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Precanonical quantization uses a different generalization of Hamiltonian formalism to
field theory, the so-called De Donder–Weyl (DW) theory, which does not require a space-
time decomposition and treats the space-time variables on the equal footing. Quantum
dynamics is described by precanonical wave functions on the finite dimensional space
of field coordinates and space-time coordinates, which satisfy a partial derivative pre-
canonical Schrödinger equation. Based on the analysis of constraints within the De
Donder–Weyl Hamiltonian formulation of Einstein-Palatini vielbein formulation of GR
and quantization of generalized Dirac brackets defined on differential forms, we derived
the covariant precanonical Schrödinger equation for quantum gravity. The resulting dy-
namics of quantum gravity is encoded in the wave function or transition amplitudes on
the bundle of spin-connections over the space-time. Thus the precanonical quantiza-
tion leads to the ”spin-connection foam” picture of quantum geometry represented by

a non-Gaussian random field of spin connection coefficients. We also argue that the
normalizability of precanonical wave functions with respect to the scalar product, which
involves an operator-valued invariant measure on the space of spin connection coeffi-
cients, naturally leads to the quantum gravitational avoidance of curvature singularities.

Keywords: Quantum gravity; precanonical quantization; De Donder – Weyl theory; viel-
bein gravity; Dirac brackets.

1. Precanonical Quantization of Fields

Contemporary quantum field theory originates from canonical quantization which

is based on the canonical Hamiltonian formalism. The latter dictates a picture of

fields as infinite dimensional Hamiltonian systems. It also restricts the consideration

to the globally hyperbolic space-times, as it implies a different role of the time

dimension, along which the evolution proceeds, and the space dimensions, which

label the continuum of degrees of freedom of fields. Many problems we encounter

in quantum gravity theories can be traced back to this very origin of QFT.

However, the canonical Hamiltonian formalism is not the only possibility to

extend the Hamiltonian formalism from mechanics to field theory. The alternative

“Hamiltonizations” (i.e. writing the field equations in the first order form using

some generalization of the Legendre transform) known in the calculus of variations1

are more geometrical than the canonical formalism and they treat the space and

time variables (i.e. the independent variables of the multiple integral variational

problem) on the equal footing, i.e. essentially as multidimensional generalizations

of the one-dimensional time parameter in mechanics.

In a sense, those Hamiltonizations of field theories are intermediate between the

Lagrangean description and the canonical Hamiltonian formalism. Besides, in the

case of mechanics, i.e. one-parameter variational problems, all those formulations
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reduce to the Hamiltonian formalism in mechanics. For this reason we name those

formulations “precanonical” and the resulting procedure of quantization of fields

“precanonical quantization”.

The simplest precanonical formulation is the so-called De Donder–Weyl (DW)

theory1: for a Lagrangian density L = L(φa, φa
µ, x

ν), which is a function of the

fields variables φa, their first space-time derivatives φa
µ, and the space-time variables

xµ, one defines the polymomenta pµa := ∂L
∂φa

µ
and the DW Hamiltonian function

H(φa, pµa , x
µ) := φa

µ(φ, p)p
µ
a−L. Then, if the Legendre transform φa

ν → pνa is regular,

the field equations can be cast into the DW Hamiltonian form:

∂µφ
a(x) = ∂H/∂pµa , ∂µp

µ
a(x) = −∂H/∂φa. (1)

This formulation requires neither a splitting into the space and time nor infinite-

dimensional spaces of field configurations. Here the analogue of the extended con-

figuration space is a finite dimensional space of field variables φa and space-time

variables xµ, and the analogue of the extended phase space is a finite dimensional

space of pµa , φ
a and xµ. Those spaces are bundles over the space-time (see e.g.

Ref. 4) whose sections are classical field configurations.

The Poisson brackets in DW Hamiltonian formulation of field theory in n di-

mensions2 are based on the construction using the polysymplectic (n + 1)–form

on the extended polymomentum phase space: Ω := dpµa ∧ dφa ∧ ̟µ, where

̟µ := ∂µ (dx1 ∧ ... ∧ dxn), as the fundamental underlying structure generalizing

the symplectic 2–form of the canonical Hamiltonian formalism. The Poisson brack-

ets are defined on differential forms representing dynamical variables and they lead

to a Gerstenhaber algebra structure, which generalizes the Poisson algebra to the

DW Hamiltonian formulation of field theory.2 Precanonical quantization of fields3

is based on quantization of Poisson-Gerstenhaber brackets of forms2 according to

the Dirac quantization rule.

