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Abstract

We show that the simplicity constraints, which define the dynamics of spin foam
models, imply, and are implied by, the first law of thermodynamics, when the latter is
applied to causal diamonds in the quantum spacetime. This result reveals an intimate
connection between the holographic nature of gravity, as reflected by the Bekenstein
entropy, and the fact that general relativity and other gravitational theories can be
understood as constrained topological field theories.

To state and derive this correspondence we describe causal diamonds in the causal
structure of spin foam histories and generalize arguments given for the near horizon
region of black holes by Frodden, Gosh and Perez[18] and Bianchi[19]. This allows
us to apply a recent argument of Jacobson[29] to show that if a spin foam history has
a semiclassical limit described in terms of a smooth metric geometry, that geometry
satisfies the Einstein equations.

These results suggest also a proposal for a quantum equivalence principle.
This paper is dedicated to the memory of Jacob Bekenstein.
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1 Introduction

Ever since Jacob Bekenstein proposed that black holes have entropy[1], the idea that the
dynamics of spacetime are expressions of the laws of thermodynamics has been con-
templated. Indeed, Bekenstein was inspired by the observations of Bardeen, Carter and
Hawking that black holes obey a set of laws analogous to those of thermodynamics[2].
Bekenstein’s groundbreaking 1972 paper was followed by Hawking’s discovery of black
hole radiation[3], as well as the work of Davies[4], Fulling[5] and Unruh[6] on Unruh
radiation. Reflecting on these results, Candelas and Sciama[7] and others posed the ques-
tion of whether the Einstein equations were a result of the statistical mechanics of some
quantum gravity theory.

Ted Jacobson took a large step towards this goal in his 1995 paper in which he showed
that the Einstein equations emerge as the equation of state of some atomic structure of
spacetime[8]1.

There are two ways to read these result connecting gravity, the quantum and thermo-
dynamics. The conservative point of view is that the laws of thermodynamics and the
Einstein equations both emerge at the semiclassical level. Here I provide evidence for
a deeper possibility, which is that the first law of thermodynamics is expressed by the
microscopic dynamics of the quantum spacetime.

To see how this arises we can trace the story of responses to Bekenstein’s great discov-
ery.

First, in 1993, Louis Crane proposed that quantum gravity be closely related to topo-
logical quantum field theory, as the latter is characterized by Hilbert spaces of states ap-
pearing on boundaries, as is suggested by the Bekenstein bound[10]. Indeed, Plebanski[12],
Capovilla, Dell and Jacobson[13], and others had shown that general relativity is elegantly
expressed as a topological field theory, called BF theory, modified by the imposition of
certain constraints. This is the theory of a two form-the B field, interacting with a gauge
field. The constraints are known as classical simplicity constraints, as they require that
that B field be simple. More precisely, the Einstein’s equations are a consequence of con-
straining the gauge degrees of freedom of the B field. These constraints reduce the gauge
invariance of the theory. This in turn liberates certain bulk gauge modes to become phys-
ical, and they are exactly the massless spin two modes. At the same time, the boundary
degrees of freedom remain those of the topological field theory.

Moreover, as shown in [14], when boundary conditions are imposed within this frame-
work which code the presence of an horizon, the boundary dynamics is exactly Chern-
Simons theory and the boundary Hilbert space has a finite dimension that grows with the
exponential of the area, as defined in loop quantum gravity2.

This led to an understanding of black hole entropy in LQG[16, 17], but left the relation
between area and entropy dependent on a free parameter: the Immirzi parameter, which
gives the area gap. This ambiguity was resolved when the original canonical picture of

1See also [9].
2This insight has been recently deepened in [15].
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isolated horizons on which Chern-Simons theory is induced was developed in a space-
time or spin foam language by Frodden, Gosh and Perez[18] and Bianchi[19]. The de-
pendence on the Immirzi parameter was shown to be a feature of the ensemble of states
at fixed area, and is lifted when we consider instead ensembles based on constraining
the temperature or energy. For these ensembles, the entropy is exactly the Bekenstein-
Hawking entropy, with the correct 1

4
. In particular, the ensembles of fixed boost energy,

seen by a stationary near horizon observer, plays a key role in [18, 19], as it does in this
paper3.

The key to these spin foam derivations of the Bekenstein entropy is the imposition of
a quantum version of the simplicity constraint, in the measure of the path integral of the
corresponding topological quantum field theory. This again liberates the spin two modes.
These simplicity constraints[20, 21], defined by (14) below, reduce the partition function
of a topological field theory to the partition function of general relativity.

Meanwhile, around the same time as Crane’s papers, ’t Hooft, also inspired by Beken-
stein’s discovery, proposed the holographic principle[24]. This was quickly taken up by
Susskind in the context of string theory[25]. This inspired Maldacena to propose the
AdS/CFT correspondence[26]. This has become a cornerstone of contemporary physics,
with many examples developed in string theory. In addition, there are indications that
this reflects a deep correspondence between conformal field theories and diffeomorphism
invariant theories that transcend any single realization[27].

By making use of the AdS/CFT correspondence, the authors of several ingenious pa-
pers were recently able to show that the linearized Einstein equations are a consequence
of entanglement[28]. These suggest a principle of maximal entanglement which appears
to generalize the fact that the vacuum of a QFT on Minkowski spacetime is maximally
entangled.

This very recently inspired Jacobson to return to the subject and rework his 1995 argu-
ment as a demonstration that the Einstein equations express such a principle of extremal
entanglement[29].

Like his 1995 paper, Jacobson’s derivation can be understood as a schema for deriving
the Einstein equations as the statistical thermodynamics of a discrete theory of quantum
spacetime. In this paper we realize this schema in the context of spin foam models.

The key result we find is a close relationship between thermodynamics and the sim-
plicity constraint of spin foam models[20, 21, 22]. Our major result is that under certain
conditions, the simplicity constraint implies directly the first law of thermodynamics. We also
show that under reasonable assumptions the first law implies the simplicity constraints.
These results extend and generalize previous results[18, 19, 36].

This result ties together the holographic principle with the understanding of general
relativity as a constrained topological field theory.

There are actually several closely related results, which are the following.

1. The first result is not new, it is rather an interpretation of a result given in differ-

3For a review of different approaches to black hole entropy within LQG, see [53].
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Figure 1: A causal diamond defined by two events, f and e. W is the corner, or waist,
bounding a space like three-disk, S.

ent forms by Carlip and Teitelboim[30], Massar and Parentani[31, 32], Bianchi and
Wieland[33], Frodden, Gosh and Perez[18] and the author[34]. They consider the
exterior of a black hole horizon or, more generally, a causal diamond. These regions
have a bifurcation two sphere, W or, more generally, a “corner” or “waist”, which is
fixed under a family of boost transformations. (See Figure 1.) The simplest example
of this are the transformations generated by boost killing fields in Rindler spacetime,
but these exist for any causal diamond. These authors compute the contribution to
the Hamiltonian which generates such a boost, coming from a boundary term at the
corner. (There are also bulk terms, but they vanish on solutions because they are
proportional to constraints.) They show that

H(W )Boost =
1

8πG
A(W ) (1)

where A(W ) is the area of W , computed by the two metric induced on W . Now,
assume that W is indeed the bifurcation two sphere of a stationary black hole. Then
A(W ) is the area of the horizon and we can make use of the classical second law of
black hole mechanics which tells us that under a physical process that converts one
stationary black hole into another, A(W ) can never decrease[2]. This suggests we
define an entropy by introducing a discrete unit of area, ∆a, so that4

S(W ) =
A(W )

∆a
(2)

4As [36] emphasize, even if (3) is a classical result, the fact that we have to introduce a finite unit of area
∆a to give the surface entropy a meaning points to a hidden role of quantum spacetime in defining the
thermodynamics of the gravitational field.
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Then our relation for the boost hamiltonian, (1) must be related to the first law of
black hole mechanics. We do not show this here, but we note that it can be written
in the suggestive form,

H(W )Boost = TBS(W ) (3)

where the universal, Unruh-like, boost temperature is TB = ∆a
8πG

. Of course when
we pick ∆a = 4G~ we get the usual results, but the point is that (3) is a classical rela-
tionship. This relation (3) is more general than the first law of black hole mechanics,
because it holds on the corner of every causal diamond. We can call (3) the first law
of classical spacetime dynamics. FGP call it the local form of the first law[18]. Indeed,
as Jacobson shows[8, 29], this quasi thermodynamic relation implies the Einstein
equations.

