the

collapse rate, the second phenomenological parameter of the model.

This model has been extensively studied in the literature [103, 104]. Three

properties are particularly important: i) The collapse drives the wave function towards

states, which are localized in space, thus suppressing spatial superpositions. ii) If one

considers composite systems such as rigid objects, then the center-of-mass dynamics

satisfies a single-particle collapse equation, with an effective collapse rate λCM
CSL which

grows with the mass/size of the system (λCM
CSL = f(N)λCSL, where f(N) is a monotonically
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increasing function of the total numberN of nucleons and of the geometry of the system).

Therefore, with a suitable choice of the parameters (the original choice was λCSL = 10−16

s−1 and rC = 10−7 m [101]) one can show that the collapse effects are negligible for

microscopic systems, while for composite systems the amplification mechanism makes

sure that the center-of-mass wave-function of macroscopic objects is always well-localized

in space. iii) Quantum measurements are consistently described, and their entire

phenomenology (definite outcomes, Born probability rule, von Neumann projection

postulate, role of the operators as observables) emerges from the dynamics [119, 120].

For future reference, we write the master equation for the statistical operator

ρt = E[|ψt〉〈ψt|]:
d

dt
ρ̂t = − i

~
[Ĥ, ρ̂t]−

λ

2

∫
d3x

∫
d3y G(x− y) [m̂(x), [m̂(y), ρ̂t]] , (76)

which again is of the Lindblad type. We will refer to the second term—describing

the collapse effect—as L[ρ̂t]. For completeness, we write also the Fourier transformed

equation:

d

dt
ρ̂t = − i

~
[Ĥ, ρ̂t] + λ

∫
d3k
G(k)

(2π)3

[
m̂(k) ρ̂t m̂

†(k)− 1

2

{
m̂†(k) m̂(k), ρ̂t

}]
, (77)

where m̂(k) and G(k) are the Fourier transforms of m̂(x) and G(x), respectively.

The relevant open question for the present review is what causes the collapse, or

equivalently, what is the origin of the noise Wt(x). A tempting answer is that it has a

gravitational origin, and this idea is supported by two considerations. The first one is

that gravity naturally couples to the local mass density of each physical system, which

is the natural choice for a collapse model, as discussed here above. The second one

is that there is no proof so far that gravity is quantum, therefore the possibility is

still open for it to provide the anti-hermitian coupling (see (70)), which is necessary to

have a collapse equation. We will review four proposals, which connect gravity to the

collapse of the wave function: The Diósi–Penrose model [121, 122, 123, 124], Adler’s

proposal [125], Károlyhaźy’s model [126, 127, 128, 129, 130, 131], and the Schrödinger–

Newton equation [132, 133, 134].

3.1. The Diósi–Penrose model

Diósi [121, 122, 123, 124] postulated (75) and assumed that the spatial correlator of the

noise is proportional to the Newtonian gravitational potential [135, 136]:

G(x) =
G

~
1

|x|
; (78)

this is the connection to gravity. Having defined G(x) this way, λ is a dimensionless

constant, which Diósi set equal to 1. Equivalently, one can define G(x) = 1/|x| and

λ = G/~. The structure of the Diósi–Penrose equation being the same as that of the

CSL equation, the collapse mechanism works the same way, with a different strength

due to the different choice of the correlation function and collapse rate.
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One advantage of this equation, which was one of Diósi’s motivations for proposing

it, is that it is defined without free parameters, contrary to the CSL model, which

contains two phenomenological parameters, the collapse rate λ and the spatial

correlation length of the noise rC . Here the collapse rate is governed by Newton’s

constant G, while the spatial correlation function is given by the “width” of the 1/|x|
function. However the model needs to be regularized, because 1/|x| does not vanish

for |x| → ∞ fast enough to make integrals converge. This is best seen by considering

the Lindblad term in (77), which for Diósi’s choice of the correlation function and for a

fixed number N of particles becomes (Q = ~k):

LN
DP[ρ̂t] =

G

2π2~2

N∑
j,l=1

mjml

∫
d3Q

Q2
f(Q)

×
[
e

i
~ Q · r̂j ρ̂(t) e−

i
~ Q · r̂l − 1

2

{
e

i
~ Q · r̂je−

i
~ Q · r̂l , ρ̂(t)

}]
, (79)

with f(Q) = 1 at this stage; for j = l integrals clearly diverge.

A cut-off can be introduced at the level of (76), by replacing the point-like density

operator with a coarse-grained mass density operator, with a spatial resolution R0. Diósi

originally introduced the coarse-grained mass density as follows:

m̂′(x) =
3

4πR3
0

∫
d3y θ(R0 − |x− y|) m̂(y), (80)

where θ(x) is the Heaviside step function. Subsequently, Ghirardi et al [117] introduced

the coarse-graining as follows:

m̂′(x) = (2πR2
0)−3/2

∫
d3y exp

(
−|x− y|2

2R2
0

)
m̂(y). (81)

Note that m̂′(x) is meant to replace m̂(x) in (76). These two cut-offs are practically

equivalent, and in the following we will consider only the second one. (79) remains the

same, with now

f(Q) = exp

(
−Q

2R2
0

~2

)
. (82)

Now integrals converge. Diósi proposed to set R0 ' 10−15 m, which is the

nucleon’s radius. It is a reasonable assumption, given that this model is intrinsically

nonrelativistic.

The cut-off can be also introduced directly at the level of (79), by limiting the

momentum integral to |Q| ≤ Qmax = ~/R0. It is easy to see that the new equation

is mathematically equivalent to (79) with f(Q) = θ(Q − Qmax), which eventually can

be approximated by a damping Gaussian function, f(Q) ≈ e−Q
2/Q2

max , such as (82). In

this way one can assign an interpretation to the cut-off and even justify a specific value

for it. In fact, Qmax can be read as an upper limit for the modes of the collapse field

that are the dominant modes contributing to the collapse. These modes are also small

enough to justify the nonrelativistic approach. This interpretation is very similar to

Bethe’s nonrelativistic computation of the Lamb shift (see [137]). Thus, if we argue
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that Qmax is the bound justifying the nonrelativistic approach, then one can replace R0

by the Compton wavelength; that is to say: R0 = 2π~
mc

, which is R0 ≈ 10−15 m for a

nucleon. Accordingly, in this way, one can provide a justification for the cut-off and its

chosen value. This choice, however, is incompatible with experimental data. We will

discuss this issue soon.

We now discuss how efficient the collapse is, one measure of it being how fast the off-

diagonal elements of the density matrix decay in time. Let us consider the one-particle

version of (79):

L1
DP[ρ̂t] =

∫
d3QΓDP(Q)

(
e

i
~ Q · r̂ ρ̂(t) e−

i
~ Q · r̂ − ρ̂(t)

)
, (83)

with

ΓDP(Q) =
Gm2

2π2~2

1

Q2
exp

(
−Q

2R2
0

~2

)
. (84)

A measure of the collapse rate is given by:

ΛDP =

∫
d3QΓDP(Q) =

Gm2

√
π~R0

, (85)

with [ΛDP] = s−1. For a nucleon it gives: ΛDP ' 10−15 s−1, implying that coherences

for microscopic particles are stable over extremely long times. On the other hand,

as anticipated, for macroscopic objects the collapse is amplified. Assuming a rigid

many-body system and tracing out the relative coordinates, the dynamical equation for

the center-of-mass density-matrix ρ̂M
t takes the same form as in (83), where ΓDP(Q) is

replaced by [136]:

ΓM
DP(Q) =

G

2π2~2Q2
|µ̃rel(Q)|2 exp

(
−Q

2R2
0

~2

)
, (86)

with µ̃rel(Q) =
∫

d3x eiQ ·x/~ µrel(x), where µrel(x) is the internal mass density. For

example, for a homogeneous rigid sphere of mass M and radius R, we get: µ̃rel(Q) ≈
M exp(−Q2R2/8~2). Accordingly, we find:

ΓM
DP(Q) ' GM2

2π2~2

1

Q2
exp

(
−Q

2(R2 + 4R2
0)

4~2

)
. (87)

Similar to (85), here the total collapse rate becomes:

ΛM
DP =

∫
d3QΓM(Q) ' 2GM2

~
√
π(R2 + 4R2

0)
. (88)

For example, ΛM
DP is of order 10−5 s−1 for a typical optomechanical nanosphere with

M ' 109 u and R ' 50 nm [138]. Evidently, the collapse rate of a nanosphere is ten

orders of magnitude larger than that of a nucleon, and would be even larger for a truly

macroscopic system. Therefore, the model is capable of describing both the quantum

properties of microscopic systems and the classical properties of macroscopic objects.

It is interesting to write down the explicit time evolution of the off-diagonal

elements; this will give the connection between Diósi’s model and Penrose’s idea, which

eventually justifies why the model is called the Diósi–Penrose model. Given the master
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equation (76), with Diósi’s choice for the collapse rate and spatial correlator of the noise,

and using the characteristic function [139, 140], the one-particle state at time t in the

position representation, 〈x|ρ̂1(t)|x′〉 = ρ(x,x′, t), is found to be

ρ(x,x′, t) =

∫
d3y

∫
d3p

(2π~)3
ρ0(x + y,x′ + y, t)

× exp

(
− i

~
y ·p− 1

~

∫ t

0

dτ
(
U
(p τ

m
+ x− x′

)
− U(0)

))
, (89)

where ρ0(x,x′, t) is the solution of the free Schrödinger dynamics and

U(x) = −G
∫

d3r

∫
d3r′

m′(r)m′(r′)

|x + r− r′|
= −Gm2 Erf(|x|/R0)

|x|
, (90)

is the Newtonian self-interaction where Erf(x) is the Gauss error function. If one neglects

the pure Schrödinger contribution in (76), which is justified on the short time scale,

then (89) reduces to an exponential decay of the form:

ρ(x,x′, t) = exp

(
− t

τ(x,x′)

)
ρ(x,x′, 0), (91)

where the characteristic damping time τ is:

τ(x,x′) =
~

U (x− x′)− U(0)
. (92)

Again, (91) implies that spatial superpositions of positions x and x′ decay with the rate

τ(x,x′). This is precisely the endpoint of Penrose’s idea [141, 142, 143, 133, 134, 4].

According to Penrose, given two macroscopic lumps of matter at different locations,

each being in a stationary state, i. e. an energy eigenstate, with the same eigenvalue, then

also their superposition is a stationary state and persists in time, according to quantum

theory. This is another way to express the Schrödinger’s cat problem. However, if one

takes also gravity into account, Penrose argues, things change. Each state will give

rise to a stationary spacetime geometry, and the two differ macroscopically from each

other. When a superposition of the two lumps is considered, then also the two spacetime

geometries will be superimposed, and this will not be stationary any longer. Penrose

writes: “We have to consider carefully what a ‘stationary state’ means in a context such

as this. In a stationary spacetime, we have a well-defined concept of ‘stationary’ for a

quantum state in that background, because there is a Killing vector T in the spacetime

that generates the time-translations. Regarding T as a differential operator (the ‘∂/∂t’

for the spacetime), we simply ask for the quantum states that are eigenstates of T ,

and these will be the stationary states, i. e. states with well-defined energy values. [. . . ]

However, for the superposed state we are considering here we have a serious problem.

For we do not now have a specific spacetime, but a superposition of two slightly differing

spacetimes. How are we to regard such a ‘superposition of spacetimes’? Is there an

operator that we can use to describe ‘time-translation’ in such a superposed spacetime?

Such an operator would be needed so that we can identify the ‘stationary states’ as its

eigenvectors, these being the states with definite energy. It will be shown that there
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is a fundamental difficulty with these concepts, and that the notion of time-translation

operator is essentially ill defined” [133].

