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Abstract

We review some highlights from the String theory, the black hole physics and the doubly special

relativity and some thought experiments which were suggested to probe the shortest distances

and/or maximum momentum at the Planck scale. Furthermore, all models developed in order to

implement the minimal length scale and/or the maximum momentum in different physical systems

are analysed. We compare between them. They entered the literature as the Generalized Uncer-

tainty Principle (GUP) assuming modified dispersion relation, and therefore are allowed for a wide

range of Applications in estimating, for example, the inflationary parameters, Lorentz invariance

violation, black hole thermodynamics, Saleker–Wigner inequalities, entropic nature of gravitational

laws, Friedmann equations, minimal time measurement and thermodynamics of the high–energy

collisions. One of the higher–order GUP approaches gives predictions for the minimal length

uncertainty. A second one predicts a maximum momentum and a minimal length uncertainty,

simultaneously. An extensive comparison between the different GUP approaches is summarized.

We also discuss the GUP impacts on the equivalence principles including the universality of the

gravitational redshift and the free fall and law of reciprocal action and on the kinetic energy of

composite system. The existence of a minimal length and a maximum momentum accuracy is pre-

ferred by various physical observations. The concern about the compatibility with the equivalence

principles, the universality of gravitational redshift and the free fall and law of reciprocal action

should be addressed. We conclude that the value of the GUP parameters remain a puzzle to be

verified.

PACS numbers: 04.20.Dw,04.70.Dy, 04.60.-m
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I. SHORT HISTORY

The idea about the existence of a minimal length and/or time was speculated in the an-

cient time. In modern Physics, the chronon, the hypothetical fundamental or the indivisible

interval of time with the value of the ratio between the diameter of the electron and the

velocity of light proposed by Robert Levi [1] in 1927, would be the first minimum measurable

time interval proposed, ∼ 10−24 s. Within this time interval, the Special Relativity (SR)

and Quantum Mechanics (QM) are conjectured to unify in the framework of Quantum Field

Theory (QFT). In light of this, the possible existence of a minimal length scale rose the

awareness of the physicists. For example, the Planck time is given as (G h̄/c5)1/2 with the

dimensions of ”time” which is to be formed from G, where c is speed of light, h̄ is the Planck

constant and G stands for the Newtonian gravitational constant.

Recdntly, the history of the minimal length scale scenarios have been reviewed [2, 3]. The

main developments of minimal length were guided by:

• Singularities in fundamental theories, like Fermi theory of β–decay. This leads to

cut–off and QM with a minimal length scale.

• Distasteful arbitrary procedure of cut–off. This leads to modification of the canonical

commutation relations of position and momentum operators.

• Role of gravity to test physics at short distance and ”gedanken” (thought) experiments.

This leads to almost the approach that the minimal length scale is connected with some

gravitational aspects.

• The trans-Planckian problem (black hole thermodynamic properties). This leads to

modification in the dispersion relation and this an essential milestone.

• QM taking into account a minimal length scale and constructing QFT. This leads

to modifications of the canonical commutation relations in order to accommodate a

minimal length scale.

• The string theory, which leads to generalized uncertainty principle (GUP) based on

string scattering in the super-Planckian regime.

Defining a fundamental length was necessary to overcome singularities in fundamental

theories. First, regularization like cut-off or some dimensional quantities was implemented.
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But since the cut-off would not be independent of the frame of reference, problems with

the Lorentz invariance principle did appear. It dates back to 1930’s [4, 5], where it was

found that the effect of regularization with respect to cut-off should be the same as that of

a fundamentally discrete space-time. At that time, neither a fundamental finite length nor

a maximum frequency was known [6–9]. Thus, the fundamental length was thought as a

realm of subatomic physics, 10−15 m.

Heisenberg refined the fundamental minimal length in 1938 [10]. He discovered that he

Fermi theory of β–decay [11, 12] is non-normalizable. At high-energy and the four-fermion

coupling the theory breaks down and should be replaced by the exchange of a gauge boson

in electroweak interactions [4]. Heisenberg even connected the regularization problem with

the breakdown of the perturbation expansion of the Fermi theory. He formulated in 1939

the idea that QM with a minimal length scale would be able to account for the discrete mass

spectrum of the elementary particles [4]. Accordingly, the singularities in QFT became better

understood [3]. Nevertheless, discrete approaches to space and time remained unappealing

due to their problems with the Lorentz invariance principle [3].

Brinstein presented a novel idea in 1936 that the gravity might not be a fundamental

force [13]. At that time, neither weak nor strong force had been discovered. It is apparent

that gravity does not allow an arbitrarily high concentration of mass in a small region of

space-time. This makes it fundamentally different than the electrodynamics. Nowadays, we

know that the concentration of mass in a small region of space-time leads to Schwarzshild

singularity [13]. The gravitational radius of a test–body G V/c2 used in measuring the

minimal distance should not be larger than its linear dimensions V 1/3 [14]. Thus, one

obtains an upper bound for its mass density ρ <∼ c2/GV 2/3. In this region the measurement

possibilities are even more restricted and differs from the quantum-mechanical commutation

relations [15, 16]. Without a profound change of the classical notions, it seems hardly possible

to extend the quantum theory of gravitation to this region. In 1960, the uncertainties in

measuring the average values of Christoffel symbols due to the impossibility of concentrating

a mass to a region smaller than its Schwarzschild radius were studied [17], i.e., the conclusion

of Bronstein was approved [14].

In 1947, Snyder proposed that the momentum space cut-off should be achieved through

a ”distasteful arbitrary procedure” [18]. Therefore, instead of cut-off, he suggested modifi-

cation of the canonical commutation relations of both position and momentum operators.
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Accordingly, non-commutative space-time or modification of the commutation relations in-

crease the Heisenberg uncertainty such that a kind of smallest possible resolution can be

introduced. A minimal length scale does not need to be in conflict with the Lorentz in-

variance principle. Later on, the difficulties under inclusion of translations was criticized

[19].

The idea of utilizing fundamental limits governing mass and size of any physical system

in order to measure time dates back to nearly six decades. Salecker and Wigner suggested

the use a quantum clock [20, 21] in measuring distances between events in space-time.

The measuring rods are entirely avoided, as they are likely macroscopic objects [21]. The

quantum clock is thought as constrains on the smallest accuracy and the maximum running

time as functions of mass and position uncertainties. In light of this, Wigner second constrain

is believed to be more severe than the Heisenberg uncertainty principle, which requires that

only one single simultaneous measurement of both energy and time can be accurate. Wigner

constrains assure that repeated measurements should not disturb the clock. On the other

hand, the clock itself should be able to measure time over its total running period, accurately.

In 1964, another milestone has been put by Mead [22]. The peculiar role of gravity to

test physics at short distances was proposed [23]. The role does not mean increasing in the

Heisenberg uncertainty.

In mid 1970s, the trans-Planckian problem was introduced by Hawking [24]. Because

of infinite blueshift of the photons approaching a black hole horizon, modes with ener-

gies exceeding the Planck scale have to be taken into account in calculating the emission

rate. In order to solve this problem, Unruh suggested in 1995 [25] a modification in the

dispersion relation. Therefore, the smallest possible wavelength is the one solving the trans-

Planckian problem. Starting from a generalization of the Poincare algebra to Hopf algebra,

Majid and Ruegg independently suggested a modification in the commutators of the space-

time coordinates [26].

Kempf introduced a minimal length scale to the mathematical basis of QM [27, 29,

30]. This leads to different models employing modifications of the canonical commutation

relations. Some of these approaches implement modification in the dispersion relation.

Others implement a generalization of the Poincare algebra.

The impossibility to arbitrarily resolve the small structures with an object of finite exten-

sion was observed in the String theory [31–34]. The String scattering in the super-Planckian
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regime would result in a generalized uncertainty principle (GUP). This apparently would

prevent a localization to better than the String scale.

In supporting the phenomena that uncertainty principle would be affected by the QG, var-

ious examples can be mentioned. In the context of polymer quantization, the commutation

relations are given in terms of the polymer mass scale [35]. Also, the standard commutation

relations in QM are conjectured to be generalized (changed) at the length scales of the order

of Planck length [29, 36–38]. Such modifications are supposed to play an essential role in

the quantum gravitational corrections [39]. Accordingly, the standard uncertainty relation

of QM is replaced by a gravitational uncertainty relation having a minimal observable length

(of the order of Planck length) [40–43].

Nevertheless, we review argumentation against the GUP approaches insection IX. We

first start with the equivalence principle, which is one of the five principles forming the basis

of GR, where the motion of the gravitational test-particle in a gravitational field should be

independent on the particle’s mass and composition [291]. On the other hand, when taking

into consideration the Strong (SEP) [66] and Weak Equivalence Principle (WEP) [66], the

gravitational field should couple to everything [291].

10



II. INTRODUCTION

As introduced in section I, the existence of a minimal length is a great prediction from dif-

ferent approaches related to QG such as the black hole physics [44, 45] and the String theory

[46, 47]. The mean idea is simply that the String is conjectured not to interact at distances

smaller than its size, which is determined by its tension. For completeness, we highlight that

the information about the String interactions would be included in the Polyakov action [48].

The existence of a minimal length leads to generalization of the Heisenberg uncertainty prin-

ciple (GUP) [46]. At Planck (energy) scale, the corresponding Schwarzschild radius becomes

comparable to the Compton wavelength. High energies (Planck energy) seem to result in

further decrease in the Schwarzschild radius ∆x in the presence of gravitational effects. In

light of this, ∆x ≈ ℓ2P l∆p/h̄. This observation and the ones deduced from various gedanken

experiments suggest that the GUP approach should be essential, especially at some concrete

scales.

In QM, the physical observables are described by operators in Hilbert space. Given an

observable A, we define an operator as a standard deviation of A [49]

∆A = A− 〈A〉, (1)

where the expectation value is given by

〈(∆A)2〉 = 〈A2〉 − 〈A〉2. (2)

Using Schwartz inequality [50],

〈α|α〉〈β|β〉 ≥ |〈α|β〉|2, (3)

which is valid for any ket and bra state.

|α〉 = ∆A|α′〉, (4)

|β〉 = ∆B|β ′〉. (5)

By using Dirac algebra, we get

(∆A)2 (∆B)2 ≥ 1

4
|〈∆A ∆B〉|2, (6)

which is known as Cauchy-Schwartz inequality. In other words,

∆A∆B ≥ 1

2
|〈∆A∆B〉|. (7)
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In Heisenberg algebra, the position x̂ and momentum operator p̂ satisfy the canonical

commutation relation

[x̂, p̂] = x̂p̂− p̂x̂ = ih̄. (8)

As a consequence, for position and momentum uncertainties, ∆x and ∆p, respectively, of a

given state, the Heisenberg uncertainty relation reads

∆x ∆p ≥ h̄

2
. (9)

To probe an arbitrarily small length scale, one has to utilize tools of sufficiently high

energy (high momentum) and thus very short wavelength. This is the principle on which

colliders/accelerators, such as the Relativistic Heavy-Ion Collider (RHIC) [51], Large Hadron

Collider (LHC) [52], FermiLab [53], etc., are based. On the other hand, there are reasons

to believe that at high energies, the gravity becomes important. In light of this, the former

conclusion would be no longer true. In other words, the linear relation between energy and

wavelength would be violated, as well.

The detectability of quantum space-time foam with gravitational wave interferometers

has been discussed [54]. The limited measurability of the smallest quantum distances was

criticized [54]. The authors gave an operative definition for the quantum distances and ex-

plained how to eliminate the contributions from the total quantum uncertainty [55]. Four

decades later, Barrow applied Wigner inequalities [20, 21] in describing the quantum con-

strains on the black hole lifetime [56]. The black hole running time should be correspondent

to the Hawking lifetime. The latter is to be calculated under the assumption that the black

hole is a black body and therefore the utilization of Stefan-Boltzmann law is eligible. Also,

it is found that the Schwarzschild radius is correspondent to the constrains on Wigner size.

Furthermore, the information processing power of a black hole was estimated by emitted

Hawking radiation [57].

A. Generalized (gravitational) uncertainty principle

The existence of a minimal length based on GUP introduces that the space in Hilbert

space representation [29] can describe a non-commutative geometry. The non-commutative

geometry can also arise as a momentum over curved spaces [58]. From various gedanken

experiments, which have been designed to measure the area of the apparent horizon of a
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black hole in QG [59], the uncertainty relation is found preformed [44]. The deformed or

modified Heisenberg algebra introduces a relation between QG and Poincare algebra [59].

Under the effect of GUP in an n-dimension space, it is found that even the gravitational

constant G [60] and the Newtonian law of gravity [66] are subject of modifications. The

interpretation of QM through a quantization in 8-dimensional manifold implies the existence

of an upper limit in the accelerated particles [61]. Nevertheless, GUP given in forms of

quadratic [29, 44] and linear terms of momenta [62] assume that the momenta approach the

maximum value at very high energy (Planck scale) [62].

Recently, a new GUP approach was proposed [63]. It seems to fit well with the String

theory and the black hole physics (with quadratic term of momenta) and agrees well with

the Doubly Special Relativity (DSR) (with linear term of momenta). This simultaneously

predicts a minimal measurable length and a maximum measurable momentum and suggests

that the space should be quantized and/or discritized. Nevertheless, the approach [63]

shows some difficulties [64]. In light of this, a new GUP approach was proposed [64] to

characterize a minimal length uncertainty and a maximal momentum, simultaneously. On

the other hand, another approach is conjectured to absolve an extensive comparison with

Kempf, Mangano and Mann (KMM) [29]. The latter has been performed in Hilbert space

[65]. Here, a novel idea of minimal length modelled in terms of the quantized space-time was

implemented. Thus, this new approach agrees with QFT and Heisenberg algebra, especially

in context of non-commutative coherent states representation. The resulting GUP approach

can be studied at UV finiteness of Feynman propagator [65].

B. Physics of generalized (gravitational) uncertainty principle

There are various observations showing that the GUP approaches offer a valuable pos-

sibility to study the influences of the minimal length on the properties of a wide range of

physical systems, especially at the quantum scale [37, 44, 66]. The effects of linear GUP ap-

proach have been studied on compact stars [221], Newtonian law of gravity [67], inflationary

parameters and thermodynamics of the early Universe [68], Lorentz invariance violation [69]

and measurable maximum energy and minimum time interval [70]. Furthermore, the effects

of QG on the quark-gluon plasma (QGP) are introduced [71]. It was found that the GUP

can potentially explain the small observed violations of the weak equivalence principle in
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neutron interferometry experiments [72], section IX, and also predicts a modified invariant

phase space which is relevant to LT. It is suggested [73] that GUP can be measured directly

in Quantum Optics Lab [74, 75]. Furthermore, deformed commutation relations would cause

new difficulties in quantum as well as in classical mechanics. We give a list of some of these

problems as follows.

• one-dimensional harmonic oscillator with minimal uncertainty in position [29] and

minimal uncertainty in position and momentum [76] and the d-dimensional harmonic

oscillator with minimal uncertainty in position [77, 78],

• problem of 3d Dirac oscillator [79] and the solution of (1+1)-d Dirac oscillator within

Lorentz covariant algebra [80],

• 1d and 3d Coulomb problem within deformed Heisenberg algebra in perturbation

theory [81–85],

• scattering problem in deformed space with minimal length [86],

• ultra-cold neutrons in gravitational field with minimal length [87–89],

• influence of minimal length on Lamb shift, Landau levels, and tunnelling current in

scanning tunnelling microscope [75, 90]

• Casimir effect in a space with minimal length [91],

• effect of non-commutativity and the existence of a minimal length on the phase space

of cosmological model [92],

• various physical consequences of non-commutative Snyder space-time geometry [93],

and

• classical mechanics in a space with deformed Poisson brackets [94–96].

Furthermore, in sections VI and VII, we review the applications of the quadratic and linear

GUP approaches, respectively, on physics of early Universe, inflation parameters, Lorentz

invariance violation, black hole thermodynamics, compact stellar objects, Saleker-Wigner

inequalities, entropic nature of gravitational force, time measurement and thermodynamics
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of high-energy collisions.

The present review is organized as follows. In section IIA, the generalized extended

uncertainty principle (GEUP) is defined. The relationship between the minimal length and

maximum momentum is also presented. As introduced in previous sections, there are various

approaches to GUP presenting the existence of minimal length of non-zero value that leads

to non-commutative geometry. The physics of GUP approaches is reviewed in section IIB.

In section III, we summarize the behavior of some well-known expressions for GUP,

such as thought experiments designed to study the effects of QG in modified Heisenberg

uncertainty principle (HUP). These expressions contain quadratic term of momenta with a

minimal uncertainty on position. In section IIIB, we shall investigate the modification of

the uncertainty relation due to the high-energy fixed-angle scatterings at short length such

as the String length. In section IIIC, the uncertainty relation through various gedanken

experiments designed for the measurement of the area of the apparent horizon of black hole

is reviewed. These thought experiments assume QG due to recording of many photons of

the Hawking radiation emitted from the apparent horizon. Due to quantized space-time of

the quantum field theory and the geometric approach to curvature of momentum space, an

algebraic approach can be expressed in the co-products and the description of the Hopf-

algebra [26] leading to modified commutation relation between the space and the momenta,

section IIID. In section III E, the modified de Broglie relation which leads to changing the

commutation relation between space and momentum and the investigation of minimal length

and/or non-zero minimal length. In section III F, a new commutation relation containing a

linear term as an addition of the quadratic term of momenta and predicts of the maximum

measurable of momenta, shall be investigated.

In section IV, the relations describing the minimal length uncertainty are outlined. Two

proposals for the modification of the momentum operator are introduced. The proposal of a

minimal length uncertainty with a further modification in the momentum shall be reviewed.

The main features in Hilbert space representation of QM of the minimal length uncertainty

will be studied. Furthermore, their difficulties are also listed out. Furthermore, we show

how to overcome these difficulties, especially in Hilbert space representation.

In section V, the GUP approaches relating to the String theory and the black hole physics

(lead to a minimum length) and the ones relating to DSR (suggest a similar modification
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of commutators) shall be studied. The main features and difficulties in Hilbert space repre-

sentation will be reviewed, as well, and we show how to overcome these difficulties.

Section VI is devoted to the applications of the quadratic GUP approach. We list out

seven applications; physics of early Universe, inflation parameters, black hole thermodynam-

ics, compact stellar objects, Saleker-Wigner inequalities, entropic nature of gravitational

force and time measurement.

Section VII is devoted to the applications of the linear GUP approach on the same list

of problems as given in section VI. Additional two problems are also discussed, namely the

Lorentz invariance violation and thermodynamics of high-energy collisions.

In section VIII, other alternative approaches to GUP such as the one suggested by

Nouicer, in which an exponential term of momentum and minimal length appears, shall

be introduced. This approach agrees well with the GUP which is originated in the theories

for QG. There is another approach coming up with higher orders of the minimal length

uncertainty and maximal observable momentum. Finally, we compare between these ap-

proaches.

The effects of GUP on the principles of GR are studied in section IX. The results estimated

in various thought experiments are compared with the potential effects of GUP. It is found

that the GUP apparently changes the natural statement of the kinematic energy of the

deformed system. Argumentation against the GUP approaches shall be reviewed in section

IX. These can be divided into two groups; the equivalence principle and the kinetic energy

of composite system. The first group includes the universality of the gravitational redshift

and the free fall and the law of reciprocal action.
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III. THE GENERALIZED (GRAVITATIONAL) UNCERTAINTY PRINCIPLE

The consistent unification of the classical description of GR with QM still an open prob-

lem. A first attempt assumes that the two theories can be used as a guiding principle to the

search of a fundamental theory of QG. Secondly, several arguments starting from theoretical

analysis in String theory to more sophisticated or even gedanken experiments to measure the

minimal length, would conclude that there is a new contribution to the quantum uncertainty

with a gravitational origin leading to a length scale as a Planck length in the determination

of space-time coordinates.

On one hand, these approaches made essential predictions. We have listed out some

of these in section II. Other applications shall be elaborated in sections VI and VII. DSR

suggests a possibility to relate the transition from the quantum behavior at the microscopic

level to the classical behavior at the macroscopic level with the modification of QM induced

by a modification of the relativity principles. Thus, the laboratory tests should be able to

judge about these theories. On the other hand, the predictions remain uncertain due to the

limitations of the current technologies. Nevertheless, the minimal length has been observed

in condensed matter and atomic physics experiments, such as Lamb shift [74, 90], Landau

levels [74, 90], and the Scanning Tunnelling Microscope (STM) [74].

A. Introduction

As discussed, it is widely accepted that HUP should break down at energies close to

the Planck scale. Taking into account the gravitational effects, an emergence of a minimal

measurable distance seems to be inevitable. More generally, the generalized (gravitational)

uncertainty principle (GUP) reads [29]

∆x∆p ≥ h̄

2

(
1 + α(∆x)2 + β(∆p)2 + ζ

)
, (10)

where β and ζ are positive and independent on uncertainties ∆x and ∆p but may - in general

- depend on the expectation values of the operators x and p in the way that ζ = α〈x〉2+β〈p〉2.
In Fig. 1, the minimal momentum uncertainty ∆p is given in dependence on the position

uncertainty ∆x. It is apparent that the position minimal uncertainty ∆x0 6= 0 and ∆xmin ∝
∆pmax [29]. Furthermore, the commutation relations read

[x,p] = ih̄
(
1 + αx2 + βp2

)
. (11)
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∆
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allowed  region

∆x 0

Fig. 1: The modified uncertainty relation apparently implies the existence of a minimal length of

uncertainty ∆x0. The graph taken from Ref. [29].

In QM, both x and p could be represented as operators acting on position- and momentum-

space wavefunctions, respectively,

φ(x) = 〈x|φ(x)〉, (12)

φ(p) = 〈p|φ(p)〉, (13)

where |x〉 and |p〉 are position and momentum eigenstates. The operators x and p are

essentially self-adjoint. The eigenstates can be approximated to an arbitrary precision by

sequences |φn〉 of the physical states of increasing localization in position- or momentum-

space

lim
n→∞

∆x|φn〉 = 0, (14)

lim
n→∞

∆p|φn〉 = 0. (15)

As pointed out in Refs. [27, 28], this situation changes drastically with the inclusion

of minimal uncertainties ∆x0 > 0 and/or ∆p0 > 0. For example, a non-zero minimal

uncertainty in position is given as

(∆x)2|φn〉 = 〈φ| (x− 〈φ|x|φ〉)2 |φ〉 ≥ ∆x0, ∀ −→ |φ〉, (16)

implying that no physical state with such a position eigenstate would exist [29]. The reason

is that an eigenstate would - of course - have zero uncertainty in position. A minimal
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uncertainty in position apparently means that the position operator is no longer essentially

self-adjoint but merely symmetric. It is obvious that the preservation of symmetry assures

that all expectation values are real. When self-adjointness abandoned, a golden path to

introduce minimal uncertainties shall be planed [29].

Since there are then no longer position eigenstates |x〉 in representation of the Heisenberg

algebra, the Heisenberg algebra will no longer find a Hilbert space representation on the

position wavefunctions 〈x|φ(x)〉 [29]. In light of this, the discussion should be restricted to

the case ∆x0 6= 0 and then α = 0, where there is no minimal uncertainty in momentum.

In a similar manner, a minimal uncertainty in momentum abandons the momentum

space wavefunctions [29]. This will allow us to work with the convenient representation of

the commutation relations on momentum space wave functions. Then, the simplest GUP

relation leads to

∆x∆p ≥ h̄

2

(
1 + β(∆p)2 + ζ

)
, (17)

where the constant ζ is positive and apparently related to the expectation value of momen-

tum, ζ = β〈p〉2.

1. Non-commutativity of space

HUP actually has a strong relationship to the canonical commutation or commutative

phase space structures. When HUP should be broken down by GUP, an operational form

of non-commutative (NC) phase space structures will be observed. The generic form [97]

reads

[xi, pj] = ih̄
[
δij
(
1 + βf1

(
p2
))

+ f2
(
p2
)
pi pj

]
, (18)

[xi, xj ] = ih̄fij(p) 6= 0. (19)

The presence of a minimum length scale or a maximum momentum scale or both simply

leads to the possibility of originating GUP with NC algebras. Both are likely consistent.