A formulation of quantum scalar field theory based on quantization of Poisson-

Gerstenhaber brackets of forms naturally leads to a description of quantum fields

in terms of Clifford (Dirac) algebra valued wave function on the space of field

variables and space-time variables, Ψ(φa, xµ), which fulfills a Dirac-like precanonical

Schrödinger equation with the mass term replaced by the DW Hamiltonian operator

Ĥ :

i~κγµ∂µΨ = ĤΨ, (2)

where κ is an ultraviolet constant of the dimension of the inverse spatial volume and

Ĥ is a partial derivative operator with respect to the field variables. The natural

appearance of Clifford algebra valued functions and operators can be argued already

on the level of geometric prequantization generalized to the DW Hamiltonian for-

malism.4 Note that the DW Hamiltonian equations (1) can be derived from (2) as

the equations on the expectation values of the corresponding precanonical quantum

operators.5 The explicit form of a generalization of equation (2) in quantum gravity

will be presented below.
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A relation of this description to the standard QFT in the functional Schrödinger

representation has been established in the limit of infinite κ or, more precisely,

when 1
κ
γ0 → ̟0.

6 In this limiting case one can construct the Schrödinger wave

functional as the multidimensional Volterra product integral7 of precanonical wave

functions and derive the canonical functional derivative Schrödinger equation from

the precanonical Schrödinger equation (2).6 Thus the standard QFT turns out to

be a singular limiting case of quantum theory of fields obtained via precanonical

quantization. One can view the latter as an “already regularized” quantum field

theory in which the regularizing UV scale κ is itself a part of the field quantization

procedure.

2. Precanonical quantization of vielbein gravity and the

spin-connection foam

A central role of the Dirac operator in precanonical quantization, which generalizes

i∂t in quantum mechanics (c.f. eq. (2)), implies that gravity has to be quantized in

vielbein formulation (c.f. Ref. 8 for an earlier work on a metric formulation). Here

we follow our earlier work.10

The Einstein-Palatini Lagrangian density with the cosmological term

L = 1
κ
ee

[α
I e

β]
J

(
∂αωβ

IJ + ωα
IKωβK

J
)
+ 1

κ
Λe, (3)

where the vielbein components eµI and the spin-connection coefficients ωIJ
α are in-

dependent field variables, and e := (det ||eµI ||)
−1, is easily seen to lead to a singular

DW Hamiltonian theory with the primary constraints

pα
e
β
I

:=
∂L

∂ ∂αe
β
I

≈ 0, pα
ωIJ

β
:=

∂L

∂ ∂αωIJ
β

≈ 1
κ
ee

[α
I e

β]
J . (4)

Those are second class, as it follows from the Poisson-Gerstenhaber brackets of

(n− 1)–forms of constraints C
e
β

I

:= pα
e
β
I

̟α and CωIJ
β

:=
(
pα
ωIJ

β

− 1
κ
ee

[α
I e

β]
J

)
̟α:

{[Ce,Ce′ ]} = 0 = {[Cω,Cω′ ]}, {[Ce
γ
K
,CωIJ

β
]} = − 1

κ
∂eγK

(
ee

[α
I e

β]
J

)
̟α. (5)

The DW Hamiltonian density obtained from (3) reads

H :=
∂L

∂ ∂αω
pαω +

∂L

∂ ∂αe
pαe − L = − 1

κ
ee

[α
I e

β]
J ωIK

α ωJ
βK − 1

κ
Λe. (6)

By using a generalization of the Dirac bracket to the DW theory9 we obtain an

amazingly simple algebra of fundamental brackets on the subalgebra of (n−1)– and
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0–forms:10

{[pαω̟α, ω
′̟α′ ]}D = {[pαω̟α, ω

′̟α′ ]} = δω
′

ω ̟α′ , (7)

{[pαe̟α, e
′̟α′ ]}D = 0 = {[pαe̟α, pω ]}

D= {[pαe̟α, ω
′̟α′ ]}D= {[pαω̟α, e

′̟α′ ]}D (8)

{[pαω̟α, ω
′ ]}D = {[pαω̟α, ω

′ ]} = δω
′

ω , (9)

{[pαe̟α, e
′ ]}D = 0 = {[pαe̟α, pω ]}D= {[pαe̟α, ω ]}D= {[pαω̟α, e ]}

D, (10)

{[pαω, ω
′̟β ]}

D = {[pαω, ω
′̟β ]} = δαβ δ

ω
ω′ , (11)

{[pαe , e
′̟α′ ]}D = 0 = {[pαe , pω̟α′ ]}D= {[pαe , ω̟α′ ]}D= {[pαω, e

′̟α′ ]}D= 0. (12)