With this classical prelude we go on to see that it has a consequence for quantum
gravity, which is the simplicity constraint.

2. The relation between (3) and the simplicity constraint emerges as soon as we express
the operators for boosts and area in the language of loop quantum gravity. For
experts, the result can be telegraphed in a few lines.

In a spin foam model a space like two surface like W is represented by a set of
triangles, W = ∪4, in the simplicial decomposition of the spacetime. Each triangle
is the home of a representation of the lorentz group, S4. Each 4 is also oriented
as part of the boundary of a tetrahedron by a space like unit vector, n4a . The boost
Hamiltonian is equal to a boundary term

H(W )B = ~
∑
4∈W

K̂an4a (4)

plus bulk terms which are linear combinations of quantum constraints. K̂a is the
generator of boosts in S4. The area operator is

ÂW = 8π~Gγ
∑
4∈W

L̂an4a (5)

where L̂a is the generator of rotations in S4 and γ is the Immirzi parameter.

We should now consider that any triangle can be part of a corner of some boost
transformation. Moreover in these case the normals will vary. Hence, these three
relations, (3, 4,5) together imply that when ∆a = 4~G, physical states satisfy a con-
straint separately on each triangle, independent of the normals,

<
(
K̂a − γL̂a

)
>= 0 (6)

But these are the simplicity constraints that define the spin foam models[20, 21,
22, 19]. Hence, the simplicity constraints are a consequence of (3), the first law of
classical spacetimes. They express this classical relation on quantum states.

6



The other results require a bit more structure to describe.

3. Given a spin foam history, X , consider a closed space like two surface made of tri-
angles, W =

∑
4 bounding a three disk, Σ. To W there is associated a Hilbert space,

H(W ) = ⊗4V4
⊗
HΣ. Here V4 is an infinite dimensional reducible representation

of SL(2, C) and HΣ contains bulk states that depend on degrees of freedom in the
interior of Σ. Let HB(W ) be a corresponding generalized boost (or bubble) Hamil-
tonian, to be described below. A generalized boost is a transformation that evolves
the interior of Σ forward in time while leaving its boundary and exterior fixed. Let
S(W ) be the entanglement entropy which is a consequence of tracing a global state
over degrees of freedom in the exterior. Then we show that the simplicity con-
straints, (6), imply

< HB(W ) >= TUS(W ) (7)

where
TU =

~
2π

(8)

is the (angular) Unruh temperature.

We can call (7) the first law of quantum spacetime dynamics. Thus, we show that the
classical relation (1) implies the quantum constraint, (6) and that (6), in turn, implies
a quantum form of (1), which is (7).

(1) and (7) have the form of the first law, but they are not yet that law. To invoke it we
need still more structure. One might think one has to introduce black holes, but it
turns out that we can work in a more general context which is causal diamonds[29].

4. So now, let W be the two surface bounding the “waist” of a causal diamond (all
defined for a class of spin foam models below). Let δQ be the expectation value of
matter energy density crossing Σ, while δS(W ) is the change in entropy from a ca-
sual diamond of the same spatial volume (of an extremal slice Σ) in a flat simplicial
spacetime. Then we show that in a semiclassical approximation, the usual first law
of thermodynamics holds

δQ = TUδS(W ) (9)

5. In a certain semiclassical regime, to be defined below, in a weak sense, we can fol-
low Jacobson’s 2015 derivation to recover the Einstein equations[29]. It should be
emphasized that the result is weak in two senses. First, we do not show that a spin
foam model has a good semiclassical limit. We show rather that if it does, and if
that limit is described in terms of a slowly varying metric geometry, then that metric
satisfies the semiclassical Einstein equations5. Second, the expectation value of the
energy momentum tensor that appears in those Einstein equations is defined from

5 We note that this weak recovery of general relativity from spin foam models has been shown previously
in other ways, including a large spin or semiclassical limit[48] as well as by mimicing the logic of Jacobson’s
1995 paper[50].
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the thermodynamics, as the source of the heat flow, and not from a quantization of
microscopic degrees of freedom.

Before going on to the details, we make some comments on the results6.
It is interesting to note that the Unruh temperature appears in this derivation, as the

temperature of a subsystem defined by a causal domain. This suggests that when a gen-
eralized boost creates an horizon, tracing the vacuum state of the quantum gravity theory
by degrees of freedom outside that horizon thermalizes the state. If correct, this reflects
a maximization of information shared between the regions of space on each side of the
horizon, as in the vacuum of Minkowski spacetime.

One can also derive the Unruh temperature for the boosted frames in a causal di-
amond, following the calculation of Bianchi[19]. In this case the Bekenstein-Hawking
entropy, with the correct 1

4
, follows as a consequence of the simplicity constraint of the

spin foam model. This, indeed, was essentially the result of Bianchi, for quantum Rindler
domains representing the near horizon quantum geometry. What we show here is that
the logic of Bianchi’s derivation applies more generally to causal diamonds of spin foam
models, and that at the root of these results is a very general connection between the first
law and the simplicity constraint.

Finally, these results suggest a form of the quantum equivalence principle, which has
been long sought[7]. In flat spacetime an accelerating observer sees a region of spacetime
limited by an horizon, which is generated by a two surface, W , fixed by a boost. We can
generalize the notion of a boost to mean any evolution of a region of quantum or classical
spacetime that fixes a two surface, W . This two-surface W divides a spacial slice of the
universe into two parts. In flat spacetime these are maximally entangled with each other.
We can posit that this is also true in a dynamical quantum spacetime. As this generalizes a
property of flat spacetime it is appropriate to call it a version of the equivalence principle.

The result is that an observer inside the causal diamond sees a thermal state, given by

ρW = e−Hboost(W )/TU (10)

where Hboost(W ) is the generator of the boosts that fix W . As will be explained, because
of refoliation invariance in the interior of the causal diamond, this is unique.

In Jacobson’s 2015 paper a key role is played by causal diamonds of a classical space-
time. In the present paper we work with an analogous notion defined using the causal
structure of a spin foam model. Our first job is then to review spin foam models, and
the discrete causal structures they carry. These causal structures are induced when the
spin foam history is constructed by sequences of dual Pachner moves acting on an ini-
tial state, as was shown in [38] by Markopoulou. We find that we are able to describe
causal domains and their boundaries in sufficient detail to be useful for defining physical
observables.