This ill-definedness leads to an uncertainty in the energy, which makes the

superposition unstable. Penrose provides a quantitative measure of the energy

uncertainty: it is the gravitational self-energy of the difference between the two mass

distributions ρ and ρ′ of the two superposed states,

∆E = −4π G

∫
d3r

∫
d3r′

(ρ(r)− ρ′(r)) (ρ(r′)− ρ′(r′))
|r− r′|

. (93)

As Penrose points out, this coincides with the use of the Newtonian gravitational

interaction energy of the corresponding mass distribution at two positions according

to (90), as long as both superposed states have the same gravitational self-energy

(i. e. for a displacement, but not for a shape-changing superposition). Using the energy-

time uncertainty relation, this can imply that the superposition decays to one of the

localized states with the lifetime τ = ~/∆E, which is equivalent to (92). Therefore,

Diósi’s dynamical equation implements Penrose’s idea. This is why one speaks of the

Diósi–Penrose model.

We have seen that collapse models couple quantum systems to an external classical

noise. As such, the system undergoes a Brownian motion and energy is exchanged.

In particular, the energy of the quantum system is not conserved anymore. The CSL

model, and the Diósi–Penrose model as well, do not include dissipative effects, therefore

the energy of the system steadily increases and eventually diverges, as if the noise is at

infinite temperature. The rate of energy increase can be easily calculated and turns out

to be:

dEDP(t)

dt
=

2π

m

∫ ∞
0

d3QΓDP(Q)Q4 =
mG ~

4
√
π R3

0

, (94)

with EDP(t) = Tr[ρ̂(t)Ĥ] where ρ̂(t) satisfies the Diósi–Penrose dynamics. From this

relation, one can easily evaluate the different implications of the cut-off proposed,

respectively, by Diósi [135] and Ghirardi et al [117]. In the former case, R0 = 10−15 m,

one gets a rate for the energy increase of order 10−4 K/s for a proton, which means

a thermal catastrophe! Precisely this fact induced Ghirardi et al to introduce a much

larger value, R0 = 10−7 m, in which case the rate is of order 10−28 K/s for a proton,

which is indeed a much more reasonable value. Although in this way the problem

of overheating has been partially resolved, it is clear that the introduction of a cut-off

R0 = 10−7 m is much less justified than the one originally proposed by Diósi. One of the

main motivations of the Diósi–Penrose model, namely, to provide a phenomenological

model without free parameters, is in this way lost.

In [144] the possibility has been explored, whether the original value R0 = 10−15 m

can be retained, while including dissipative effects, which mitigate the fast energy

increase. This would be a rather natural resolution of the problem: physical noises

cannot pump too much energy in the system, which should eventually thermalize to

the (finite) temperature of the noise. This procedure successfully works for the CSL
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model [145] (see also [146, 147]), however fails for the Diósi–Penrose model: in this case,

thermalization can be formally achieved, but at the price of introducing very strong

dissipation, causing with high probability sudden flips in momentum of the system.

The momentum flip induced by the universal noise field causing the collapse of the wave

function would mean that the latter can transfer an energy of the order of tens of MeV

to a nucleon in a nucleus (corresponding to the average kinetic energy of a nucleon

in a Fermi-gas model [148]), which would induce instantaneous matter dissociation.

Accordingly, with R0 = 10−15 m, the Diósi–Penrose model is only an effective model

for the mass ranges larger or comparable with mr ∼ 1011 u. In other words, the

Diósi–Penrose model should be applied only to mesoscopic and macroscopic systems.

It is worth mentioning that the value mr is also very different from the Planck mass

mPl ∼ 1019 u, which is sometimes considered as a borderline between quantum and

classical masses [31].

3.2. Adler’s proposal

Diósi assumes (75) and postulates (78) for the correlation function of the noise. Adler’s

point of view is different [125]. He starts with (70), which can be taken as the starting

point to justify the collapse (74) as we showed in the introduction of section 3, and

thus of (75) and (76) with the appropriate choice of the collapse operators. Next he

notices that one can naturally introduced a mass-proportional anti-hermitian coupling

to the wave function by assuming that gravity is fundamentally classical and its metric

contains a rapidly fluctuating complex component. In other words:

gµν = gµν + hµν , (95)

with gµν the conventional real spacetime metric, and hµν an irreducibly complex

fluctuation. For simplicity, we will set gµν = ηµν , i. e. we will consider only perturbation

around the flat Minkowski metric. It is easy to show how, under these premises, one

obtains the desired coupling term.

The standard action of a matter field coupled to gravity is:

S =

∫
d4x
√
−gLmatter, (96)

where Lmatter is the matter Lagrangian, gµν is the metric tensor and
√
−g =

√
− det[gµν ].

The Taylor expansion around ηµν gives:

S =

∫
d4x

[
L(0)

matter −
1

2
hµνT (0)

µν

]
+ higher order terms; (97)

the apex (0) denotes quantities with respect to the flat spacetime ηµν , and Tµν is the

stress energy tensor associated to the Lagrangian Lmatter. In the weak field limit, gravity

couples to matter linearly through the stress energy tensor.

In the nonrelativistic limit, considering for example the Lagrangian of a Klein-

Gordon field φ, one can show that hµνT
(0)
µν ' mc2h00φ∗φ. Second quantization of the
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field then immediately gives the one-particle Hamiltonian p2/2m+mc2h00/2, therefore

the N -particle Hamiltonian can be written as:

H = H0 + c2ξ

∫
d3x m̂(x)w(x, t), (98)

where H0 is the kinetic term, m̂(x) is the mass density operator introduced in the

introduction of section 3, and we have renamed h00(x, t)/2 = ξw(x, t), where w(x, t)

is an a-dimensional complex random field, whose fluctuations are of order 1, while the

constant ξ measures the size of the fluctuations. The real part of w(x, t) contributes

to the Hamiltonian as a standard random potential, giving rise to decoherence effects

as discussed in section 2.1. Its imaginary part provides the anti-hermitian random

coupling, which is the starting point for deriving the collapse dynamics.

For the purposes of this review, it is not particularly relevant to write down the

collapse equation arising from (98). It is the generalization of (75) to complex and non-

white noises, and in general it can be written down explicitly only as a perturbative

expansion. More details can be found in [116]. One can show that the usual properties

hold: wave functions are localized in space and the amplification mechanism assures

that the collapse rate grows with the mass/size of the system.

It is more instructive to consider the corresponding master equation for the density

matrix ρt. The Hamiltonian evolution is the usual one, while the Lindblad term reads:

LA[ρ̂t] = −ξ
2c4

~2

∫
d3x

∫
d3y

∫ t

0

dτ GR
t−τ (x− y) [m̂(x), [m̂τ−t(y), ρt]] +

− iξ2c4

~2

∫
d3x

∫
d3y

∫ t

0

dτ GI
t−τ (x− y) [m̂(x), {m̂τ−t(y), ρt}] , (99)

where GR and GI are the real and the imaginary parts of the correlation function of the

noise field: Gt,τ (x,y) = E[w∗(x, t)w(y, τ)]. In writing the above equation, we assumed

that the noise is statistically homogeneous over space and time: Gt,τ (x,y) = Gt−τ (x−y).

Also, m̂τ−t(y) is the time evolved mass density operator, the time evolution generated

by the Hamiltonian H0. The equation, which is valid up to second perturbative order

in the parameter ξ, generalizes (76) to the case of complex and non-white noises. Here

we can see a rather important difference between Adler’s model and the Diósi–Penrose

model. While both rely on the same structure for the collapse equation, the latter

gives a specific form for the correlation function of the noise—the Newtonian classical

gravitational potential—while Adler’s model does not specify the form of the correlation

function, only requiring the gravitational fluctuations to have a complex fluctuating

component.

At this stage, one is not able to characterize the noise correlator in Adler’s model.

One might guess that, if the noise has a cosmological origin, its correlation function is

highly non trivial, but apart from this nothing more can be said unless one establishes

the origin of the noise, which is unknown. What one can do is to analyze bounds

on the strength of the fluctuations, by comparing the predictions of the model with

experimental data. To this purpose, let us consider the center-of-mass equation of
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a composite system. Under suitable approximations, which are typically valid for

crystalline structures forming macroscopic objects, the center of mass and relative

motions decouple and the Lindblad term for the center-of-mass density-matrix ρ̂M
t takes

the form [116]:

LA[ρ̂M
t ] = −ξ

2c4

~2

1

(2π~)3

∫ t

0

dτ

∫
d3QΓM,R

t−τ (Q)
[
e−

i
~Q · r̂,

[
e

i
~Q · r̂τ−t , ρ̂M

t

]]
+

− iξ2c4

~2

1

(2π~)3

∫ t

0

dτ

∫
d3QΓM,I

t−τ (Q)
[
e−

i
~Q · r̂,

{
e

i
~Q · r̂τ−t , ρ̄t

}]
, (100)

where Γ
M,R/I
t−τ (Q) = Γ

R/I
t−τ (Q)|µ̃rel(Q)|2, with Γ

R/I
t−τ (Q) the Fourier transform of GR/I

t−τ (x)

and µ̃rel(Q) the Fourier transform of the internal mass density µrel(x). The above

expression should be compared with the analogous expression (83) of the Diósi–Penrose

model, and again it represents its generalization to complex and non-white noises.

As discussed in section 3.1, one prediction of (100) is that the collapse noise

induces a Brownian diffusion, which implies of a variety of non-standard effects, like

an excess diffusion of center-of-mass motion [149, 150, 151, 152, 153], spontaneous

heating [154, 155], and spontaneous photon emission [156, 157, 158] from charged

particles. Available experimental data allow to sets bounds on the noise correlator,

based on these effects.

Discussing the experimental constraints on the noise correlator in its full generality

is too difficult. We will limit the discussion to a restricted class of Gaussian correlations

functions, in such a way that the collapse dynamics is controlled by only two parameters.

Specifically, we consider the Markovian limit by imposing:

ΓR/I
s (Q) ' ΓR/I(Q) τ0δ(s) (101)

with [τ0] = [T ]. One can show that in this limit ΓI(Q) = 0. In addition, we assume that

ΓR(Q) has the a Gaussian shape:

ΓR(Q) = r3
C exp(−r2

CQ2/~2), (102)

as in the CSL model, where [rC ] = [L]. With these assumptions, after some algebra,

the Lindblad operator in (100) reduces to

LA[ρ̂M
t ] = − ξ2c4r3

Cτ0

(2π~)32~2

∫
d3Q |µ̃rel(Q)|2e−r

2
CQ

2/~2
[
e−

i
~Q · r̂,

[
e

i
~Q · r̂, ρ̂t

]]
. (103)

This equation should be compared with the CSL master equation [102]:

LCSL[ρ̂M
t ] = −λ(4πr2

C)3/2

(2π~)3m2
0

∫
d3Q |µ̃rel(Q)|2e−r

2
CQ

2/~2
[
e−

i
~Q · r̂,

[
e

i
~Q · r̂, ρ̂t

]]
. (104)

In particular, (103) reduces to the CSL master equation given in (104) by setting:

ξ =
4~π3/4

m0c2

√
λ

τ0

. (105)

With this approximations the model is fully characterized by: the magnitude ξ of the

metric fluctuations, the time cut-off τ0 and the space cut-off rC . To further simplify

the discussion, as first proposed in [113] we assume the time cut-off to be related to
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Figure 1. (ξ, rC) or equivalently (ξ, τ0) parameter diagram of the gravity-induced

collapse model. The white area is the allowed region. The blue shaded region (X-

rays) is excluded by data analysis of X-rays measurements [159]. The orange shaded

region (LISA) is excluded from data analysis of LISA Pathfinder [160]. The green

shaded region (Macro) is an estimate of the region excluded by the requirement that

the collapse is strong enough to localize macroscopic objects [161, 162]. Note that

X-ray measurements sample the high frequency region of the spectrum (∼ 1018 Hz)

and would disappear if the noise correlator has a cut-off below such frequencies, which

is plausible. In such a case, the stronger upper bound on the left part of the plane is

given by data analysis with cold atom experiments (Cold atoms) [155].

the space cut-off via τ0 = rC/c. One can then give bounds on ξ by using the bounds

already set for the CSL parameters λ and rC . The most recent bounds are summarized

in figure 1.