Based on this, Kempf proposed the following algebraic relations [98]

[xi, pj] = i h̄
[
δij
(
1 + β p2

)
+ β

′
pi pj

]
, (20)

[xi, xj] = i h̄
(
β

′ − 2 β
)
(xi pj − xj pi) , (21)

[pi, pj] = 0. (22)
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Other algebraic relations have been introduced in Ref. [29]

[xi, pj] = i h̄ δij
(
1 + β p2

)
, (23)

[xi, xj ] = −2 i h̄ β (xi pj − xj pi) , (24)

[pi, pj] = 0. (25)

Recently, new algebraic relations have been presented in Ref. [99]

[xi, pj] = i h̄
[
δij
(
1 + β p2

)
+ β

′
pipj +O(β

′2, β2)
]
, (26)

[xi, xj ] = i h̄

(
2 β − β

′)
+
(
2 β + β

′)
β p2

1 + β p2
(xi pj − xj pi) , (27)

[pi, pj] = 0. (28)

It is apparent that the GUP approaches which are consistent with NC algebras can open

the possibility of space discreteness and/or quantization. In other words, the physical states

of space should be non-commute. Although the physical states can not be measured, simul-

taneously, the space discretization seems to be accessible.

B. String theory

In String theory, a GUP approach was first proposed by Amati et al. [46]. The ultra

high-energy scatterings of Strings were studied in order to check how the theory tackles

in consistences of QG at the Planck scale [46]. Some interesting effects are compared to

those which were found in usual field theories, especially the ones originating from the soft

short-distance behavior of the String theory [46]. The hard processes are studied at a short

distance as the high-energy fixed-angle scatterings. The latter are apparently not able to

test distances shorter than the characteristic String length λs = (h̄α)1/2, where α is the

String tension.

Another scale is dynamically generated. The D-dimensional gravitational Schwarzschild

radius R(E) ∼ (GNE)
1/(D−3) approaches towards the String length λs [46]. This depends on

whether R(E) smaller or greater than λs. If R(E) > λs, then new contributions at distances

of the order of R(E) appear. This indicates a classical gravitational instability that can be

attributed to the black hole formation. If the opposite should be the case (R(E) < λs), then

their contributions are irrelevant. There are no black holes with a radius smaller than the
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String length. In this case, the analysis of short distances can go on. It has been shown that

the larger momentum transfers do not always correspond to shorter distances. Precisely, the

analysis of the angle distance relationship suggests the existence of a scattering angle θM .

When the scattering should take place at θ < θM , then the relation between the interaction

distance and the momentum transfer is the classical one, i.e. follows the Heisenberg relation

with q ∼ h̄/b, where b is the impact parameter. But when θ ≫ θM , then the classical picture

is no longer valid. An important new regime where 〈q〉 ∼ b would be constructed. This

suggests a modification of the uncertainty relation at the Planck scale [46]

∆x ∼ h̄

∆p
+ Y α∆p, (29)

where Y is a suitable constant. Consequently, the existence of a minimal observable length

of the order of String size λs is likely.

C. Black hole physics

Several works have been devoted to perform the uncertainty relations and their measura-

bility bounds in QG [44]. Gedanken (thought) experiments have been proposed to measure

the area of apparent horizon of a black hole [44]. Accordingly, a generalization of the uncer-

tainty principle has been concluded. The GUP approach agrees well with the one which is

deduced from the String theories [44, 46, 100]. Also, in String theories, the tool of gedanken

String collisions at Planck energy was very useful [45, 46]. In addition to these, the renor-

malization group analysis has been applied to the String [47]. A main physical ingredient

was the Hawking radiation [24]. The black hole approach to GUP, which is a rather model

independent approach, agrees, especially in its functional form, with the one obtained in

framework of the String theory.

The gedanken experiment proceeds by observing the photons scattered by the studied

black hole. The main physical hypothesis of the experiment is that the black hole emits

Hawking radiation. Detecting the Hawking radiation, it turns to be possible to span an

”image” of the black hole [24]. Besides, measuring the direction of the propagating photons

that are emitted at different angles and tracing them back, we can - in principle - locate the

position of the center of the hole [24]. In this way, we make a measurement of the radius

Rh of the horizon of the hole. Apparently, this measurement has two sources of uncertainty
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[44].

• The first one is based on the fact that a photon with wavelength λ cannot carry

information about a more detailed scale than λ itself [44]. As in the classical Heisenberg

analysis, the resolving power of the microscope gives the minimum error

∆x(1) ∼ λ

sin θ
, (30)

where θ is the scattering angle. Then, the final momenta should have the uncertainty

∆ p ∼ h sin(θ)/λ. During the emission process, the mass of the black hole varies

from M to M −∆M [44], where ∆M = h/(c λ). The radius of the horizon changes,

accordingly. The corresponding uncertainty is intrinsic to the measurement.

For example, the metric field of the Reissner black hole [101] is given as

ds2 = −
(
1− 2G

r
+
GQ

r2

)
dt2 +

(
1− 2G

r
+
GQ

r2

)
dr2 + r2dΩ2. (31)

Also, the apparent horizon is defined as the outer boundary of a region of closed

trapped surfaces. In spherical topology and Boyer-Lindquist coordinates [102], the

apparent horizon is located at r = Rh

Rh = GM

[
1 +

(
1− Q2

GM2

)1/2
]
. (32)

The Boyer-Lindquist coordinates are a generalization of the coordinates used for the

metric of a Schwarzschild black hole. This can be used to express the metric of a Kerr

black hole [103]. Accordingly, the line element for a black hole with mass M , angular

momentum J , and charge Q reads

ds2 = −∆

Σ

(
dt−K sin2(θ) dφ

)2
+

sin2(θ)

Σ

((
R2 +K2

)
dφ−K dt

)2
+

Σ

∆
dR2 + Σ dθ2, (33)

where

∆ = R2 − 2MR +K2 +Q2, (34)

Σ = R2 +K2 cos2(θ), (35)

K =
J

M
. (36)

In Boyer-Lindquist coordinates, the Hamiltonian of a test particle is separable in Kerr

space-time. From Hamilton-Jacobi theory, a fourth constant of the motion can be

derived. This is known as Carter’s constant [104]
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• The second source of uncertainty is the case, when 1 − 2G/r + GQ/r2 vanishes. In

one dimension, for M ≫ ∆M and Q2 = GM2

∆x(2) = GM ±
√
G2(M +∆M)2 −GQ2, (37)

∆x(2) > G
√
2M∆M ≥ 2G

c2
∆M =

2G

c3
h

λ
. (38)

By means of inequality λ/ sin θ ≥ λ, the uncertainty in ∆x(2) and the quantity itself

can be combined, linearly

∆x >∼ λ+ κ
l2p
λ

(39)

∆x >∼
h̄

∆p
+ c G∆p, (40)

∆x >∼
h̄

∆p
+ β∆p, (41)

where κ is a constant. The other numerical constant β cannot be predicted by the

model-independent arguments presented so far. It is natural to investigate whether

the relation given in Eq. (39) reproduces what was obtained considering only a very

specific measurement. This principle would assure that the results should have a more

general validity in QG.

There is another approach obtained in a gedanken experiment of a micro black hole in

four-dimensions [66]. This approach is given as a function of time and energies. When

position with a precision of order ∆x is measured, the quantum fluctuations of the metric

field around the measured position with energy amplitude can be expected as

∆E ∼ c h̄

2∆x
. (42)

The Schwarzschild radius associated with the energy fluctuation ∆E,

Rs =
2GN ∆E

c4
. (43)

The energy fluctuation ∆E would grow up and the corresponding the radius Rs would

become larger and larger, until it reaches the same size as ∆x. As it is well known, the

critical length is the Planck length, Rs = ∆x ≡ lp, where l
2
p = GN h̄/c

3 and the associated

energy is the Planck energy ǫp = h̄ c/(2 lp) =
√
h̄ c5/GN/2.
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When the discussion is limited to the Planck energy, this would enlarge further the

Schwarzschild radius Rs. The situation can be summarized by the inequalities

∆x >∼
ch̄

2∆E
=⇒ ∆E ≪ ǫp, (44)

∆x >∼
2GN∆E

c4
=⇒ ∆E ∼ ǫp. (45)

If these two inequalities are combined linearly, then

∆x >∼
ch̄

2∆E
+

2GN∆E

c4
. (46)

This is a generalization of the uncertainty principle to the cases in which gravity gets very

important, i.e., to energies of the order of ǫp. We have discussed this in connection with the

various colliders and the indirect relation between energy and wavelength. We noticed that

this relation might be violated at very high energy, due to the dominant role of gravity at

this energy scale. It is obvious that the minimum value of ∆x is reached for ∆Emax ∼ ǫP ,

∆xmin = 2 lp (47)

D. Snyder form

Hopf algebra [26] introduces a relationship between a dual structure and the associated

product rules fulfilling certain compatibility conditions [26]. A additional structure was

found in the geometric approach. The curvature of momentum space is expressed in the

algebraic approach in co-products and antipodes of Hopf algebra [26]. As in the geometric

approach, there is an ambiguity in the choice of coordinates in the phase space.

Snyder presented a theory for quantized space-time [105, 106]. Different possibilities are

investigated in resolving the infinities problem in early days of QFT. Snyder considered a

de-Sitter space with real coordinates (η0, η1, η2, η3, η4). In addition to the various choices of

position space coordinates, one can also use different coordinates in the momentum space,

by choosing different parametrizations of the hypersurface than the ones of Snyder [26]. One

such parametrizations is using coordinates πν , which are related to Snyder basis [26]

η0 = −mp sinh

(
π0
mp

)
− ~π2

2mp
exp

(
π0
mp

)
, (48)

ηi = −πi exp
(
π0
mp

)
, (49)

η4 = −mp cosh

(
π0
mp

)
− ~π2

2mp
exp

(
π0
mp

)
, (50)
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where η4 is not constant on the hypersurface and πν is the bicrossproduct basis of the Hopf

algebra [26].

We make a natural choice for the algebraic approach and define the position X and time

T operators [105, 106]

Xi = i a

(
η4

∂

∂ ηi
− ηi

∂

∂ η4

)
, (51)

T =
i a

c

(
η4

∂

∂ ηi
+ ηi

∂

∂ η4

)
, (52)

where i = 1, 2, 3 and a is a natural unit of length. These operators should act on functions

of variables (η0, η1, η2, η3, η4). In additional, the energy and momentum operators [105, 106]

PT =
h̄

a

η0
η4
, (53)

Pi =
h̄

a

ηi
η4
. (54)

Thus, the commutators between positions and momenta are given by

[Xi, Pj] = i h̄

(
1 +

(a
h̄

)2
P 2

)
, (55)

where P 2 =
∑3

j Pj Pj. These algebraic relations (described by Snyder) are close to the

generalized uncertainty commutation relation [105, 106], represent an essential milestone on

the path to construct theoretical framework for GUP.

E. Modified de Broglie relation

The modified de Broglie relation has been investigated by Hossenfelder et al. [107]. It is

assumed that the wave number κ(p) is an odd function and nearly linear for small values

of p and approaching asymptotically some upper limit which is proportional to a minimal

length Mp ∼ L−1
p [107]. Such a function will have an expansion in p as follows.

κ = p− σ
p3
m2

p

, (56)

Taking into consideration the commutation relation between x and κ(p), the generalized

uncertainty principle can be deduced [107]

∆x ∆p ≥ h̄

2

〈
∂p

∂κ

〉
, (57)

∆x ∆p ≥ h̄

2

(
1 + σ

< p2 >

Mp

)
. (58)
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This gives the commutation relation

[Xi , Pj] = i h̄

(
1 + σ

p2

Mp

)
. (59)

Obviously, these algebraic relations (de Broglie relations) are close to the generalized uncer-

tainty commutation relation presented in Refs. [29, 44, 58, 66].

F. Doubly Special Relativity

The doubly relativistic theory are a group of transformations with two invariants [62].

In additional to the constant speed of light, it also assumed that an invariant energy scale

should exist. Nevertheless, this group of transformation remains Lorentzian. A non-linear

realization of the Lorentz transformations in energy-momentum (E, p) space parametrized

by an invariant length l was defined in Ref. [108]

ǫ = E f
(
l E, l2 p2

)
, (60)

πi = Pi g
(
l E, l2 p2

)
, (61)

where (ǫ, π) are auxiliary linearly transforming variables which define the non-linear Lorentz

transformation of the physical energy-momentum (E, p). Then, we get two functions with

two variables f and g. These functions are able to parametrize more general non-linear

realization of the Lorentz transformations with rotations realized as linearly depending on

the dimensional scale [62].

The condition to recover the special relativistic theory at low energy reduces to the

condition f(0; 0) = g(0; 0) = 1. Each choice of the two functions f and g will lead to

a generalization of the relativity principle with an invariant length scale. The Lorentz

transformations connecting the energy-momentum of a particle in different inertial frames

differ from the standard special relativistic linear transformations which are recovered when

l E ≪ 1 and l2 p2 ≪ 1 a non-linear realization of the Lorentz transformations corresponds

to the choice of the two functions [36, 37, 109]

f =
1

2

[(
1 + l2 p2

) el E
l E

− e−l E

l E

]
, (62)

g = el E . (63)
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For a particle of mass m, the relation between the energy and momentum is given by

[36, 37, 109]

(
1− l2 p2

)
el E + e−l E = el m + e−l m. (64)

Accordingly,

el E =
cosh(l m) +

√
cosh2(l m)− (1− l2p2)

(1− l2p2)
. (65)

Furthermore, an upper bound on the momentum can be defined as

p2max <
1

l2
, (66)

suggesting the existence of a minimal measurable length which would restrict the momentum

of the test particle to take any arbitrary value. This leads to an upper bound, Pmax, on

this momentum. This means that there is a maximal momentum of the particle due to the

fundamental structure of space-time at the Planck scale [62].

The commutation relation between the canonical variables x and p was suggested [62]

[Xi , Pj] = i h̄

[
e−l Eδi j +

l2

cosh (l m)
pipj

]
. (67)

It is obvious that when the mass m gets much larger than the inverse of the length scale l, a

classical phase space is approached. This result simply suggests the possibility to relate the

transition from the quantum behavior at the microscopic level to the classical behavior at the

macroscopic level with the modification of QM induced by a modification of the relativity

principle [62]. If we consider the massless particle, then

el E =
1

1− l |p| . (68)

It is found that the commutation relation between the canonical variables x and p [62] should

be modified in doubly special relativity

[Xi, Pj ] = i h̄
[
(1− l |p|) δij + l2 pi pj

]
. (69)

It is apparent that when the momentum approaches its maximum value, one has a non-trivial

limit for the canonical commutation relation [62].
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IV. MINIMAL LENGTH UNCERTAINTY RELATION

In framework of HUP, there is no restriction on the measurement precision of the particle’s

position, ∆x. This minimal position uncertainty can be made arbitrarily small even vanishes

[37]. The theoretical motivations to avoid such a limit are reviewed in section I. It is obvious

that going down to such a limit is not essentially the case of the framework of GUP, because

of the existence of a minimal length uncertainty, section I, which obviously modifies the

Hamiltonian of the physical system leading to modifications, especially at the Planck scale

of the energy spectrum of quantum systems, which in turn predicts small corrections in

the measurable quantities. As discussed in section III, this has been observed in condensed

matter and atomic physics experiments, such as Lamb shift [74, 90], Landau levels [74, 90],

and the Scanning Tunnelling Microscope (STM) [74]. Thus, a hope arises that the quantum

gravity effects may be observable in the laboratory.

We show two GUP approaches suggesting the existence of minimal length uncertainty.

We shall summarize the features to each of them. In section IVA, we show the proposal

of the minimal length uncertainty with momentum modification [74, 90]. In section IVB,

we study the main features in Hilbert space representation of QM of the minimal length

uncertainty [29].

A. Momentum modification

Via Jacobi identity, the GUP approaches modify Heisenberg algebra

[xi, pj ] = i h̄
(
δij(1 + β p2) + 2 β pi pj

)
, (70)

These ensure [74, 90] that

[xi, xj ] = 0 = [pi, pj] . (71)

Thus, the position and momentum operators can be, respectively, defined

Xi = x0i, (72)

Pj = p0j (1 + β p20). (73)

We note that p20 =
∑3

j p0jp0j satisfies the canonical commutation relations [x0i, p0j ] = i h̄ δij

and p0j is defined as the momentum at low energy scale which is represented by p0j =

−i h̄∂/∂ x0j while Pj is considered as the momentum at the higher energy scales.

28



1. Main difficulties with this proposal

As discussed, the introduction of a minimal length leads to modification in the canonical

commutation relations, while the position space at Planck scale must differ from the position

in the canonical system, because the absence of zero-state in the position eigenstates. Thus,

it is useful to modify the position space rather to allow for modification in momentum space.

The latter leads to non-commutation of space [xi, xj ] 6= 0.

From the assumptions given in Eqs. (72) and (73), it is impossible to utilize Hilbert

representation for position space, since no zero physical state exists. With the definition of

the modified momentum at the highest energy scales, Eq. (73), the non-commutative values

of momentum states [pi, pj ] 6= 0. Thus, the representation in Hilbert space is not available.

B. Hilbert space representation

We discuss a generalized quantum theoretical framework, which should be able to im-

plement the appearance of a non-zero minimal uncertainty in position. The discussion can

be confined to exploring the applications of such a minimal uncertainty in the context of

non-relativistic QM. Various new features of Hilbert space representation of QM, especially

at the Planck scale, are introduced [29].

∆x∆p ≥ h̄

2
+ β0 l

2
p

(∆p)2

h̄2
. (74)

The additional term β0 l
2
p (∆p)

2/h̄2 has its origin in the very nature of spacetime at the

Planck energy scale ǫp of 1039 GeV [29, 37]. The simplest GUP relation which implies the

appearance of a non-zero minimal uncertainty ∆x0 is encoded in the following approach:

∆x ∆p ≥ h̄
2
(1 + β (∆p)2) , (75)

where β is the GUP parameter β = β0/(Mp c
2) = β0 l

2
p/h̄

2.

As a non-trivial assumption, we propose that the minimal observable length has also a

minimal but non-zero uncertainty. Therefore, the Hilbert space representation on position

space wave functions of the ordinary QM [29] is no longer possible, because no physical

system with a vanishing position eigenstate |x〉 is allowed [29]. In light of this, we must

construct a new Hilbert space representation which should be compatible with the commu-

tation relation in GUP, Eq. (75). This means that we can explore the physical applications
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of the minimal length by working with the convenient representation of the commutation

relations on momentum space wave functions [29].

The Heisenberg algebra of GUP is given as [27–30, 37, 38, 44, 110]

[x, p] = i h̄
(
1 + β p2

)
. (76)

In fact, the Heisenberg algebra can be represented in momentum space wave functions

φ(p) = 〈p|φ(p)〉 and ∂p = ih̄ ∂
∂x

P · φ(p) = p φ(p), (77)

X · φ(p) = i h̄
(
1 + β p2

)
∂pφ(p), (78)

where X and P are symmetric operators on the dense domain S∞ with respect to the

following scalar product

〈φ|ψ〉 =

∫ ∞

−∞

dp

1 + βp2
φ∗(p)ψ(p). (79)

The identity operator would be represented as

∫ ∞

−∞

dp

1 + β p2
|p〉〈p| = 1 (80)

and the scalar product of the momentum eigenstates changes to

〈p|p′〉 =
(
1 + β p2

)
δ
(
p− p

′
)
. (81)

While the momentum operator essentially still self-adjoint, the functional analysis of the

position operator, as expected from the appearance of the minimal uncertainty in positions,

changes.

To obtain a minimum measurable uncertainty in position, the relation (∆ p)2 = 〈p2〉−〈p〉2

can be utilized [29]

∆x∆p ≥ h̄

2

(
1 + β (∆p)2 + β 〈p〉2

)
. (82)

This relation can be rewritten as a second order equation for ∆p. Then, the solutions for

∆p are as follows [29].

∆p =

(
∆x

h̄ β

)
±

√(
∆ x

h̄ β

)2

− 1

β
− 〈p〉2. (83)
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A minimum value ∆x can be deduced

∆xmin(〈p〉) = h̄
√
β
√

1 + β 〈p〉2. (84)

Therefore, the absolutely smallest uncertainty in position, where 〈p〉 = 0, reads

∆x0 = h̄
√
β. (85)

There is a non-vanishing minimal uncertainty in momentum as accepted from Fig. 1.

For the construction of Hilbert space representations of this general case, one cannot

work on the position space. One has to resort a generalized Bargmann Fock representation

[111, 112]. Here, we specify to the situation with non-zero minimal position uncertainties.

For n dimensions, the generalised Heisenberg algebra, Eq. (75), reads [27–30, 37, 38, 44, 110]

[xi, pj] = i h̄
(
1 + β ~p2

)
. (86)

We require that

[pi, pj ] = 0, (87)

which allows us to generalize the momentum space representation, straightforwardly [29].

Pi · φ(p) = pi φ(p), (88)

Xi · φ(p) = i h̄
(
1 + β~p2

)
∂piφ(p), (89)

and ∂pi = i h̄ ∂/∂pi. Then, it is obvious to show that

[Xi, Xj] = 2 i h̄ β (Pi Xj −Pj Xi) , (90)

leads to a non-commutative geometric generalization of position space.

Furthermore, the commutation relations, Eqs. (86), (87) and (90) do not break the

rotational symmetry [29]. In fact, the generators of rotations can be expressed in terms of

position and momentum operators as [29]

Lij =
1(

1 + β ~p2
) (XiPj −Xj Pi) , (91)

where the representation of the rotation generators in momentum wavefunctions reads

Lij ψ(p) = − i h̄
(
pi ∂pj − pj ∂pi

)
ψ(p) (92)
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and are essentially the same as one encounters in ordinary QM. However, the main change

now appears in the relation

[xi, xj ] = − 2 i h̄ β
(
1 + β ~p2

)
Li j . (93)

Once again, this relation reflects the noncommutative nature of the spacetime manifold at

the Planck scale.

1. Eigenstates of position operator in momentum space

The position operator generating the momentum-space eigenstates [29]

Xφλ(p) = λφλ(p), (94)

i h̄
(
1 + β p2

)
∂p φλ(p) = λφλ(p). (95)

This differential equation can be solved to obtain formal position eigenvectors [29]

φλ(p) = C e
−i λ

h̄
√

β
tan−1

√
β p
. (96)

By applying the normalization condition, we can find out the formal position eigenvectors

in momentum-space

φλ(p) =

√√
β

π
e
−i λ

h̄
√

β
tan−1

√
β p
. (97)

This is the generalized momentum-space eigenstate of the position operator in the presence

of both a minimal length and a maximal momentum. To this end, we calculate the scalar

product of the momentum space eigenstate of the position operator |φλ(p)〉 [29]

〈φλ
′ |φλ〉 =

√
β

π

∫ ∞

−∞

dp

1 + βp2
e
−iλ−λ

′

h̄
√

β
tan−1

√
βp
. (98)

Thus,

〈φλ
′ |φλ〉 = 2 h̄

√
β

π (λ−λ
′)
sin
(

(λ−λ
′
)

2 h̄
√
β
π
)
. (99)

Fig. 2 compares the behavior of 〈φλ
′ |φλ〉 with λ − λ

′
normalized to h̄

√
β. The curve

represents the special case ∆p0 and the sets of eigenvectors parametrised by λ ∈ [−1, 1[ [29].

It apparent that the formal position eigenstates are generally no longer orthogonal. This
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is however should not the case, since the formal position eigenvectors |φλ〉 are not physical

states. They are not in the domain of p, which physically means that they have infinite

uncertainty in momentum and - in particular - infinite energy
〈
φλ

∣∣∣∣
p2

2m

∣∣∣∣φλ

〉
= divergent, (100)

The main difficulty in this approach is the divergence of the energy spectrum of the position

operator eigenfunctions. In other words, the energy of the short wavelength modes seems

to diverge [29].
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Fig. 2: 〈φλ′ |φλ〉 is plotted versus λ− λ
′
normalized to h̄

√
β. The graph taken from Ref. [29].

2. Maximal localization states

The states |φml
ζ 〉 of a maximum localization around ζ position can be calculated as [29]

〈
φml
ζ

∣∣∣X̂
∣∣∣φml

ζ

〉
= ζ, (101)

and ∆xmin = ∆x0 depends on 〈p〉. These states also satisfy [29]
∣∣∣∣
∣∣∣∣
(
(x− 〈x〉) + (p− 〈p〉) [x, p]

2(∆p)2

)
|φ〉
∣∣∣∣
∣∣∣∣ ≥ 0, (102)
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which immediately implies that

∆x∆p ≥
( |〈[x, p]〉|

2

)
. (103)

For first order of the GUP parameter, we can use the approximate relation [29, 37, 74, 90]

|〈[x, p]〉| ≈ i h̄
(
1 + β(∆p)2 + β 〈p〉2

)
. (104)

Only if it obeys Eq. (102), it is on the boundary of the physically allowed region. From Eqs.