6After this paper was in draft, Aldo Riello pointed out [36] where some of the same results are noted,
but in the course of making a very different, though complementary, argument.
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Having control of these causal structures will allow us to define and study causal
diamonds in spin foam histories. We give a general description of causal diamonds in
these discrete causal structures, this allows us to define observables for spin foam models
in terms of expectation values of currents defined on the boundaries of causal diamonds.

The thermodynamics of these quantum spacetimes is then defined by vacuum expec-
tation values on the spatial boundary of the causal diamond, where by vacuum we mean
the case that the currents on the null boundaries vanish.

Physical quantities relevant to the low energy or semiclassical limit will, as Dittrich
has emphasized, have to be defined following a process of coarse graining and renor-
malization. Also, as she emphasizes, physical observables are to be defined by coarse
graining boundaries[39]. It is then important to show that the connection between the
simplicity constraints and the first law emerges in a way that is largely independent of
these processes and the details of how they are carried out. To accomplish this we give a
very brief sketch of these processes. The key point is that the linear simplicity constraints,
acting on boundary observables, apply just as well to coarse grained and renormalized
quantities, because they are linear.

In the next section we review the construction of causal spacetime histories, which we
use in section 3 to describe causal diamonds in those histories. Section 4 describes the
quantumm mechanics of causal diamonds and their associated observables in both the
canonical and path integral language. We use these results in section 5 to present the main
results, which are a set of relationships between the simplicity constraints and different
versions of the first law. Section 6 is brief and sketches the application of Jacobson’s
2105 argument in [29] to show that if a spin foam model has a suitable semiclassical
limit, describerle in terms of slowly varying metric and matter fields, those fields obey
the Einstein equations. Some comments are presented in the last section 7.

2 Summary of causal spin foam models

We start by summarizing the basic structures used to define spin foam models7.

2.1 Causal spin foam models

• We define a Hilbert space of states,H, arising from the quantization of general rela-
tivity, on a spacetime manifold with topology Σ×R, where Σ is a three dimensional
manifold which is either compact or compact with a boundary. In the latter case
there will be boundary conditions imposed on ∂Σ. A basis for H is given by spin
networks embedded in Σ, modulo diffeomorphisms of Σ. A dual description of this
basis is triangulations of Σ, in terms of tetrahedra, representing a space like slice,
i i.e. a three dimensional simplicial complex, made by gluing tetrahedra together.

7For reviews of spin foam models, see [22].
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Figure 2: A tetrahedron and its labeling

The faces of the tetrahedra are triangles which are labeled by representations j of
SU(2). The tetrahedra themselves are labeled by intertwiners in the product of rep-
resentations of its triangles.

• A spacetime history is denoted X . A history is a four dimensional simplicial com-
plex that interpolates between an initial state |in > and a final state |out >.

• Events of X , denoted e1, e2, . . ., are dual to four simplifies S. A four simplex rep-
resents a bubble move that evolves a small region of a state, consisting of a small
number of tetrahedra.

• Each history X interpolating between |in > and |out > contributes a complex am-
plitude A(X) to the transition from |in > to |out >. The total amplitude is the sum,

A[|in >→ |out >] =
∑

X|∂X=|in>−|out>

A(X) (11)

The amplitudes are computed by the following rules.

10



• The space-like triangles of the four simplifies that make up a history are labeled by
representations of the lorentz group, (ρ, j). We associate to each space-like triangle
a Hilbert space which is the corresponding representation space, V(ρ,j). Acting on
this Hilbert space are generators of boosts, K̂a and rotations, L̂a. Associated to each
triangle,4, is also a unit normal, na, which lives in an auxiliary flat spacetime, M4.

The sum of the unit normals for the triangles of a tetrahedra are constrained to
vanish. ∑

τ∈T

naτ = 0 (12)

We will be interested in a class of simple representations, which are given by a map
from representations of SU(2).

Yγ : j → (γ(j + 1), j) (13)

where γ is the Immirzi parameter. These representations satisfy the simplicity con-
straint, S

< Ψ|Ŝa|Ψ >=< Ψ|
(
K̂a − γL̂a

)
|Ψ >= 0 (14)

2.2 Causal structures in spin foam histories

We review the causal structure of spin foam models, first proposed in [38].

• A four simplex S contains 5 tetrahedra, T . n of these are in PS(S), the past set of S.
5− n of these are in FS(S), the future set of S.

• Each tetrahedra (except those in the future or past boundary of X) is in the future
set of one four simplex S1 and the past set of another four simplex S2. We say that
S2 is in the immediate future of S1:

S2 ∈ IF(S1) (15)

and S1 is in the immediate past of S2:

S1 ∈ IP(S2) (16)

Dual to T is a link connecting the event, e1, dual to S1 to the event, e2, dual to S2.

We can write also S1 = P(T ) , i.e. the four simplex, S1 is the past of the tetrahedron
T if the causal link which is the deal of T points directly from the event dual to S1 .
Similarly, S2 = F(T ).

11



• We assume that the triangles which bound the tetrahedra are all space like. This will
be the case when the four dimensional simplicial complex that defines the spin foam
history is constructed from a dual spin network (a union of tetrahedra joined alone
triangles that are dual to the edges of a spin network) by a succession of Pachner
moves, each representing an event where the dual spin network state is changed
locally.

• We say that an event f is in the causal future of an event e if there is a chain of future
pointing causal links taking e to f . We write

f ∈ F(e) (17)

Similarly we write that e is in the causal past of f

e ∈ P(f) (18)

2.3 Wieland structures on spin foams

We will also make use of a version of spin foam dynamics introduced by Wieland[40, 41].
These make use of causal structures, based on energetic causal sets[42, 43, 44]8. This
formulation makes use of a future pointing normal pTa associated to each tetrahedron,T ,
in the auxiliary flat spacetime, M4, which is constrained two ways.

• Conservation. The five normals of tetrahedra T making up a four simplex, S sum
to zero.

PSa =
∑

T∈FS(S)

pTa −
∑

T∈PS(S)

pTa = 0 (19)

• Normalization.Each pTa is constrained as if volume were the mass of a relativistic
particle.

CT = pTa p
T
b η

ab + V (T )2 = 0 (20)

where η is a flat metric, in M4, and the volume of a tetrahedron V (T ) is a function
of the spins and intertwiners on its faces and bulk.

The action for a Wieland spin foam then has a part made of these constraints.

S =
∑
S

zaSPSa +NTCT + . . . (21)

where zaS and NT are lagrange multilpliers. Note that the zaS live in the dual space to M4,
which inherits a flat metric, ηab from the metric ηab of M4.

8The role of causal sets in quantum spacetime was proposed in [45] and developed in different ways in
[38, 46, 47].
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3 Causal diamonds on spin foams

In this section we use the causal structures we identified in causal spin foams to define
causal diamonds and related structures.

3.1 The boundary of a past set

We begin with some further definitions.

• Now divide P(f) into the disjoint union of two sets

P (f) = BP(f) ∪ P̄(f) (22)

called the bulk and boundary of the causal past of f .

g ∈ BP(f) if IF (g) ∈ P(f) i.e. if the immediate future of g consists entirely of
members of the causal past of f .

Otherwise, g ∈ P̄(f), i.e. g is an event in the boundary of the causal past of f . g is
dual to a four simplex, which c an also be considered as residing in the boundary of
the past of f .