It is interesting to compare these results with the recent discovery of gravitational

waves [12], observed in frequency range from 35 to 250 Hz and with a peak strain of

1.0×10−21. Clearly, gravitational waves are real, while here the claim is that the collapse

is caused by complex fluctuations of the metric. Also, significant gravitational waves

typically have long wave lengths, while here the relevant part of the spectrum is at high

frequencies. However it is interesting to see that the order of magnitude of real waves

and complex fluctuations—which allow for an efficient collapse and are compatible with

experimental data—are not so far away from each other.
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3.3. Károlyházy model

The key idea of Károlyházy [126, 127, 128, 129, 130, 131], later developed by

Frenkel [163, 164, 165, 166], is that lengths and times cannot be measured with

arbitrary precision, given that measuring devices are made of atoms and therefore are

ultimately quantum and must obey the Heisenberg uncertainty principle. Thus there

is a fundamental uncertainty in the structure of spacetime. By using the uncertainty

principle and some basic arguments, he arrives at the following relation [126]:

∆s2 = `
4/3
Pl s

3/2, (106)

where `Pl =
√

~G/c3 is the Planck length. The above relation expresses the best

precision with which a length s can be measured.

So spacetime is undetermined beyond some scale, according to Károlyházy. He

expresses this uncertainty by promoting the metric gµν(x) to a stochastic metric

gµν(ω, x), and averages are taken in the end. In the weak field limit we have:

gµν(ω, x) = ηµν + hµν(ω, x) , (107)

where hµν(ω, x), as usual, represent random perturbations around the flat spacetime

metric (from now on we will omit the random variable ω), which are assumed to obey

the wave equation, in the appropriate gauge:

�hµν = 0 , (108)

where � denotes the d’Alembert operator. This is true if we neglect the effect of matter

on spacetime fluctuations. Equation (108) allows for a plane-wave expansion:

hµν(x) =
1√
L3

∑
k

[
cµν(k)eik ·x−ωkt + c.c.

]
, (109)

with x = x, t and ωk = c|k|. Now the Fourier coefficients cµν(k) are random, and they

are assumed to fluctuate around zero: E[cµν(k)] = 0, with E[ · ] denoting the stochastic

average. Box normalization (of side L) has been assumed.

Given the standard definition of length,

s2 =

∫ (
−gµν

dxµ

dt

dxν

dt

)
dt, (110)

which again is random since gµν is, the fundamental relation (106), where we identify

∆s2 = E[(s−E[s])2], this yields the following spectrum for the fluctuations c(k) ≡ c00(k),

the only ones which will be relevant for the following discussion:

E[c(k)c∗(k′)] = δk,k′ `
4/3
Pl k

−5/3. (111)

So (106) selects a specific stochastic behavior of the metric fluctuations.

Now calculations proceed in the standard way. In the nonrelativistic and Newtonian

limit, the metric perturbation enters the Schrödinger equation as a random potential

V (x, t) = mc2h00(x, t)/2, the generalization to many particles being straightforward.

The resulting dynamics is stochastic and leads to decoherence, as different terms of
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a spatial superposition will acquire different phases, which wash away the coherent

behavior.

The decoherence time τ has been computed and it can be expressed as: τ = ma2
c/~,

where ac is the shortest coherence distance, to which the stochastic dynamics assigns a

phase mismatch ' π, which gives full decoherence. Calculations give:

ac '
~
G

1

m3
, (112)

for an elementary particle of mass m. For example, for one electron one gets:

ac ' 1035 cm and correspondingly τ ' 1070 s. This gravitational decoherence effect

is fully negligible for microscopic systems. On the other hand, for a macroscopic object

of mass M and linear dimensions R one has:

ac '
(
~2

G

)1/2
R2/3

M
; (113)

for an object of size ' 1 cm and normal density, one gets ac ' 10−16 cm and τ ' 10−4 s.

Macroscopic superpositions rapidly decay.

Károlyházy’s model assumes the validity of the Schrödinger equation, supplemented

by a random gravitational potential with a specific correlation function. As such,

although often quoted as a collapse model as those described so far in this section,

it is not: here the superposition principle remains valid and macroscopic superpositions

are still solutions of the equations of motions. As such, the model does not represent a

resolution of the quantum measurement problem. It is, however, interesting because it

shows that when quantum systems couple to gravity, even if gravity is treated classically,

intrinsic fluctuations can exist, which cause decoherence preventing to fully control the

quantum state of the system.

3.4. The Schrödinger–Newton equation

The Schrödinger–Newton equation was first proposed by Diósi [132] and Penrose [133,

134], who were interested in its stationary solutions [167, 168, 169] as the final states of

the wave function collapse. Its dynamical behavior received renewed attention, mainly

due to its connection with the question whether gravity should really be quantized [170],

and due to its falsifiability in envisaged experiments [171, 172, 173, 174] (cf. section 4).

The one particle Schrödinger–Newton equation reads:

i~
∂

∂t
ψ(t, r) =

(
− ~2

2m
∇2 −Gm2

∫
d3r′
|ψ(t, r′)|2

|r− r′|

)
ψ(t, r) . (114)

It is a nonlinear equation, the nonlinearity arising from the self-gravitational interaction

among different parts of the wave function, as if the (absolute value squared of the) wave

function represents the mass distribution of the system. This is an attractive effect,

which opposes the quantum diffusion originating from the Laplacian. Therefore one

expects a slower spreading of the wave function over time, with respect to the usual

quantum dynamics, and possibly a collapse for large masses. Asymptotically, a stable

solitonic state should remain, where attraction and diffusion exactly compensate.



Gravitational Decoherence 39

In particular, given a superposition of two states displaced in space, the Schrö-

dinger–Newton term gives a mutual attraction, which turns the superposition into a

localized state. This is why this equation is discussed in connection with the quantum

measurement problem as a possible way to explain why macroscopic superpositions are

not observed: for massive systems, the Schrödinger–Newton attractive term becomes

dominant and kill any possible superposition in space. We will come back on this issue.

One relevant question is the justification of the Schrödinger–Newton equation,

which has given rise to a rather lively debate [175, 176, 177, 178]. The claim of the

supporters of this equation is that it follows from semi-classical gravity. Here one has

to be clear about the meaning of semi-classical gravity. The majority of the physics

community assumes that gravity must be quantized in some way, and that semi-classical

gravity is only an effective theory, which holds in situations where matter is treated

quantum mechanically and gravity classically (although it is fundamentally quantum).

This effective description comprises so far all observable physical phenomena. From

this perspective, from which the fundamental theory is fully quantum, the evolution

of the wave function is linear, and one cannot expect any nonlinear term in the

dynamics. The self-interactions present in the classical theory would then be treated

in the same way as in Quantum Electrodynamics, namely, through the normal ordering

and renormalization prescription. They would lead to a mass-renormalization of the

theory rather than a potential term in the Schrödinger equation [175, 176]. Within this

framework, the Schrödinger–Newton equation arises as a mean-field equation, like the

Gross–Pitaevskii equation [179, 180] commonly used in condensed matter theory, whose

validity is restricted to the case of large numbers of particles.

However, the key assumption of the proponents of the Schrödinger–Newton

equation is different. The claim is that it does follow from a theory in which only matter

fields are quantized, while the gravitational field remains fundamentally classical. If one

refers to this theory as semi-classical gravity [181, 182, 183], then the Schrödinger–New-

ton equation does follow from it, as we now review [184].

The most natural dynamical equation of such an hybrid theory is provided by the

semi-classical Einstein equations:

Rµν −
1

2
gµνR =

8πG

c4
〈Ψ | T̂µν |Ψ〉 , (115)

where the classical energy-momentum tensor in Einstein’s equations is replaced by the

expectation value of the corresponding quantum operator in a given quantum state

Ψ. It is clear that this equation, taken seriously, gives a nonlinear evolution for the

wave function. (115) has a long history, dating back to the works of Møller [185]

and Rosenfeld [186]. It has been commented repeatedly that such a theory would be

incompatible with established principles of physics [187, 188] but these arguments can

be refuted [182, 183, 189, 190].

It is important to note that (115) implies the conservation of energy-momentum,

∂µ〈Ψ | T̂µν | Ψ〉 = 0, even if nonlinear terms are present, which “collapse” the wave

function. This is not the case for the standard instantaneous collapse in quantum
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mechanics, as well as of spontaneous wave function collapse models, as discussed in

section 3.1 and 3.2.

Let us expand the metric around the flat metric:

gµν = ηµν + hµν , (116)

the expansion in hµν is well-known to yield the gravitational wave equations at leading

order. (115) approximates to [191]

�hµν = −16πG

c4

(
〈Ψ | T̂ (0)

µν |Ψ〉 −
1

2
ηµν〈Ψ | ηρσT̂ (0)

ρσ |Ψ〉
)
, (117)

where the de Donder gauge-condition ∂µ(hµν− 1
2
ηµνη

ρσhρσ) = 0 has been imposed. Note

that the energy-momentum tensor at this order of the linear approximation is that for

flat spacetime, while in (115) it was still in curved spacetime. In the Newtonian limit,

where 〈Ψ | T̂ (0)
00 | Ψ〉 is large compared to the other nine components of the energy-

momentum tensor, (117) becomes the Poisson equation

∇2V =
4πG

c2
〈Ψ | T̂ (0)

00 |Ψ〉 (118)

for the potential V = − c2

2
h00. This is of course a well known result: in the

Newtonian limit, Einstein’s equations tell that the matter distribution in space generates

a Newtonian gravitational potential. In this case, however, the matter distribution is

the expectation value of the quantized form of the stress-energy tensor.

The gravitational potential enters the matter Hamiltonian, which eventually drives

the quantum dynamics. Within the linearized theory, the interaction Hamiltonian is

(see section 3.2):

Ĥint = −1

2

∫
d3r hµν T̂

µν . (119)

It is important to point out the difference with respect to a standard quantized theory

of gravity. In the latter, hµν becomes an operator as well, simply by applying the

correspondence principle to the perturbation hµν of the metric—and thereby treating

the classical hµν like a field living on flat spacetime rather than a property of spacetime.

In contrast to this, hµν here remains fundamentally classical. It is determined by the

wave equation (117), which is to be understood as classical equation of motion.

In the Newtonian limit, where T̂
(0)
00 is the dominant term of the energy-momentum

tensor, the interaction Hamiltonian then becomes

Ĥint =

∫
d3r V T̂ 00 = −G

∫
d3r

∫
d3r′
〈Ψ | %̂(r′) |Ψ〉
|r− r′|

%̂(r) , (120)

where (118) has been integrated, and T̂
(0)
00 = c2%̂ in the nonrelativistic limit. The second-

quantized mass density operator %̂ is simply mψ̂†ψ̂ when only one kind of particle is

present. Therefore, following the standard procedure we end up with the Schrödinger–

Newton equation in Fock space:

i~
∂

∂t
|Ψ〉 =

[ ∫
d3r ψ̂†(r)

(
− ~2

2m
∇2

)
ψ̂(r)
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−Gm2

∫
d3r

∫
d3r′
〈Ψ | ψ̂†(r′)ψ̂(r′) |Ψ〉

|r− r′|
ψ̂†(r)ψ̂(r)

]
|Ψ〉 . (121)

In the nonrelativistic limit the number of particles is conserved and we can

immediately write the N -particle first-quantized Schrödinger–Newton equation [132]:

i~
∂

∂t
ψN(t, {r}) =

[
−

N∑
i=1

~2

2m
∇2
i

−Gm2

N∑
i,j=1

∫ N∏
k=1

d3r′k
|ψN(t, {r′})|2∣∣ri − r′j

∣∣
]
ψN(t, {r}) , (122)

where {r} = r1, . . . , rN . The one-particle Schrödinger–Newton equation (114) follows

directly by taking N = 1. One should stress once again that this nonlinear equation

is the weak-field, Newtonian and nonrelativistic limit of (115), which itself is nonlinear

with respect to the wave function and is assumed to be a fundamental equation.