The fundamental brackets are quantized according to the generalized Dirac’s

quantization rule: [Â, B̂] = −i~ ̂e{[A,B]}D, in which the presence of the operator of

e guarantees that tensor densities are quantized as density-valued operators. The

quantization of fundamental Dirac brackets (7)-(12) and the equations of constraints

(4) leads to a representation of the operators of vielbeins: êβI = −i~κκγ̄J ∂
∂ωIJ

β

, and

the polymomenta of spin-connection: p̂α
ωIJ

β

= −~2κ2κ ê γ̄KL ∂
∂ωKL

[α

∂
∂ωIJ

β]

, where γ̄J

are the fiducial Minkowskian Dirac matrices. Those Clifford-valued operators act

on Clifford-valued quantum gravitational precanonical wave functions which do not

depend on vielbein variables: Ψ = Ψ(ωIJ
α , xµ), i.e. they are wave functions on the

configuration bundle of spin-connections over the space-time.

We can also construct the operator of DW Hamiltonian density H =: eH re-

stricted to the surface of constraints C. From (6) and (4) we obtain (eH)|C =

−pα
ωIJ

β

ωIK
α ωβK

J − 1
κ
Λe and, using the above representations,

Ĥ = ~
2
κ
2κγ̄IJω[α

KMωβ]M
L ∂

∂ωIJ
α

∂

∂ωKL
β

−
1

κ
Λ. (13)

Now the covariant precanonical Schrödinger equation for quantum gravity (c.f. (2))

i~κ /̂∇Ψ = ĤΨ, (14)

where /̂∇ := γ̂µ(∂µ + 1
4ωµIJ γ̄

IJ) and γ̂µ := γ̄I êµI = −i~κκγ̄IJ ∂
∂ωIJ

µ
, can be written

in an explicit form:

γ̄IJ

(
∂µ +

1

4
ωµKLγ̄

KL − ωµM
Kωβ

ML ∂

∂ωβ
KL

)
∂

∂ωµ
IJ

Ψ = −λΨ, (15)

where λ := Λ
(~κκ)2 is a dimensionless constant which involves three different scales:

cosmological, Planck, and the UV scale κ introduced by precanonical quantization.

The fact that all physical constants have been absorbed in a single dimension-

less constant λ, which is present as an eigenvalue of the operator in the l.h.s. of

(2), seems to suggest that the latter, and the theory of quantum gravity derived

from precanonical quantization, represent a certain purely mathematical statement

concerning the sections of the Clifford bundle over the bundle of spin-connections

over the space-time, which is actually the essence of ”quantum geometry” in the

present formulation.
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We assume that the Hilbert space of precanonical wave functions is defined by

the scalar product

〈Φ|Ψ〉 := Tr

∫
Φ [̂dω]Ψ, [̂dω] = ê−n(n−1)

∏

µ,I<J

dωIJ
µ , (16)

where Ψ := β̄Ψ†β̄ and a Misner-like diffeomorphism invariant measure on the space

of spin-connection coefficients (i.e. a fiber of the bundle of spin-connections over

the space-time) is operator valued, because ê−1 = 1
n! ǫ

I1...Inǫµ1...µn
êµ1

I1
...êµn

In
is a

differential operator itself.

As a consequence of such definition of the scalar product (and quite indepen-

dently from its details) the normalizability of precanonical wave functions, which

requires ê−
1
2n(n−1)Ψ to vanish at large ω-s, i.e. at large space-time curvatures,

actually implies the quantum singularity avoidance in the sense that the probabil-

ity density of observing the regions of space-time with extremely high curvatures

is vanishing. However, in spite of its plausibility, this resolution of the singularity

problem depends on the actual existence of the properly normalized solutions of Eq.

(15), which is not yet proven. Moreover, the argument based on the normalizability

of precanonical wave functions in its present form ignores the intricalities related

to the indefiniteness of Tr[ΨΨ] and the gauge fixing, i.e. the choice of the coordi-

nate systems and local orientations of vielbeins on the average when extracting a

physical information from the solutions of (15).

Eq. (15) can be seen as a generalized hypergeometric equation of several matrix

variables Zµ := ωIJ
µ γ̄IJ . The theory of such equations is not yet developed in math-

ematics, so that even the existence of properly normalized solutions (see below),

which is essential for the present formulation of quantum theory of gravity to be

physically viable and mathematically well-defined is still to be proven.