(77) and (78) and in momentum space, this takes the form of a differential equation [29]

{[
ih̄(1 + βp2

)
∂p − 〈x〉] + i h̄

(1 + β(∆p)2 + β〈p〉2)
2(∆p)2

(p− 〈p〉)
}
φ(p) ≈ 0, (105)

which can be solved as

φ(p) ≈ C(1 + βp2)
−(1+β(∆p)2+β〈p〉2)

4 β (∆p)2

exp

[( 〈x〉
i h̄

√
β
− (1 + β (∆p)2 + β 〈p〉2) 〈p〉

2
√
β(∆p)2

)
tan−1(

√
β p)

]
. (106)

For 〈p〉 = 0 and the critical momentum uncertainty (∆p)2 = 1/β, the absolutely maximal

localization states can only be obtained [29]

φml
ζ (p) ≈ C (1 + β p2)−

1
2 exp

(
−i 〈x〉 tan

−1(
√
βp)

h̄
√
β

)
. (107)

By applying the normalized condition, the factor C can be determined [29],

1 = CC∗
∫ ∞

−∞

dp

(1 + βp2)2
= C2 π

2
√
β
. (108)

Thus, the momentum space wavefunctions |φml
ζ 〉 of a maximum localization around ζ position

reads

φml
ζ (p) =

√
2
√
β

π

(
1 + βp2

)− 1
2 exp

(
−iζ tan

−1(
√
βp)

h̄
√
β

)
. (109)

These states generalize the plane waves in momentum-space which would describe a maximal

localization in the ordinary QM, which are now the proper physical states of finite energy

[29]

〈
φml
ζ

∣∣∣∣∣
P̂

2

2m

∣∣∣∣∣φ
ml
ζ

〉
=

2
√
β

π

∫ ∞

−∞

dp

(1 + βp2)2
p2

2m
=

1

2mβ
. (110)
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Fig. 3: The wavelength of the quasiposition wave is given as a function of the momentum eigenstate,

Eq. 113, in ordinary QM and GUP approach at β = 0.2. The graph taken from Ref. [64].

3. Transformation to quasi-position wavefunctions

Through projecting arbitrary states on maximally localized states, we obtain the probabil-

ity amplitude for the particle being maximally localized around a position. For quasiposition

wavefunction φ(ζ), it is defined [29]

φ(ζ) = 〈φml
ζ |φ〉, (111)

where in the limit β → 0, the ordinary position wave function φ(ζ) = 〈ζ |φ〉. Now, the

transformation of the wavefunction in momentum representation into its counterpart quasi-

position wavefunction reads [29]

φ(ζ) =

√
2
√
β

π

∫ ∞

−∞

dp

(1 + β p2)
3
2

exp

[
i
ζ tan−1(

√
β p)

h̄
√
β

]
φ(p). (112)

The quasiposition wavefunction of a momentum eigenstate φp̃(P ) = δ(p − p̃) with energy

E = p̃2/2m is characterized as a plane wave. In terms of modified dispersion relation, the

wavelength is given as [29]

λ(E) =
2 π h̄

√
β

tan−1
√
2mβE

. (113)

No wavelength components smaller than the wavelength are possible in absence of GUP

λ0 = 4 h̄
√
β. (114)
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No arbitrarily fine ripples are possible, since the energy of short wavelength modes diverges

as the wavelength approaches the finite value λ0 with the energy

E(λ) =
1

2mβ

(
tan

2πh̄
√
β

λ

)2

. (115)

Fig. 3 depicts λ(E) versus mE in ordinary QM and GUP approach at β = 0.2. Since

Eq. (113) is bounded from below, there exists a nonzero minimal wavelength [29]. Benause

the transformation, Eq. (112), like the generalized Fourier transformation, is invertible,

the transformation of a quasiposition wavefunction into a momentum-space wavefunction is

given as [29]

φ(p) =
1√

8 π
√
βh̄

∫ ∞

−∞

dζ

(1 + β p2)
−1
2

exp

[
−i ζ tan−1(

√
β p)

h̄
√
β

]
φ(ζ). (116)
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V. MINIMAL LENGTH UNCERTAINTY: MAXIMAL MOMENTUM

A. Momentum modification

Based on DSR, GUP suggests modifications of commutators [62]

[xi , pj] = i h̄
(
δij (1 + βp2) + 2βpipj

)
, (117)

[xi , pj] = i h̄
[
(1− l|p|)δij + l2pipj

]
. (118)

Both relations can be combined

[xi, pj] = i h̄

[
δij + α1 p δij + α2

pi pj
p

+ β1 p
2 δij + β2 pi pj

]
. (119)

It follows from the Jacobi identity that

− [[xi, xj ], pk] = 0 = [[xj , pk], xi] + [[pk, xi], xj ] , (120)[(
α1 − α2

p

)
+
(
α2
1 + 2β1 − β2

)]
∆jki = 0, (121)

where ∆jki = piδjk − pjδik. We should assume that α1 = α2 = −α, where the negative sign

appearing in Eq. (120) or Eq. (117) with α > 0 and α2
1 + 2 β1 − β2 = 0 and assume that

β1 = α2 and β2 = 3α2 with α2 = β. We get commutators consistent with the String theory,

black holes physics and DSR

[xi, pj] = ih̄

[
δij − α

(
pδij +

pipj
p

)
+ α2

(
p2δij + 3pipj

)]
, (122)

and via the Jacobi identity

[xi, xj ] = 0 = [pi, pj] , (123)

where α = α0 ℓpl/h̄ = α0/(Mpl c) and the Planck length ℓpl ≈ 10−35 m and energy ǫpl =

Mplc
2 ≈ 1019 GeV.

In one dimension, this GUP approach was formulated as [63, 113]

∆x∆p ≥ h̄

2

(
1− 2α 〈p〉+ 4α2〈p2〉

)
. (124)

Apparently, (∆p)2 = 〈p2〉 − 〈p〉2, then we get

∆x∆p ≥ h̄

2

[
1 +

(
α√
〈p2〉

+ 4α2

)
(∆p)2 + 4α2 〈p〉2 − 2α

√
〈p2〉

]
. (125)
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Commutators and inequalities similar to the ones given in Eqs. (122) and (124) were pro-

posed and derived [63, 113], which - in turn - imply a minimum measurable length and a

maximum measurable momentum, simultaneously

∆x ≥ (∆x)min ≈ α h̄ ≈ α0 ℓpl, (126)

∆p ≤ (∆p)max ≈ 1

α
≈ Mpl c

α0

, (127)

and define

Xi = x0i, (128)

Pj = p0j(1− α p0 + 2α2 p20). (129)

We note that p20 =
∑3

j p0j p0j satisfies the canonical commutation relations [x0i, p0j] = ih̄δij

and p0j is defined as the momentum at low energy scale which is represented by p0j =

− i h̄ ∂/∂x0j , while pj is considered as the momentum at high energy. It is normally assumed

that the dimensionless parameter α0 is of the order of unity. In this case the α-dependent

terms are important only when the energies (momenta) are comparable to the Planck energy

(momentum), and the lengths are comparable to the Planck length.

1. Main difficulties with this approach

The GUP approach introduced in Ref. [63] contains linear and quadratic terms of mo-

menta with a minimum measurable length and a maximum measurable momentum. Fur-

thermore, it was suggested that when the energy gets comparable to the Planck energy, there

should be a modification in Eq. (129) and this should ensure the commutators of space, Eq.

(123), as the canonical system can predict the measurable length and a maximum measur-

able momentum simultaneous. In fact, this assures wide applications in different physical

systems. Some of the main difficulties which appear because of the GUP approach are listed

out in Ref. [64]:

• it is a perturbative approach (therefore, it is only valid for small values of the GUP

parameter α),

• it can not approach the non-commutative geometry, see Eq. (123),
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• it suggests a minimal length uncertainty which can be interpreted as the minimal

length. The maximal momentum uncertainty differs from the idea of the maximal

momentum which is required in DSR theories, where the maximal momentum given

in uncertainty not on the value of the observed momentum, see Eq. (127),

• it suggests momentum modification given in Eq. (129), but does not achieve the

commutator relation of the momentum space [pi, pj] 6= 0,

• its minimal length uncertainty with maximal momentum results in uncertainty instead

of maximum observed momentum, see Eqs. (126) and (127), and

• the introduction of minimal length (non-varnishing value) allows the study for the

Hilbert space representation corresponding to the momentum wavefunction ψ(p).

B. Hilbert space representation

The first term in Eq. (124) is related to the particles momentum and has its origin in the

existence of a maximal momentum. In this term, various differences between the Hilbert

space representation and the work of KMM [29] can be originated.

Assuming that the minimal observable length has a non-vanishing uncertainty, we should

construct a new Hilbert space representation which is compatible with the commutation

relation accompanied with the GUP approach

[xi , pj] = i h̄ δij
(
1− α p+ 2α2 ~p2

)
. (130)

Fortunately, when neglecting the presence of a minimal momentum uncertainty, there would

still exist a continuous momentum space representation, which means that we can explore

physical applications of the minimal length by implementing convenient representation of

the commutation relations on momentum-space wavefunctions [114], Then, the momentum

P and position X operators read

Xi φ(p) = x0i(1− αp0 + 2α2 ~p0
2)φ(p), (131)

Pj φ(p) = p0j φ(p), (132)

where p20 =
∑3

j p0j p0j satisfying the canonical commutation relations [x0i, p0j] = i h̄ δij

and p0j is defined as the momentum at low energy scale which is represented by x0i =
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i h̄ ∂pi. These commutation relations imply a nonzero minimal uncertainty in each position

coordinate. As in ordinary QM, [pi, pj] = 0. Then, it is straightforward to show that

[xi, xj ] = i h̄ α

(
4α− 1

P

)
(PiXj −Pj Xi) . (133)

In light of this, one would worry about the divergence in KMM formalism [29], at vanishing

momentum. ”Singularity” is likely, because the derivative diverges at p = 0. The commu-

tation relations do not break the rotational symmetry. In fact, the generators of rotations

can still be expressed in terms of position and momentum operators

Lij =
XiPj −Xj Pi

1− α p0 + 2α2 ~p0
2 . (134)

The action on a momentum-space wave function reads

Lijφ(p) = − i h̄
(
pi ∂pj − pj ∂pi

)
φ(p). (135)

This is essentially the same as in ordinary QM. However, the main difference appears in the

relation

[xi, xj ] = i h̄ α

(
4α− 1

P

) (
1− α p0 + 2α2 ~p0

2
)
Lij . (136)

The 1/P -term was absent in the original KMM formalism [29]. It gives a trace of the

existence of maximal momentum. Equation (136) expresses the noncommutative nature

of the spacetime manifold in the Planck scale. The presence of an upper bound of the

momentum agrees with DSR theories.

The scalar product in this representation should be modified due to the presence of the

additional factor (1−α p0+2α2 ~p0
2) and the existence of maximal momentum. The integrals

calculated from the limits of the Planck momentum from −ppl to +ppl differs than the one in

the KMM formalism [29, 114]. This implies the existence of a maximal momentum (Planck

momentum), ppl ≡Mpl c.

〈φ|ψ〉 =

∫ +ppl

−ppl

φ∗(p) ψ(p)

(1− α p0 + 2α2p20)
dp. (137)

The identity operator would be represented as [114]
∫ +ppl

−ppl

|p〉〈p|
(1− α p0 + 2α2 p20)

dp = 1, (138)

and the scalar product of the momentum eigenstates changes to

〈p|p′〉 =
(
1− α p0 + 2α2 p20

)
δ
(
p− p

′
)
. (139)

40



1. Eigenstates of position operator in momentum space

The position operator acting on momentum-space eigenstates gives [29, 114].

X . φξ(p) = ξ φξ(p), (140)

where φξ(p) = 〈ξ|p〉 is a formal position eigenstate and |ξ〉 is an arbitrary state

i h̄
(
1− αp0 + 2α2p20

)
∂p φξ(p) = ξ φξ(p). (141)

By solving this differential equation, we obtain the formal position eigenvectors [114]

φξ(p) = C exp

[
−i 2 ξ

α h̄
√
7

(
tan−1 1√

7
+ tan−1 4α p− 1√

7

)]
. (142)

Also by applying normalized condition to extract the factor C, the formal position eigen-

vectors in momentum-space [114]

φξ(p) =

√
α
√
7

2

[
tan−1

(
4α ppl − 1√

7

)
+ tan−1

(
4α ppl + 1√

7

)]− 1
2

exp

[
−i 2 ξ

α h̄
√
7

(
tan−1

(
1√
7

)
+ tan−1

(
4αp− 1√

7

))]
. (143)

This is nothing but the generalized momentum-space eigenstate of the position operator in

the presence of both a minimal length and a maximal momentum.

The scalar product of formal position eigenstates can be given as [114]

〈φξ′ |φξ〉 =

∫ +ppl

−ppl

dp

(1− α p0 + 2α2 p20)
φ∗
ξ′ (p)φξ(p),

=
α
√
7

2
ρ0 exp

(
−i 2

(
ξ − ξ

′)

α h̄
√
7

tan−1

(
1√
7

))

∫ +ppl

−ppl

exp

[
−i 2

(
ξ−ξ

′)

α h̄
√
7

tan−1
(

4α p−1√
7

)]

(1− α p0 + 2α2 p20)
dp, (144)

where ρ0 =
[
tan−1

(
4αppl−1√

7

)
+ tan−1

(
4αppl+1√

7

)]−1

. Then,

〈φξ′ |φξ〉 = Ω

(
exp

{
−i
[
2(ξ − ξ

′
)

αh̄
√
7

tan−1

(
4αppl − 1√

7

)
− π

2

]}
−

exp

{
i

[
2(ξ − ξ

′
)

αh̄
√
7

tan−1

(
4αppl + 1√

7

)
+
π

2

]})
, (145)
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where Ω is defined as

Ω =
ρ0 h̄ α

√
7

2 (ξ − ξ ′)
exp

[
−i 2

(
ξ − ξ

′)

α h̄
√
7

tan−1

(
1√
7

)]
. (146)

Fig. 4 compares the behavior of 〈φξ′ |φξ〉 with ξ − ξ
′
using the two GUP approaches

[29, 114]. The red curve shows a much more oscillating behavior. It is obvious that the

scalar product used in the GUP approach [114] causes a more broadening relative to the one

of Ref. [29].

Fig. 4: The dependence of 〈φξ′ |φξ〉 on ξ − ξ
′
as calculated in two GUP approaches [29, 114]. The

graph taken from Ref. [114], to which ”our result” refers.

For these formal position eigenvectors, the expectation value of energy reads

〈
φξ

∣∣∣∣
p2

2m

∣∣∣∣φξ

〉
=

∫ +ppl

−ppl

φ∗
ξ′
(p) p2

2m
φξ(p)

(1− α p+ 2α2 p2)
dp. (147)

Thus

〈
φξ

∣∣∣∣
p2

2m

∣∣∣∣φξ

〉
=

α
√
7 ρ0

4m

∫ +ppl

−ppl

φ∗
ξ′
(p) p2

2m
φξ(p)

(1− αp+ 2α2p2)
p2 dp, (148)
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and we get

〈
p2

2m

〉
=

[√
7ρPpl

4m
+

√
7 ρ

32mα
ln

(
1− α ppl + 2α2 p2pl
1 + α ppl + 2α2 p2pl

)
− 3

16mα

]
. (149)

As shown in previous sections, there is no divergence in the energy spectrum as calculated

in framework of KMM GUP approach [29], especially in the presence of both minimal length

and maximal momentum. It turns out that the expectation values of the energy as calculated

by the GUP approach suggested by Ali et al. [63, 75, 113] are no longer divergent [114].

Furthermore, the expectation values of energy are not lying within the domain of P , which

physically means that they have infinite momentum uncertainty.

2. Maximal localization states

The explicit calculation of the states |φml
ζ 〉 of a maximum localization around the position

ζ requires that [29]

〈
φml
ζ

∣∣∣X̂
∣∣∣φml

ζ

〉
= ζ. (150)

As in section IVB2 and using Eqs. (131) and (132) and the differential equation in momen-

tum space, Eq. (102),
[(
ih̄(1− αp+ 2α2p2

)
∂p − 〈X〉) + ih̄

1 + 2α2(∆p)2 + 2α2〈p〉2 − α〈p〉
2(∆p)2

(p− 〈p〉)
]
φ(p) ≈ 0. (151)

The minimal position uncertainty can be deduced from the solution of this differential equa-

tion taking into account that 〈X〉 = ζ , 〈p〉 = 0 and ∆p = α/2, which are corresponding

to the states of absolutely maximal localization and critical momentum uncertainty. By

normalization where the Planck momentum is of the order of magnitude as Ppl = α/2, then

η =
4αppl−1√

7
= 3√

7
. Therefore, the momentum-space wavefunctions φml

ζ (p) of the states which

are maximally localized around the position 〈X〉 = ζ read [114]

φml
ζ (p) =

√
6α
[√

8 eη tan
−1(η) − e−η tan−1(η

3 )
]− 1

2

(1 + αp+ 2α2p2)
3
4

e
−η
2

tan−1
(

4αp−1√
7

)

e
−i 2ζ

αh̄
√

7

(
tan−1( η

3 )+tan−1
(

4αp−1√
7

))

. (152)

The difference between this result and that obtained in framework of KMM GUP [29]

is to be originated in the presence of the first order of the momentum, Eq. (131), which
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implies the existence of a maximal momentum. The maximal localization states are now

the proper physical states of the finite energy [114].
〈
φml
ζ

∣∣∣∣∣
P̂

2

2m

∣∣∣∣∣φ
ml
ζ

〉
=

2
√
β

π

∫ +ppl

−ppl

φml∗
ζ (p) p2

2m
φml
ζ (p)

(1− αp+ 2α2p2)
dp ≈ 1

32mα2
. (153)

3. Quasiposition wavefunctions transformation

The concept of quasiposition wavefunction means the projecting arbitrary states on max-

imally localized states in order to obtain the probability amplitude for the particle being

maximally localized around a concrete position [29, 114]. The transformation of a state’s

wavefunction in the momentum wavefunction representation into its quasiposition wavefunc-

tion [114] would be

φ(ζ) = A

∫ +ppl

−ppl

e
−η
2

tan−1
(

4α p−1√
7

)

(1 + α p+ 2α2 (p2))
7
4

eiH ζ, (154)

where the modified wavenumbers read

A =
√
6α
[√

8 eη tan
−1(η) − e−η tan−1(η

3 )
]− 1

2
, (155)

H =
2

αh̄
√
7

[
tan−1

(η
3

)
+ tan−1

(
4α p− 1√

7

)]
. (156)

Then,

λ(p) =
π α h̄

√
7

tan−1
(
η
3

)
+ tan−1

(
4αp−1√

7

) , (157)

which would be the modified wavelength for the quasiposition wavefunction representation

of physical states. Since α is not vanishing and p is limited to the Planck momentum, there

is no wavelength smaller than

λ0 = λ(ppl) =
π α h̄

√
7

tan−1
(
η
3

)
+ tan−1

(
4αppl−1√

7

) . (158)

By implementing the relation between energy and momentum, E = p2/2m, we get

E(λ) =
2

mα2




tan
(

h̄πα
√
7

λ

)

tan
(

h̄πα
√
7

λ

)
+
√
7




2

, (159)

E(λ0) =
P 2
pl

2m
, (160)
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which apparently agrees with ordinary QM. These expressions obviously do not diverge. The

importance of this result is its difference to the KMM [29], where the quasiposition wave-

functions in contrast to ordinary QM had no longer arbitrarily fine ripples. This is because

the energy of the short wavelength modes were divergent. Here, similar to ordinary QM,

those wavefunctions can have arbitrarily fine ripples, because there is no longer divergence in

the energy at λ0. This is an important result from the new GUP approach, which contains

both minimal length and maximal momentum.
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VI. APPLICATIONS OF QUADRATIC GUP APPROACH

A. Early Universe: Friedmann equations

At very short distances, the holographic principle for gravity is assumed to relate the

gravitational quantum theory to QFT. The entropy of black hole is related to the area of

the apparent horizon [24, 115]. The covariant entropy bound in the Friedmann-Lemaitre-

Robertson-Walker (FLRW) matric is found indicating to a holographic nature in terms of

temperature and entropy [116]. The cosmological boundary can be chosen as the cosmo-

logical apparent horizon instead of the event horizon of a black hole. In light of this, we

recall that the statistical (informational) entropy of a black hole can be calculated using the

brick wall method [117]. In order to avoid the divergence near the event horizon, a cutoff

parameter would be utilized. Since the degrees of freedom would be dominant near the hori-

zon, the brick wall method is usually replaced by a thin-layer model making the calculation

of entropy possible [118–125]. The entropy of FLRW Universe is given by time-dependent

metric. In calculating the entropy of various black holes [126–136, 139], GUP approach can

be utilized. Furthermore, the effect of GUP on the reheating phase after the inflation of the

Universe has been studied [137].

Therefore, the influence of GUP on the thermodynamics of the FLRW Universe provides

a deep understanding of the QG corrections to the dynamics of the FLRW Universe [139].

For instance, the entropy of the apparent horizon of the FLRW Universe gets a correction

if one takes into consideration the effect of GUP [138].

1. Some basic features of FLRW Universe

In FLRW Universe, the standard (n+ 1)-dimensional metric reads

ds2 = hab dx
a dxb + r2 dΩ2

n−1, (161)

where xa = (t, r) and hab = diag(−1, a2/(1−kr2)) where ~r = a(t)r and x0 = t. dΩ2
n−1 is the

line element of an (n+1)-dimensional unit sphere. a(t) and k are scale factor and curvature

parameter k = −1, 0,+1, respectively. Then, the radius of the apparent horizon is given by

RA =

(
H2 +

k

a2

)−1/2

. (162)
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It is obvious that the time evolution of the scale factor strongly depends on the background

equation of state. Seeking for simplicity, we utilize [141]

a(t) = t2/3k̄, (163)

where t is the cosmic time, k̄ = 1− (b c)2/(1− c2) and b and c are free and dimensionless pa-

rameters. The Hubble parameter H = ȧ/a and radius of the apparent horizon, respectively,

read

H(t) =
2

3

1

k̄ a3k̄/2
, (164)

RA =



H

√

1 +

(
3

2
k̄

)4/3k̄

H4/3k̄−2k




−1/2

. (165)

The dot represents derivative with respect to the cosmic time t. From the metric given in

Eq. (161) and the Einstein in non-viscous background equations, we get

H2 +
k

a2
=

8 πG

3
ρ+

Λ

3
, (166)

Ḣ − k

a2
= −4 πG(ρ+ p), (167)

where Λ is the cosmological parameter. Then, the total energy density ρ and temperature

T inside the sphere of radius RA can be evaluated as follows.

ρ =
πn/2

Γ
(
n
2

)
+ 1

n(n− 1)

16 πG
Rn−1

A , (168)

T =
RA

2π
H2

∣∣∣∣1 +
1

2H2

(
Ḣ +

k

a2

)∣∣∣∣ , (169)

where n gives the dimension of the Universe and p stands for the pressure. From Eq. (162)

and (166), it is obvious that the inverse radius of the apparent horizon is to be determined

by the energy-momentum tensor, i.e. matter and cosmological constant Λ. Taking into

consideration the viscous nature of the background geometry makes the treatment of ther-

modynamics of FLRW considerably complicated [142–150]. For completeness, we give the

cross section of particle production

σ =
1

M2
p

[
ρ

Mp

(
8Γ
(
n
2

)

n− 2

)]2/(n−2)

, (170)

where Γ is the gamma function. The continuity equation, time evolution of energy density,

will be given in Eq. (177).
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2. GUP and Friedmann equation

We consider a (n+1)-dimensional FLRW Universe, the metric field equation, Eq. (161),

is given by [138]

ds2 = −dt2 + a2
(

dr2

1− k r2
+ r2 dΩ2

n−1

)
, (171)

where dΩ2
n−1 denotes the line element of an (n − 1)-dimensional unit sphere. In FLRW

spacetime, there is a dynamical apparent horizon, which is a marginally trapped surface

with vanishing expansion [138]. Using the notion r̃ = a r, the radius of the apparent horizon

can be written as

r̃A =
1√

H2 + k/a2
, (172)

If we suppose that the apparent horizon has an associated entropy S and a temperature

T [138], then

S =
A

4G
, (173)

T =
1

2 π r̃A
, (174)

where A is the apparent horizon area A = nΩnr̃
n−1
A with Ωn = πn/2/Γ(n/2 + 1) being the

volume of an n-dimensional unit sphere [138].