Coming back to the attractive, “collapse-like” effect of the Schrödinger–Newton

equation, one should point out an important difference with respect to the von Neumann

collapse postulate, and with respect to collapse models. Let us consider an experiment

where a particle’s position is measured. Take an initial superposition state for the

particle

ψ(r) =
1√
2

(ψ1(r) + ψ2(r)) , (123)

where ψ1(r) and ψ2(r) are wave packets well localized around r1 and r2, respectively.

During the measurement, this state couples with the massive measuring instrument (say,

a pointer) as follows:

Ψ(r,R) =
1√
2

(ψ1(r)Φ1(R) + ψ2(r)Φ2(R)) , (124)

where Φ1(R) and Φ2(R) are two localized wave functions of the pointer, centered around

R1 and R2, respectively. The positions R = R1,2 correspond to the particle being

around positions r1,2. Since the pointer is a classical system, according to the orthodox

interpretation, the wave function collapses at R = R1 or R = R2, revealing in this way

the outcome of the measurement. This means that the particle is found half of the times

around the position r1 and half of the times around the position r2. Collapse models

provide a similar description.

According to the Schrödinger–Newton equation without the standard collapse

postulate, on the other hand, a superposition state as in (124) implies a gravitational

attraction between the spatial wave packets Φ1 and Φ2 representing the massive

pointer, on top of the standard quantum dynamics. The wave function of the pointer

“collapses” towards the average position (R1 + R2)/2, simply due to the symmetry

of the deterministic dynamics and the initial state. Numerical simulations confirm

this behavior of spatial superpositions collapsing to an average position [169]. Such a

behavior is however in obvious contradiction with the standard collapse postulate, as

well as with our everyday experience, where the pointer is found with equal probability
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either at R = R1 or at R = R2, and never in the middle. Moreover the Schrö-

dinger–Newton equation is deterministic and as such it cannot explain why quantum

measurements occur randomly, distributed according to the Born rule.

There is another undesired feature of the Schrödinger–Newton equation, connected

to the previous result. Being a nonlinear and deterministic equation, it allows for

superluminal signaling [105, 106]. This can be seen explicitly by considering Alice and

Bob, apart from each other, each having a particle, the two being in a singlet spin

state [184]. If Alice measures the spin along a chosen z direction, then in a way or

another Bob’s particle will have spin either up or down along the z direction (if this

does not happen, then the situation violates experimental evidence). If he uses a Stern-

Gerlach setup to decide in which spin state his particle is, the particle will be deflected

either upwards or downwards. A spot will appear either in the upper or lower part of a

screen positioned right after the setup.

If on the other hand Alice measures the spin along the x direction, then Bob’s

particle will have definite spin along the same direction and if he uses the previous

Stern–Gerlach setup to decide the spin state of the particle (Alice is far away, he does

not know which type of measurement she performed), then the particle’s state will

become a superposition of being deflected either upwards and downwards. Then the

Schrödinger–Newton term will (slightly) attract the two pieces of the superposition

towards each other, and in the end spots appear on the screen, but not in the same

position as in the previous situation. In this way Bob can understand which type of

measurement Alice performed, and the two can establish a protocol for superluminal

signaling.

An important remark is at order. The kind of faster-than-light signaling here

discussed is an effect of the (more or less) instantaneous collapse of the wave function (as

a result of Alice’s measurement), together with the nonlinear character of the dynamics

described by the Schrödinger–Newton equation. Therefore, even if one describes the

whole situation in a fully relativistic way (i. e. by some sort of “Dirac–Newton equation”,

which one could eventually obtain by applying (115) to a Dirac field), one would not

get rid of the instantaneous collapse of the wave function upon measurement, nor of the

nonlinear character of the dynamics. What would change is the way the two parts of the

superposition attract each other: in the Schrödinger–Newton equation this attraction

is instantaneous, while in the relativistic framework it would likely have a finite speed.

This amounts in slight differences in the self-gravitation effects, which do not play any

important role for the argument proposed here. As long as there is some measurable

effect of self-gravitation, Bob can always exploit it to figure out Alice’s measurement

setting, and thereby receive a signal with the “speed of collapse” (which is infinite in

the standard collapse prescription and has been shown to exceed the speed of light by

orders of magnitude in a multitude of experiments [192, 193, 194]). Note that collapse

models do not have this problem, as discussed before in this section.

Given the above arguments, the Schrödinger–Newton equation poses serious

problems if regarded as a resolution of the measurement problem in quantum mechanics,
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equivalently as a way to describe the quantum-to-classical transition. It must be heavily

modified in order to achieve this goal, perhaps to the point of betraying the original

arguments that led to proposing it in the first place. On the other hand, it is an

alternative to quantum gravity, meaning with it the program of quantizing gravity,

and differs from it in a quantitative and computable way. It can serve as a model

to decide whether gravity is quantum or not. For example, consider the question:

what is the gravitational field generated by a quantum superposition in space? Is it

the superposition of the two gravitational fields, as predicted by quantum gravity, or

something else? The Schrödinger–Newton equation predicts it is something else—the

classical sum of the two fields generated by the two terms of the superposition. Then

matter in such a state should behave differently than what predicted by quantum gravity,

even in the nonrelativistic and weak field limit. These differences can be quantified

by solving (114) and detected, as discussed in section 4.2. The Schrödinger–Newton

equation has the merit of providing a guideline for challenging quantum gravity at low

energies, where experiments are cheaper and more flexible.

This is the subject of the next section. We will review experiments probing this

interplay between quantum mechanics and gravity.

4. Table-top experiments to probe gravity

Here we summarize the state-of-the art of precise Newtonian and non-Newtonian gravity

measurement and the feasibility of experimental tests of gravity effects in the quantum

domain. We will mainly be concerned with table-top experiments in the nonrelativistic

regime as such experiments may provide a new access to shine light on the quantum

and gravity interplay. Therefore the main emphasis is to explore possible routes to enter

the new parameter regime, where both quantum mechanics and gravity are significant,

see figure 2. This means the mass of the object has to be large enough to show gravity

effects while also not being too large to still allow for the preparation of a non-classical

behavior of that massive object. That regime where both physical effects, the quantum

and the gravity, could be expected to be relevant is at around the Planck mass [195],

which is derived from the right mixture of fundamental constants (~ Planck’s constant,

c speed of light, G gravitational constant) mPl =
√
~c/G = 2.176470(51) × 10−8 kg

(based on the official CODATA value for all fundamental constants as announced by

NIST [196]) or below. No quantum experiment has been performed in that mass range,

but neither has an experiment to probe gravity. The smallest source masses which have

been used to verify gravity are of the order of 10−2 kg which was at a distance of 10−2 m

from the test mass [8].

When we refer to quantum mechanical behavior of massive systems, we mean the

center-of-mass motion of such a system, which may consist of many atoms. Surely, there

are many other (we call those internal) degrees of freedom of the same system such as

electronic states or vibrations and rotations which are described as relative motions of

the atoms forming the large object, but here we are not concerned with those. When we
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Figure 2. Exploration map of mass: Mass range of the test mass as explored by

experiments. Experiments to detect gravity have been done in the classical domain,

right hand side of picture, with comparable large masses. Quantum experiments are

routinely performed by using objects of much smaller masses so that gravity effects

do not become visible or relevant. Neutron and atom matter-wave interferometers are

different as the test mass there is very small (the mass of a single neutron or atom), but

in a spatial superposition state. The desired mass range for—at least some of—the

experiments summarized in this review article is at the overlap between sufficiently

large mass to see significant effects of gravity of the particle itself, while the particle

can be maintained in a non-classical state. The domain where massive particles can

be prepared in such non-classical states is on the left hand side of the picture.

talk about superpositions, we mean spatial superpositions, in the sense of the center of

mass of a single particle, which can be elementary or composite, being here and there at

a given time (the Schrödinger cat state). The most massive complex quantum systems,

which have been experimentally put in such a superposition state, are complex organic

molecules of a mass on the order of mmax = 10−22 kg [197, 198, 199].

While the emphasis of this review is not so much to explore the regime where

a quantum system is coupled to a large external mass as in the seminal neutron

interferometer experiment by Colella, Overhauser and Werner (COW) [9] or atom

interferometry [200] experiments, we will also mention the state of the art of those.

Strikingly, those matter-wave interferometry experiments show that gravity effects of

comparably large external masses can be detected by quantum states of much lower

mass objects, which may be used as motivation for perspectives of table-top experiments

to investigate the interface of quantum and gravity, while at the same time it is clear

that the type of gravity investigated in such cases is of Newtonian type in the first place.

In any case we will try to work out the difference between such regimes—the low mass

and the high mass regimes—to also emphasize the possibility to use photons, objects

of zero rest mass, to watch out for gravity induced effects on quantum systems such as

decoherence [201].
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Figure 3. Neutrons to measure gravity: Left Panel: The schematics of the

seminal COW experiment. Neutrons matter-wave functions are split and recombined

by diffraction at solid crystals to from a closed Mach-Zehnder interferometer. The

dimensions of the experimental setup are on the order of cm. The whole setup is then

rotated with respect to the g-field. The respective gravitational phase shift is detected

as a lost of fringe visibility of the interference pattern. Reprinted figure with permission

from [9]. Copyright 1975 by the American Physical Society. Right Panel: A beam of

neutrons is passes horizontally above a mirror surface. The neutron matter-waves are

shown to be able to only occupy a discrete set of energy states which can be explained

including the effect of Newtonian gravity. Reprinted by permission from Macmillan

Publishers Ltd: Nature [10], copyright 2002.

There are also other proposals for cosmological effects related to gravity in the

context of dark matter [202, 203] and dark energy [204] or for the detection of

gravitational waves [205, 206], which have been proposed and some experiments have

been done already with atom interferometers [207] and torsion balances [208], which

we will not explore in too much detail here. See section 2.1 for an account on the

decoherence of matter-waves by gravitational waves.

Typically for gravity experiments there are two masses involved, the (usually large)

source mass which generates a significant curvature of spacetime (i. e. gravitational field

or potential), and the test mass which is probing the gravity effect generated by the

source mass. Torsion balances are the classic device for typical gravity experiments [209].

One can single out two regimes interesting for experimental investigation: i) The regime

where a quantum system is the test mass and interacts with a large external source mass.