It is useful to extend the notion of the boundary of a past set to tetrahedra and
triangles. These give the three-boundary, P̄(f)(3) and two-boundary, P̄(f)(2).

• The tetrahedron, T is in P̄(f)(3) if both its past and future four simplifies are dual to
events in P̄(f).

• The triangle4 is in P̄(f)(2) if it is in the boundary both of tetrahedra in P̄(f)(3) and
tetrahedra in the exterior of P(f).

Similar definitions hold for the boundary of a future set.

3.2 The causal diamond

• Now we define the causal diamond of two events e ⊂ f .

CD(f, e) = P(f) ∩ F(e) (23)

• We define the 3-waist of CD(f, e), which we labelW(f, e) to be the set of tetrahedra
T such that T is both in P̄(f)(3) and F̄(e)(3).

• Define the two-boundary ofW(f, e) to be those triangles of T ∈ W(f, e) which are
dual to edges that connect a vertex dual to a tetrahedra in W(f, e) to a tetrahedra
not in CD(f, e). Denote these triangles by W̄(f, e)(2). This is called the 2-waist of the
causal diamond.
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• Define the area of the causal diamond, A(f, e) to be the sum of the areas of the
triangles in W̄(f, e)(2).

• Define a cross=section of CD(f, e) to be a connected three surface, anti chain (i.e.
mutually acausal) Σ, made of tetrahedra in CD(f, e) whose boundary is W̄(f, e). We
use the volume operator to define the volume of such an anti chain.

• Define the maximal cross section Σ(f, e) of CD(f, e) to be the cross-section with the
maximal volume.

• Define the volume of CD(f, e) to be the volume of its maximal cross section. Denote
it V(f, e).

3.3 The three-boundary of a causal diamond

H

H+

H-

Σ-

Σ+

τ-

τ+

R

S

λ+

τ1Σ1

Figure 3: The quantum near horizon region R constructed in a spin foam by a series of
generalized boosts, here generated by 1→ 4 moves, which are here illustrated in this two
dimensional figure by 1→ 2 moves.

• Define the future boundary of a causal diamond, CD(f, e) to consist of the tetrahedra
which are in the boundary of P(f) and also in CD(f, e), and denote this set I+(f, e).

Define the past boundary of a causal diamond similarly, as

I−(f, e) = F̄(e) ∩ CD(f, e) (24)

• Define the 3− boundary of a causal diamond to consist of

C̄D(f, e)(3) = I+(f, e) ∪ I−(f, e) ∪W(f, e) (25)
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(a) A series of 1→ 2 moves. (b) In blue we see the dual 1 → 2 moves,
which fix a dual vertex, W , which is the di-
mensional reduction of fixing a triangle in a
1→ 4 move.

Figure 4: A generalized boost realized in 1 + 1 dimensional dual Pachner moves.

3.4 The two-boundary of a causal diamond

We will need also the two-boundary of C̄D(f, e)(3).

• C̄D(f, e)(2) consists of triangles on the boundaries of tetrahedra in C̄D(f, e)(3) that
link to, or are also in the boundary of, tetrahedra outside of CD(f, e).

3.5 Relations amongst causal diamonds

Consider four events causally related as in

d < e < f < g. (26)

Then consider two causal diamonds, CD(d, g) and CD(f, e).

• We have,
CD(f, e) ⊂ CD(g, d) (27)
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Figure 5: Two 3 + 1 dimensional boost moves carried out in succession. Each fixes the
black triangle which common to three tetrahedra, in blue, purple and red. Two 1 → 4
moves are carried out in succession, which evolve from the blue to the purple to the red
tetrahedra.

• One can also show that there exists a cross section Σg,d of CD(d, g) and a cross section

16



Figure 6: Two 3 + 1 dimensional boost moves in the last figure. Each is a 1 → 4 move
represented by a four simplex that fixes the black triangle.

Σf,e of CD(f, e) such that
Σf,e ⊂ Σg,d (28)
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Given a state ρ(g, d) ∈ H(g, d) we write the partial trace,

ρ(f, e) = Tr′ρ(g, d) ∈ H(f, e) (29)

3.6 Elementary causal diamonds in spin foams

An elementary causal diamond consists of two sequential events, e < f or e → f such
that

FS(e) = PS(f). (30)

There are then three time slices,

Σ1 = PS(e), Σ2 = FS(e) = PS(f), Σ3 = FS(f) (31)

They have a common spatial boundary W (f, e) which is a set of triangles. Hence the
area of the boundary is fixed:

A(f, e) =
∑

4∈W(f,e)

A4 =
∑

4∈W(f,e)

8πG~γj4 (32)

The volume of the elementary causal diamond is the volume of the middle slice, which is
a sum of intertwiners on tetrahedra.

V (f, e) = V (Σ2) =
∑
T∈Σ2

(~G)
3
2 v̂T . (33)

where v̂T is an operator in the space of intertwiners associated with each tetrahedra.
Examples are pairs of complementary Pachner moves:

3→ 2→ 3, 2→ 3→ 2, 1→ 4→ 1, 4→ 1→ 4 (34)

Indeed, these are all there are, because of the structure of the Pachner moves.
Associated with the three slices are three finite dimensional Hilbert spaces, HI , I =

1, 2, 3, in each of which there is generally a mixed state ρI ∈ HI (because the slice is
an open system). These Hilbert spaces are made from the dual spin networks, with the
boundary spins fixed.

3.7 Flat spin foams

Below we will need to work with a spin foam history corresponding to flat a space-
time. Fortunately there is available a characterization of a flat spin foam history, which
makes use of the connection between Wieland’s spin foam model[40] and energetic causal
sets[42, 43, 44]. This formulation makes use of a future pointing normal pTa associated to
each tetrahedron, T which is subject to the two constraints, (19) and (20).
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The action for a Wieland spin foam has a part made of these constraints.

S = [
∑
S

zaSPSa +
∑
T

(NTCT + rTa
∑
4∈T

na4) +
∑
4

w4n
a
4p

T (4)
a ] (35)

where zaS are lagrange multilpliers. They give an embedding of the events dual to the four
simplicies in a four dimensional flat spacetime with metric ηab which is dual to the space
the normals pTa live in. This embedding is determined by the equations of motion for the
pTa gotten from the variation of S.

δS
δpTa

= 0 → zaT+ − zaT− = NTη
abpTb +

∑
4∈T

w4n
a
4 (36)

where T± are the two four simplices that share T , to its past and future, respectively. Note
that these depend on the NT which are also lagrange multipliers.

A simple counting argument suggests that the equations can generically always be
solved to yield a spin foam history embedded in a flat spacetime. Altogether there are
4nS + 5nT variables, the pTa , NT and zaS . But nT = 2nS yielding 14nS variables. (The
volumes V and potentials, U are fixed functiond of the spins and intertwiners which are
not counted here.) These are exactly enough to solve 14nS equations, given by (19, 20, 36).

In order that the mapping preserve the causal structure of the spin foam, the offsets,∑
4∈T w4n

a
4 in (36) must leave the intervals zaT+−zaT− timelike and future pointing, which

they otherwise are as the momenta pTa are both. This can be achieved by setting the la-
grange multipliers w4 = 0.

Once the imbedding of the spin network into M4 is accomplished the next task is to
choose spins and intertwiners corresponding to a triangulation ofM4 matching the causal
structure.