The Friedmann equations, Eqs. (166) and (167) reads [139, 170]

Ḣ − k

a2
= − 8πG

n− 1
(ρ+ p), (175)

H2 +
k

a2
=

16πG

n(n− 1)
ρ. (176)

When taken into account the first law of thermodynamics, dE = TdS [139, 170] where S is

the entropy of the system. In order to get Eq.(176), one should use the continuity equation

of the perfect fluid [139, 170]

ρ̇+ nH(ρ+ p) = 0. (177)

The energy density ρ is related to the pressure of the cosmic fluid, p = ω ρ, i.e., the equation

of state. The implementation of viscous equations of state in early Universe was analysed,

systematically [143–148, 150].
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We begin with the GUP approach given in Ref. [29]

∆x∆p ≥ 1 + α2 l2p ∆ p2. (178)

After some simple manipulations, we get the momentum uncertainty

∆p ≥ 1

∆x

[
∆x2

2α2 l2p
− ∆x2

2α2 l2p

√

1−
4α2 l2p
(∆x)2

]
=

1

δx
fG(∆x

2), (179)

where

fG(∆x
2) =

∆x2

2α2 l2p
− ∆x2

2α2 l2p

√

1−
4α2 l2p
(∆x)2

. (180)

We can identify the energy of absorbed or emitted particle as uncertainty of the momen-

tum [151],

dE ≃ ∆p. (181)

From quantum properties of absorbed or emitted particle, the Heisenberg uncertainty prin-

ciple δp ≥ h̄/∆x can be implemented. In natural units c = h̄ = kB = 1, we find that the

increase or decrease in the area of the apparent horizon can be expressed as

dA =
4G

T
dE ≃ 4G

T

1

∆x
. (182)

When the GUP effect, Eq. (179), is taken into consideration, the change in the apparent

horizon area can be modified as

dAG =
4G

T
dE ≃ 4G

T

1

δx
fG(δx

2). (183)

Using Eq. (182), we get

dAG = fG(δx
2)dA. (184)

The position uncertainty δx of absorbed or emitted particle can be chosen as the particle’s

Compton length, which is equivalent the inverse of Hawking temperature [280],

δx ≃ 2 r̃A = 2

(
A

nΩn

) 1
n−1

. (185)

Thus, the departure function fG(δx
2) can be re-expressed in terms of A [139],

fG(A) =
2

α2 l2p

(
A

nΩn

) 2
n−1

(
1−

√
1− α2 l2p(

nΩn

A
)

2
n−1

)
. (186)
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Hereafter, we use fG(A) to represent the departure function fG(δx
2). At α = 0, the Taylor

series of fG(A) gives

fG(A) = 1 +
α2 l2p
4

(
nΩn

A

) 2
n−1

+
(α2 l2p)

2

8

(
nΩn

A

) 4
n−1

+
∑

d=3

cd(αlp)
2d

(
nΩn

A

) 2 d
n−1

, (187)

where cd is a constant. If Eq. (187) is substituted in Eq.(184) and then integrated, we get

a modified area AG. Also, we get the correction to the entropy-area relation by using SG =

AG/4G [138]. But integrating Eq.(184) might be complicated and dimension dependent.

Therefore, as anticipated in Ref. [139], the discussions should be divided into three cases.

For n = 3

the departure function reads [139]

fG(A) = 1 + π α2 l2p
1

A
+ 2

(
π α2 l2p

)2 1

A2
+
∑

d=3

cd
(
4 π α2 l2p

)2d 1

Ad
. (188)

By substituting Eq. (188) in Eq. (184) and integrating, we obtain the modified relation

of the apparent horizon area [139].

AG = A+ π α2 l2p ln(A)− 2
(
π α2 l2p

)2 1

A
−
∑

d=3

cd
(
4 π α2 l2p

)2d

d− 1

1

Ad−1
+ C, (189)

where C is the integral constant. By making use of Bekenstein-Hawking area law [138],

S = A/4G, we obtain an expression for the entropy of the apparent horizon under the

effect of GUP. Accordingly, the modified entropy is given as [139]

SG =
A

4G
+
π α2 l2p
4G

ln
A

4G
− 2

(
π α2 l2p
4G

)2(
A

4G

)−1

−
∑

d=3

cd

(
16 π2 α4 l4p

4G

)d

d− 1

(
A

4G

)1−d

+K, (190)

where K stands for a constant. This result shows that the correction to the entropy

due to GUP gives an opposite contribution to the area entropy. But when starting

with a modified entropy-area relation it was shown recently [140] that the first law of

thermodynamics can produce a modified Friedmann equation [139].

Now, we come back to the main results of the GUP approach which was presented

in Ref. [140] and apply it to the case of the modified entropy-area relation, Eq.

(190). Suppose that the apparent horizon has an entropy SG(A) and applying the
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first law of thermodynamics to the apparent horizon of FLRW Universe, we obtain

the corresponding Friedmann equations
(
Ḣ − k

a

)
S ′
G(A) = −π (ρ+ p), (191)

8 πG

3
ρ = − π

G

∫
S ′
G(A)

(
4G

A

)2

dA, (192)

where a prime stands for the derivative with respect to A. Eq. (191) and (192) are

nothing but the modified first and second Friedmann equation corresponding to the

modified apparent horizon entropy SG(A). From Eq. (184), we get obtain

S ′
G(A) =

fG(A)

4G
. (193)

Substituting Eqs. (188) and (193) in the modified Friedmann equations, (191) and

(192), we obtain the modified Friedmann equations according to the GUP approach

[139],

(
Ḣ − k

a

)[
1 + π α2 l2p

1

A
+ 2

(
π α2 l2p

)2 1

A2
+
∑

d=3

cd
(
4 π α2 l2p

)2d 1

Ad

]
= −4 πG(ρ+ p), (194)

8 πG

3
ρ = 4 π

[
1

A
+

1

2
α2 l2p

1

A2
+

2

3

(
π α2 l2p

)2 1

A3
+
∑

d=3

cd
d+ 1

(
4 π α2 l2p

)2d 1

Ad+1

]
. (195)

For odd n > 3

by substituting Eq. (187) in Eq. (184) and then integrating [139]

AG = A+

d=n−3
2∑

d=1

cd (α lp )
2d n− 1

n− 2d− 1
A

(
nΩn

A

) 2d
n−1

+ cn−1
2

(α lp )
n−1 nΩn ln(A) +

∑

d=n+1
2

cd (α lp)
2d n− 1

n− 2d− 1
A

(
nΩn

A

) 2d
n−1

. (196)

By implementing Bekenstein-Hawking area law [138], S = A/4G, and when taking

into account the effect of GUP [139], we obtain an expression for the entropy of the

apparent horizon

SG =
A

4G
+

d=n−3
2∑

d=1

cd(α lp)
2d n− 1

n− 2d− 1

A

4G

(
nΩn

A

) 2d
n−1

+
∑

d=n+1
2

cd (α lp)
2d n− 1

n− 2d− 1

A

4G

(
nΩn

A

) 2d
n−1

+ const. (197)
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In order to obtain the modified Friedmann equations from the modified entropy-area

relation (197) in (n + 1)-dimensional FLRW spacetime, we have to generalize the

approach given in Ref. [140] to an (n+ 1)-dimensional FLRW Universe. The original

approach [140] is only valid in an (3 + 1)-dimensional FLRW Universe. The first law

of thermodynamics on the apparent horizon dE = TdS leads to [139].

A(ρ+ p)Hr̃Adt =
1

2πr̃A
dSG, (198)

where A(ρ + p)Hr̃Adt = dE is the amount of energy having crossed the apparent

horizon. With some simple manipulations, we can obtain the Friedmann equations in

(n+ 1)-dimensional FLRW Universe [139],
(
Ḣ − k

a2

)
fG(A) = − 8πG

n− 1
(ρ+ p), (199)

8πG

n
ρ = −

∫
fG(A)

(
A

nΩn

) −2
n−1 dA

A
, (200)

Substituting Eq. (187) in Eqs. (199) and (200), we obtain the modified Friedmann

equations in (n + 1)-dimensional FRW spacetime according to the GUP approach

[138, 139]

(
Ḣ − k

a2

)[
1 +

α2l2p
4

(
nΩn

A

) 2
n−1

+
(α2l2p)

2

8

(
nΩn

A

) 4
n−1

+
∑

d=3

cd(α lp)
2d

(
nΩn

A

) 2d
n−1

]
=

− 8πG

n− 1
(ρ+ p), (201)

and

16 πG

n(n− 1)
ρ =

(
nΩn

A

) 2
n−1

+
∑

d=1

cd
d+ 1

(α lp)
2d

(
nΩn

A

) 2d+2
n−1

. (202)

We note here that these equations are independent on whether n is an odd or even

number. For n = 3, Eqs. (201) and (202) will be reduced to Eqs. (194) and (195),

respectively.

For even n > 3

we obtain an expression for the modified entropy of the apparent horizon [139]

SG =
A

4G
+
α2 l2p
4

n− 1

n− 3

A

4G

(
nΩn

A

) 2
n−1

+
∑

d=2

cd (α lp)
2d n− 1

n− 2d− 1

A

4G

(
nΩn

A

) 2d
n−1

. (203)
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When d is an even number, then the logarithmic term does not exist in the correction

to the entropy of the apparent horizon of FLRW spacetime. This implies that the loga-

rithmic correction term in the entropy of the apparent horizon is dimension-dependent.

Since the modified Friedmann equations (201) and (202) in an (n + 1)-dimensional

FLRW Universe is not relevant to that whether n is an even or odd number [139], the

modified Friedmann equations from modified entropy, Eq. (203), are given by Eqs.

(201) and (202).

3. Entropic corrections and modified Friedmann equations

The entropic corrections in modified Friedmann equations appear in two types:

Logarithmic-type corrections:

We start with the corrected entropy-area relation [153–155]

S =
A

4G
+ α ln

A

4G
+ β

4G

A
, (204)

where the Newton’s constant G = L2
p and the area A = 4 πr̃2A. The relevant effective

area of the holographic surface is defined as [153–155]

Ã = A+ 4αL2
p ln

(
A

4L2
p

)
+

16 β L4
p

A
. (205)

Then, the increase in the effective volume can be calculated as

dṼ

d t
=

r̃A
2

d Ã

d t
= 4 π r̃2A

˙̃rA

(
1 +

αL2
p

π r̃2A
−
β L4

p

π2 r̃4A

)
. (206)

From the fact that

dṼ

dt
= −2 π r̃5A

d

dt

1

r̃2A
+

αL2
p

2 π r̃4A
−

β L4
p

3 π2 r̃6A
, (207)

we propose that the effective degrees of freedom (at apparent horizon) are

Ñsur =
4 π r̃2A
L2
p

(
1 +

αL2
p

2πr̃2A
−

βL4
p

3π2r̃4A

)
. (208)

According to the equipartition law [155], we have

Nbulk =
2

T
|EKomar| = −2 (ρ+ 3p)

V

T
, (209)
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where the expression of the Komar energy [155] has been inserted. The appearance

of a minus sign is due to the fact that we are considering the accelerating phase. The

Hawking temperature [155] T = 1/2πr̃A and the cosmic volume V = 4πr̃3A/3, then

[155]

Nbulk = −16 π2

3
(ρ+ 3p) r̃4A =

16 π2

3

(
ρ̇

H
+ 2 ρ

)
r̃4A. (210)

Using the continuity expression, Eq. (177) and substituting Eqs. (206), (208), and

(210) in the expansion law dṼ /dt = L2
pHr̃A(Ñsur −Nbulk) [155], we get

4 π r̃3A
ȧ

a

(
1 +

αL2
p

2 π r̃2A
−

β L4
p

3 π2 r̃4A

)
− 4 π r̃2A

˙̃rA

(
1 +

αL2
p

π r̃2A
−
β L4

p

π2 r̃4A

)
=

16 π2L2
p

3

1

a
(ρ̇ a+ 2 ρ ȧ)r̃5A. (211)

Multiplying both sides by a2/2πr̃5A, and then integrate both sides and approximating

the integration constant to vanish, we get the modified Friedmann equation [155]

(
H2 +

k

a2

)
+
αL2

p

2π

(
H2 +

k

a2

)2

−
βL4

p

3π2

(
H2 +

k

a2

)3

=
8 π L2

p

3
ρ. (212)

Power-law corrections:

The entropy with power-law corrections [152] can be deduced as follows.

S =
A

4L2
p

(
1−KαA

1−α
2

)
. (213)

From the definition Kα = α(4π)
α
2
−1/(4 − α)r2−α

c , where rc is the crossover scale, the

effective degrees of freedom at the apparent horizon read [155]

Ñsur =
4 π r̃2A
L2
p

[
1−

(
rc
r̃A

)α−2

+ C r̃2A

]
. (214)

In the limit α −→ 0 and with the constant constant C = 1/r2c , no entropic correction

should appear. The exactly-modified Friedmann equation has been derived [155–157]

H2 +
k

a2
− 1

r2c

[
rαc

(
H2 +

k

a2

)α
2

− 1

]
=

8 π L2
p

3
ρ. (215)
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4. conclusion

The influence of GUP on the thermodynamics of the FLRW Universe shows that the GUP

contributes with some corrections to the entropy-area relation at the apparent horizon of the

FLRW Universe as well as to the Friedmann equations. The later imply that the GUP affects

the dynamics of the FLRW Universe. The leading logarithmic correction term exists only for

odd number in one-dimensional FLRW spacetime. This term gives a positive contribution to

the entropy of the apparent horizon. For even number in one-dimensional FLRW spacetime,

the logarithmic correction term disappears from the entropy. The expansion of the Universe

is attributed to the difference between the degrees of freedom on a holographic surface and

the one in the bulk. The idea taken from the modification of holographic screen in both

ways ”power-law corrections” or ”logarithmic corrections” implies an additional term due

the introduction of the minimal length to the entropy-area relation which will be modify the

Friedmann equations.

B. Inflationary parameters

1. Hybrid inflation and black hole production

In a scenario of semi-classical black hole combining hybrid inflation [168] and character-

ized by the hybrid inflation model, the inflation fields (φ, ψ) are governed by the inflation

potential,

V (φ, ψ) =
1

2
m2 φ2 +

1

2
γ φ2 ψ2 +

(
M2 −

√
λ

2
ψ2

)2

, (216)

where M be the mass of the black hole. There are two conditions on φ:

• When φ executes a ”slow-roll” down [169], then the potential is responsible for more

than 60 e-folds expansion while ψ remains zero.

• But if φ is reduced to a critical value, φc =
√

2M2
√
λ/γ, the phase transition which

results in a ”rapid-fall” [169] of the energy density of the ψ field, ends the inflation.

The latter lasts only for a few e-folds.
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The equations of motion (EoM) for these fields read [169].

φ̈+ 3H φ̇+
(
m2 + γ ψ2

)
= 0, (217)

ψ̈ + 3H ψ̇ +
(
λψ2 + γ φ2 − 2

√
λM2

)
= 0. (218)

The Hubble parameter can be taken into consideration from the Friedmann equation [169]

H2 =
8 π

3m2
p

(
1

2
φ̇2 +

1

2
ψ̇2 + V (φ, ψ)

)
. (219)

The solution for the ψ field in the small φ regime [169] measured backwards from the end

of the inflation is given as

ψ (N(t)) = ψe e
−κN(t), (220)

where κ = −3/2+
√
9/2 + 2

√
λM2/H2

∗ is the angular momentum and N(t) = H∗(te − t) is

the number of e-folds existing from te to t with H∗ =
√

8π/3M2/mp.

It has been shown that a large number of small black holes can be produced during the

second stage of the inflation [169]. The quantum fluctuations of ψ induce variations to take

place in the second inflation stage, i.e, δt = ψ/ψ̇ [169]

δN = H∗
ψ

δψ̇
. (221)

The curvature contrasts related to the number of e-folds are given as [169]

δ =
δρ

ρ
=

2 + 2ω

5 + 3ω
δN, (222)

where ω = p/ρ being the EoS. The quantity δN = 1/κ was defined as [169]

δ ≈ 2 + 2ω

5 + 3ω

1

κ
. (223)

The probability of a region of mass m [231, 232]

P (m) ∼ δ(m) exp

(
− ω2

2 δ2

)
, (224)

with an initial density contrast δ(m) ≡ δρ/ρ|m. It was assumed that the Universe was

inflated exp(Nc) times during the second stage of the inflation era [158]

exp(Nc) ∼
(
2mp

κH∗

)1/κ

. (225)

If the second stage of inflation is short, i.e. Nc ∼ O(1), then the energy direct after the

inflation may still be dominated by the oscillations of ψ with p = 0. The scale factor of the
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Universe after the inflation would grow as (tH∗)
2/3 [169]. When the scale (tH∗)

2/3H−1
∗ eNc

becames comparable to the particle horizon t or t ∼ (tH∗)
2/3H−1

∗ eNc [169], then

t ∼ th = H−1
∗ exp (3 Nc) . (226)

At this time, if the density contrast was δ ∼ 1, then a black hole with size rs ∼ H−1
∗ e3Nc

would be formed with an initial mass [169]

µi ∼
mp

H∗
exp (3 Nc) ≡ α

mp

H∗

(
2mp

κH∗

)3/κ

. (227)

A dimensionless parameter α is introduced to account for the dynamic range of the gravi-

tational collapse [169]. Since H∗ depends on M , while s on M and λ, the initial mass of the

black hole depends only on the mass and the coupling in the ψ-sector of the hybrid inflation

[169].

2. Randall-Sundrum II model on inflationary dynamics

The scalar field φ which drives the inflation has the energy density and the pressure [110]

ρ =
1

2
φ̇2 + V (φ), (228)

P =
1

2
φ̇2 − V (φ), (229)

where V (φ) is the inflation potential. The calculation of the inflationary scalar density

perturbations in the presence of the minimal length was preformed [110]. The slow-roll

regime has [159]

1

2
φ̇2 ≪ V (φ), (230)

3H φ̇ ≈ −V ′
(φ). (231)

A fundamental energy scale ǫ in order of the Planck energy, which adds to the correction

[160] seems to define the conformal time

τ = − 1

aH
, (232)

and the comoving momentum, κ, which is related to the physical momentum, p,

κ = a p = − p

τ H
. (233)
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The conformal time is given as τ0 = −ǫ/Hκ.
Using the quadratic GUP [29], we can change the comoving momentum before τ0 from

κ to κ(1 + βκ2) [161]. This modifies the dispersion relation which was supported by the

loop quantum gravity and non-commutative geometry [162]. The equation governing the

evolution of perturbations in the inflation reads [161]

µ
′′
κ + µκ

(
κ2 − a

′′

a

)
= 0, (234)

where µ is related to the scalar field µ = a δφ. The scalar spectral index in the presence of

the minimal length cutoff is given as [161],

ns =
d ln(ℜs)

d ln(κ)(1 + β κ2)
+ 1 =

(1 + β κ2)

(1 + 3 β κ2)

d ln(Res)

d ln(κ)
+ 1

≈ (1− 2 β κ2)
d ln(ℜs)

d ln(κ)
+ 1, (235)

where ℜs is the amplitude of the scalar perturbation. The change in the Hubble parameter

due to the GUP will be realized using the slow-roll parameters [159, 160]. At the horizon

crossing epoch, we have [159]
d

d κ
H = −ǫH

κ
. (236)

When κ is replaced by κ(1 + β κ2), then we get

H ≈ κ−ǫ exp
(
−β ǫ κ2

)
. (237)

By using Eq. (234), then the tensorial density fluctuations are given as [160]

ℜt(κ) =

(
H

2 π

)2 [
1− H

ǫp
sin

(
2 ǫp
H

)]
, (238)

where the second term on the right hand side is a direct contribution from the quantum

gravity effect and ǫp being the Planck energy. But for scalar density fluctuations, one should

multiply the tensorial density fluctuations by an extra term (H/φ̇)2 [110]

ℜs =

(
H

φ̇

)2(
H

2 π

)2 [
1− H

ǫp
sin

(
2 ǫp
H

)]
, (239)

where H was given in Eq. (237). The variation of β, which is essentially a fixed quantity

related to the minimal length, means a control on the strength of the quantum gravity effect.

Then, the ratio tensor-to-scalar reads [161]

ℜt

ℜs

=

(
φ̇

H

)2

=

(
16 π

√
ǫV (φ)

M4H

)2

, (240)
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where M4 is 4-dimensional (fundamental) Planck scale. The difference between tensor-to-

scalar ratio in standard and modified case is shown in Fig. (5) [161]. It is obvious that the

ration increases linearly with the incorporation of the quantum gravity effects.

Fig. 5: The difference between tensor-to-scalar ratio in standard and GUP-modified inflation is

given in dependence on the energy ǫ at fixed κ and β = 10−2. The graph taken from [161].

3. conclusion

By studying the effect of GUP on the inflationary dynamics of both the standard 4D the-

ory and the Randall-Sundrum II braneworld setup, it was shown that in the presence of the

strong quantum gravity effects the spectral index is not scale invariant [110]. In this sense,

any deviation from the scale invariance of the spectral index essentially contains a footprint

of these high energy effects [110]. There is an oscillatory behavior in the κ-dependence of

the density fluctuations which essentially can be detected in the CMB spectrum [161] as
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a trace of these effects. Another possible signature may be some imprints on the cosmic

microwave background (CMB) fluctuations due to the thermodynamics of primordial black

hole (PBH)-CMB interactions [110].

C. Black hole thermodynamics

1. Black hole entropy and GUP approaches

The thermodynamics of the system of interest is easily accessible through the partition

function

Z =
1

2 π h̄

∫
exp [−β H(x, p)] dx dp. (241)

The deformation of generalized commutation relations reads

[Xi, Pj] = i h̄ fij(X,P ),

[Pi, Pj] = i h̄ hij(X,P ),

[Xi, Xj] = i h̄ gij(X,P ), (242)

where operators Xi and Pj are coordinates and momentum variables, respectively. The

deformation functions fij , gij and hij possessing properties like bilineary, Libniz rules and

Jacobi identity [163]. The given relations can be reduced to the deformed Poisson brackets

{Xi, Pj} = fij(X,P ),

{Pi, Pj} = hij(X,P ),

{Xi, Xj} = gij(X,P ). (243)

These relations are anti-symmetric and also bilinear, besides, they obey the Libniz rules and

the Jacobi identity [99, 164]. Then, the partition function, Eq. (241), for deformed case can

be interpreted in terms of X and P [263]

Zdeformed =
1

2 π h̄

∫
exp [−β H(x, p)]

dX dP

J
. (244)

According to the quadratic GUP approach [29], g(X,P ) = h(X,P ) = 0 and {X,P} =

f(X,P ) = 1 + σ P 2. Therefore, the partition function of quantum black hole becomes

ZGUP =
1

2 π h̄

∫
dX exp [−β V (X)]

∫
dP

exp
(
−β c ℓp

2 h̄
P 2
)

1 + σP 2
. (245)
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The corrected partition function reads [163]

ZGUP
Q =

ℓp
h̄

√
π

3 β Ep σ
exp

[
−
(
β2Ep

2

16 π
+
c ℓp β

2 h̄ σ

)]
Γ

(
1

2

c ℓp β

2 h̄ σ

)
. (246)

For the case cℓpβ/2h̄σ ≫ 1, the corrected partition function leads to [163]

ZGUP
Q =

√
2 π

3

1

β Ep
exp

(
−β

2Ep
2

16 π
− h̄ σ

c ℓp β

)
. (247)

Similar to the non-deformed case, it was defined that [163]

E = −
∂ ln(ZGUP

Q )

∂β
=
Ep

2

8π
β +

1

β
− h̄

c ℓp β2
σ =Mc2. (248)

In framework of GUP, the temperature of quantum black hole β can be given in term of

Hawking temperature βH

β = βH

[
1− 1

βH M c2
+

M Ep

(βH M c2 − 1) (βH M c2 − 2)
σ

]
. (249)

By using the obtained temperature, the entropy is accounted for [163]

SGUP

k
=

As

4ℓ2p

[
1− 1

βH M c2

]2
+
As

4 ℓ2p

[
1− 1

βH M c2

]
M Ep

(βH M c2 − 2) (βH M c2 − 1)
σ

−1

2
ln

(
As

4ℓ2p

[
1− 1

βH M c2

]2
+
As

4 ℓ2p

[
1− 1

βH M c2

]
M Ep

(βH M c2 − 2) (βH M c2 − 1)
σ

)

−2Ep σ

c2

[
βH

(
1− 1

βH M c2

)]−1

− 1

2
ln(24) + 1 . (250)

Then, the definition of GUP to the Hawking-Bekenstein entropy obviously reads [163],

SGUP
BH

k
=
SBH

k

(
1 +

E3
p

8 πM2c6
σ

)
, (251)

which leads to

SGUP

k
=
SGUP
BH

k
− 1

2
ln

(
SGUP
BH

k

)
− 2M c2

(
SGUP
BH

SBH
− 1

)
+O

(
SGUP −1
BH

)
, (252)

This correction [163] is similar to ones derived from other methods [165, 166, 280]. Further-

more, it was shown that this result has the same form as that of the non-deformed case, the

logarithmic correction to the entropy appears with a −1/2 factor [163].
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2. Black hole remnant

As a result of GUP there should exist a Planck size at the end of the black hole evaporation

[169]. GUP may prevent the black hole from complete evaporating, i.e., there should exist

a black hole remnant with Planck mass. The stability of such a Planck size containing the

remnant mass may be further protected by super-symmetry [169] in form of an extremal

black hole. The uncertainty relation in position is given as

∆x ≥ h̄

∆p
+ ζ2ℓ2p

∆p

h̄
, (253)

where ℓp is Planck length and ζ is a factor originated in the String theory [29].