This is the regime where neutron and atom interferometry are already very successful

and provide tools for precise measurements of gravity effects. ii) The regime where the

quantum system itself carries sufficient mass to be the source mass and to allow for

related quantum gravity effects to become experimentally accessible. So far there has

been no convincing experiment in the second regime. Any experiment performed in

that second regime will ultimately give insight into the interplay between gravity and

quantum mechanics. Test of the Schrödinger–Newton equation and of quantum effects

in gravity fall in the latter regime. It may very well be that there are surprises waiting
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Table 1. The table is adapted and reprinted from [196], with the permission of AIP

Publishing. It shows all G measurements included for the CODATA value as well as

their uncertainties (∆G/G). Most of the measurements are taken by torsion balances,

while only one, LENS-14, is an atom interferometer. NIST-82: National Institute

of Standards and Technology, Gaithersburg, Maryland, and Boulder, Colorado,

USA; TR&D-96: Tribotech Research and Development Company, Moscow, Russian

Federation; LANL-97: Los Alamos National Laboratory, Los Alamos, New Mexico,

USA; UWash-00: University of Washington, Seattle, Washington, USA; BIPM-01:

International Bureau of Weights and Measures, Svres, France; UWup-02: University

of Wuppertal, Wuppertal, Germany; MSL-03: Measurement Standards Laboratory,

Lower Hutt, New Zealand; HUST-05 & HUST-09: Huazhong University of Science

and Technology, Wuhan, PRC; UZur-06: University of Zurich, Zurich, Switzerland;

JILA-10: JILA, University of Colorado and National Institute of Standards and

Technology, Boulder, Colorado, USA; LENS-14: European Laboratory for Non-Linear

Spectroscopy, University of Florence, Florence, Italy; UCI-14: University of California,

Irvine, Irvine, California, USA.

Identification 1011G (m3kg−1s−2) ∆G/G

NIST-82, Fiber torsion balance 6.672 48(43) 6.4×10−5

TR&D-96, Fiber torsion balance 6.672 9(5) 7.5×10−5

LANL-97, Fiber torsion balance 6.673 98(70) 1.0×10−4

UWash-00, Fiber torsion balance 6.674 255(92) 1.4×10−5

BIPM-01, Strip torsion balance 6.675 59(27) 4.0×10−5

UWup-02, Suspended body 6.674 22(98) 1.5×10−4

MSL-03, Strip torsion balance 6.673 87(27) 4.0×10−5

HUST-05, Fiber torsion balance 6.672 22(87) 1.3×10−5

UZur-06, Stationary body 6.674 25(12) 1.9×10−5

HUST-09, Fiber torsion balance 6.673 49(18) 2.7×10−5

JILA-10, Suspended body 6.672 34(14) 2.1×10−5

BIPM-14, Strip torsion balance 6.675 54(16) 2.4×10−5

LENS-14, Double atom interferometer 6.671 91(99) 1.5×10−4

UCI-14, Cryogenic torsion balance 6.674 35(13) 1.9×10−5

for us if we become able to probe that regime by experiments.

The outline of the experimental section is as follows. We first summarize

experimental tests of classical gravity by neutron and atom interferometers as well as

by torsion balances and optomechanics experiments in section 4.1. Then we discuss

experimental prospects for testing the Schrödinger–Newton equation in section 4.2, then

proposed tests of quantum gravity in section 4.3. We then discuss proposals for tests

of gravitational decoherence in section 4.4 as well as the idea to directly measure the

gravity generated by a quantum superposition state in section 4.5.

4.1. Table-top experimental tests of Newtonian gravity and general relativity

In order to reach the regimes where both gravity and quantum effects must be taken

into account, one can either start from microscopic quantum systems and attempt to

increase there masses such that gravitational effects become relevant, or one approaches
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from the opposite direction of gravitating systems, reaching for ever smaller system

sizes, in order to reach the quantum regime.

For the latter approach, we will summarize the state of the art to detect classical

Newtonian gravity, as well as some general relativity effects, which amount essentially to

observing the drop of different sorts of “apples” and measure the duration and distance

of the drop with exceedingly precise methods. Effectively—while testing the universality

of free fall, and therefore one component of Einstein’s equivalence principle, which is the

basis of the theory of general relativity—such experiments perform a measurement of

the gravitational constants G and g; the latter in the case of a drop in the gravitational

field of Earth and the former in relation to a further large source mass close to the test

mass.

We should not forget that amongst the group of broadly accepted fundamental

constants of Nature, the gravitational constant G = 6.67408(31)×10−11m3kg−1s−2 [196],

is the one which is known with lesser precision by many orders of magnitude, namely

∆G/G = 4.7 × 10−5. This fact is always assumed to be reasoned by the comparably

much weaker strength of the gravitational interaction relative to the other three known

fundamental forces, which makes the determination of G by experiment notoriously

harder. While the interaction itself can be measured with high precision (as outlined

in the following), to know the exact distribution of mass in the bodies involved in the

gravity test turns out to be the limiting factor [210]. See table 1 for a summary of

all experiments to measure G which are included in the evaluation of the official G-

value according to CODATA [196]. The data show the surprising wide spread of the

experiment values. We briefly review how the different experimental schemes work, both

for measurements of g and G, in classical and quantum set-ups.

A. Optical Interferometry of dropping corner cubes.—The drop of reflective corner

cubes is used to measure free fall time in Earth’s gravity. Classical optical interferometry

is used for very precise measurement of the drop/fall time. This technology is

portable [212] and a version has been used since the Apollo missions for lunar optical

experiments [213]. The most precise version of a similar idea has been used in LISA

pathfinder to realize a drag-free navigation of the satellite [214] by mutually stabilizing

two masses by means of optical interferometry, while the gravitational wave detectors

such as LIGO [12] can be regarded as a static version of this experimental scheme.

B. Neutron experiments.—The experiment by COW [9] is a recoverable matter-

wave dephasing effect rather than the destructive effect of gravitational decoherence.

Depending on the orientation of the two arms of the Mach Zehnder type neutron

interferometer with respect to the Earth’s gravitational potential, the matter-waves

acquire different gravitational phases, which upon recombination result in an overall

phase shift, see figure 3 (left) for an illustration of the original experimental setup.

A further series of stunning experiment has been performed with neutrons traveling

in the gravitational potential at the surface of the Earth [10]. Such experiments reveal

the existence of a discrete set of states to be occupied by the neutron wave function in

the classical gravitational potential of the Earth, see figure 3 (right).
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Figure 4. Cold atoms to measure classical gravity: Left Panel: First experiment

to detect gravitational acceleration by Earth (g) in atom interferometry. Reprinted by

permission from Macmillan Publishers Ltd: Nature [200], copyright 1999. Middle

Panel: The 10 m cold atom BEC fountain to generate single atom superposition states

of 0.5 m size. Reprinted by permission from Macmillan Publishers Ltd: Nature [211],

copyright 2015. Right Panel: The assembly of big source masses is around the tube

containing two clouds of cold atom test masses. The systematic comparison of the

result of the atom interferometry is performed on both clouds while moving the

source masses. The experiment has been used for a measurement of G. Reprinted

by permission from Macmillan Publishers Ltd: Nature [210], copyright 2014.

C. Atom interferometers.—The first atom interferometer experiment of the light-

matter beam splitter type to measure a gravitational effect has been performed by

Peters [200] by measuring the effect of acceleration g on a cloud of cold atoms. The

basic idea is similar to the COW neutron interferometer; the matter-wave couples

to the external gravitational potential and acquires a related phase shift, which can

in turn be measured very precisely by the interferometer, see figure 4 (left). That

same experiment has been used for a high-precision gravity measurement [215]. Many

revolutionary contributions to the field of detecting gravity with atom interferometers

have been made by Kasevich [216, 217, 218, 211], see figure 4 (middle) for an illustration

of the 10 m atomic fountain at Stanford. A very precise measurement of g has also been

performed by an atom interferometer experiment with Bose–Einstein condensed (BEC)

atoms [219], while G has also been measured by using a differential technique with two

atomic clouds in different positions relative to an assembly of bigger source masses [210],

see figure 4 (right). The technology of cold atom and BEC interferometers for gravity

sensing is very mature and is on the verge to commercialization [220, 221]. It has been

demonstrated to work in extreme environments such as drop towers based on BEC

interferometry on atom chip technology [222, 223] and has been proposed to be used in

space experiments [224] with first demonstrations of sounding rocket flights into space

by the MAIUS collaboration [225].

D. Torsion pendulums.—While the first experiment has been performed by
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Figure 5. Cavendish type torsion balance experiments: Left Panel: The scheme

of the historic Cavendish experiment. The attraction between the big source mass

and the smaller test masses is measured precisely by detecting the slow torsion angle

change. Picture taken from [209]. Right Panel. The version of a modern torsion

pendulum gravity sensor by Kapner et al. This is an upgraded version of the so-

called missing mass torsion balance instrument. This experiment has been use to test

extensions of Newtons square-law gravity by Yukawa type extensions as predicted by

models for dark energy. Reprinted figure with permission from [208]. Copyright 2007

by the American Physical Society.

Cavendish in 1798 [209], the same basic principle is still used in the best experiments

to measure classical gravity. A set of two test masses attached to a torsion pendulum is

positioned close to a set of larger masses and the gravitational attraction is monitored

by measuring precisely the torsion angle, while the test mass assembly is moving slowly

towards the bigger masses, see figure 5 (left).

Modern versions of the same idea of a torsion balance are amongst the most sensitive

gravity sensors, to test the inverse-square Newton law—even below the dark energy

length scale [208], see figure 5 (right). The very diverse optomechanical devices are

related and will be discussed in the next section.

E. Optomechanics experiments.—Optomechanical devices span a wide range of

sizes and masses. Crucially the optomechanical coupling allows for both ultra-

precise detection of the mechanical motion and preparation of sensitive classical and

non-classical states of the mechanics [226]. Optomechanical devices have reached

the quantum domain which promises for ultra-precise gravity sensing and even the

exploration of the large mass quantum domain, see figure 2.

First optomechanical devices including torsion balance type sensors have been

realized and approached the standard quantum limit in sensing [227]. A first proposal

has been suggested to use optomechanical devices to perform gravity tests with mg

masses [228], which would push down the low mass limit for gravity experiments.

Here we refer to the mass of the test mass itself, instead of the interaction with a
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big external mass as for atom interferometry. Clamped cantilever type devices coupled

to optical [229] and microwave cavities [230] have been realized as well as levitated

optomechanical devices [138, 231, 232, 233, 234, 235, 236, 237, 238, 239]. The latter

are very young, being seemingly a hybrid between the nanofabricated optomechanical

structures and the atomic and molecular matter-wave systems, have a great potential

for gravity sensing [240] as their mechanical quality factor (Q) is unprecedentedly

high, as for example achieved for the driven rotation of a levitated nanorod: Q =

1011 [241]. Beside optical levitation, also magnetic levitation of superconductors is

under development [242, 243]. All this is certainly of high potential, but still has to be

shown to work as an ultra-precise gravity sensor in the quantum domain.

A clear challenge for all the nanometer and micrometer scale gravity tests—such

as the optomechanics based experiments—is the competition with other interactions

in the close proximity of surfaces, such as for example van der Waals and Casimir–

Polder interactions. The latter can easily overwhelm the effects of gravity, while clever

experimental tricks have been proposed to keep such dispersion force effects constant

while the gravity effect is modulated [240]. Needless to say, all sorts of noise and heating

effects generated by the trapping field, the environment, collisions with background gas

particles, and so on, will set bounds on the detectable magnitude of the desired gravity

effect.

F. Tests of general relativity by different types of experiments.—Beside the

experiments to measure classical Newtonian gravity there are also attempts to detect

effects as predicted by classical general relativity. At present, most experiments are on

the proposal level or are attempted based on technologies with the highest sensitivities

as general relativity effects are usually smaller than the Newtonian effects. No deviations

from predictions of general relativity have been reported. Torsion pendulums, cold atom

interferometers, and atomic clocks are typical (proposed and used) devices for such tests.

This is a very broad and active field and we can here only mention some experiments

performed. Examples include: i) Tests of the equivalence principle [244, 245, 246, 247].