4 Quantum gravity on a causal diamond

We define the quantum theory on a causal diamond, defined by holding the boundary B
fixed and summing over the degrees of freedom on the interior. We define first the Hamil-
tonian theory; first the kinematical, then the physical Hilbert spaces. Then we define the
spin foam amplitudes that compute the physical expectation values.

4.1 The causal diamond Hilbert space and the boost energy

Consider the waist of a causal diamond, which is a space like two surface, W . The waist
bonds a family of space like three surfaces, Σ, such that ∂Σ = W , which span the interior
of the causal diamond.

In the spin foam we can decompose the two surface as a sum of triangles

W =
∑
τ

4τ (37)
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while Σ is composed of tetrahedra.
On each triangle there sits a representation of the lorentz group, V(γ(j+1),j) and a unit

normal in an internal flat space na ∈M4.
The kinematical Hilbert space of a causal diamond can be written as

Hkin
CD = ⊗4∈W (CD)Vj4 ⊗Hbulk (38)

where V4j is the simple representation (γ(j + 1), j) and the bulk portionHbulk is made up
of spin networks in the interior of a space like slice, Σ, with the topology of a disk, whose
boundary matches W .

Loop quantum gravity tells us how to define operators on the kinematical Hilbert
space, Hkin

CD. These include the quantum Hamiltonian and diffeomorphism constraints,
C(N) and D(v) where N is a density and va is a vector field on Σ, both of which vanish on
W .

N |W = va|W = 0 (39)

The physical Hilbert space, Hphys
CD ⊂ Hkin

CD consists of states |Ψ > in the kernel of these
constraints,

C(N)|Ψ >= D(v)|Ψ >= 0, |Ψ >∈ Hphys
CD (40)

We also impose the simplicity constraints on all triangles, including those in the boundary,

< Ψ|Sa|Ψ >= 0, |Ψ >∈ Hphys
CD (41)

where the inner product in V(ρ,j) is the usual one in which L̂a and L̂a are hermitian.
Now a lesson we learn from FGP[18] and Bianchi[19], is that the right Hamiltonian

to evolve a system in a near horizon region or, more generally, a causal diamond, is the
generator of boosts in the boundary set, W plus constraints acting in the interior.

Hboost
W = ~

∑
4∈W

K̂a
τ na + constraints (42)

where K̂a is a generator of boosts in Vj4 and na is a unit normal in the internal space (with
respect to the fixed internal lorentz metric).

Note that because a boost is parametrized by a hyperbolic angle, the boost Hamilto-
nian has units of angular momentum.

In more detail we write

Hboost
W (N, v) = ~

∑
4∈W

K̂a
τ na +H(N) +D(v) (43)

The constraints act on the space-like three surface that W bounds. These terms vanish
when acting on physical states so that acting on physical states, the Hamiltonian that
generates the generalized boost is a sum of boundary contributions.
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Physical observables onHphys
CD , denoted O, satisfy

[O,H(N)] = [O,D(v)] = 0 (44)

Note that Â(W ) is physical, as is Hboost
W (N, v) for all N and va, that vanish on W .

Among the physical observables are the area of the waist, A(W ). One version of the
area operator, appropriate for a spin foam model, is[22]

Â = 8πγG~
∑
I

L̂aIna (45)

expressed in terms of the operators for components angular momentum, L̂ana. Here γ is
the Immirzi parameter.

4.2 Generalized boosts

Stripped of reference to a specific set of rigid coordinates here is what a boost is: A gener-
alized boost, B is a transformation that takes a portion of a space like slice, Σ1 to another portion
of a space like slice, Σ2 that share a common boundary, W = ∂Σ1 = ∂Σ2. The resulting
transformation between states is a boost operator.

ÛB : |Ψ1 >= |Ψ2 > (46)

where ÛB(η) = e−
ı
~HB(W )η where η is a dimensionless hyperbolic angle.

The usual definition of a boost in Minkowski spacetime satisfies this, as does a change
of slicing of a causal diamond. A boost captures the idea of bubble evolution, of a local
refoliation which affects a compact region of space, Σ1 and leaves the rest of space, Σ′0
untouched.

In the case of causal diamonds, the transformations generated byHB(W ) given by (43)
are generalized boosts.

In a spin foam model a generalized boost which fixes a triangle, 4, is generated by a
series of 1 → 4 moves which fix that triangle. This is illustrated in Figures 3, taken from
[50], and Figure 4, in the 1 + 1 dimensional case, where a series of 1 → 2 moves fixes a
dual vertex.

The 3 + 1 boost move is illustrated in Figure 5 and 6.
By combining boost moves for triangles in W we can define spin foam histories that

boost the interior of a causal diamond, fixing its waist.

4.3 Topological field theory and simplicity relations

The physical states are defined by summing over spin foam histories. In loop quantum
gravity we describe the dynamics in terms of a sum over histories we call spin foams. De-
pending on the context and boundary conditions, we use a sum over spin foam histories
to define a projection operator onto physical states, or physical evolution amplitudes.
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The basic idea of a spin foam model is to represent general relativity as a constrained
topological field theory[35, 20, 21, 22]. This holds both classically and quantum mechan-
ically. The constraints reduce the gauge freedom of a topological quantum field theory
precisely in the right way as to induce the two degrees of freedom per point of general rel-
ativity. Given a history, expressed as a four dimensional simplicial complex, X , labeled as
above, we introduce the key features of the partition function (below we add additional
structure to write the full amplitudes, for the present we stick to the following simple
form.) The partition function for the topological BF theory is

ZBF (X) =
∏
4

∫
dρ4

∑
j4

∏
T

∑
iT

∏
S

AS(ρ, j, i) (47)

where the amplitude AS(ρ, j, i) attached to each four-simplex is a 10 − j symbol, which
satisfies recursion relations needed to make the partition function triangulation indepen-
dent.

The expectation value of a functional of the representations and intertwiners, F [ρ, j, i]
can be expressed as

< F >=
1

Z
∏
4

∫
dρ4

∑
j4

∏
T

∑
iT

∏
S

AS(ρ, j, i)F [ρ, j, i] (48)

We then can write the simplicity constraint as follows. For every triangle, 4 of a
history we impose

0 =< Sa4 > (49)

This defines a new partition function, which is taken to be a definition of quantum general
relativity. This is because we have implemented, in the measure of the state sum model
for a BF theory, the simplicity constraint that reduces that topological field theory to
general relativity.

ZGR(X) =
∏
4

∫
dρ4

∑
j4

∏
T

∑
iT

∏
S

AS(ρ, j, i)δ[ρ− γ(j + 1)] (50)

In the literature there are several different ways to impose the simplicity constraints in
a spin foam model. But they agree that the expectation value of the constraints vanishes,
as in (49). This expectation value is all we will need to derive the first law of thermody-
namics below.

4.4 The full spin foam path integral

We combine the constrained topological field theory structure with the Wieland causal
structure.
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The full amplitude for a given history is given by

ZGR(X) =
∏
4

∫
dρ4

∑
j4

dna4δ(S4)δ(nanbηab − 1)dw4A4(ρ, j, i)

∏
T=tetrahedra

∑
iT

∫
dpTa

∫
dNTdrTAT (ρ, j, i)

∏
S=four−simplex

∫
dzaSAS(ρ, j, i)

×eı[
∑
S z

a
SP

S
a +

∑
T (NT CT+rTa

∑
4∈T n

a
4)+

∑
4 w4n

a
4p

T (4)
a ] (51)

The general model is made precise by specifying the amplitudes, AS(ρ, j, i), AT (ρ, j, i)
and A4(ρ, j, i). The preferred choices for these are discussed in [22]. These change in any
case under renormalization, as we describe now briefly. But the important point is that
the results concerning the second law we describe in the next section are to a large extent
independent of these amplitudes, as long as the simplicity constraints are imposed and
there is a semiclassical limit.