In the vicinity of the black hole surface, there is an intrinsic uncertainty in the position,

which is approximately equal to the Schwarzschild radius [167], ∆x ≈ rs = 2GMBH/c
2.

Under the GUP effect, the emitted photon from the black hole is characterized by the

temperature, which is related to the Hawking temperature [167], TH = h̄c3/(8πGMBH).

The modified black hole temperature is given by

TH =
µmp c

2

4 π ζ2

[
1∓

√

1− ζ2

µ2

]
, (254)

where µ = MBH/mp is the mass of the black hole MBH normalized to the Planck mass

mp. Note that the temperature becomes complex and unphysical when the mass becomes

less than ζ mp and the Schwarzschild radius becomes less than 2 ζℓp. The minimum length

allowed by the GUP approach is given at µ ζ [169]. The Hawking temperature TH is finite

but its slope is infinite, which is corresponding to vanishing heat capacity. The black hole

evaporation is then going to stop. In Stefan-Boltzmann law, the rate of evaporation reads

µ̇ = −16 g

tch

µ6

ξ8

[
1−

√
1− ξ2/µ2

]4
, (255)

where tch = 60(16)2 π tp ≈ 4.8 × 104 tp is a characteristic time for BH evaporation, and

tp = (h̄ G/c5)1/2 ≈ 0.54× 10−43 s is the Planck time. Note that the energy output given by

Eq. (255) is finite at the end point, where µ = ξ, i.e. dµ/dt |µ=ξ = −16 g/(ξ2 tch). Thus,

the black hole with an initial mass µi evaporates till it leaves a concrete remnant in a time

given as

τ =
tch
16 g

[
8

3
µ3
i +

8

3
(µ2

i − ξ2)3/2 − 4 ξ2(µ2
i − ξ2)1/2 − 8 ξ2 µi + 4 ξ3 cos−1 ξ

µi
+

19

3
ξ3 − ξ4

µi

]

≈ µ3
i

3 g
tch, (256)
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where µi ≫ 1. The evaporation time in this limit agrees with the standard Hawking picture.

3. Conclusion

We have determined the thermodynamic properties of black hole by introducing the

relevant Bekenstein-Hawking entropy in the GUP framework and concluded that again the

logarithmic correction of the entropy appears with a pre-factor 1/2. Furthermore, the value

of the entropy diminishes. This can be comprehended from the fact that the GUP reduces

the available physical states in the black hole remnant [169]. Since H∗ depends on M while

s on M and λ, the initial black hole mass depends on the mass and coupling in the sector

of hybrid inflation [169].

D. Compact stellar objects

1. Compact stars and Tolman-Oppenheimer-Volkoff equation

The configuration of a spherically symmetric static star composed of perfect fluids is

determined by the Tolman-Oppenheimer-Volkoff (TOV) equation [251, 252]

dP

dr
= −

(
ρ+

P

c2

)
Gm(r) + 4 πG r3 P

c2

r
[
r − 2G m(r)

c2

] , (257)

with

dm(r)

dr
= 4 π r2 ρ(r), (258)

where P and ρ are respectively the pressure and the macroscopic energy density measured

in proper coordinates.

The equation of state (EoS) and appropriate boundary conditions, Eqs. (257) and (258)

can be supplied to determine P (r), m(r) and ρ(r). If the pressure and the gravitational

potential remain small forever, i.e. P (r) ≪ ρ c2, 2Gm(r)/c2r ≪ 1, then the TOV equation

reduces to the fundamental equation of Newtonian gravity

dP

dr
= −ρ(r) Gm(r)

r2
, (259)

which is very well suitable to describe the low density compact stars. For compact stars

like neutron stars, GR plays an important role [295]. An ideal neutron star would be
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the simplest model, in which the nuclear interactions are ignored and the pressure of cold

degenerate neutrons contends against the gravitational collapse [252]. Various types of EoS

are introduced to represent strongly interacting components and nuclear interactions. The

QG effects are studied in various models [253–257, 259]. These would be very interesting,

when addressing cold but large density and high pressure.

In Fermi stars, the statistics of the ideal gases based on GUP has been discussed by many

authors [260–264]. A system composed of ultra-relativistic Fermi gas was studied under the

effects of GUP [264] at zero temperature. Furthermore, the proper particle number, energy

density and pressure have been determined [264]

N

V
=

8π

(hc)3
E3

Hf(κ), (260)

ρ =
8π

c2(hc)3
E4

Hh(κ), (261)

P =
8π

(hc)3
E4

Hg(κ), (262)

where EH = c/
√
β = Mpc

2/
√
β0 denotes the Hagedorn energy [264] and κ = εF

√
β/c2 =

εF/EH . Moreover

h(κ) ≡ 1

4

κ4

(1 + κ2)2
, (263)

f(κ) ≡ 1

8

[
κ(κ2 − 1)

(1 + κ2)2
+ tan−1(κ)

]
, (264)

g(κ) ≡ κf(κ)− h(κ). (265)

These functions are related to the presence of the GUP corresponding to quadratic of mo-

menta. When κ increases, the proper pressure blows up, while the proper energy density and

the proper number density both are bounded [266]. This is a manifestation of the minimal

length. Based on the precision measurement of Lamb shift, an upper bound of β0 is given

by β0 < 1036 [74]. A relatively rough but stronger restriction was estimated [258]. However,

a better bound is gained from simple electroweak consideration β0 < 1034.

For β0 = 1034, Eqs. (261) and (262) can be estimated as

ρ = 5.24× 1095
h(κ)

β2
0

∼ 1027h(κ) kg ·m−3, (266)

P = 4.73× 10112
1

β2
0

g(κ) ∼ 1044g(κ) Pascals. (267)
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We can compare these with the normal nuclear density and pressure. The highest pressure

recorded under laboratory controlled conditions [266]

ρn = 2.7× 1017 kg ·m−3, (268)

Pn ∼ 1034 Pascals. (269)

In vicinity of nuclear matter at equilibrium density, it is found that the quantum gravita-

tional effects are not important. However, for density higher than the normal nuclear one,

it is of great interest to investigate the cores of the compact stars, where QG plays a main

role by considering the degeneracy pressure regardless of the interaction correction. On the

other hand, several accurate masses determinations of neutron stars are available from radio

binary pulsars [266].

By applying the Newtonian limit, Eq. (259), with a uniform density, two configurations

of the compact stars have been addressed [264].

• The star is almost composed of ultra-relativistic particles.

• The major contribution to the mass is coming from non-relativistic cold nuclei.

However, in order to discuss the core of ultra-compact stars, one has to use TOV Eqs. (257)

and (258). By setting r = r0r̃, m = m0m̃, P = P0P̃ and

ρ =
m0

4 π r30
ρ̃ ≡ ρ0 ρ̃,

P0 = ρ0c
2, (270)

Gm0

c2 r0
≡ 1,

the TOV Eqs (257) and (258) are reduced to the following dimensionless ones

dP̃

dr̃
= −(ρ̃+ P̃ )

m̃+ r̃3P̃

r̃(r̃ − 2m̃)
, (271)

dm̃

dr̃
= r̃2ρ̃. (272)

In the vicinity of vanishing r, EoS are given by Eqs. (260), (261) and (262). At κ→ 0, it is

straightforward to recover P = ρ/3c2. Defining r = r0r̃, m = m0m̃ with

r−2
0 ≡ 4 πG

c4
8 π

(h c)3
E4

H , (273)

m0 ≡ 4 π r30
8 π

c2 (h c)3
E4

H = 1.93× 10−8 β0 kg, (274)

P0 = ρ0 c
2 =

8 π

(h c)3
E4

H , (275)
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where r0 is the minimum radius [264] and ρ0 is defined in the last expression

r0 =

√
π

4
β0 lp =

√
π

4

√
β0∆min = 1.43× 10−35 β0 m. (276)

When QG is not introduced to a compact system which is almost composed of ultra-

relativistic fermions, then EoS reads P̃ = ρ̃/3 and an exact solution was suggested [265]

2m̃(r̃)

r̃
=

3

7
, (277)

P̃ (r̃) =
r̃−2

14
. (278)

This means that on the surface of the compact star the pressure is not vanishing. Apparently,

this result does not meet the physical boundary conditions. However, one has to take into

consideration that this is an analytic solution describing the central region of compact stars

with divergent pressure in the core [252]. For compact stars without introducing the quantum

gravity effect, this solution turns to be universal [251, 252, 265]. Also, we note that the length

scale r0 in Eq. (270) is uncertain. Thus, r, m, ρ and P can be any size.

From Eq. (278), the pressure gets divergent in the core. Therefore, the influences from

QG should be included in the discussion. Obviously, near the surface, the particles are

non-relativistic, while in the region around the core, the particles are ultra-relativistic [252].

This determines the EoS and the boundary conditions.

In the vicinity of vanishing r, EoS is given by Eqs. (260), (261) and (262). In the limit

κ → 0, it is straightforward to recover that P = ρ/3c2. By using the definitions [266],

r = r0r̃, m = m0m̃ with

r−2
0 ≡ 4πG

c4
8π

(hc)3
E4

H , (279)

m0 ≡ 4πr30
8π

c2(hc)3
E4

H = 1.93× 10−8β0 (kg), (280)

P0 = ρ0 c
2, ρ0 =

8π

c2(hc)3
E4

H , (281)

where r0 is the minimum radius [264],

r0 =

√
π

4
β0 lp =

√
π

4

√
β0∆min = 1.43× 10−35 β0 m. (282)

The proper length r0 in Eq. (279) apprears also Eqs. (257), (258), (261) and (262). From

previous expressions, it is likely that the system can not have an arbitrary scale. This is
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entirely determined by β0. By substituting the above expressions for P and ρ, i.e., Eqs.

(261) and (262) in Eq. (271) and (272), we get [266]

dm̃(r̃)

dr̃
= r̃2 h(κ), (283)

dκ(r̃)

dr̃
=

−κ(r̃) [m̃(r̃) + r̃3 g(κ)]

r̃[r̃ − 2m̃(r̃)]
. (284)

Since the density is likely regular in the center, then m(0) = 0 is apparently a boundary

condition.

2. Conclusion

By using TOV equation and EoS of zero temperature ultra-relativistic Fermi gas based

on GUP and the quantum gravitational effects on the compact stars, it was shown that

2m(r)/r varies with r [266]. The QG plays an important role in the region r ∼ 103r0, where

r0 ∼ β0lp, near the center of compact stars. It is found that the metric components are

gtt ∼ r4 [266] and grr = [1 − r2/(6r20)]
−1 [266]. All these effects are different from those

obtained from classical gravity. They can be applied to neutron stars or even denser ones

like quark stars.

E. Saleker-Wigner inequalities

1. Saleker-Wigner inequalities and Heisenberg uncertainty principle

Based on HUP at the event horizon, the scale Rg uses the conventional derivation of the

Hawking lifetime to determine the black hole temperature. Assuming that the black hole

is a black body allows us the use of Stefan-Boltzmann law in calculating the lifetime of the

black hole (complete evaporation) [298, 299]. According to HUP

∆p ∼ h̄/∆x. (285)

If a clock of mass M has the quantum position uncertainty ∆x, then its momentum un-

certainty reads h̄∆x−1. The clock should have an accuracy τ and be able to measure time

intervals up to a maximum T . After a time t, the position uncertainty of the clock will grow

to [233]

∆x′ = ∆x+ h̄tM−1∆x−1. (286)
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If the effects of the mass are neglected, then the minimum position uncertainty is given as

∆x =
√
h̄t/M . In order to keep the clock accurate over the total running time T , its linear

spread λ must be limited

λ ≥ 2
√
h̄ T/M. (287)

The same order of magnitude of the position uncertainty means that the size of the clock

must be larger than the uncertainty in its position. This is the Salecker-Wigner first clock

inequality [300]. To read out time within an accuracy τ , the quantum position uncertainty

must not be larger than the minimum wavelength of the quanta striking it in order to read

the time. That is ∆x′ ≤ cτ . The use of a signal with nonzero rest mass would give a more

rigorous limit. This condition gives a bound on the minimum mass of the clock

M ≥ 4h̄

c2τ

(
T

τ

)
. (288)

This is the Salecker-Wigner second clock inequality [300]. Obviously, this inequality is

more limited than that imposed by Heisenberg energy-time uncertainty principle because it

requires that a clock still show proper time even after being read. The quantum uncertainty

in its position must not introduce significant inaccuracies in its measurement of time over

the total running time [233].

To derive Salecker-Wigner clock inequalities, Eqs. (287) and (288), unsqueezed, unentan-

gled, and Gaussian wave packets without any detailed phase information should be assumed.

The black hole can be seen as analogue clocks not as digital quantum clocks [301]. Assuming

that the minimum clock size is the Schwarzschild radius Rg = 2GM/c2, then the maximum

running time of the black hole is [56]

T ∼ G2M3

h̄c4
=
M3

m3
p

tp, (289)

where tp and mp are the Planck time and mass, respectively. The maximum running time

of a black hole is the Hawking lifetime [232]. If the black hole evaporation, Eq. (289), is

not given, there should be a maximum lifetime for a black hole state. Compared with the

conventional method, the application of the Salecker-Wigner inequality, Eq. (287), to the

event horizon scale predicts the Hawking lifetime, Eq. (289). This is valid even without the

assumption that the black hole should be a black body radiator.
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It intends to obtain modified clock inequalities based on GUP which as discussed takes

into account some properties of the black holes, not including the gravity. The modified

black hole lifetime can be found [233].

2. Modified Salecker-Wigner inequalities

Salecker-Wigner inequalities are based on the Heisenberg position-momentum uncertainty

principle p ∼ h̄/∆x [300]. But, as discussed in previous section, if the quantum theory is

combined with some basic concepts of QG, the Heisenberg position-momentum uncertainty

principle is likely modified and so do Salecker-Wigner inequalities. Using HUP and some

properties of the black holes, Scardigli had shown how GUP can be derived from a gedanken

experiment [37, 66]

∆x ≥ h̄

∆p
+ l2p

∆p

h̄
, (290)

where l2p =
√
Gh̄/c3 is the Planck distance. It is obvious that the GUP approach, Eq.

(290), can be written in a general form as ∆x ≥ h̄(1/∆p + β∆p), where β is a constant

[234]. Accordingly, a modified black hole lifetime was obtained [233] by using a conventional

method [299].

TACS =
1

16

{8
3

(M
mp

)3
− 8

M

mp

− mp

M
+

8

3

[(M
mp

)2
− 1
]3/2

−4

√(M
mp

)2
− 1 + 4 arccos

(mp

M

)
+

19

3

}
tch, (291)

where the subscript stands for Adler-Chen-Santiago [299] tch = 162 × 60πtp. In deriving

this expression, Adler, Chen and Santiago [299] assumed that the black hole is a black

body radiator and the dispersion relation E = pc holds. But, if the uncertainty principle is

modified, the dispersion relation may also be modified [235].

Because the space-time fluctuation will be significant when the measured length scale

approaches the Planck distance, it is reasonable to expect that the linear spread of a clock

must not be less than the Planck distance. In fact, the GUP approach, Eq. (290), implies

a minimum length, 2lp, which can be considered as a limit on the linear spread of a clock

[300]. From Eq. (290), if a clock of mass M has the quantum position uncertainty ∆x, then

its momentum uncertainty will be ∆p ∼ ∆xh̄
2l2p

[
1−

√
1− 4l2p/∆x

2
]
[299]. Following the steps
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to derive the Salecker-Wigner inequalities as given in Ref. [233], then

λ ≥ 2 lp

√
1 +

h̄T

Ml2p
, (292)

is stronger than the limit given in Eq. (287). This can reproduce the limit given in Eq.

(287) for h̄T ≫ Ml2p. Here, we also require that the position uncertainty created by the

measurement of time must not be larger than the minimum wavelength of the quanta used

to read the clock. Then, Salecker-Wigner second inequality, Eq. (288), is modified [233]

M ≥ 4h̄T

c2τ 2
1

1− 4t2p/τ
2
. (293)

This inequality relates the mass, total running time, accuracy of the clock, and the Planck

time with each others, and may links together our concepts of gravity and quantum uncer-

tainty. Obviously, it gives a limit to the accuracy of the clock τ > 2tp. Like Salecker-Wigner

inequalities, Eqs. (287) and (288), Eqs. (292) and (293) are valid for single analogue clocks,

but not for digital quantum ones. The maximum running time of the black hole is also

modified [233].

TMB ∼
MR2

g

4h̄

(
1− 4l2p/R

2
g

)
=
M3

m3
p

(
1−m2

p/M
2
)
tp. (294)

Obviously, Eq. (294) contains a term M tp/mp, which distinguishes it from the Hawking

lifetime, Eq. (289). This expression holds for M ≥ mp. Using the GUP approach, Eq.

(290), Adler, Chen and Santiago [299] found that the thermal radiation of the black hole

stops at the Planck distance, and the black hole becomes an inert remnant possessing only

gravitational interaction. This is consistent with the results obtained in modified clock

inequalities background [233]. Aside from the factor 162× 60π, the first two terms of Adler-

Chen-Santiago (ACS) lifetime TACS are consistent with the modified black hole lifetime TMB.

The comparison between the Hawking lifetime TH and the modified black hole lifetime TMB

and ACS lifetime TACS are presented in Fig. 6.

The minimum interval that the black hole can be used to measure the travel time of

photons across the black hole is given as [56, 301]

τ ∼ 2G
M

c3
=
Rg

c
. (295)

Thus, the black hole can be viewed as an information-processing system, in which the number
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Fig. 6: Comparison between Hawking lifetime TH, modified clock inequality lifetime TMB, and

Adler-Chen-Santiago lifetime TACS, aside from a numerical factor 162 × 60π. The graph taken

from [233].

of computational steps reads [233]

N ≡ TMB

τ
∼ M2

m2
p

(
1−

m2
p

M2

)
. (296)

The identification of the black hole entropy [24, 115] or the holographic principle [249, 250]

gives the number of bits, which are required to specify the information content of the black

hole at the event horizon area in Planck units.

3. Conclusion

The modified clock inequalities, which give bounds on the size and the accuracy of the

analogue clock must be lager than two times the Planck distance lp and time tp, respectively.

A modified black hole lifetime TMB ∼ M3

m3
p
tp(1 − m2

p/M
2) is obtained, which is apparently

different from Hawking lifetime. Obviously, this gives a natural limit to the mass of the

black holes [232]. By viewing a black hole as an information-processing system [233], the

number of bits required to specify the information content of the black hole at the event

horizon area in Planck units reads N ∼M2/m2
p(1−m2

p/M
2).
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F. Entropic Nature of the gravitational force

1. Newton’s law of entropic nature

Based on holographic principle, Verlinde revised the nature of the gravitational force

[241]. Assuming that [241]

• In the vicinity of the surface Ω, the change of the surface entropy is proportional to

∆x and the change of the radial distance of the mass m from the surface, i.e.

∆SΩ = 2πkB
∆x

λm
. (297)

• A force F arises from the generic form of the thermodynamic EoS,

F∆x = T∆SΩ. (298)

• On the surface Ω, N bits of information are stored i.e.,

N =
AΩ

ℓ2P
, (299)

where AΩ is the area of Ω and ℓP is the Planck length.

• The surface Ω is in thermal equilibrium at the temperature T . All bytes are equally

likely and the energy of Ω is equipartitioned among them, i.e.

UΩ =
1

2
N kB T =M c2, (300)

where M is the rest mass of the source. As a result, one can derive the Newton’s law

[297].

F = G
M m

r2
(301)

2. Non-commutative geometry implying a modification in Newton’s law

From Verlinde’s procedure [241], section VIF 1, modifications of Newton’s law can be de-

rived. The entropy is related to the description of gravity with the underlying microstructure

of a quantum spacetime [241]. Therefore, the entropy can be determined [297],

∆SΩ = kB ∆A

(
c3

4 h̄ G
+
∂s

∂A

)
. (302)
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Here s(A) is a function of the area. The mind of the non-commutative geometry has a

specific tool for the description of the microscopic structure of a quantum system [297].

We start with a revision of Verlinde’s assumptions [297]. The non-commutative geometry

encodes spacetime microscopic degrees of freedom by means of a new uncertainty relation

among coordinates [297].

∆xµ∆xν ≥ θ. (303)

The parameter θ has the dimension of a length squared and emerges as a natural ultraviolet

cutoff from the geometry, when the coordinate operators fail to commute [297].

[xµ, xν ] = iΘµν , (304)

where θ = |Θµν |. Because of the presence of an uncertainty on Ω, there exists a fundamental

unit ∆Sθ, which is perceived at the displacement ∆xmin ∝ λm. Therefore, the change of

entropy reads [297]

∆SΩ = ∆Sθ

(
∆x

∆xmin

)
, (305)

where for later convenience, we set ∆xmin = α2 λm/(8 π). At the surface Ω, the fundamental

unit of the surface can be determined from the microscopic theory. This coincides with θ.

Therefore, the number of bits reads N = AΩ/θ. For the non-commutative geometry, the

Planck scale and also the GUP parameter α will introduce a correction to the change of the

entropy [297],

∆Sθ = kBθ

(
c3

4h̄G
+
∂s

∂A

)
. (306)

The temperature will be given as

T =
M

r2
θ c2

2 π kB
. (307)

The combination of these equations into the entropic nature of the gravitational force, Eq.

(298), will be implying a correction in the Newton’s law with a positive correction, where

the derivation of the entropy to the area will have a positive value [297].

F =
Mm

r2

(
4c3θ2

h̄α2

)[
c3

4h̄G
+
∂s

∂A

]
. (308)

The entropic force, Eq. (308), coincides with the Newton’s law to first term [297], if θ = αℓ2P .

As a result, the modified Newton’s law [297] reads

F =
GMm

r2

[
1 + 4ℓ2P

∂s

∂A

]
. (309)
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3. Conclusion

Verlinde considered the gravitation force having an entropic nature. This would mean

that other theory would be allowed to deal with the gravity such as the thermodynamic

mechanics [241]. The introduction of the non-cmmutative geometry will imply change in

the entropy as a function of the area A at the surface Ω. The introduction of Planck scale

to the α parameter, the GUP parameter, implies a correction to the Newton’s law of the

universal gravitational. The appearance of linear term, which reflects the effect of linear

GUP approach, implies another modification in the number of bits and in the temperature

of the black hole. All these lead to change in the energy of the system to also change in the

gravitational force with a minus correction and inversely proportionality to the cubic of the

apparent radius of the black hole.

G. Measurement of time intervals

In absence of a theory of QG, the law of gravitation at short distances remains unknown,

but at large distances relative to the Planck length, GR would be a good approximation

[238]. To measure the time intervals, one must have a clock located at a distance x from the

observer. The observer obtains his information by looking at the clock. Therefore, the clock

must emit at least one photon toward the observer. There are three sources for uncertainty

in this process [238]:

• The clock’s accuracy ∆t.

• The time taken by the photon to reach the observer has uncertainty due to the uncer-

tainty of the metric caused by the clock’s energy uncertainty ∆E.

• The size of the clock is another source. Accordingly, the uncertainty in the distance

that the photon should have to travel in order to reach the observer is 2R, where R

is the clock’s radius. Therefore, this error would contribute with 2R/c to the total

uncertainty.