A very creative idea for an experiment in this context involved mimicking of gravitation

by acceleration of nanomechanical elements [248]. ii) Tests of the universality of

free fall, where two test masses of different mass are dropped at the same time and

their free fall times are compared. Such experiments have been performed with two

different atomic species on Earth [249] and have been proposed for space [250]. iii)

Tests of Lorentz invariance, a topic, with a dedicated review article [251]. iv) The

proposals for using split path interferometers (for light or for matter) to detect general

relativistic time dilation effects. We will come back to this topic in section 4.4 on

gravitational decoherence. v) And last but not least, the general relativistic effect of

gravitational red shift which has attracted a lot of discussion in the atom interferometry

community [252, 253, 254, 255, 256, 257, 258].

There are many more experiments to test general relativity such as the Shapiro

experiment [259], which are beyond the table-top of a laboratory and therefore we will

not discuss them here.
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Figure 6. Optomechanical experiments to test gravity: Left Panel: A test-

mass m (a) is loaded on a micromechanical device (b). A source mass M (c) is located

at a COM distance d0 from the test mass and is modulated through a drive motor (d)

with maximum amplitude dS . The displacement of the test mass cantilever is read

out optically (e). Other, non-gravitational forces are further suppressed by a shielding

membrane (f). (g) labels the mounting support structure. Picture and caption taken

from [228]. Right Panel. Levitated optomechanics proposal and experiment to test

gravity. Proposed experimental geometry. A sub-wavelength dielectric microsphere

of radius a is trapped with light in an optical cavity. The sphere is positioned at

an anti-node occurring at distance z from a gold-coated SiN membrane. Light of a

second wavelength λcool = 2λtrap/3 is used to simultaneously cool and measure the

center-of-mass motion of the sphere. The sphere displacement δz results in a phase

shift δφ in the cooling light reflected from the cavity. For the short-range gravity

measurement, a source mass of thickness t with varying density sections is positioned

on a movable element behind the mirror surface that oscillates harmonically with an

amplitude δy. The source mass is coated with a thin layer of gold to provide an

equipotential. Reprinted figure and caption with permission from [240]. Copyright

2010 by the American Physical Society.

4.2. Proposals for experimental tests of the Schrödinger–Newton equation

The Schrödinger–Newton equation assumes classical gravity to affect the wave function

directly. In a way, the wave function acts as a mass (and not only a probability)

distribution and the self-gravity of that spatial mass distribution affects the evolution of

the spatial wave function. The Schrödinger–Newton equation is presented in section 3.4.

So far, there has been no experimental test (direct or indirect) of predicted Schrödin-

ger–Newton effects, while there are a number of proposals for such tests. We briefly

review proposals for both direct and indirect experimental tests. We note that if the

evolution of a matter-wave can be studied experimentally, it will as well provide a direct

test of the quantum superposition principle [104].

The regime of the Schrödinger–Newton equation is sometimes called the semi-

classical regime as gravity remains classical—even Newtonian—but this should not be

confused with the regime of quantum field theory on curved spacetime, which is also

sometimes called semi-classical. In the latter case, quantum matter fields are described

in locally flat Minkowski frames on an overall curved (general relativistic) spacetime,

which leads to the prediction of, e. g., the Unruh effect and Hawking radiation, and

is therefore the mathematical foundation of black hole thermodynamics [18]. The
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curvature of spacetime is, however, given as an external feature in this latter case.

The former case of the Schrödinger–Newton equation, to the contrary, assumes that

spacetime must be treated as fundamentally classical, and describes the curvature

resulting from the quantum matter itself, i. e. self-gravity.

It is obvious that semi-classical gravity, in connection with the Copenhagen view

on quantum mechanics, allows for faster-than-light signaling, and is incompatible with

the more radical extension of that view, the many worlds interpretation. The Schrö-

dinger–Newton equation, therefore, can only seem reasonable when it is discussed in

combination with the question of wave function collapse [184]. That obvious conflict

between the two approaches holds the potential for an experimental test where two

alternative views on the world predict a different outcome of the same experiment.

The experiment will be of the type discussed in section 4.5. There has been already

an attempt to perform an experiment [188] which was supposed to test semi-classical

gravity in the sense of the Schrödinger–Newton equation. It is, however, a purely

classical experiment together with incomplete theoretical arguments [182] which failed

the condition to have, for the same degree of freedom, both sufficiently large mass, in

order to see a gravity effect, and to be in a quantum mechanical state. It can therefore

not be regarded as a valid experiment to test semi-classical gravity. (See also section 3.4

for a discussion of formal problems of the Schrödinger–Newton equation.)

Formally, the Schrödinger–Newton equation is very similar to the physics of many-

body systems in the Hartree approximation, such as the nonlinear Gross–Pitaevskii

equation [179, 180]. However, it is worth noting that the Schrödinger–Newton

nonlinearity is delocalized over the range of the affected physical system, contrary to the

Gross–Pitaevskii equation. The nonlinearity of the equation makes analytical solutions

of the Schrödinger–Newton equation rather difficult to obtain, although some analytical

properties are known [168].

4.2.1. Proposed direct tests of Schrödinger–Newton equation: wave function expansion

The direct test of the Schrödinger–Newton equation is by studying the free expansion of

the wave function of sufficiently massive objects. Then a contraction of the wave function

according to the Schrödinger–Newton self-gravity effect should have a consequence on

that expansion, competing with its natural Schrödinger’s dynamics spread. Clearly,

because of the weakness of the gravitation interaction, the mass has to be sufficiently

large while the object has to remain in a quantum mechanical state which can be

described by a center-of-mass quantum wave function, meaning the spatial extent of the

wave function should be detectable for the full duration of the evolution. See figure 7 for

the mass-time parameter space required to observe the predicted Schrödinger–Newton

effect directly, which has been studied extensively [167, 170, 171, 260, 184, 261, 262],

while analytical solutions of the Schrödinger–Newton equation are difficult and even

numerical simulations are non-trivial.

One possible experimental scenario would be a molecule interferometry

experiment [197], as such matter-wave experiments probe spatial superposition states of



Gravitational Decoherence 53

Figure 7. Direct Test of Schrödinger–Newton wave function evolution:

The mass-time plot to illustrate the parameter range which needs to be reached for

direct Schrödinger–Newton wave function evolution experiments. This clearly needs

to be done without external gravity and other forces/interactions and therefore an

experiment in space appears a likely option. The red area shows the parameter range

for a proposed space mission to test the Schrödinger–Newton effect.

large molecules. The Schrödinger–Newton contraction effect could also be observed for

a free expansion of a singular wave function originated from a point in space, without

the necessity of interferometric methods. The key is that the mass of the evolving

quantum object has to be comparably large, much larger than the mass achieved in

present molecule interferometry experiments. Cold atoms and even BECs of atoms (see

section 4.1 C), which benefit from the multitude of coherent manipulation, control, and

cooling schemes do not seem to have large enough mass in order to show the Schrödin-

ger–Newton inhibition effect on the free expansion. Clearly, in order to measure the SN

effect one needs both a large mass of the object and access to the coherent quantum

evolution of the wave function. The high mass and the long expansion times to be

studied challenge the experimental realization.

Should direct tests of the Schrödinger–Newton equation be done in space? At this

point, there seems to be no other way to allow the wave function expansion for long

enough, typically some hundred seconds, see figure 7. Proposals to levitate massive

particles (optically or magnetically) and, therefore, to compensate for the drop in Earth’s

gravity have not been realized and are more problematic for Schrödinger–Newton tests.

The levitated tests rely on proposed techniques to accelerate the wave function expansion

artificially by optical or magnetic field gradients [242, 263]. That acceleration would have

the potential to wash out completely the fragile Schrödinger–Newton effect.

4.2.2. Proposed indirect tests of Schrödinger–Newton equation Indirect Schrödinger–

Newton effects have been predicted for optomechanical systems which are comparably
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Figure 8. Indirect Tests of the Schrödinger–Newton equation: Left Panel:

Phase space plot of mechanical squeezed state with extra rotation of state distribution

according to the Schrödinger–Newton effect. Left side: according to standard quantum

mechanics, both the vector (〈x〉, 〈p〉) and the uncertainty ellipse of a Gaussian state

for the center of mass of a macroscopic object rotate clockwise in phase space, at the

same frequency ω = ωCM . Right side: according to the center-of-mass Schrödinger–

Newton equation, (〈x〉, 〈p〉) still rotates at ωCM , but the uncertainty ellipse rotates at

ωq = (ω2
CM + ω2

SN )2. Reprinted figure with permission from [173]. Copyright 2013

by the American Physical Society. Right Panel: Schematic overview of the effect of

the Schrödinger–Newton equationon the spectrum. The top part shows the first three

energy eigenvalues and their shift due to the first order perturbative expansion of

the Schrödinger–Newton potential. The bottom part shows the resulting spectrum of

transition frequencies. In the narrow wave function regime (middle part), all energy

levels are shifted down by an n-independent value minus an n-proportional contribution

that scales with the inverse trap frequency. In the intermediate regime, where the wave

function width becomes comparable to the localization length scale of the nuclei, this

n-proportionality does no longer hold, leading to a removal of the degeneracy in the

spectrum. Picture and caption taken from [174].

massive and on the verge to be quantum, see figure 2. Such effects are very small,

can be overwhelmed by noise effects in the experiments, but can be done on the table-

top. Therefore, these tests represent a serious experimental challenge, while proposed

to be possible with available technology. Two optomechanics experimental cases, as

well as the study of the Schrödinger–Newton dynamics in nonlinear optics analogs are

mentioned:

A. Schrödinger–Newton rotation of squeezed states.—The mechanical motion of

an optomechanical system, clamped or levitated, is squeezed. Quantum squeezing

of clamped optomechanics has been realized experimentally already [264, 265], while

a classical analog has been demonstrated for a levitated system [239]. An optical

homodyne detection of both field quadratures of the mechanical state is plotted and

shows the cigar-shaped state, see in figure 8 (left). The Schrödinger–Newton equation

predicts an extra rotation of the squeezed phase-space distribution [173], i. e. the internal

oscillation of the squeezed state width 〈(x − 〈x〉)2〉 is not in phase with the external

oscillation of position 〈x〉.
B. Schrödinger–Newton energy shifts of mechanical harmonic oscillator.— A

further theoretical study [174] predicts Schrödinger–Newton related shifts of the energy
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levels of the stationary states of the quantum harmonic oscillator describing the

optomechanical system, see for an illustration of the multiple energy shift effects figure 8

(right). There, different effects for the so-called wide and narrow wave function regimes

are predicted for the situations that the spatial extent of the center-of-mass wave-

function is larger (wide wave function regime) or smaller (narrow wave function regime)

than the physical size of the massive object. A detailed experimental scenario has been

worked out and awaits its realization in an actual laboratory.

C. Nonlinear optics simulation of the Schrödinger–Newton equation.—Specific

delocalized nonlinearities in optical systems, typically just a piece of glass with a large

refractive index, show a very similar type of dynamics for the propagation of light

through that system if compared to Schrödinger–Newton dynamics. The analogue

holds at least in (1+2) spacetime dimensions. The analogue provides an interesting

option to study the dynamics of the Schrödinger–Newton equation in a parameter

regime complementary to numeric simulations. Some experiments have been already

performed [266, 267] to study cosmological settings of the Schrödinger–Newton equation

such as exotic Boson stars. The main question remains, what can we ultimately learn

from optics analogue experiments. Although these experiments do not genuinely test

gravity, the study of the formally analogue dynamics, which is hard to calculate and

even simulate otherwise, can lead to a better understanding of gravity, as well. See

section 4.3 C for more tests of gravity based on analogues.