4.5 Observables on the boundary of a causal diamond

We can define a set of observables of quantum gravity, expressed in terms of a causal
diamond CD.

We first define a causal diamond spin foam to be a causal spin foam history, X which
has the structure of a causal diamond. We fix a particular X and extract its two boundary
X̄(2) = C̄D(f, e)(2) = B. Now we fix a particular B and consider the ensemble of spin foam
histories XB to consist of all X such that X̄(2) = B.
B splits into three components as described above

B = I+ ∪ I− ∪ W̄ (52)

On each triangle4 ∈ B we fix a normal n4.
Consider a set of currents on the past and future null boundaries, J −,J + and JW

on the spatial boundary W . We will assume that these couple to areas, but there are also
other possibilities. The partition function for a fixed spinoff history, X , is
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ZGR[X,J ] =
∑
X∈XB

∏
4

∫
dρ4

∑
j4

[dna4]′δ(S4)δ(nanbηab − 1)dw4A4(ρ, j, i) eı
∑
4∈B J4j4

∏
T=tetrahedra

∑
iT

∫
dpTa

∫
dNTdrTAT (ρ, j, i)

∏
S=four−simplex

∫
dzaSAS(ρ, j, i)

×eı[
∑
S z

a
SP

S
a +

∑
T (NT CT+rTa

∑
4∈T n

a
4)+

∑
4 w4n

a
4p

T (4)
a ] (53)

Here [dna4]′ means we do not integrate over the normals of triangles in the boundary,
as those are fixed.

To get the full amplitude we sum over all causal spin foam histories with the same
boundary

ZGR[B,J ] =
∑
X∈XB

ZGR[X,J ] (54)

ZGR[B,J ] is a generating functional for scattering of gravitational degrees of freedom
across the causal diamond.

We define the vacuum expectation value of a function of the boundary observables as

< F(ρ4, j4) > =
∑
X∈XB

∏
4

∫
dρ4

∑
j4

[dna4]′δ(S4)δ(nanbηab − 1)dw4A4(ρ, j, i) (55)

F(ρ4, j4)eı
∑
4∈B J4j4∏

T=tetrahedra

∑
iT

∫
dpTa

∫
dNTdrTAT (ρ, j, i)

∏
S=four−simplex

∫
dzaSAS(ρ, j, i)

×
(
eı[

∑
S z

a
SP

S
a +

∑
T (NT CT+rTa

∑
4∈T n

a
4)+

∑
4 w4n

a
4p

T (4)
a ]

)
J=0

(56)

4.6 Renormalization

We now sketch the processes of renormalization and coarse graining, as mentioned in the
introduction, we do this mainly to show that the first law for causal diamonds emerges
in a way which is largely independent of those processes.

Given a given spin foam history, X we may act with a five dimensional Pachner move,
P5 to yield another spin foam history with the same topology and boundary, X ′ = P ◦X .
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The equivalent amplitude for X ′ is

ZGR′[X ′,J ] =
∑
X∈XB

∏
4

∫
dρ4

∑
j4

[dna4]′δ(S4)δ(nanbηab − 1)dw4A4(ρ, j, i)′ eı
∑
4∈B J4j4

∏
T=tetrahedra

∑
iT

∫
dpTa

∫
dNTdrTA′T (ρ, j, i)

∏
S=four−simplex

∫
dzaSAS(ρ, j, i)′

×eı[
∑
S z

a
SP

S
a +

∑
T (NT CT+rTa

∑
4∈T n

a
4)+

∑
4 w4n

a
4p

T (4)
a ] (57)

Note that as gravity is not a topological field theory, ZGR′[X ′,J ] is not equal to the
original amplitude evaluated on X ′,

ZGR′[X ′,J ] 6= ZGR[X ′,J ] (58)

Pachner’s theorem tells us that given any two spin foam histories, X1 and X2 with
the same topology and boundary there is a sequence of Pachner moves, PI that connects
them. Thus, beginning with a definition of the fundamental theory in terms of an vertex
amplitude, one arrives at a coarse grained renormalized amplitude.

This is defined, as emphasized in [[39]], in terms of a coarse graining of the boundary.
So we now focus on how to do that.

4.7 Coarse graining of the spatial boundary

We have a simple point to make, which is the invariance of the linear simplicity con-
straints on the boundary, under coarse graining of the boundary.

Let us consider a grouping of the triangles of W̄ into a fewer number of larger trian-
gles, τ ′. We have

4′I = ∪4i∈{4′I}4i (59)

We define this to be the coarse grained waist. Let B′ be a course graining of the bound-
ary B that contains this coarse graining of the waist. Given a spin foam history X with
boundary B, there is a coarse graining of X , labeled X ′ that has the boundary B′, which
can be reached by a sequence of Pachner moves.

We define the operators on the new coarse grained triangles to be the sums of those of
their constituents,

L̂a4′ =
∑
4∈4′

L̂a4, K̂a
4′ =

∑
4∈4′

K̂a
4, (60)

We note that for any such coarse graining the simplicity constraint of any boundary
triangle is respected

< Sa4′I >= 0 (61)
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This is a key, if simple, result, as it means that the connections with the first law of
thermodynamics we are about to discuss are stable under renormalization and coarse
graining of the boundary.

Let us now presume that a particular state yields an effective geometry which has a
radius of curvature, R, large in Planck units, R >> lP . Then we can expect to be able to
coarse grain up to a scale, L satisfying, lP << L << R. In this case we can expect to be
able to choose the normals on the boundary triangles so that |∇an

b| < 1
R

.
This further implies that |∇an

b| < 1
l

where l is the scale of the causal diamond itself,
since we require that l << R. So if the coarse grained triangles are large on the Planck
scale, but small compared to l and R, we can ignore the variations in the normals of the
traingles making up the coarse grained triangles.

We then may choose the normals in each of the larger triangles to be equal, up to terms
of order 1

R
.

{i, j} ∈ I → na4i = na4j = na4′I (62)

We then have also, up to terms of order 1
R

,

L̂a4′n
4′
a =

∑
4∈4′

L̂a4n
4′
a . (63)

5 The simplicity constraint and the first law

Using the result above, we can establish several relationships between the simplicity con-
straint (14) and the first law.

Stripped of the technical details, the point is very simple: the simplicity constraint of
spin foam models is equivalent to the first law of thermodynamics, in the sense that they imply
each other. Indeed this was implicit in Bianchi’s derivation of horizon entropy[19], as well
as in the Frodden-Gosh-Perez papers[18].

5.1 Derivation of the first law of quantum spacetime from the simplic-
ity constraint

We begin with the simplicity constraint, which can be expressed as follows. For every
space like triangle in a spin foam history, we have the simplicity constraint,

< Ŝa4 >= 0 (64)

We consider triangles in the waist. Each has a fixed unit normal, n4a, we multiply by
these

< Ŝa4n4a >= 0 (65)
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Sum this over the triangles in the wast of a causal diamond,, W =
∑
44

< Ŝ(W ) >=<
∑
4

Ŝa4n4a > (66)

This means
<
∑
4

K̂a
4n4a >= γ <

∑
τ

L̂a4n4a > (67)

Multiply by ~, use the definition of the boost Hamiltonian (43) and the area of W (45) to
find that on physical states,

< HB(W ) >=

(
~
2π

)
< Â(W ) >

4G~
(68)

We call this the first law of quantum spacetime. It is the quantum version of the first law of
classical spacetime (1).