74



1. Uncertainty in time at the shortest distance xc

At R ≤ xc, the shortest length reads xc = α
√
Gh̄/c3. This refers to GR as a good

approximation to QG. One might assume that F (R) and thus F (xc) =
2
c
xc and F (R) > 0

for xc > R > 0 [238]. At distances larger than xc, the Schwarzschild solution would be

utilized, r > xc [238]. At this distance, the metric equation reads

ds2 = −c2dt2
(
1− 2GE

c4r

)
+

dr2

1− 2GE
c4r

, (310)

where E is the energy of the clock. Then, the speed of light is given as

v =
dr

dt
= c− 2GE

c3r
. (311)

The time taken by the photon to reach the observer from distance xc is given as

T =

∫ x

xc

dr

v
=

1

c
(x− xc) +

2

c5
GE log

(
c4x− 2GE

c4xc − 2GE

)
. (312)

Notice that 2GE/c4 < xc, otherwise the photon will be locked at the clock’s black hole. We

use

log

(
x− a

y − a

)
> log

(
x

y

)
, (x > y > a > 0), (313)

in order to obtain

∆T > 2
∆E

c5
G log

(
x

xc

)
. (314)

We use the uncertainty inequality [239], ∆t∆E ≥ h̄ and F (R) > 0 [238] which leads to

∆Ttot(∆E) >
h̄

∆E
+

2∆EG

c5
log

(
x

xc

)
, (315)

where ∆Ttot is the error in the whole process.

Expression equation (315) implies that there exists a minimum time uncertainty [238]

∆Tmin = 2

√
2

c5
Gh̄

√
log

(
x

xc

)
, (316)

at an energy [238],

∆E =

√√√√
h̄c5

2G log
(

x
xc

) . (317)

As mentioned above ∆E < c4xc/(2G), the relation given in Eq. (316) is satisfied only for

x > e2/α
2
xc.
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If xc < x < e2/α
2
xc, then the minimum uncertainty on time reads [238]

∆Tmin =
xc
c

[
2

α2
+ log

(
x

xc

)]
, (318)

which is corresponding to the energy

∆E =
xcc

4

2G
. (319)

2. Uncertainty in time at the largest distance xc

Suppose that R > xc, then GR can be used inside the clock. The time takes the photon

to reach the observer from distance R is given as [238]

T =

∫ x

xc

dr

v
=

1

c
(x−R) +

2

c5
GE log

(
c4x− 2GE

c4R− 2GE

)
. (320)

Thus [238]

∆T >
2

c5
∆E log

( x
R

)
, (321)

∆Ttot(∆E,R) = ∆t +∆T + 2
R

c
>

h̄

∆E
+

2

c5
∆EG log

[ x
R

]
+ 2

R

c
, (322)

where R > 2∆EG/c3. Otherwise, the photon will be locked at the clock’s black hole.

Therefore, the departure function becomes [238],

f(R) =
∆E G

c3
log
[ x
R

]
+R. (323)

This is an increasing function. In order to measure time as accurate as possible, we should

use a clock with R = xc [238]. The total uncertainty in time reads [238]

∆Ttot(∆E) >
h̄

∆E
+

2∆EG log
[

x
xc

]

c5
+

2

c
xc >

h̄

∆E
+

2∆E G log
[

x
xc

]

c5
. (324)

3. Conclusion

For particles added to the system of interest, there should be an increase in the uncer-

tainty of the metric, even without decreasing ∆t. Thus the total error gets larger. The

possibility of finding a measurable maximal energy and a minimal time interval is estimated

in different quantum aspects. First, we find that the quadratic generalized uncertainty
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principle (GUP) approach gives non-physical results. The resulting maximal energy ∆E

violates the conservation of energy. The minimal time interval ∆ t shows that the direction

of the arrow of time is backward. Furthermore, Itzhaki [238] summarized that the measured

uncertainty would represent a basic property of the Nature.
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VII. APPLICATIONS OF LINEAR GUP APPROACH

A. Inflationary parameters

The study of linear GUP effects on the inflationary era is an essential ingredient to many

investigations [68]. Some of these have been elaborated in sections VIA1 and VIA2. In

doing this, we start from the number density arising from the quantum states in early

Universe. Then, we calculate the free energy and entropy density. The idea of calculating

thermodynamic quantities from the quantum nature of physical systems dates back to a

about one decade [171–176], where the entropy arising from mixing of the quantum states

of degenerate quarks in a very simple hadronic model has been estimated and applied to

different physical systems.

1. Inflation parameters and linear GUP approach

As discussed in previous sections, the linear GUP approach [63, 113] predicts a maximum

observable momentum and a minimal measurable length. Furthermore, the standard com-

mutation relations are conjectured to be changed. In order to relate this with the inflation

era, we define φ as the scaler field deriving the inflation in the early Universe [68]. The

pressure and energy density, are given in Eq. (228) and (229), respectively.

The main potential slow-roll parameters [177] are given as

ǫ =
Mp

2

2

(
V́ (φ)

V (φ)

)2

, (325)

η = Mp
2
´́
V (φ)

V (φ)
, (326)

where Mp = mp/
√
8π is the four dimensional reduced Planck mass. The slow-roll approxi-

mations guarantee that the quantities in Eq. (325) and (326) are much smaller than unity.

These conditions are supposed to ensure an inflationary phase, in which the expansion of

the universe is accelerating, where the conformal time reads

τ = − 1

aH
. (327)

To distinguish it from the curvature parameter k [68], the wave number is denoted by j.

Here, j is assumed to give the comoving momentum. Then momentum modification leads
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to j −→ j(1− α j). Accordingly, the modification in the comic scale a reads

a =
j(1− α j)

P
. (328)

To avoid the divergence near the event horizon, a cutoff parameter can be utilized. The

scalar spectral index is given by

ns =
d ln ps

d ln j(1− α j)
+ 1 =

(1− 2α j)

(1− α j)

d ln ps
d ln j

+ 1 ≃ (1− α j)
d ln ps
d ln j

+ 1. (329)

where ps is the amplitude of the scalar density perturbation, i.e., the scalar density fluctu-

ations. Due to the modified commutators, a change in the Hubble parameter H is likely

expected. This can be realized using slow-roll parameters. In the standard case, the spectral

index can be expressed in these quantities as follows [178].

ns = 1 + 2 η − 6 ǫ, (330)

where η and ǫ are given in Eqs (325) and (326). Finally the ”running” of the spectral index

is given by

nr =
d ns

d ln j
= 16 ǫ η − 24 ǫ2 − 2 ζ, (331)

where

ζ = Mp
V́ (φ)

´́
V (φ)

V 2(φ)
, (332)

is another slow-roll parameter. At the horizon crossing epoch, the derivative of H with

respect to j leads to [177, 179] dH/dj = −ǫH/j. Thus, with the momentum modification,

we get an approximative expression for H as a function of the modified momentum

H ≃ j−ǫ exp(ǫ α j). (333)

So far, we can conclude that the linear GUP approach seems to enhance the Hubble param-

eter so that H(α = 0)/H(α 6= 0) < 1.

2. Tensorial and scalar density fluctuations in the inflation era

One of the main consequences of the inflation is the generation of primordial cosmolog-

ical perturbations [180] and the production of long wavelength gravitational waves (tensor
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perturbations) [68]. Therefore, the tensorial density perturbations (gravitational waves)

produced during the inflation era seem to serve as an important tool helping in distinguish-

ing between different inflationary models [181]. These perturbations typically give a much

smaller contribution to the cosmic microwave background (CMB) radiation anisotropy than

the inflationary adiabatic scalar perturbations [182].

The tensorial and scalar density fluctuations, respectively, are given as [68]

pt =

(
H

2π

)2 [
1− H

Λ
sin

(
2Λ

H

)]

=

(
k−ǫeǫ α k

2π

)2 [
1− kǫ−1e−ǫ α k

a
sin

(
2

ak1−ǫeǫ α k

)]
, (334)

ps =

(
H

φ̇

)2(
H

2π

)2 [
1− H

Λ
sin

(
2Λ

H

)]

=

(
H

φ̇

)2(
k−ǫeǫ α k

2π

)2 [
1− kǫ−1e−ǫ α k

a
sin

(
2

ak1−ǫeǫ α k

)]
. (335)

Then, the ratio tensor-to-scalar fluctuations, pt/ps, reads [178, 181, 183]

pt
ps

=

(
φ̇

H

)2

=

(
16π

√
ǫ V

M4 k−ǫeǫ α k

)2

. (336)

In the standard case, i.e. without GUP, this ratio is assumed to linearly depend on the

inflation slow-roll parameters [178] pt/ps = O(ǫ). An exact dependence shall be given in Eq.

(341).

It is apparent that Eq. (333) gives an estimation for H in terms of the wave number j. To

estimate φ̇, we start with the equation of motion for the scalar field, i.e., the Klein-Gordon

equation [68],

φ̈+ 3H φ̇+ ∂φ V (φ) = 0. (337)

The φ̇-term has the same role as that of the friction term in classical mechanics. In order to

get inflation from a scalar field, we assume that Eq. (337) is valid for a very flat potential

leading to neglecting its acceleration, i.e, neglecting the first term. Some inflationary models

introduce the slow-roll parameter ηH = −φ̈/Hφ̇ = −Ḧ/2HḢ. Therefore, the requirement

to neglect φ̈ is equivalent to guarantee that ηH << 1.

φ̇ = − 1

3H
∂φV (φ), (338)
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where the potential itself is model dependent, for example, V (φ) = Mp exp[−
√

2/H0p φ]

[184]. According to the model presented in Ref. [68],

φ̇ =

(√
2ǫ V

MpH

)2

. (339)

Then, the tensor-to-scalar fluctuations read [68]

pt
ps

=

[√
2V

Mp

√
ǫ

j−2ǫ exp (2 ǫ α j)

]2
. (340)
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Fig. 7: The tensorial density fluctuations pt is given in dependence on the wave number j (left

panel) and on the slow-roll parameter ǫ (right panel). The GUP parameter α is kept constant,

α = 10−2 GeV−1 (lower bound). It is assumed the
√
2V/Mp remains constant, (nearly unity).

These two assumptions set the physical scale. The graphs taken from Ref. [68].

Fig. 7 gives the tensorial density fluctuations pt in dependence on the wave number j (left

panel) and on the slow-roll parameter ǫ (right panel). In both graphs, the GUP parameter α

is kept constant, α = 10−2 GeV−1, i.e., the upper bound is utilized. Also, it is assumed that

the potential is nearly of the order of the reduced mass Mp, i.e.
√
2V/Mp ∼ 1. It is obvious

that pt diverges to negative values at low j. Increasing j brings pt to positive values. After

reaching a maximum value, it decreases almost exponentially and simultaneously oscillates

around the abscissa. The amplitude of oscillation drastically decreases with increasing j.

The right-hand panel shows that pt(ǫ) oscillates around the abscissa. Here, the amplitude

of the oscillation raises with increasing ǫ. The oscillation can be detected essentially in the

CMB spectrum quantizing the primordial residuals of the quantum gravity effects.

Fig. 8 refers to nearly the same behavior as that of the dependence of scalar density

fluctuations ps on the wave number j and ǫ. It is apparent that ps diverges to negative
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Fig. 8: The scalar density fluctuations ps is given in dependence on j (left panel) and on slow-roll

parameter ǫ (right panel). α and
√
2V/Mp have the same values as in Fig. 7. They set the physical

scale. The graphs taken from Ref. [68].

value at low j. Increasing j brings ps to positive values. But after reaching a maximum

value, it decreases almost exponentially. Nevertheless its values keep their positive sign.

The oscillation of ps(ǫ) is also observed. Here, ps(ǫ) behaves almost similar to pt(k). After

reaching a maximum value, it almost exponentially decreases and simultaneously oscillates

around the abscissa. The amplitude of oscillation drastically decreases with increasing ǫ.
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Fig. 9: The dependence of the ratio pt/ps on the slow-roll parameter ǫ is given in ”standard” and

”modified” cases. The GUP parameter α (in ”modified” case) and
√
2V/Mp have the same values

as in Fig. 7 and therefore the physical scale is defined. The horizontal dashed line represents

constant ratio pt/ps. The graph taken from Ref. [68].
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Fig. 9 gives the ratio pt/ps in dependence on ǫ in two cases. The first case, the ”standard”

one, is given by solid curve. The second case, the ”modified” case, is given by dashed curve.

The latter is characterized by finite α, while in the earlier case, α vanishes. Compared to

the ”standard” case, there is a considerable increase in the values of pt/ps with raising ǫ.

For the ”modified” case, i.e., upper bound of α = 10−2 GeV−1, the best fit results in an

exponential function [68]

pt
ps

= µ ǫν , (341)

where µ = 0.875 ± 0.023 and ν = 1.217 ± 0.014. All these quantities are given in natural

units. For the ”standard” case, the results can be fitted by

pt
ps

= ǫ. (342)

The difference between Eqs. (341) and (342) is stemming from the factor in the denominator,

which reflects the correction due to the GUP approach.

3. Scalar spectral index and linear GUP approach

As discussed above, the CMB results and other astrophysical observations strongly make

constrains on the standard cosmological parameters such as H , baryon density nb and even

the age of the Universe [185, 186]. It turns to be necessary to have constrains on the power

spectrum of the primordial fluctuations [187]. This is achievable through the spectral index.

From Eq. (329), the scalar spectral index at
√
2V/M = 1 reads [68]

ns = 1 +
{
4e−6jαǫj6ǫπ2(1− jα)

ǫ

[
− 3

2π2
e6jαǫj−6ǫ

(
1− e−jαǫj−1+ǫ

a
sin

(
2e−jαǫj−1+ǫ

a

))
+

3

2π2
e6jαǫj1−6ǫ α

(
1− e−jαǫj−1+ǫ

a
sin

(
2e−jαǫj−1+ǫ

a

))
+

1

4π2 ǫ
e6jαǫj−6ǫ

(
−1

a
e−jαǫj−1+ǫ

(
2e−jαǫj−1+ǫ(−1 + ǫ)

a
− 2e−jαǫjǫαǫ

a

)
cos

(
2e−jαǫj−1+ǫ

a

)
−

e−jαǫj−1+ǫ

a
(−1 + ǫ) sin

(
2e−jαǫj−1+ǫ

a

)
+
e−jαǫjǫαǫ

a
sin

(
2e−jαǫj−1+ǫ

a

))]}
/

[
1− e−jαǫj−1+ǫ

a
sin

(
2e−jαǫj−1+ǫ

a

)]
. (343)
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The ”running” of the spectral index ns is defined by Eq. (331). The results of nr =

d ns/d ln j are depicted in the right panel of Fig. 10. Early analysis of the Wilkinson

Microwave Anisotropy Probe (WMAP) data [188, 189] indicates that nr = −0.03±0.018. As

noticed in Ref. [189], such an analysis may require modification, as the statistical significance

seems to be questionable. On the other hand, it is indicated that the spectral index quantity

ns − 1 seems to run from positive values on the long length scales to negative values on the

short length ones. This is also noticed in left-hand panel of Fig. 10, where ns vs. ω is drawn.

Such a coincident observation can be seen as an obvious evidence that our model agrees well

with WMAP. Recent WMAP analysis shows that ns = 0.97± 0.017 [190]. The importance

of such agreement would be the firm prediction of the inflationary cosmology through the

consistency relation between scalar and tensor spectra. The physics at the Planck scale is

conjectured to modify the consistency relation, considerably. It also leads to the running of

the spectral index. For modes which are larger than the current horizon, the tensor spectral

index is positive [191].

4. Consequences on later eras of the cosmological history
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Fig. 10: Left-hand panel: the spectral index ns is given in dependence on ǫ, where j and a

are kept constant (equal 1). The ”running” of ns is shown in the right-hand panel. The solid

curves represent the results from the modified momentum j → j(1 − αj), i.e. applying the GUP

approach. The dashed curves represent the standard case (unchanged momentum), i.e. α = 0. All

these quantities are given in natural units. The graphs taken from Ref. [68].

In describing the primordial power spectrum, almost all inflation models utilize three

independent parameters:
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• the amplitude of the scalar fluctuations,

• the tensor-to-scalar ratio nr and

• the scalar spectral index ns.

All of these parameters are observationally measurable. They allow the connection between

the high-energy physics and the observational cosmology, in particular CMB.

The dependence of tensor-to-scalar, pt/ps, on ǫ is drawn in Fig. 9. The ”modified”

momentum characterized by finite α and reflecting the quantum gravity effects, shows a

considerable increase with raising ǫ. Accordingly, the best fit was given in Eq. (342). The

”standard” case can be fitted by

pt
ps

∣∣∣∣
s

= ǫ. (344)

The relation between Eqs. (342) and (344) can be given as

pt
ps

∣∣∣∣
qc

=


 µ

pt
ps

∣∣∣
s




ν

, (345)

where the values of the fitting parameters µ and ν were given in Eq. (341).

The dependence of ns on ǫ is presented in the left-hand panel of Fig. 10, while the

dependence of its ”running”, Eq. (331), is illustrated in the right-hand panel. Including

quantum gravity effects keeps the linear dependence of ns(ǫ) unchanged, but makes it slower

than in the standard case of unchanged momentum. Increasing ǫ leads to an increase in the

difference between modified and unmodified momentum. The running ns is not affected by

quantum gravity at ǫ < 1. At higher ǫ values, nr in modified momentum gets slower than

the one in standard case.

The spectral index ns describes the initial density ripples in the Universe. If ns is small,

the ripples with longer wavelengths are strong, and vice versa. This has the effect of raising

the CMB power spectrum on one side and lowering it on the other side. ns is like a finger-

print of the very beginning of the universe in that first trillionth of a second after the Big

Bang called inflation. The way of distributing matter during the initial expansion reflects

the nature of the energy field controlling the inflation. The current observations of ns are

in agreement with the inflation prediction of a nearly scale-invariant power spectrum, cor-

responding to a slowly rolling inflation field and a slowly varying Hubble parameter during
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inflation. Based on Eq. (333), the GUP approach seems to enhance the Hubble parameter

so that H(α = 0) < H(α 6= 0).

5. Conclusions

An evaluation for the tensorial and scalar density fluctuations in the inflation era is in-

troduced. The tensorial pt and scalar density fluctuations ps are given in dependence on the

wave number j and on the slow-roll parameter ǫ. For a systematic comparison, the GUP

parameter α is kept constant, α = 10−2 GeV−1]. Also, it is assumed the
√
2V/Mp ∼ 1.

We conclude that pt diverges to negative value at low j. Increasing j brings pt to positive

values. After reaching a maximum value, it almost exponentially decreases and simultane-

ously oscillates around the abscissa. The amplitude of oscillation drastically decreases with

increasing j. Also, pt(ǫ) is found to oscillate around the abscissa. Here, the amplitude of the

oscillation raises with increasing ǫ. The oscillation can be detected essentially in the CMB

spectrum quantizing the primordial residuals of the quantum gravity effects.

The running of spectral scalar index ns, which is defined by scalar index, is utilized to shed

light on its scaling. The WMAP data indicates that the spectral index quantity ns−1 seems

to run from positive values on long length scales to negative values on short length scales

[192]. This behavior was confirmed in Ref. [68]. The importance of such agreement would

be the firm prediction of inflationary cosmology through the consistency relation between

scalar and tensor spectra. The Planck scale physics is conjectured to modify the consistency

relation considerably. It also leads to the running of the spectral index. For modes that are

larger than the current horizon, the tensor spectral index is positive.

B. Lorentz invariance violation

The combination of HUP and the finiteness of the speed of light c would lead to creation

and annihilation processes, especially when studying the Compton wavelength of the par-

ticle of interest [36, 37]. Another consequence of the space-time foamy structure at small

scales is the Lorentz invariance violation (LIV), which is originated in the proposal that

Lorentz invariance (LI) may represent an approximate symmetry of the Nature (dates back

to about four decades) [193]. A self-consistent framework for analyzing possible violation
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of LI was suggested by Coleman and Glashow [194, 195]. In gamma ray bursts (GRB), the

energy dependent time offsets are investigated in different energy bands assuming standard

cosmological model [196]. A kind of weak indication for the redshift dependence of the time

delays suggestive of LIV has been found. A comprehensive review on the main theoretical

motivations and observational constraints on Planck scale suppressed Lorentz invariance vi-

olation is given in Ref. [197] and the references therein. Recently, the Planck scale itself

turns to be accessible in quantum optics [73].

The modified dispersion relationship likely leads to further predictions which apparently

have feasibility in experiments, such as an energy dependent speed of light. The gamma ray

observations [198] might imply that the speed of light was faster in the very early Universe,

when the average energy was comparable to Planck scale [206]. As pointed out by Moffat

[207], and Albrecht and Magueijo [208], such an effect could provide an alternative solution

to the horizon problem and other problems addressed by inflation. Such modified dispersion

relations may also lead to corrections to the predictions of inflationary cosmology, observable

in future high precision measurements of the CMB spectrum. Finally, a modified dispersion

relation may lead to an explanation of the dark energy in terms of energy trapped very high

momentum and low-energy quanta, as pointed out by Mersini et al. [209].

The linear GUP approach assumes that the momentum of a particle with massM having

distant origin and an energy scale comparable to the Planck scale would be a subject of a

tiny modification [63, 75, 113] so that the comoving momenta can be given as [69]

pν = pν
(
1− α p0 + 2α2 p20

)
, (346)

p2ν = p2ν
(
1− 2αp0 + 10α2 p20

)
, (347)

where p0 is the momentum at low energy. The parameter α = α0/(cMpl) = α0lpl/h̄ [63,

75, 113], where α0 is dimensionless parameter of order one. Then in comoving frame, the

dispersion relation reads

E2
ν = p2ν c

2 (1− 2αp0) +M2
ν c

4. (348)

When taking into consideration a linear dependence of p on α and ignoring the higher orders

of α, then the Hamiltonian is

H =
(
p2ν c

2 − 2αp3ν c
2 +M2

ν c
4
)1/2

. (349)
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There are several experimental and theoretical developments [199, 200] showing threshold

anomalies in ultra high-energy cosmic ray protons [201, 202] and possible TeV photons

[203, 204].

1. Comoving velocity and time of arrival

The derivative of Eq. (349) with respect to the momentum results in a comoving time-

dependent velocity, i.e., Hamilton equation,

v(t) =
1

a(t)

(
P 2
ν0 c

2 − 3αP 2
ν0 c

2
) (

P 2
ν0 c

2 − 2αP 3
0 +M2

ν c
4
)−1/2

, (350)

=
c

a(t)

(
1− 2αp0 −

M2
ν c

2

2p2ν
+ αp0

[
M2

ν c
2

p2ν
− M2

ν c
4

p2νc
2 +M2

ν c
4
+

M2
ν c

4

p2νc
2 +M2

ν c
4

M2
ν c

2

2p2ν

])
. (351)

The comoving momentum is related to the physical one through pν = pν0(t0)/a(t) and the

scale factor a is related to the redshift z,

a(z) =
1

1 + z
. (352)

In the relativistic limit, p≫ M , the fourth and fifth terms in Eq. (351) simply cancel each

other. Then [69]

v(z) = c (1 + z)

[
1− 2α (1 + z) pν0 −

M2
ν c

2

2(1 + z)2p2ν0
+ α

M4
ν c

4

2 (1 + z)3 p3ν0

]
, (353)

in which p0 is treated as a comoving momentum. Thus, the relative change in the relative

velocity can be deduced [69]

∆v(z)

c
= α

(
−2 (1 + z)2 pν0 +

M4
ν c

4

2 (1 + z)2 p3ν0

)
− M2

ν c
2

2(1 + z)p2ν0
. (354)

The comoving redshift-dependent distance travelled by the particle of interest is defined

as

r(z) =

∫ z

0

v(z)

(1 + z)H(z)
dz, (355)

where H(z) is the Hubble parameter depending on z. From Eqs. (353) and (355), the time

of flight is given as [69]

tν =

∫ z

0

[
1− 2α (1 + z) pν0 −

M2
ν c

2

2(1 + z)2p2ν0
+ α

M4
ν c

4

2 (1 + z)3 p3ν0

]
dz

H(z)
, (356)
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which counts for the well-known time of flight of a prompt low-energetic photon (first term).

In other words, the time of flight is invariant in Lorentz symmetry. Furthermore, it is

apparent that Eq. (356) contains a time of flight delay

∆tν =

∫ z

0

[
2α

(
(1 + z) pν0 −

M4
ν c

4

4 (1 + z)3 p3ν0

)
+

M2
ν c

2

2 (1 + z)2p2ν0

]
dz

H(z)
. (357)

Obviously, the first and second terms are due to LIV effects stemming from GUP (both

have α parameter). The third term gives the effects of the particle mass on the time of

flight delay. Furthermore, the second term alone seems to contain a mixed effects from LIV

(GUP) and rest mass.

In order to determine ∆tν , Eq. (357), it is essential to find out observational results

and/or reliable theoretical model for the redshift-dependence of the Hubble parameter H ,

H(z) =
1

a(z)

(
da(z)

dz

dz

dt

)
= − 1

1 + z

dz

dt
. (358)

This expression can be deduced from Eq. (352). In general, the expansion rate of the

Universe varies with the cosmological time [142–145, 147–150]. It depends on the background

matter/radiation and its dynamics [143]. The cosmological constant reflecting among others

the dark matter content seems to affect the temporal evolution of H [144]. Fortunately, the

redshift z itself can be measured with a high accuracy through measuring the spectroscopic

redshifts of galaxies having certain uncertainties (σz ≤ 0.001). Based on this, a differential

measurement of time at a given redshift interval automatically provides a direct and clean

measurement of H(z) [210–212]. These measurements can be used to derive constraints on

essential cosmological parameters [213]. The measurements of the expansion rate and their

constrains in evaluating the integrals given in Eq. (357) are implemented [69]. We give an

example on the applications of these results on the early-type galaxies.