4.3. Proposed tests of Quantized Gravity

Here we look into predicted experimental tests for approaches that assume that gravity

is quantum on the fundamental level, string theory and loop quantum gravity being the

two most prevalent candidate theories. Arguments why gravity should be fundamentally

quantum include a thermodynamic argument [268], and we will revisit in our brief section

on the holographic principle. Again we focus on tests which are predicted for the low

energy regime of table-top experiments.

The consequences of quantum gravity theories for experiments are very tiny effects

and no test has been successfully performed yet. Also none of the candidate theories

is regarded as a fully consistent theory of quantum gravity at their present stage of

theoretical development. String theory is essentially an extension of quantum field

theoretical principles from point particles to extended objects, strings, which uses flat

Minkowski spacetime as its starting point [2], and introduces gravity by predicting

a new particle, the graviton. A direct test in particle accelerator type experiments

would take extremely high energies—far beyond the scales achievable in nonrelativistic

table-top experiments. A potentially testable prediction on the table-top is related to

the higher dimensional background spacetime used in string theory. This predicts a

deviation of Newton’s inverse square law for sufficiently large gravitational interaction

strengths, i. e. in the close proximity of two masses. It is similar to fifth force tests by

measuring the gravitational interaction at close proximity of masses where also effects
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of dark energy candidates [204], e. g. the Chameleon field are expected. Again, the most

precise gravity sensors (torsion balances, atom interferometers, optomechanics) compete

in these experiments, while no evidence for a deviation from the inverse square law has

been measured [208, 204, 207, 269]. Loop quantum gravity follows a more conservative

approach, starting from a re-formulation of general relativity, and attempting to directly

(canonically) quantize it, thereby introducing operators for geometrical features such as

length, area and volume [3, 270].

There are other quantum gravity predicted experimental consequences to be

testable on the table-top for quantized gravity and we will mention some here.

A. Minimal length scale tests.—The basic assumption is that spacetime has a

minimum length scale at which point it becomes discrete and therefore quantum, as

explained in section 2.2.3. While it has been speculated that the Planck length could

provide such a minimal length scale, there is no consensus that this is actually the case.

There is already an excellent review of minimum length scale models and their possible

experimental tests [271], so we do not repeat a review of those topics here. We only

mention some aspects, which seem most interesting to us—mostly related to proposed

experimental tests.

Some of the proposed experiments to measure physics at the Planck length are

based on the related modification of quantum mechanical relations, such as the canonical

uncertainty relation ∆x∆p ≥ ~/2 [272], which can be measured precisely in quantum

optomechanical experiments [273]. The proposal is to measure ∆x and ∆p of the

mechanical harmonic oscillator by quantum optics techniques to the ultimate precision,

in order to detect a deviation as predicted by Planck-scale physics, such as doubly special

relativity [274, 275], string theory [276, 277, 278], the principle of relative locality [279],

and the deformation of the canonical commutator [280, 281]. The predicted effect is

however tiny and optomechanics experiments have not reached the required sensitivity

to observe any deviation.

No deviation from the standard quantum mechanical relations has been detected

yet, while experiments at the sub-millikelvin cooled mechanical motion of the

gravitational wave detector AURIGA have been used to set upper bounds on Planck

scale modifications [282]. However, AURIGA weights several tons and, arguably, it

is not a table-top experiment anymore. Such upper bounds have been lowered by an

optomechanical experiment using masses of around the Planck mass, but in a purely

classical motional state [283].

B. Bekenstein’s idea for a table-top experiment to measure discreteness of

spacetime.—This proposal is related to the minimum length scale ideas as it aims to

resolve experimentally the discrete structure of spacetime as in principle predicted by the

quantized version of general relativity. Bekenstein’s idea was to hunt for discrete steps

in the precisely detected motion of a macroscopic glass block. The discrete steps are

thought to originate from ripples of spacetime at the Planck (or any other minimum)

length. While not surprising, the interesting line of thought is that a mechanism is

needed to amplify the (proposed) tiny rippled structure of spacetime in order to make
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it detectable. In Bekenstein’s proposal the amplification is realized by nonlinear optics

effects. This is an approach which remains to appear fruitful to follow further.

Two major problems have been identified with this idea: 1) There is no definite size

of those ripples of spacetime predicted by any quantum gravity theory or model. 2) The

optical amplification principle is speculative and has not been demonstrated even for

larger modulations of the motion of a macroscopic glass block. More clearly, the motion

of the glass block has to be detected relative to the propagation of a single photon in a

nonlinear optical medium (glass), while it is not clear if the motion of the photon itself

is not also affected by the same quantum gravity effect which affects the motion of the

macroscopic glass block.

However we remain positive about the initial idea as the proposal has certainly

inspired experimentalist to think about possible tests of quantum gravity on the table-

top.

C. The idea of the holographic principle.—The idea of the holographic principle

provides an interesting connection between gravity and thermodynamics. It is, that

all physics (via the statistical interpretation of entropy) within an enclosed volume is

encoded on its surface, was proposed first in the so-called brick wall model [284] and

soon found adaptation for string theory in the so-called AdS/CFT correspondence [285].

AdS/CFT is very popular in string theory, as it provides an approach to circumvent non-

trivial calculations of a higher dimension (n+1) theory (in anti deSitter spacetime, hence

AdS) to the corresponding lower dimensional (n) conformal field theory (CFT). This

approach ultimately leads to the lively discussed idea of the so-called firewall [286, 287].

The link to thermodynamics comes as physical degrees of freedom are considered,

as they might appear on the event horizon of a black hole [288]. The mathematical

framework of thermodynamics, which is the very same as quantum field theory on

curved spacetime as discussed in section 4.2, allows for quantum effects in that gravity

scenario, such as Hawking radiation [289]. In turn thermodynamic properties such as

temperature and entropy can be associated with the extreme gravity situation of a black

hole, and is therefore going beyond general relativity. While the holographic principle

provides an exciting link between quantum mechanics and gravity, it remains very hard

to test by any experiment.

If true, this principle means that the total number of degrees of freedom in

the universe is finite, according to the Bekenstein bound [290], in contradiction to

infinite Hilbert-space quantum mechanics. The fascinating question is if the principle

is universal and therefore could in principle also be tested in a less general relativistic

domain - such as by quantum table-top experiments. There is also an interesting and

potentially fruitful link to information theory, through the link to von Neumann entropy.

Interestingly, there is a link to quantum optics to so-called area laws, which use the same

informational link of entropy between the area and the enclosed volume [291, 292]. This

may open the door for experimental tests of the holographic principle by scenarios

involving quantum entanglement in the laboratory.

Experiments with optical interferometers have been proposed to be used to test
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Planck scale quantum geometry models, some of which are mentioned in section 4.3 A,

including those with holographic bounds which induces noise in the interferometer

measurements [293].

Again, as black holes and especially quantum physics on the black hole horizon are

notoriously hard to reach by experiments, analogue experiments have been proposed to

test formally equivalent physics on artificial event horizons, which can be realized in the

laboratory [294, 295, 296, 297, 298]. Physical systems used to generate event horizons

and to detect quantum physics there are nonlinear optics [299] and flowing water [300]

amongst others. While analogue experiments clearly give insight into the dynamics of

formal equivalent mathematics, it remains unclear, per definition, whether the same

physics applies to the case involving actual gravity. Gravity analogue experiments

certainly help to ask more precise questions about the case with gravity.

4.4. Gravitational decoherence effects

Tests of gravitational decoherence are based on the the straight-forward approach to

generate a spatial superposition state (or any other non-classical state) of a massive

particle and test if such a state decoheres according to (classical or quantum) gravity.

Clearly, the experimental challenge is the preparation of such a state of sufficient mass.

Typical experiments involve matter-wave interferometers and quantum optomechanics.

The state of the art of experiments have been already covered in section 4.1. While the

largest mass is given again by molecule interferometry, some of the effects (such as time

dilation) are more promising to be tested in smaller mass systems such as cold atom

interferometry, as those can be prepared in larger size superposition states to pick up

a larger dephasing or decoherence effect. Although on first sight it appears that only

massive systems can be used for the test, it becomes clear that general relativity effects

also exist for photons [201].

A. Gravitational decoherence affecting superpositions.—In matter-wave interferom-

etry experiments, the proposed effects from general relativistic time dilation [62, 20],

discussed in section 2.3 may be tested. Time dilation leads to a dephasing effect in

a matter-wave interferometer for the propagation of the wave function along the two

different arms—ultimately resulting in a reduction of the visibility of the interference

pattern. The effect has been predicted to scale with the number of all internal degrees

of freedom, which are involved in the energy-momentum tensor on the right hand side

of Einstein’s equations (and which, therefore, affect the spacetime curvature and result

in a gravitational force).

Atom interferometry tests of the time dilation effect appear most promising at

the moment. They profit from the high control of the center-of-mass motion of cold

atoms, e. g. in a 10 m fountain and with sensitivity on the verge of 10−19, while the

theoretical details of the effect are still debated. As a universal decoherence effect to

explain the evident macroscopic quantum to classical transition, it is clear that time

dilation decoherence, should it exist, is weaker by many order of magnitude than know
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environmental effects such as decoherence due to collisions by an even very diluted

background gas [68], which leaves the usefulness of the general relativity effect in

question.

To be more precise, each (internal) degree of freedom of the particle is regarded as a

clock running at a typical frequency, but depending via general relativistic time dilation

on the local gravitational environment. Then each single clock, if separated between

the two different paths of an interferometer, will be sensitive to the relative duration of

time and, therefore, dephase. This experiment has been realized as a proof of principle

experiment with atomic chips [301], where the much larger spatial separation in other

atomic interferometers [211] will help to improve the sensitivity to observe the predicted

effect, discussed in section 2.3.

B. Gravitational effects in dynamical reduction models.—Dynamical reduction or

collapse models have been formulated to explain the quantum to classical transition on

a fundamental level and in complement to decoherence models [104]. While the physical

reason for the collapse to occur is explained by the existence of a universal classical and

random noise field, the physical origin of that field is still debated. The Diósi–Penrose

model and Adler’s model suggest that gravity is the cause of the collapse. This has been

reviewed in section 3.

The best way to test those models is by large mass matter-wave interferometry,

where the mass has to be beyond the presently reached limit of molecule interferometry

by many orders of magnitude. This means that testing such models requires

the preparation of large masses in non-classical states and optomechanical or

magnetomechanical systems look most promising for the test [302, 303, 304]. Proposed

experiments along those lines involve [305, 242].

Also indirect, non-interferometric experiments can be performed. Figure 1 shows

the state of the art with respect to Adler’s model. Future experiments, proposed

in order to close the remaining gap in the parameter plot, involve those to generate

large and massive quantum superpositions [306, 307, 242, 308, 309]. Such experiments

are currently under development in the laboratories. A similar analysis for the Diósi–

Penrose model (and Károlyházy’s model) is still missing.

C. Gravitational wave induced decoherence.—Gravitational waves, which are a

predicted consequence of general relativity [310, 311], have attracted much attention

recently as a first experimental proof of their existence has been made by the LIGO

experiment [12] in 2016, which is promising that gravitational waves may soon serve as

new tool for astronomy. The LIGO experiment is a sophisticated version of a Michelson

interferometer with kilometer long arms. It is, therefore, a large-scale physics experiment

and we will not discuss it here in much more details. A first step has been taken to

implement a space based version of a Michelson type gravitational wave interferometer

with the very successful LISA pathfinder mission [214], which is of course also way

beyond the scale of the table-top experiments discussed here.

There are further proposals to detect the effect of gravitational waves in more

table-top like experiments. However, it will become clear that also the scale of these
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seemingly table-top ideas goes easily beyond the laboratory scale. As we have discussed

in section 4.1 C, in atom interferometers there are sensitive spatial superposition states of

massive particles which have been proposed to be used as a probe for gravitational waves.