Note also that (61) holds for any coarse graining of the boundary, and after an arbitrary
number of renormalization steps. We sketched the coarse graining and renormalization
processes just to indicate that the result that the first law in the form of (68) holds as a
consequence of the simplicity constraint is independent of those processes. In particular,
the first law holds at the level of coarse grained, renormalized observables. This is because
it is a consequence of a constraint which is linear in terms of both bare and renormalized
quantities.

In particular, this is due to the assumption that the normals of the triangles, na4 can
be taken to be constant over the coarse grained boundary triangles. There will be higher
order corrections coming from terms in ∂bna4.

5.2 The microcanonical entropy

To go further we must distinguish different ensembles. As the area of the waist is a phys-
ical observable, we can define the ensemble at fixed area. We may call this the micro
canonical ensemble.

The boundary Hilbert space on W is finite dimensional once the simplicity constraints
have been imposed, since it is equivalent to the LQG boundary Hilbert space. The mi-
crocanonical entropy is defined as the log of the dimension of the Hilbert space. This has
been computed to be proportional to the area,

Smicro(W ) =
< Â(W ) >

4αG~
(69)

where α depends on the Immirzi parameter. Different assumptions lead to slightly differ-
ent values of α, all of order unity.
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Once we postulate this microcanical the quantity in parentheses then has to be identi-
fied as a boost temperature in the microcanical ensemble at fixed area.

Tmicro =
~α
2π

(70)

We stress that the argument we have given yields (68). Thus, this argument fixes the
product TUδS. If either of these has an independent derivation, the other one is fixed.

But there is an independent derivation of the temperature, given by [19], to which we
now turn.

5.3 The temperature of a causal diamond:

Instead of working with fixed area, we can work with the canonical ensemble at fixed
temperature. To do this, we need an independent computation of the temperature. To
get this, we can note that the description of a quantum causal diamond we have given is
ver similar to Bianchi’s near horizon quantum Rindler spacetime[19]. There he follows
the path of Unruh and deWitt and couples a two state detector to the boundary state
and computes the temperature of the detector in equilibrium. This computation is done
by computing the transition amplitude for exciting the detector, as a function of time, as
measured by a clock carried by the detector.

We can then consider exactly the same process, and couple the boundary state of the
causal diamond to a two state detector and compute the temperature of the detector. As
the Hilbert of the boundary triangles of the causal diamond are the same as considered
by Bianchi, we can apply his result, computed in [19], equations 10 to 18. This leads to
the conclusion that the state is hot, with an (angular) Unruh temperature.

TU =
~

2πc
(71)

We note that because all boosts are equivalent in this context, there is just a single, angular,
Unruh-like temperature. There is no refoliation invariant meaning that could be given to
the acceleration of an observer, usually denoted a. Hence we can give no meaning to an
Unruh temperature, if by that we mean a quantity with units of energy. But we can give
a meaning to an angular temperature like (71), with units of angular momentum. This
makes sense because a boost translates in a hyperbolic angle, which is dimensionless.

The result is that the entropy must be identified as

Scanonical(W ) =
< Â(W ) >

4G~
(72)

We then have from (68) the canonical first law of quantum spacetime.

< HB(W ) >= TUScanonical(W ) (73)
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5.4 Thermalization and the Boltzman entropy

We next investigate the thermallization of the state associated with a causal diamond.
Now let us consider density operators, ρ onHphys

CD . These satisfy

[ρ,H(N)] = [ρ,D(v)] = 0 (74)

as well as
[ρ,Sa] = 0. (75)

We are interested in states that describe equilibrium, these are states that the system
reaches after arbitrary boosts. These are analogous to the quantum Rindler states of [19].
Once a state has been boosted sufficiently it is not going to be changed by boosting it
further. Thus, these should satisfy

[ρE, H
boost
W (N, v)] = 0 (76)

for all N and va which satisfy (39). Such states are given by

ρE(N, v) = e−
2π
~ H

boost
W (N,v) (77)

Note that the temperature, β−1 = TU = ~
2π

is determined independently by comparison
with Bianchi’s calculation in ([19]). Once this coefficient is determined there remains the
freedom of choosing N and va, subject to the condition that they vanish on W . However,
note that, so far as physical observables are concerned, these are all equivalent to each
other, because we can use the quantum constraints to transform them into each other. We
have

Tr[OρE(N, v)] = Tr[OρE(N ′, v′)]. (78)

Thus, because of the many fingered time invariance, there is only one physically distinct
boost generator. We can define

< O >boost= Tr[OρE(N, v)] (79)

using any smooth N and va that vanishes on W .
This boosted state behaves like a Rindler state. Notice that because the Hamiltonian is

modular,we can compute the Boltzmann statistical mechanical entropy directly

S(W )stat = −TrρE ln ρE =
< Hboost

W >

TU
(80)

This is the genuine first law of statistical thermodynamics. If we put this together with
the previous results we can deduce that

S(W )stat =
< Â(W ) >

4G~
(81)
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5.5 The thermodynamic first law

We now finally are in a position to present an argument that the first law of thermodynam-
ics itself, as a principle of statistical thermodynamics, is a consequence of the simplicity
constraints, plus some natural assumptions.

Let us compare two quantum states of a causal diamond.
1) The vacuum, which we assume is dominated by flat spin foam history, constructed

as described in section (3.7) with no matter, and
2) a low lying excitation of the flat spin foam whose gravitational field is weak. This

means that the quantum state of the c causal diamond is in the semiclassical regime,
which is defined as follows.

LetR(T ) =< 1√
R(T )

> be the curvature scale of a tetrahedron and similarly,R(f, e) =<

1√
R(f,e)

> be the curvature scale of a causal diamond.

A spin foam history is in the semiclassical domain if there is a scale l >> lP such that
for every causal diamond such that

V (f, e) ≈ l3, (82)

and the curvature scales of that causal diamond and all of its tetrahedra satisfy

R(f, e) >> l >> lP , R(T ) >> l >> lP (83)

We will assume that both states have the same volume.
We assume also that the quantum constraints are satisfied, as are the classical con-

straints to leading order. Given (83) we can deduce that the contributions to the Hamilto-
nian constraint coming from gravitational radiation may be neglected. That is, we assume
that to leading order the boot energy is dominated by the heat flow, so that

δ < HB(W ) >=< HB(W ) >2 − < HB(W ) >1= δQ = Q2 −Q1 (84)

A calculation ([29]) shows δQ is given by an averaged energy-momentum tensor by

δQ = −
Ω(2)l

4
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< Tab > tatb (85)

is the energy from matter flowing through the causal diamond. Here ta is the normal
to a slice Σ.

But by the first law of quantum spacetime,

δ < HB(W ) >= TUδSB (86)

where the change in the Bekenstein entropy is

δSB = S2 − S1 (87)
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However, on the assumption that the state of the causal diamond is the equilibrium
state (77), the Bekenstein entropy is the Boltzman entropy. Thus we arrive at the standard
first law of statistical thermodynamics, relating the heat flow, the temperature and the
Boltzmann entropy. Gravity no where appears in this relation, which indeed contains
no G, but its origin in this context is gravity, indeed we have traced it to the simplicity
constraint of quantum gravity.