The latter problem can be addressed in the simplified case of space-times with

less than three independent nonvanishing spin-connection components. In this case

the ωω∂ω∂ω term in (13) is vanishing and the remaining part can be written in the

form of (15)
(
ikµ∂Zµ

+
1

4
Zµ∂Zµ

+ λ

)
Ψ = 0, (17)

assuming Ψ = eikµx
µ

Φ(Zµ). By separating variables Zµ, so that Ψ(Z) = ΠµΨ(Zµ)

we obtain the following equation for each µ

(ik∂Z +
1

4
Z∂Z)Ψ + cΨ = 0. (18)

Its formal solution (written in terms of the function of the fractional degree of the

matrix under the bracket) is

Ψ ∼ (4k − iZ)−4c (19)
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The Green functions of (15) are the transition amplitudes between different

values of spin-connection at different points, 〈ω, x|ω′, x′〉. They describe a quan-

tum space-time geometry which generalizes classical geometry described in terms

of smooth spin-connection fields ω(x). By noticing the analogy with the statisti-

cal hydrodynamics approach to turbulence, which replaces the description in terms

of the smooth velocity fields v(x) by the statistical description in terms of the

velocity correlators at different points, we can speak of the picture of quantum

gravity derived from precanonical quantization as a space-time turbulence or spin-

connection foam. In fact, this picture is even closer to the original Wheeler’s in-

tuition about the “space-time foam” than his quantum geometrodynamics based

on the Wheeler–De Witt equation and the notion of infinite-dimensional super-

space of all metrics. Besides, the metric tensor in the present formulation is the

operator given by ĝµν = −~2κ2κ2ηIJηKL ∂2

∂ωIK
µ ∂ωJL

ν
, hence the distances between

points given by d̂s2 = ĝµνdx
µdxν are operator-valued. This makes the notion of

the distances between points or, consequently, the operational notion of the points

themselves, fuzzy. Thus, precanonical quantization of general relativity leads to

a description of quantum geometry of space-time which complements the contem-

porary ideas about quantum space-time originating from LQG, string theory and

non-commutative geometry.

3. Some connections with LQG

Historically, the paper by Esposito e.a.11 was the first one to discuss the constraints

in Ashtekar’s formulation using a version of DW (multisymplectic) Hamiltonian

theory applied to the vielbein Einstein-Palatini Lagranigian (3).

In spite of the obvious differences of our precanonical approach from the LQG

programme, which uses 3+1 decomposition vs. our explicitly space-time symmetric

approach, functionals and functional derivative operators vs. our use of functions

and partial derivative operators etc., there are some striking similarities as well,

one of them being the emergence, after Hamiltonization, of a formulation based on

connections, with the vielbeins, or densitized inverse triads/dreibeins in Ashtekar’s

formulation, represented as differential operators with respect to the connections.

Whereas our approach to quantization is based on the fundamental brackets

in the Weyl subalgebra in the subspace of Hamiltonian 0– and (n − 1)–forms, our

construction of Poisson-Gerstenhaber brackets in field theory2 offers another, yet

unexplored opportunity based on the Dirac bracket between the spin-connection 1–

form ωIJ
α dxα and its conjugate polymomenta (n−2)–form p

µ

ωKL
ν

̟µν , where ̟µν :=

∂µ ∂ν ̟:

{[ωIJ
α dxα, pµ

ωKL
ν

̟µν ]}
D = {[ωIJ

α dxα, pµ
ωKL

ν
̟µν ]} ∼ n δ

[I
Kδ

J]
L . (20)

This bracket generalizes the bracket between the potential 1–form A and the (n−2)–

form of the dual field strength ∗F = ∗ 1
2Fµνdx

µ ∧ dxν in Electrodynamics found in

Ref. 2 (see also Refs. 14, 15). After a (3+1)-decomposition, restriction to the initial
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data surfaces, and integration over them (c.f. Refs. 2, 14), the bracket can be related

to the fundamental Poisson bracket underlying the Ashtekar formulation in (3+1)-

dimensions, and the forms involved in (20) can be used to construct the holonomy-

flux variables underlying the LQG approach (see e.g. Ref. 12 for a review). However,

when using the bracket (20) one should keep in mind that the set of (n− 2)− and

1−forms is not closed with respect to the Poisson-Gerstenhaber bracket operation,

unlike the subalgebra of 0− and (n−1)−forms in (7)–(12) our consideration is based

on.

A further understanding of possible connections of precanonical quantization

with LQG in (3+1) dimensions would require an inclusion of the Holst term16

with the Barbero-Immirzi parameter in the Einstein-Palatini Lagrangian (3), which

does not, however, appear to be necessary within our approach. It is interesting

to note in this connection that a multidimensional generalization of the connection

formulation of pure gravity discussed by Bodendorfer e.a.17 also does not require

the Barbero-Immirzi parameter in general.
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