2. Applications on early-type galaxies

Out of a large sample of early-type galaxies (about 11000) extracted from several spectro-

scopic surveys spanning over ∼ 8× 109 years of cosmic look-back time, i.e., 0.15 < z < 1.42

[211], most massive, red elliptical galaxies, passively evolving and without signature of on-

going star formation are picked up and used as standard cosmic chronometers [213]. The

differential age evolution turns to be accessible, which gives an estimation for the cosmic
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time and can directly probe H(z). A list of new measurements of H(z) with 5 − 12% un-

certainty is introduced in Ref. [211]. Fig. 11 shows these observations as estimated in the

BC03 model [214]. They are combined with CMB data and can be used to set constrains

on possible deviations from the standard (minimal) flat ΛCDM model [212]. The right-

hand panel shows a data set taken from MS model [215]. It is obvious that the results are

model-dependent [69].
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Fig. 11: Left-hand panel: the Hubble parameter H calculated in BC03 model (open triangle) and

in combination with CMB data, that gives constrains of the possible deviations from the standard

(minimal) flat ΛCDM model (solid circles), is given in dependence on the redshift z. The results

from MS model are drawn in the right-hand panel. The curves represent the fitting parameters

(see text for details). The graphs taken from Ref. [69].

The observational measurements have been fitted as follows [69]. For the results obtained

from BC03 model [214] and using a combination with CMB data and setting constrains on

possible deviations from the standard (minimal) flat ΛCDM model [212], the expression [69]

H(z) = β1 + γ1 z + δ1 z
2, (359)

where β1 = 72.68±3.03, γ1 = 19.14±5.4 and δ1 = 29.71±6.44, fits well with the observations.

The solid curve in left-hand panel of Fig. 11 represents the results from this expression. For

the MS model [215] measurements, we suggest two expressions [69]:

H(z) = β2 + γ2 z + δ2 z
2 + ǫ2 z

3, (360)

H(z) = β3 + γ3 tanh(δ3 z), (361)

where β2 = 66.78 ± 8.19, γ2 = 113.27 ± 7.5, δ2 = −140.72 ± 12.6, ǫ2 = 60.61 ± 5.48,

β3 = 71.94± 4.35, γ3 = 33.51± 7.94 and δ3 = 1.6± 0.1. The results of Eq. (360) are given
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by dashed curve in the right-hand panel of Fig. 11. Eq. (361) is drawn as dotted curve,

where the largest point is excluded while remaining points build up the ensemble used in the

fitting [69]. It is obvious that the implementation of Eq. (360), which is obviously a rational

function, in Eq. (357) results in a non-analytic integral. On the other hand, implementing

Eq. (361) in Eq. (357) makes the second and third integrals non-solvable, while the first

term is.

It is apparent that Eq. (359) simplifies the integrals given in Eq. (357). Accordingly,

there are two types of LIV contributions to the time of flight delay:

1. Finite GUP parameter α appears in two terms as follows

2α pν0

∫ z

0

(1 + z)
dz

H(z)
=

α

γ
pν0

[
ln [β1 + z(γ1 + δ1z)]−

2(γ1 − 2δ1)

A
atan

(
γ1 + 2δ1z

A

)]
, (362)

− α
M4

ν c
4

2 p3ν0

∫ z

0

1

(1 + z)3
dz

H(z)
=

−α
(β1 − γ1 + δ1)3

M4
ν c

4

4 p3ν0

[
2(γ1 − 2δ1)(β1 − γ1 + δ1)

1 + z

+
[
3γ1δ1 − γ21 + δ(β1 − 3δ1)

]
ln (β1 + z(γ1 + δ1z)) (363)

− (β1 − γ1 + δ1)
2

(1 + z)2
+ 2

[
γ21 − 3γ1δ1 + δ1(3δ1 − β1)

]
ln(1 + z)

− 2(γ1 − 2δ1)

A

[
γ21 − γ1δ1 + δ1(δ1 − 3β1)

]
atan

(
γ1 + 2δ1z

A

)]
,

where A = (4β1δ1 − γ21)
1/2.

2. Furthermore, Eq. (359) gives an exclusive estimation for the mass contribution to the

time of flight delay,

M2
ν c

2

2 p2ν0

∫ z

0

1

(1 + z)2
dz

H(z)
=

1

(β1 − γ1 + δ1)2
M2

ν c
2

2 p2ν0

{
γ21 − 2γ1δ1 + δ1(δ1 − β1)

A
atan

(
γ1 + 2δ1z

A

)

− β1 − γ1 + δ1
1 + z

− 1

2
(γ1 − 2δ1) ln

[
(1 + z)2

β1 + z(γ1 + δ1z)

]}
. (364)

3. Conclusions

With varying the redshift, the relative change in the speed of massive muon neutrino and

its time of flight delays is calculated. The redshift depends on the temporal evolution of H ,

which can be estimated from a large sample of early-type galaxies extracted from several

spectroscopic surveys spanning over ∼ 8× 109 years of cosmic lookback, most massive, red

elliptical galaxies, passively evolving and without signature of ongoing star formation are
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picked up and used as standard cosmic chronometers giving a cosmic time directly probe

for H(z). The measurements according to BC03 model and in combination with CMB data

constraining the possible deviations from the standard (minimal) flat ΛCDM model are used

to estimate the z-dependence of the Hubble parameter. The measurements based on MS

model are used to show that the results are model-dependent.

C. Black hole thermodynamics

The finding that black holes should have well-defined entropy and temperature rep-

resented one of the greatest achievements in recent astrophysics [24, 115]. In statistical

physics and thermodynamics, the thermal evolution of entropy relates the number of ther-

mal macrostates to that of microstates of the system of interest in thermal medium. In GR,

the BH entropy is a pure geometric quantity so that when comparing BH with a thermody-

namic system, we find an important difference. Whether BH has interior degrees of freedom

corresponding to its entropy, the Bekenstein-Hawking entropy delivered an answer to this

and characterized the statistical meaning [24, 115]. Counting the microstates was proposed

by Medved and Vagenas [216], that this presumably lies within the framework of QG. For

example, the String theory [217] and the loop quantum gravity [218] succeeded in presenting

an statistical explanation formulated in an entropy-area law. The proportionality relating

BH entropy with area was derived from classical thermodynamics, as well [219].

1. Number of quantum states, entropy and free energy

In brick wall model, the entropy can be calculated as follows.

S0 = β2 ∂F0

∂β

∣∣∣∣
β=βH

=
β2

π

∫ L

r++ǫ

dr
1√
f

∫ ∞

m
√
f

dω
ωeβω

(
ω2

f
−m2

)1/2

(eβω − 1)2

∣∣∣∣∣∣∣
β=βH

, (365)

where β is the inverse temperature, F0 is the free energy and L and ǫ are infrared and

ultraviolet regulators, respectively. βH is the inverse Hawking temperature. In a zero-

temperature quantum mechanical system around the black hole, the entropy reads

Sext
0 ≈ ln

(
1

2Λ ǫ

)
, (366)
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which can be interpreted as the physical limit that Λ should be less than 1/(2ǫ).

In natural units, the modified uncertainty relation

∆x∆p ≥ h̄

2

[
1− 2α 〈p〉+ 4α2 〈p2〉

]
, (367)

leads to a modification in the volume of phase cell in (1 + 1)-dimensions from 2 π to

2π (1− 2α p+ 4α2 p2). The number of quantum states with energy less than ǫ is given

as [220]

n0(ω) =
1

2π

∫
dr dpr =

1

π

∫ L

r+ +ǫ

dr
1√
f

(
ω2

f
−m2

)1/2

, (368)

where m in the mass of the scalar field and ω is a parameter of the substitution of Klein-

Gordon equation. The expression equation (368) will be changed to

nI(ω) =
1

2π

∫
dr dpr

1

1− 2α p+ 4α2 p2

=
1

2π

∫
dr

1√
f

(
ω2

f
−m2

)1/2

1− 2α
(

ω2

f
−m2

)1/2
+ 4α2

(
ω2

f
−m2

) , (369)

where r and f are estimated as follows. In Schwarzschild gauge, the metric and field tensors,

respectively, read

ds2 = −f(r)dt2 + 1

f(r)
dr2, (370)

Frt = Frt(r). (371)

The function f(r) in the static solution is defined as

f(r) = 1− M

Λ
e−2Λr +

Q2

4Λ2
e−4Λr, (372)

where M is the mass of black hole and Q gives its charge. The outer event horizon has the

radius

r+ =
1

2Λ
ln


M
2Λ

+

√(
M

2Λ

)2

−
(
Q

2Λ

)2

 . (373)

In light of this, its derivative vanishes and the Klein-Gordon equation is reduced to

d2R

dr2
+

1

f

df

dr

dR

dr
+

1

f

(
ω2

f
−m2

)
R = 0, (374)
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where φ(r) = exp (−iωt)R(r). Using WKB approximation, then R ∼ exp (iS(r)),

p2r =
1

f

(
ω2

f
−m2

)
, (375)

and pr = dS/dr and

p2 =
ω2

f
−m2. (376)

At Hawking temperature, Eq. (369), can be used to derive the free energy [220]

F0 = −1

π

∫ L

r++ǫ

dr
1√
f

∫ ∞

m
√
f

(
ω2

f
−m2

)1/2

eβω − 1
dω, (377)

which turns is a subject of change

FI = −
∫ ∞

m
√
f

dω
nI(ω)

eβω − 1

= −1

π

∫
dr

1√
f

∫ ∞

m
√
f

(
ω2

f
−m2

)1/2

(eβω − 1)

[
1− 2α

(
ω2

f
−m2

)1/2
+ 4α2

(
ω2

f
−m2

)] dω. (378)

2. Black hole entropy and linear GUP approach

Near the event horizon, i.e., in the range (r+, r++ ǫ), f → 0, the entropy can be deduced

from Eq. (378)

S0 =
β2

π

∫ L

r++ǫ

dr
1√
f

∫ ∞

m
√
f

dω
ωeβω

(
ω2

f
−m2

)1/2

(eβω − 1)2

∣∣∣∣∣∣∣
β=βH

. (379)

Once again, the entropy given in Eq. (379) will be changed to

SI =
β2

π

∫
dr

1√
f

∫ ∞

m
√
f

ω
(

ω2

f
−m2

)1/2
eβω

e2βω−2

[
1− 2α

(
ω2

f
−m2

)1/2
+ 4α2

(
ω2

f
−m2

)]dω

=
1

π

∫ r++ǫ

r+

dr
1√
f

∫ ∞

0

f−1/2 β−1 x2

(1− e−x)(ex − 1)
[
1− 2α x

β
√
f
+ 4α2 x2

β2f

]dx, (380)

where x = β ω. We note that as f → 0, then ω2/f is the dominant term in the bracket

containing ω2/f−m2. We are interested in the thermodynamic contributions of just vicinity
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near horizon r+, r+ + ǫ, which corresponds to a proper distance of the order of the minimal

length. The latter can be related to the GUP parameter α. So we have from Eq. (370)

α =

∫ r++ǫ

r+

dr√
f(r)

, (381)

which apparently sets a lower bound to α. Then, the entropy reads

SI =
1

π α

∫ r++ǫ

r+

dr√
f(r)

∫ ∞

0

a2X2

(
e

aX
2 − e−

aX
2

)2
(1− 2X + 4X2)

dX, (382)

where

x =
β

α

√
f X = aX. (383)

Then

SI =
1

π
ΣI =

1

π

∫ ∞

0

a2X2

(
e

aX
2 − e−

aX
2

)2
(1− 2X + 4X2)

dX. (384)

We note that as r → r+, f → 0, then a→ 0 and

lim
a→0

a2X2

(eaX/2 − e−aX/2)
2 = 1. (385)

Therefore,

ΣI =

∫ ∞

0

dX

1− 2X + 4X2
=

2 π

3
√
3
, (386)

and

SI =
1

π
ΣI =

2

3
√
3
. (387)

So far, we can conclude that SI is finite and does not depend on any other parameter. We

notice that in contrast to the case of brick wall method, there is no divergence within the

just vicinity near the horizon due to the effect of the generalized uncertainty relation on the

quantum states.

3. Linear GUP approach and entropy of Schwarzshild black hole

In natural units, the line element in Schwarzschild black hole is given as

ds2 = −
(
1− 2

M

r

)
d t2 +

(
1− 2

M

r

)−1

d r2 + r2 dΩ2
2. (388)
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Then, Hawking radiation temperature T , horizon area A and entropy S, respectively, read

T =
1

4πrH
=

1

8πM
, (389)

A = 4πr2H = 16πM2, (390)

S = πr2H = 4πM2, (391)

where rH = 2M is the location of the black hole horizon. The increase (decrease) in the

horizon area due to absorbing (radiating) a particle of energy dM can be expressed as

dA = 8 π rH drH = 32 πM dM. (392)

This particle is conjectured to satisfy Heisenberg’s uncertainty relation ∆ xi ∆ pj ≥ δij .

According to the linear GUP approach, the area and entropy, respectively, can be re-

written as

AGUP = A− 4α
√
π
√
A + 8 π α2 ln

(√
A

π
+ 2α

)
, (393)

SGUP = S − 2α
√
π
√
S + α2 π lnS + C, (394)

where α ≪
√
A/π and C is an arbitrary constant. We notice that the coefficient of lnS is

also positive, but the entropy gets an additional term, 2α
√
π
√
S.

4. Linear GUP approach and energy density of Schwarzshild black hole

As given in sections VIA and VIIA, the Friedmann equation (first law of thermodynam-

ics) reads
(
Ḣ − k

a2

)
S ′
GUP = −4 πG (ρ+ p), (395)

where the energy density is given as

ρ = − 3

8G

∫
S ′
GUP (A)

(
A

4

)−2

dA. (396)

Using Eq. (394), then
(
Ḣ − k

a2

) [
1− 2α

( π
A

)1/2
+ 4α2

( π
A

)]
= −16 πG (ρ+ p). (397)

The modified energy density

ρGUP =
3

8 πG

[( π
A

)
− 4

3
α
( π
A

)3/2
− 2α2

(π
A

)2]

= ρ

[
1− 4

3
α

(
2

3
πρ

)1/2

+
4

3
π α2 ρ

]
. (398)
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5. Conclusions

We show that the quantum correction of the geometric entropy of charged black hole has

one great advantage. By doing this, one can avoid being biased in favor of a certain theory

of QG. For example, the correction to the Bekenstein-Hawking entropy, which relates the

entropy to the cross-sectional area of the BH horizon, includes a series of terms, where the

coefficient of the leading-order correction, the logarithmic term, is suggested as a discrimi-

nator of prospective fundamental theories for QG. It is essential to suggest a method that

fixes this, but it should not depend on the utilized models for QG. For instance, this might

be the holographic principle.

The brick wall method is used to calculate the statistical (informational) entropy of black

hole. In doing this, a cutoff parameter is assuming in order to avoid the divergence near the

event horizon. Because the degrees of freedom are likely dominant near the horizon, it is

assumed that the brick wall method should be replaced by a thin-layer model making the

calculation of entropy possible. For instance, the entropy of FLRW Universe can be given

by time-dependent metric. It is found that the black hole entropy is logarithmically related

to the ultraviolet regulator ǫ, so that the physical entropy is limited to Λ < 2ǫ.

When comparing black hole entropy with the one that counts for the microstates Ω, we

can simply relate A/4 to lnΩ. This is valid as long as the gravity is sufficiently strong so that

the horizon radius is much larger than the Compton wavelength. In order to apply the GUP

approach, we start with the modified momentum and statistically derive expressions for area

and entropy. Then, we apply the holographic principle. Based on the linear GUP approach,

the black hole thermodynamics and entropy get substantial corrections. We found that the

logarithmic divergence in the entropy-area relation turns to be positive. Furthermore we

find that S gets an additional terms, such as 2α
√
π
√
S.

D. Compact stellar objects

For an isolated macroscopic body consisting of N non-interacting and ultra-relativistic

particles, the background of the particles motion is assumed to be flat. Studying the ground

state properties of a Fermi gas composed of N ultra-relativistic electrons shows that the

state energy ǫ is entirely given by c p, i.e., temperature is much larger than the particle
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rest mass. At low T , the vacuum effect of fermions can be neglected, i.e., the total particle

number is conserved. The modified number of particle of Fermi gas can be given as [221]

N(p) =
8π

h3
V

∫ pF

0

p2dp

(1− αp)4
, (399)

where pF is the Fermi momentum. Therefore, Eq. (399) can be re-written in terms of Fermi

energy ǫF

N(ǫF ) =
8 π

3(h c)3
V

ǫ3F(
1− α

c
ǫF
)3 . (400)

Introducing κ = ǫF/ǫH , which is equivalent to αǫF/c, then

N(κ) =
8 π

(h c)3
V ǫ3H f(κ), (401)

where ǫH = c/α is the Hagedorn energy and

f(κ) =
1

3

κ3

(1− κ)3
. (402)

The ground state energy can be calculated from

U0(ǫ) =
8π

(hc)3
V

∫ ǫF

0

ǫ3dǫ
(
1− α

c
ǫ
)4 . (403)

In terms of κ, the ground state energy and pressure, respectively, read [221]

U0(κ) =
8π

(hc)3
V ǫ4H g(κ), (404)

P (κ) =
N

V
ǫF − U0

V
=

8π

(h c)3
ǫ4H h(k), (405)

where

g(κ) = ln(1− κ) +
κ

(1− κ)3
− 15

6

κ2

(1− κ)3
+

11

6

κ3

(1− κ)3
, (406)

h(κ) =
1

3

κ4

(1− κ)3
−
[
ln(1− κ) +

κ

(1− κ)3
− 15

6

κ2

(1− κ)3
+

11

6

κ3

(1− κ)3

]
. (407)

These two quantities are presented in Fig. 12. It is obvious that both diverge at κ→ 1.

g(κ) diverges much faster than h(κ). This would mean that the validity of this approach is

limited to the Fermi energy. It is bounded from above by a maximum energy bound c/α.

This is completely consistent with the predicted maximum measurable momentum 1/α in

[63, 113].
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Fig. 12: The dimensionless quantities g (solid curve), Eq. (406), and h (dashed curve), Eq. (407),

are presented as functions of κ. The graph taken from Ref. [221].

The Hagedorn energy (or equivalently temperature) is defined as ǫH =Mpc
2/α0. It is a

scale to set the limit of applying the GUP approach. Accordingly, Eqs. (404) and (405) can

be re-written as [221]

U0(κ) =
8πV

(hc)3
ǫ4H

[
κ4

4
+

4κ5

5

]
, (408)

P (κ) =
8π

(hc)3
ǫ4H

[
κ4

12
+
κ5

5

]
, (409)

where the condition κ≪ 1 has been implemented. The corrections to U0(κ) and P (κ) would

be given in terms of δ [221]

U0(κ)

V
=

34/3

4

hc

(8π)
1
3

(
N

V

)4/3(
1 +

16

5
(3π2)1/3δ

)
, (410)

P (κ) =
31/3

4

hc

(8π)
1
3

(
N

V

)4/3(
1 +

12

5
(3π2)1/3δ

)
, (411)

where κ can be given in terms of number density N/V ,

κ3
(
1

3
+ κ

)
=

(hc)3

8π

1

ǫ3H

N

V
, (412)

which would lead to a relation between κ and δ

κ = (3π2)
1
3 δ
[
1− (3π2)

1
3 δ
]
+O(δ3) (413)

It is obvious that the results are stemming for the framework modifying the dispersion re-

lations, Eq. (348). The framework is based in GUP and modified measure of the momentum

space, Eq. (399). It is therefore outside the effective field theory framework [222].
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1. Compact stars with non-relativistic cold nuclei

The major contributions to the mass of white dwarfs are non-relativistic cold nuclei having

mass M = 2N/mp [223]. The white dwarfs have two properties [224]:

• the electrons are described by relativistic dynamics and

• the electron gas is completely degenerate.

Therefore, the electron gas would be treated as a zero-temperature gas. Thus, ǫF =

2Nc2/α0mp indicating that κ ≪ 1 and Eq. (409) seems to reflect that the QG effects

increase the degenerate pressure. Should this effects is confirmed, then the QG corrections

to the mass of white dwarfs arise.

The electronic degeneracy pressure is supposed to resist the gravitational collapse and

keep the electron gas at a given density. At equilibrium, the pressure reads

P0(R) =
λ

4π
G

(
M

R2

)2

, (414)

where R3 ≡ V and λ is free parameter of the order of unity. Nevertheless, its value depends

on how the matter is distributed inside the white dwarf. From Eqs. (411) and (414), and

by ignoring the constants (assign them to unity), the pressure can be expressed in terms of

internal energy

(
N

V

)4/3

(1 + δ) =
GM2

R4
. (415)

By substituting M = 2Nmp, the correction to the mass of the compact star reads [221]

M =M0

(
1 +

(
N

V

) 1
3

α h̄

)
. (416)

We set M0 = (hc/G)
3
2 (2mp)

−2. For white dwarfs, M0 approximately approaches the Chan-

drasekhar limit (about 1.44M⊙).

Apparently, Eq. (416) concludes that the quantum gravity correction seems to be pro-

portional to the density number of the star [221]. For a white dwarf, in which the density

number N = 1036, the average distance d̄ = 10−12, and the Fermi energy ǫF = 105 eV [221].

In the present analysis, we set an upper bound to α0 × lp leading to an intermediate

between the Planck and the electroweak scale. We used the bound α ≤ 10−2 GeV−1 (i.e.,
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α0 ≤ 1017) depending on the derived bounds on the parameter α0 in Ref. [75]. This bound

was derived by calculating the effect of QG with non-relativistic heavy meson systems like

charmonium [75], which may be a relevant example for the white dwarfs. The latter are

mainly constituted of non-relativistic nuclei. Based on these values, the QG correction to

mass of the white dwarf is given by [221]

MGUP =M0

(
1 + 10−5

)
. (417)

Two remarks are now in order [221].

• The correction seems to be more stringent than the one derived for compact stars with

QG corrections [225]. The correction given in Ref. [225] is 10−10.

• The QG corrections [221] is positive referring to resisting the collapse of the compact

stars. It is obvious that this conclusion agrees with the result in [225].

2. Compact stars with ultra-relativistic nuclei

There are other configurations in which the star is almost composed of ultra-relativistic

nuclei. In this case, the mass of the nuclei is compressed as M = U0/c
2. The constituents of

the white dwarfs are characterized by an ideal Fermi gas and total mass M = U0/c
2. The

electronic degeneracy pressure is assumed to resist the gravitational collapse. At equilibrium,

the radius of the white dwarf is given by [221]

R =
λ

8π
RS

g(κ)

h(κ)
=

λ

8π
RSQ(κ), (418)

where Q(κ) = g(κ)/h(κ) and the parameter λ approximately equals unity. In the considered

case, the Schwarzschild radius reads

RS = 2G
M

c2
= 2G

U0

c4
. (419)

At λ ≈ 1, the results are presented in Fig. 13 for the stringent value of the parameter α

[75]. We observe that the radius approaches its minima as κ → 1, and divers as κ → 0.

The number density N/V from Eq. (401) and mass density M = U0/c
2 from Eq. (417) are

presented also in Fig. 13. We observe that the number density, the mass density and the

pressure approach their minima as κ→ 0, but they reach their maximum values as κ→ 1.
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Fig. 13: The modified radius of white dwarf, Eq. (418), is given in dependence on κ (dashed curve)

at α0 ≈ 1017 i.e α ≈ 10−2 GeV−1 [75]. The modified normalized particle density in Fermi gas at

vanishing temperature N(κ)/V is given in dependence on κ (solid curve) at α = 10−2 GeV−1.

The normalized mass density M(κ)/V is given as dash-dotted curve at α = 10−2 GeV−1. The

normalized pressure is given as dotted curve. The graph taken from Ref. [221].

Current observations indicate that white dwarfs have smaller radii than expected [226].

The behavior of R vs κ in Fig. 13 suggests that R is decreasing as κ → 1. This offers a

possible explanation for the smaller radii observations. Similar analysis has been done in

the context of DSR [229] and modified dispersion relations [227, 228].