5.6 Deriving the simplicity constraints from the first law of thermody-
namics

Now we go the reverse way, from the first law to the simplicity constraints.
Start with a classical solution to the Einstein equations, with arbitrary matter and pick

a causal diamond, CD(f, e), based on two causally related events, f > e. It has been
shown that the first law of thermodynamics holds on the waist, W (f, e) of CD(f, e),

HB(W ) = TUS(W ) (88)

Note that the ~’s cancel, so the classical relation is actually what might be called the first
law of classical spacetime,

HB(W ) =
1

8πG
A(W ) (89)

Expressed in terms of a single spin foam history, in which W (f, e) is a union of triangles,
W = ∪4, this is, ∑

4∈W

(
HB(4)− 1

8πG
A(4)

)
= 0. (90)

But the quantum theory is defined by a sum over histories. Moving (90) inside the path
integral express this as an expectation value.

<
∑
4∈W

(
ĤB(4)− 1

8πG
Â(4)

)
>= 0. (91)

Since the path integral defines a projection operator on physical states, we may assume
that the state is physical. Hence the boost Hamiltonian is represented by its boundary
term. Meanwhile, we express the area in terms of the area operator. Factoring out an ~,
this gives us

<
∑
4∈W

(
K̂a
4na4 − γL̂a4na4

)
>= 0. (92)

But any single triangle could be part of many waists of causal diamonds, each with dif-
ferent normals. Hence, (92) has to hold for each triangle and normal and we have derived
the simplicity constraints

< Ŝa >=<
(
K̂a
4 − γL̂a4

)
>= 0 (93)
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5.7 The principle of maximal entanglement

We can understand the unique equilibrium state, (77) and unique Unruh temperature,
(71), in the following way.

Consider a causal diamond, C(f, e), small compared to the radius of curvature, but
large on the Planck scale. We can consider it as embedded in any number of larger causal
diamonds as described above. Let’s call A = C(f, e), C = C(g, d) and B = C(g, d)−C(f, e).

Now we reason by analogy to flat spacetime. Start with a generic ρ(g,d) on H(g, d).
What happens when we make a boost, defined by the condition that we fix the two surface
which is the waist of the smaller causal diamond? The result must be to define the state
on the smaller diamond by tracing out the degrees of freedom external to it.

Define this reduced density matrix on A as usual by

ρA = TrBρA+B. (94)

The principle of maximal entanglement says that for large C and small A the state ρA
has a minimal amount of information in it as to physics in A. i.e the state ρA+B was
maximally entangled, so when we trace by B and destroy all the corelations generated
by that entanglement we have no information left. Thus, by analogy with the situation in
Rindler spacetime, this must be a thermal state. Since all boosts that fix W but boost its
interior are equivalent, we can conjecture that

ρA = ρE = e−Hboost(W )/TU . (95)

There is just a single choice for this state because all boosts are equivalent, so up to gauge
transformations all boost Hamiltonians are equivalent

We also see that if the global state is maximally entangled this gives rise to a universal
boost temperature.

TU =
~

2πc
(96)

5.8 Proposal for a quantum equivalence principle

This last result can be reformatted as a statement of the quantum equivalence principle.

• Let us consider a pure physical state of the quantum gravitational field ρ holding in
a region,R, of spacetime. Let A = CD(f, g) be a causal diamond within that region,
with waist, W , defined by two events, f and e. Let B be the complement of A in R.
Then the state

ρA = TrBρ (97)

is maximally entangled with degrees of freedom in the complement, B.

To see this, let Hboost(W ) be the quantum Hamiltonian that generates generalized
boosts in A, leaving W fixed. Then (95) holds.
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This is a version of the equivalence principle because it says that a general boosted
observer in a quantum spacetime sees the same thing that a boosted observer in flat
spacetime sees, namely that the region inside the surface fixed by the boost is maximally
entangled with the region in the exterior of that surface.

6 The recovery of GR

Our final step is to use the results gotten so far to understand why the Einstein equations
must characterize the semiclassical limit of spin foam models. We do not show that such a
limit exists, but we do show that if it does, its dynamics are captured by the semiclassical
Einstein’s equations. We get to this result by following Jacobson in [29].

We work in the semiclassical regime described above in section (5.5). We consider as
in that section a comparison between a flat causal diamond and a low energy excitation
which is describable in terms of classical fields, slowly varying on the scale of the causal
diamond. This low energy excitation has the same volume, but a different area. The
variation of the area at fixed volume can be related to the spatial scalar curvature averaged
on the causal diamond[49, 29].

δA(f, e) = A(f, e)− Aflat(V ) = −
Ω(2)l

4
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R(f, e) (98)

We follow Jacobson[29] in describing the geometry of the causal diamond in Riemann
normal coordinates. In that case the extrinsic curvature can be taken to vanish to leading
order and we have

R(f, e) = 2Gabt
atb (99)

where Gab is the Einstein tensor. The heat flow is given by (85). Plugging these relations
into the first law (86) we find

tatb (Gab − 8πG < Tab >) = 0 (100)

Jacobson points out that the remaining steps of the derivation are simplest if we impose
that the matter is conformally invariant[29].

gab < Tab >= 0 (101)

(We refer the reader to [29] for the case of non-conformally invariant matter, as well as the
case of non-vanishing cosmological constant.) In this case we can argue that sinceR >> l,
within one curvature scale there will be many causal diamonds, with different normals
ta. This means we can remove the ta to find

Gab = 8πG < Tab > (102)
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7 Conclusions

By extending results of [18, 19, 36], we have shown that, given suitable conditions, the
linear simplicity constraint of spin foam models, (14) implies the first law of quantum
spacetime (68). This is initially expressed in terms of a micro canonical entropy, given by
the ensemble at fixed area. But if we go to the canonical ensemble at fixed temperature
we can follow [19] to compute the temperature. and from that, the entropy and assign
the causal diamond to an equilibrium state at fixed temperature. This then implies the
relationship between the area and the Boltzmann entropy (81), with the correct 1

4
, inde-

pendent of the Immirzi parameter.
We have also showed that the first law of thermodynamics implies the simplicity con-

straint.
We further showed that if there exists a semiclassical limit (which we do not prove)

this implies the thermodynamic first law, (86). This, in turn, implies the Einstein equa-
tions, as shown by Jacobson in [29].

These results establish that there is a close connection between the holographic be-
haviour of quantum gravity and the fact that general relativity is closely related to a topo-
logical field theory. Indeed, this is precisely the connection anticipated in [10] and [14],
The fact that general relativity is a constrained topological field theory is then the root
of the holographic nature of gravity. Indeed, this has been since then a central feature
of loop quantum gravity[14], which has been developed in different ways in [37]. It is
fitting that this connection between the holographic and topological aspects of gravity is
deepened by the simplicity constraints, which were also first used in works of Barrett and
Crane[35].

There is one big question that these results raise, which is that if general relativity,
which is a time reversible theory, corresponds to equilibrium statistical mechanics, what
is the time irreversible extension of general relativity that corresponds to non-equilibrium
statistical mechanics9? In particular, might it be one of the known irreversible extensions
of general relativity[52]?
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