One can distinguish two ways to detect gravitational waves by atom interferometry,

depending on whether gravitational waves are assumed to ’decohere’ or ’not to decohere’

matter-waves: The effect described by Lamine et al [31] is decoherence of the matter-

wave by collision with a gravitational wave, while in Dimopoulos et al [205] the matter-

wave undergoes a dephasing, which is precisely measured by a differential measurement

between two widely separated atom interferometers using a common laser.

For the latter case and with technology such as the 10 m Stanford atomic fountain

on ground with strain sensitivity of up to 10−19/
√

Hz in the frequency band of 1–

10 Hz, the gravitational wave measurement would be complementary to LIGO. A recent

proposal is about a technique to use atom interferometers for a single baseline detector

for gravitational waves with improved strain sensitivity on ground [312]. Similar ideas

based on atom interferometry have been proposed for a space based experiment in

the LISA-type arrangement and the achievable strain sensitivities are predicted to be

10−20/
√

Hz for the same gravitational wave frequency spectrum as LISA. A further low

orbit scenario with a 30 km baseline has been proposed [313], aiming for strain sensitivity

of less than 10−18/
√

Hz in the gravitational wave frequency band of 50 mHz to 10 Hz,

which would be complementary to LIGO-type instruments. This idea is the basis for a

proposed space mission.

For the case of decoherence due to scattering with gravitational waves, where the

gravitational wave hits the matter-wave, there is the HYPER proposal by Reynaud and

co-workers [30]. They evaluate the significance of the decoherence process associated

with the stochastic background of gravitational waves, and they show it has a tiny

effect on HYPER-like atomic interferometers. In the work of Lamine et al [31] they

work out that gravitational waves would ultimately limit matter-wave interferometers

by a decoherence effect, while the effects are very tiny and much smaller than all other

decoherence effects discussed in this review. They estimate that the decoherence effect

on a matter-wave would be visible for a molecule interferometer type of experiment [83]

of path separation on the order of 1 m, for 10−18 kg molecules traveling at a speed

of 1 km/s—which is clearly way beyond existing experiments and technology in the

laboratories, while not un-thinkable for a space based experiment. The interferometric

path separation of 1 m is clearly the biggest experimental challenge.

Other ideas to probe gravitational waves on more table-top like experiments are to

look for unique heating and noise effects in optical lattice atomic clocks [314], or with

superfluid 4He droplets [315]. Furthermore, levitated optomechanics has been proposed

to be used to probe gravitational waves [206], where they also work out how the effect

to detect gravitational waves would scale with mass. Such an instrument could detect

gravitational waves in the 50 kHz–330 kHz frequency range with a 103 times improved

sensitivity compared to LIGO assuming a 150 nm radius levitated microdisk in a 100 m

optical cavity. Clearly the 100 m cavity line is beyond a strict table-top scale.
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Long-term competitors of LIGO type optical interferometers to detect gravitational

waves are the Schenberg instruments or parametric transducers [316] in Leiden and Sao

Paulo which have the expected strain sensitivity of 10−22/
√

Hz in the narrow frequency

band of 3 kHz to 3.4 kHz. There, the gravitational wave scattering effect on the precisely

controlled motion of a magnetically trapped macroscopic perfect sphere is used to detect

gravitational waves.

D. Competing effects for matter-wave interferometry.—In order to be able to see

such gravity effects and how they collapse or decohere the wave function in matter-

wave based experiments, all competing environmental decoherence processes have to

be suppressed, which is the major experimental challenge in order to perform the

experiments. Dominating decoherence effects are due to collisions with background

gas, collisional decoherence [317], and the effects due to exchange of thermal radiation

between the quantum system and the environment [318, 319, 308]. Magnetic levitation

of superconducting microparticles, by definition, avoids all effects related to internal

temperature radiation as the experiment is cryogenic and on top of that all noises

related to lasers are removed as well [242]. This represents a huge advantage compared

to optomechanics test. Furthermore, vibrations set serious constraints to all mechanics

based tests of wave function collapse and gravity.

E. The case for space.—Ultimately a test of gravity decoherence and gravity

induced collapse of the wave function would benefit from large masses of the particles

in superposition states as well as long lifetimes of those superposition states in order

to observe the extremely weak effects. The space proposal on macroscopic quantum

resonators (MAQRO) [320] would be able to fulfill all those conditions. A community

has started to work towards such a test in space and to propose a related mission.

There are also many attempts to perform atom interferometry in space, which have been

already mentioned and cited in section 4.1 C on atom interferometry and section 4.4 C

on gravitational wave decoherence.

4.5. The gravity of a quantum state

A somehow different approach to the question of the interplay between quantum

mechanics and gravity is given here. The setting goes back to Feynman [321] and

amounts to the question: what is the gravitational field generated by a massive quantum

superposition? Is it the superposition of the two gravitational fields generated by the

two terms of the superposition, as predicted by quantum gravity? (Feynman thought

this was the most logic answer.) Or is it the sum of the two gravitational fields, as

predicted by the Schrödinger–Newton equation and perhaps by any consistent theory,

which keeps gravity fundamentally classical? Or does the superposition decay because

of gravity, as assumed by Penrose and developed in gravity-related collapse models?

This question challenges directly our understanding of gravity. But it goes further

than this. It is directly related to another fundamental question: what is the mass,

in a quantum universe? Is it a parameter entering the Schrödinger equation, more or
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less like the electric charge is? Or does it have a different origin, as general relativity

suggests? Is the mass delocalized along with the wave function, or is it always localized

in space?

For years these questions were purely speculative, because a detectable gravitational

field requires a large enough mass, which can be hardly put in a spatial quantum

superposition. This is why an experiment along these lines has never been done.

But recent technological developments in quantum optomechanics are changing things.

Though not in a truly quantum regime yet, appreciably large masses are controlled and

manipulated with extreme accuracy, and very sensitive force and position measurements

can be done. Now a feasible experimental proposal can be thought of, although the

details still need to be sorted out [322].

A related proposal is to use the nonlinearity of gravity interaction to generate

quantum entanglement between two distant massive systems in order to prove the

fundamental non-classicality of gravity [323].

It is worth mentioning another interesting effect—retarded gravity—which has been

speculated. Using the language of a classical gravity, the claim is that the center

of the gravitational field does not coincide with the center of mass originating the

field. As a consequence, there is a retarded gravity effect, which can be observed in

specific experimental conditions [324, 325]. Experiments, most likely torsion balances

or optomechanical devices, could aim to resolve it.

5. Conclusions

After about half a century of intense research in unifying quantum theory and

general relativity, only recently a significant part of the scientific community started

reformulating the problem from scratch, in a perhaps less ambitious but equally

interesting way: to challenge the interplay between the two theories, both theoretically

and experimentally, rather than trying to combine them in a single framework.

The field of gravitational decoherence is relatively young, and this explains the

variety of approaches and the lack of unity, as it emerges from the present review. In

this summary we will present some of the most relevant open problems, at least in our

view, and possible future directions of research.

From the theoretical point of view, two lines of research have been initiated: to

understand the effect of gravitational noise on quantum systems, at the nonrelativistic

level, which is more easily accessible from the experimental point of view; and to

speculate whether gravity might modify quantum theory, as a resolution of the quantum

measurement problem. The first strategy was reviewed in section 2, the second in

section 3.

As far as the first line is concerned, a rather large variety of models exists

which take different approaches and, therefore, are hard to compare and put on a

common ground. Most models are based on, or at least motivated by, assumptions

about quantum gravity, such as the existence of a minimal length scale or a bath of
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thermalized gravitons. Interestingly, much less work has been focused on effects of

classical spacetime fluctuations, and a comparison of the different approaches discussed

in section 2 would be desirable. A comparison of the effects of a classical spacetime

to quantum gravity seems necessary also, in order to identify effects that can truly be

considered as quantum gravity fingerprints. Despite being the most straightforward

one from its theoretical origin, the time dilation induced decoherence effect [20], which

should be considered as an effect of non-inertial reference frames rather than a genuinely

gravitational decoherence, only raised interest very recently. There is an ongoing debate

about the interpretation and testability of this effect.

Coming to the second research line, the fact that the program of quantizing gravity

turned out not to be as straightforward as with the other known forces, and is yet

unresolved, together with the conceptual problems of quantum theory, has lead part of

the scientific community to explore the possibility that quantum theory needs first to

be reconsidered and that gravity might play a role in this; Penrose [4] refers to this as

“gravitization of quantum mechanics”, as opposed to the “quantization of gravity”. As

we have seen, the formulation of the problem is simple: quantum mechanics does not

explain the absence of macroscopic superpositions. On the other hand, gravity is the

stronger, the larger the system. Hence one might speculate that gravity plays a role in

preventing macroscopic superpositions.

We have reviewed four options in section 3: the Diósi–Penrose model; Adler’s

idea on the existence of an irreducibly complex, rapidly fluctuating component of the

metric; Károlyházy’s model; and the Schrödinger-Newton equation. They first three

models predict the existence of a stochastic gravitational background. The first two

also predict a non-standard (in particular, nonlinear) coupling between matter and the

background, which induces the collapse of the wave function in space, in agreement

with the Born rule. The third one instead appears more like a standard decoherence

model of a system in a noisy gravitational environment. The fourth model predicts a

self-gravitational attraction of different parts of the wave function, opposing its natural

spread.

These models do not resolve the quantum-gravity problem, and have very much

the flavor of provisional models. So in this sense they cannot compete with much better

developed theories such as string theory. However they are interesting and relevant, as

they challenge the, so far incomplete, mainstream view according to which the world is

quantum, gravity included. They are also interesting because they all predict effects,

which can be tested with (a reasonable improvement of) current technology, as discussed

in section 4.

From the theoretical point view, the obvious work which needs to be done, is to

consolidate these models, ideally deriving them from what can be rightfully regarded as

a new theory of matter and gravity. From a phenomenological point of view, it is crucial

to conceive new experimental scenarios, where their effects can be tested, possibly in

cheap table-top settings. And then experiments need to be done. Such experiments

would probe the quantum-gravity interplay, one of the most fascinating and mysterious
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areas of current research.

From the experimental point of view, precise experiments have been performed to

detect classical Newtonian gravity (G and g), which, however, are still less precise

than the tests of all other fundamental constants. Such experiments include atom

interferometers where the test mass is in a non-classical superposition state. Different

values for G are found from different types of experiments [210]. The exact knowledge of

the precise distribution of atoms in the typically big source mass has been identified as

the limiting factor to increase precision further. It can be speculated that more precise

tests of both G and g can be performed when both the test and the source mass are

comparable in size, sufficiently massive to observe gravity effects, but well maintained

within the quantum regime.

While matter-wave interferometer quantum experiments have been performed

in the low mass regime, see figure 2, the higher mass range, all the way up to

milligram masses—the working regime of torsion balances—is almost unexplored by any

experiment and definitely not by any quantum experiment. Optomechanical devices are

one candidate to bridge this enormous mass gap, while being in a quantum mechanical

state and very massive at the same time. Especially levitated mechanical systems hold

promise to test new physics in that new mass range. A variety of theoretical proposals

and ideas for the interplay between quantum mechanics and gravity will become testable

in the same mass range. Such ideas include the here discussed gravitationally induced

decoherence and collapse models, the Schrödinger–Newton equation, the gravity of a

quantum state, and quantum gravity effects.
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Freschi M, Garćıa Maŕın A F, Garćıa Marirrodriga C, Gerndt R, Gesa L, Gibert F, Giardini D,

Giusteri R, Guzmán F, Grado A, Grimani C, Grynagier A, Grzymisch J, Harrison I, Heinzel G,

Hewitson M, Hollington D, Hoyland D, Hueller M, Inchauspé H, Jennrich O, Jetzer P, Johann
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