3. Conclusions

Effects of the linear GUP approach on the thermodynamic properties of the compact

stars are investigated. Concretely, the impact on the Chandrasekhar limit andthe gravi-

tational collapse is studied. It is concluded that the QG corrections would increase the

Chandrasekhar limit and hence they resist the gravitational collapse. Furthermore, it is

found that the radius of the compact star is decreasing as the energy increasing, which

might be considered as a possible explanation for the smaller radii observations.
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E. Saleker-Wigner inequalities

The proposal that fundamental limits can be utilized in order to govern mass and size

of the physical system to register time dates back to nearly six decades [230]. Salecker and

Wigner were pioneers in suggesting the use of a quantum clock [20, 21] in measuring distances

between events in space-time [21]. This quantum clock is given as constrains of smallest

accuracy and maximum running time as a function of mass and position uncertainties. As

introduced in section I, the Salecker-Wigner second constrain is more severe than HUP. The

latter requires that only one single simultaneous measurement of both energy and time,

for instance, can be accurate. The Salecker-Wigner constrains assume that the repeated

measurements should not disturb the clock. On other hand, the clock itself should be able

to accurately register time over its total running period.

Four decades later, Barrow applied Salecker-Wigner inequalities in order to describe the

quantum constrains on black hole lifetime [56]. It is found that the BH running time should

be correspondent to the Hawking lifetime, which is calculated under the assumption that

the BH is a black body. It is found that the Schwarzschild radius of BH is correspondent to

the constrains on Saelcker-Wigner size. Furthermore, the information processing power of a

black hole is estimated by the emitted Hawking radiation [57].

1. Salecker-Wigner inequalities and black hole evaporation

As anticipated in section VIE, the second Salecker-Wigner inequality is more severe

than the standard Heisenberg energy-time uncertainty principle. This is simply because it

requires that a quantum clock is able to show proper time even after the time was being

read. In other words, the quantum uncertainty in its position does not produce a significant

inaccuracy in its time measurement. This property is conjuncted to hold over long periods,

i.e., coherent time intervals. The terminology ”coherence” has to do with the correlation

properties of the signal used in the measurement. The ”coherent time” is defined as the

time period within which the signal remains ”coherent”

τc =
1

∆ νc
≈ λ2c
c∆λc

, (420)

where the subscript c refers to coherence.
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From HUP, the momentum uncertainty in single analogue quantum clock of mass m is

h̄/2∆ x, where ∆ x is uncertainty in its quantum position. After time t, the clock position

spread increases to

∆ x′ = ∆ x+
h̄ t

m

1

2∆ x
. (421)

Assuming that the mass of quantum clock remains unchanged, then Eq. (421) leads to a

minimum time spread

∆ x ≥
√
h̄
tmax

2m
, (422)

where tmax is the total ”coherent” time. Expression equation (421) is known as Salecker-

Wigner first inequality.

In the case that the mass depends on the uncertainty in position, then the minimum time

spread reads [230]

∆ x ≥ h̄ tmaxm
′ −
√
h̄ tmax [8m2 + (m′)2 h̄ tmax]

4m2
, (423)

where m′ = dm/d∆ x. The positive sign is evaluated as non-physical.

If the time measurements are repeated and have to remain reliable, then the position

uncertainty which in turn must be caused by the repeated measurements, should be smaller

than the minimum wavelength of the reading signals, i.e., ∆ x ≤ c Tmin. For an unsqueezed,

unentangled and Gaussian signal, the minimum size can be give in minimum mass of the

quantum clock. From Eq. (422), the mass-time inequality is given as [230]

m ≥ h̄

2 c2
tmax

t2min

, (424)

which is known as Salecker-Wigner second inequality.

2. Salecker-Wigner inequalities and linear GUP approach

Assuming a black hole of a size comparable to the Schwarzschild radius, rs = 2Gm/c2,

then Salecker-Wigner first inequality, Eq. (421), can be applied on it. From Eq. (422), the

maximum running time (lifetime) of black hole reads

tmax ≤ 8
G2m3

h̄ c4
, (425)

≤ 8
G

c3

(
m3

M2
p

)
, (426)
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where Mp =
√
c h̄/G is Planck mass. Here after, we refer to black hole mass as m. It

should not be mixed with the normalized mass of black hole mentioned in previous sections.

Obviously, these expressions are compatible with the Hawking lifetime [231]. Eqs. (425)

and (426) give answers to the question, ”how does the life of a black hole run out?” [230].

As discussed in the previous sections, the mass of black hole quantum clock is the only

parameter that describes a reliable mechanism. It offers an alternative possibility not based

on the assumption that black hole has to be a black body radiator [231].

At Planck scale, the space-time fluctuation becomes significant. Therefore, it is natural

to set a bound to the linear spread of the quantum clock, Eq. (422). The natural bound

is the Planck distance. As given in introduction, the GUP approach gives prediction for a

minimal measurable length. Therefore, α0 ℓp would be taken as the smallest linear spread

of the quantum clock.

At time t, the position uncertainty due to GUP becomes [230]

∆ x′ = ∆ x+
2∆ x+ 4

3
α0 ℓp

√
µ

4 (1 + µ) α2
0 ℓ

2
pm

h̄ t

[
1−

√
1−

8 (1 + µ) α2
0ℓ

2
p(

2∆ x+ 4
3
α0ℓp

√
µ
)2

]
. (427)

Then

∆ xGUP ≥ 1

2

[
−A1 +

√
2 (mA2 + 2 h̄ t)2√

m (mA2 + 2 h̄ t)2 (mA2 + 4 h̄ t)

]
, (428)

where

A1 =
4

3
α0ℓp

√
µ, (429)

A2 = 4(1 + µ)α2
0ℓ

2
p. (430)

At α0 = 0, the Salecker-Wigner position uncertainty is recovered

∆ xSW ≥
√
h̄
t

2m
. (431)

In Eqs. (428) and (431), the negative solutions are evaluated as non-physical. It is apparent

that Eq. (431), in which GUP effects are excluded, is identical with the Salecker-Wigner

first inequality, Eq. (422). The difference between Eq. (428) and Eq. (422) simply reads

[230]

∆ xGUP −∆ xSW =
1

2

[
−A1 − h̄2 t2max

√
2

mh̄3 t3max

+ (mA2 + 2h̄ tmax)
2

√
2

m(mA2 + 2h̄tmax)2(mA2 + 4h̄t)

]
, (432)
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Fig. 14: The black hole mass is given in dependence on its lifetime with (solid line) and without

(dash-dotted line) GUP and their difference (dashed line). The values of the variables A1, A2, h̄,

and c are taken unity. The graph is taken from Ref. [230].

which obviously vanishes at vanishing α0.

Assuming that the quantum position uncertainty should not be larger that the minimum

wavelength of measuring signal, so that in Eq. (428), it is assumed that ∆ xGUP ≤ c tmin

[230],

mGUP ≥ −
[
2 h̄ tmaxA3 ± 2h̄ tmax (A1 + 2c tmin)

√
A3

]

A2A3

, (433)

where A3 = A2
1−2A2+4c tmin (A1 + c tmin). The positive sign defines a non-physical solution,

where

2h̄ tmax (A1 + 2c tmin)
√
A3 > 2 h̄ tmaxA3, (434)

implies that

√
A3 < A1 + 2c tmin. (435)

At vanishing α0, Eq. (433) goes back to the Salecker-Wigner second inequality, Eq. (424).

At this scale, the inequality, Eq. (435), turns on an equality in tmin. The difference between

Eq. (433) and Eq. (424) results in [230]

mGUP −mSW =
1

2



−4 h̄ tmax

A2
− h̄tmax

c2 t2min

− 4 h̄2 t2max(A1 + 2 c tmin)
2

A2

√
h̄2 t2max (A1 + 2 c tmin)2A3



 . (436)
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Fig. 15: The black hole mass is given in dependence on rs. The values of the variables A1, A2, h̄,

and c are taken unity. The graph taken from Ref. [230].

The modified black hole lifetime can be derived assuming that the spread of quantum

clock has a minimum value, the Schwarzschild radius, rs,

tGUP =
1

16 h̄2

[
−h̄mA4 − h̄mA4 (1− 128A2)

1/2
]
, (437)

where A4 = −4A2
1 + 8A2 − 16rsA1 − 16r2s . The solution including negative sign is taken

as physical. At α0 = 0, the modified black hole lifetime, Eq. (437), goes back to Salecker-

Wigner inequality, Eq. (425). The difference between black hole lifetime in GUP approach

and Salecker-Wigner inequality reads [230]

tGUP − tSW = 2
mr2s
h̄

= 8
Gm

c3

(
m

Mp

)2

, (438)

and depicted in Fig. 14.

3. Conclusions

Based on the assumption that the black hole is a radiator, a reliable estimation of its

lifetime is introduced. To this end, another approach based the Salecker-Wigner inequalities

was utilized [230]. The reasons are obvious. The Salecker-Wigner inequalities are assumed to

be more severe than the Heisenberg energy-time uncertainty principle. The quantum clock

is conjectured to show proper time even after the time was being read and the quantum
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uncertainty in position does not produce a significant inaccuracy in the time measurement.

This property is conjuncted to hold over long ”coherent” time intervals.

At Planck scale, the smallest linear spread of the quantum clock is set to α0 ℓp. Assuming

the mass remains unchanged, the Salecker-Wigner first inequality is reproduced. When

applying GUP approach, the resulting position uncertainty does not match with Salecker-

Wigner first inequality. The difference depends on the maximum lifetime. Through Salecker-

Wigner second inequality, the latter can be related to the minimum lifetime.

Assuming that the quantum position uncertainty is limited to the minimum wavelength of

measuring signal, the Salecker-Wigner second inequality can be reproduced. The difference

between black hole mass with and without GUP is not negligible. The modified black hole

lifetime can be deduced if the spread of quantum clock is limited to a minimum value. The

natural one is the Schwarzschild radius. Based on GUP, the resulting lifetime difference

depends on black hole mass and α0.

F. Minimal time measurement

About fifty years ago, Shapiro pointed out that the possible time delay resulting from the

observation that light appearing to slow down as it passes through a gravitational potential

could be measured within our solar system [69, 236, 237]. As given in section VIIE 1,

utilizing the fundamental limits governing mass and size of any physical system, Salecker

and Wigner [20, 21] suggested that a minimum time interval can be even registered. In

1927, a hypothetical indivisible interval of time taken as a ratio between the diameter of the

electron and the velocity of light, being equivalent to approximately ∼ 10−24 s, was proposed

by Robert Levi [1].

Itzhaki considered the uncertainty principle and utilized the Schwarzchild solution in

large scale in order to estimate the minimal measurable time interval [238]. He found that

the uncertainty in time measurement depends on the distance separating the observer from

the event, the clock accuracy and size, and the time taken by photon to reach the observer.

Assuming distances, in which GR offers a good approach for QG, then the shortest distance

xc = β (Gh̄/c3)1/2, where β is an arbitrary parameter. The minimum error in the time
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measurement is estimated as

∆ t =

√
8G h̄

c5
ln

(
x

xc

)
= 2

√

2 ln

(
x

xc

)
tpl, (439)

where tpl =
√
G h̄/c5 is the Planck time. This expression is valid at distance x >

xc exp(2/β
2), where xc = β (G h̄/c3)1/2 is the shortest distance for which it is assumed

that GR is a good approximation to QG. The corresponding minimum error in the energy

is given by

∆E =

√√√√
h̄ c5

2G ln
(

x
xc

) =

√√√√
1

2 ln
(

x
xc

) h̄

tpl
. (440)

Then, the minimal time and maximal energy at xc < x < xc exp(2/β
2), respectively, read

∆ tmin =
xc
c

[
2

β2
+ ln

(
x

xc

)]
, (441)

∆Emax =
c4

2G
xc =

h̄ xc
2 c

1

t2pl
. (442)

1. Linear GUP approach: uncertainty in time and minimum measurable time

In linear GUP approach, the uncertainty in time reads

∆t ≥ 1

2

h̄

∆E

[
1− 2

α

c
∆E

]
=

h̄

2∆E
− α

c
h̄, (443)

implying that the physical limits require 2α∆E < c. The minimum measurable time interval

∆tm is to be deduced under the condition that the derivative d∆ t/d∆E vanishes. Then,

− h̄

2 (∆E)2
= 0, (444)

which leads to

∆Emax = ∞, (445)

∆ tmin = −α
c
h̄ = − α0

Mpl c2
h̄, (446)

where α is replaced by α0/Mplc. It is obvious that the measurable maximal energy gets

infinite while the measurable minimal time interval has a negative value. Both results are

obviously non-physical. While ∆E apparently violates the conservation of energy, ∆ t shows

that the direction of the arrow of time becomes opposite.
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2. Uncertainty in time and minimum measurable time at the shortest distance xc

The uncertainty in time as estimated from Schwarzchild solution at distance xc at which

GR is a good approximation to QG is given as [238]

∆ t ≥ h̄

2∆E
+G

∆E

c5
. (447)

Then, the maximal measurable energy and minimal measurable time interval, respectively,

read

∆Emax = c2
√
h̄ c

2G
=

h̄√
2

1

tpl
, (448)

∆ tmin =
1

c2

√
2G h̄

c
=

√
2 tpl. (449)

Both quantities are positive. It is obvious that both of them depend on the Schwarzshild

radius, which is related to the black hole mass, rs = (2G/c2)m. It is worthwhile to note

that both quantities are related to the Planck time tpl. Accordingly, they are bounded.

3. Time uncertainty and minimum measurable time at distance larger than xc

When the photon travels a distance x larger than xc, then the total uncertainty in time

is estimated as

∆ ttotal ≥ h̄

2∆E
+G

∆E

c5
+ 2G

∆E

c5
ln

(
x

xc

)
. (450)

The maximal measurable energy and corresponding minimal measurable time interval, re-

spectively, are given as

∆Emax =

√
c5h̄

2G[1 + 2 ln( x
xc
)]

=

√
1

2[1 + 2 ln( x
xc
)]
h̄ tpl, (451)

∆tmin =

√
h̄G(1 + 2 ln( x

xc
))

2c5
+

√
h̄G

2c5(1 + 2 ln( x
xc
))

[(
1 + 2 ln

(
x

xc

))]

=

√
2h̄G

c5

[
1 + 2 ln

(
x

xc

)]
=

√
2

[
1 + 2 ln

(
x

xc

)]
tpl. (452)

The resulting ∆Emin and ∆tmin are finite and positive. Both quantities are related to tpl.
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4. Conclusions

The maximal measurable energy ∆E and minimal measurable time ∆T are related to

tpl and therefore both are accordingly bounded. The Itzhaki model used the most simple

time measurement process. It was concluded that any particles that will be added must

necessarily increase the uncertainty of the metric without decreasing the minimal measurable

time. Furthermore, Itzhaki summarized that the measured uncertainty would represent a

basic property of the Nature.

The possibility of finding measurable maximal energy and minimal time are estimated in

different quantum aspects. First, we find that the linear GUP approach gives non-physical

results. The resulting maximal energy ∆E violates the conservation of energy. The minimal

time interval ∆ t shows that the direction of the arrow of time is backwards. So far, we

conclude that the applicability of the linear GUP approach is accordingly limited or even

altered.

G. Entropic nature of gravitational laws and Friedmann equations

In a one-dimensional chain as the Ising model [240], we assume that every single spin is

positioned at a distance d apart from the two neighbourhoods. Then, the macroscopic state

of such a chain can be defined by d. Depending on d, the entire chain would have various

configurations so that if d → l, the chain has much less configurations than if d ≪ l, where

l is the chain’s length. From statistical point-of-view, the entropy is given by the number

of microscopic states S = kB ln Ω. Due to second law of thermodynamics, such a system

tends to approach a state of maximal entropy. Accordingly, the chain in the macroscopic

state d tends to go to a another state with a much higher entropy. The force that causes

such a statistical tendency is defined as the entropic force. In light of this, the entropic

force is a phenomenological mechanism deriving a system to approach maximum entropy,

i.e., increasing the number of microscopic states which will be inhered in the phase space.

There are various examples on the entropic force, for example polymer molecules and even

the elasticity of rubber bands.

Verlinde has proposed that the gravity might not be a fundamental force and could be

considered as an entropic force [241]. In light of this, we recall that the earliest idea about
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gravity regarded as a non-fundamental interaction has been introduced by Sakharov [267],

where the spacetime background was assumed to emerge as a mean field approximation of

underlying microscopic degrees of freedom. Similar behavior is observed in hydrodynamics

[268]. As discussed in earlier sections, the BH entropy is to be related to the area of the

BH horizon, while the temperature is to be related to the surface gravity. Both entropy and

temperature are assumed to be related to the BH mass [24, 115]. Thus, the connection be-

tween thermodynamics and geometry leads to the Einstein’s equations of the gravitational

field from the relations connecting heat, entropy and temperature [269]. The Einstein’s

equations themselves connect the energy-momentum tensor with the space geometry. Advo-

cating the gravity as non-fundamental interaction leads to the assumption that the gravity

would be explained as an entropic force caused by changes in the information associated

with the positions of material bodies [241]. When combining the entropic force with the

Unruh temperature [270], the second law of Newton is obtained. But when combining it

with the holographic principle and using the equipartition law of energy, the Newton’s law

of gravitation is obtained. The modification on the entropic force due to corrections to

the area law of entropy, which is derived from quantum effects and extra dimensions, was

investigated [271].

1. Newton’s law of gravity and GUP approaches

The non-commutative geometry which is considered as a completely Planck scale effect

has been utilized to derive the modified Newton’s law of gravity [272–275]. All these ap-

proaches implement the following scheme (chain):

• modified theory of gravity →

• modified black hole entropy →

• modified holographic surface entropy →

• Newton’s law corrections.

The same flow chart is followed in deriving the linear GUP approach [63, 113]. The results

are compared with Randall-Sundrum model of extra dimension, which also predicts the

modification of Newton’s law of gravity at the Planck scale [276, 277], where we think there
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may be some connection between GUP and extra dimension theories because they predicting

similar physics at least for the case of Newton’s law of gravity, which may be considered as a

distinct result from the previous studies. The effect of GUP on the Newton’s law of gravity

was studied in Ref. [278].

2. Gravity as an entropic force

At temperature T , the entropic force F of a gravitational system is given as [241]

F∆x = T∆S, (453)

where ∆S is the change in the entropy so that at a displacement ∆x, each particle carries its

own portion of entropy change. From the correspondence between the entropy change ∆S

and the information about the boundary of the system and using Bekenstein’s argument

[24, 115], it is assumed that ∆S = 2πkB, where ∆x = h̄/m and kB is the Boltzmann

constant.

∆S = 2πkB
mc

h̄
∆x, (454)

where m is the mass of the elementary component.

The holographic principle assumes that for any closed surface without worrying about its

geometry inside, all physics can be represented by the degrees of freedom on this surface itself.

This implies that the QG can be described by a topological quantum field theory, for which

all physical degrees of freedom can be projected onto the boundary [249]. The information

about the holographic system is given by N bits forming an ideal gas. It is conjectured that

N is proportional to the entropy of the holographic screen,

N =
4S

kB
, (455)

then according to Bekenstein’s entropy-area relation [24, 115]

S =
kBc

3

4Gh̄
A. (456)

Therefore, one gets

N =
Ac3

Gh̄
=

4πr2c3

Gh̄
, (457)

where r is the radius of the gravitational system and the area of the holographic screen

A = 4πr2 is implemented in deriving this equation. It is assumed that each bit emerges
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outwards from the holographic screen, i.e., one dimension. Therefore each bit carries an

energy equal to kBT/2. By using the equipartition rule in calculating the energy of the

system, one gets

E =
1

2
NkBT =

2πc3r2

Gh̄
kBT =Mc2. (458)

By substituting Eq. (453) and Eq. (454) into Eq. (458), we get Newton’s law of gravitation

F = G
Mm

r2
. (459)

3. Black hole horizon area and entropy

For a black hole absorbing a quantum particle with energy E and size R, the area of the

black hole is supposed to increase by the amount [115].

∆A ≥ 8π ℓ2pER, (460)

The quantum particle itself implies the existence of a finite bound given by

∆Amin ≥ 8π ℓ2pE∆ x. (461)

By using Eq. (458) in the inequality expression (461), we obtain,

∆Amin ≥ 8πℓ2p

[
1− 2

3
α0ℓp

√
µ

1

∆x

]
. (462)

According to the argument given in Refs. [279, 280], the length scale is chosen to be the

inverse surface gravity

∆x = 2 rs, (463)

where rs is the is the Schwarzschild radius. This argument implies that

(∆x)2 ∼ A

π
. (464)

by substituting Eq. (464) in Eq. (462), we get [67]

∆Amin = λℓ2p

[
1− 2

3
α0 ℓp

√
µ π

A

]
, (465)

where parameter λ will be fixed later. According to Refs. [24, 115], the BH entropy is

conjectured to depend on the horizon area. From the information theory [281], it has been
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found that the minimal increase of entropy should be independent on the area. It is just

one bit of information which is b = ln(2) [67]

dS

dA
=

∆Smin

∆Amin
=

b

λℓ2p
[
1− 2

3
α0 ℓp

√
µ πA

] , (466)

where b is a free parameter. By expanding the last expression in orders of α and then

integrating, we get the entropy

S =
b

λℓ2p

[
A+

4

3
α0 ℓp

√
µ π A

]
. (467)

By using Hawking-Bekenstein assumption, b/λ = 1/4, so that

S =
A

4 ℓ2p
+

2

3
α0

√
π µ

A

4 ℓ2p
. (468)

Although it was found in Ref. [282] that the power–law corrections to Bekenstein-

Hawking entropy are ruled out based on arguments from Boltzmann–Einstein formula, it was

found that the power-law corrections may explain the observed cosmic acceleration today

[283].

We conclude that the entropy is directly related to the area and gets a correction due to

the linear GUP approach. The temperature of the black hole is given as [67]

T =
κ

8π

dA

dS
=

κ

8π

[
1− 2

3
α0 ℓp

√
µ
π

A

]
. (469)

Then, the temperature is not only proportional to the surface gravity but also depends on

the black hole’s area.

4. Linear GUP approach and entropic Newtonian laws

Using the corrected entropy given in Eq. (468), we find that the number of bits should

also be corrected as follows.

N ′ =
4S

kB
=
A

ℓ2p
+

4

3
α0

√
µ π

A

ℓ2p
. (470)

By substituting Eq. (470) into Eq. (458) and by using Eq. (453), we get

E = F c2
(

r2

mG
+
α
√
µ r

3mG

)
. (471)
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It is apparent that Eq. (471) implies modifications in the Newtonian laws,

F = G
M m

r2

(
1− α

√
µ

3 r

)
. (472)

From the Newtonian second law,

m r̈ = −G M m

r2

(
1− α

√
µ

3r

)
. (473)

where r is the apparent horizon radius

r̈ = −4πG

3
α ρ

(
1− α

√
µ

3r

)
. (474)

5. Entropic Newtonian laws and modifications in Friedmann equations

Multiplying both sides of Eq. (474) by aȧ results in [67]

ȧ ä = −4 πG

3
a ȧ ρ

(
1− α

√
µ

3r

)
, (475)

With the equations of state

p =
1

3
ρ, (476)

ρ0 = −3H (ρ+ p) = −4H ρ, (477)

and the relations

d

dt
ȧ2 = 2 ȧ ä, (478)

d

dt
(ρ a2) = ρ0 a

2 + 2 a ȧ ρ, (479)

the integration of Eq. (475) leads to

ȧ2 + C =
8 πG

3
ρ a2

(
1− α

√
µ

3 r

∫
d (ρ a2)

ρ a3

)
, (480)

where C is the integral constant, which as it will explained below, is nothing but the curva-

ture constant, k. The energy density can be expressed as

ρ = ρ0 a
−3(1−ω), (481)

where ω is the speed of sound, ω = p/ρ ≡ c2s.

d(ρ0 a
−3(1−ω)) = −3(1− ω)ρ0 a

−3ω−2) da, (482)

ρ a3 = ρ0 a
−3ω. (483)
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Accordingly,

ȧ2 + C =
8 πG

3
ρ a2

(
1− α

√
µ(3ω + 1)

3 r a

)
, (484)

which can be rewritten as [67]

[
H2 +

C

a2

]
+
α
√
µ

3
(3ω + 1)

[
H2 +

C

a2

]3/2
=

8 πG

3
ρ, (485)

where r a represents the apparent horizon radius, (H2 + C/a2)−1/2. Expression equation

(485) is the modified Friedmann equation, where C is equivalent to the curvature constant.

A detailed solution of H with respect to ρ is presented in Appendix A.

6. Conclusions

The expression equation (472) apparently states that the modification in the Newton’s

law of gravity seems to agree with the predictions of the Randall-Sundrum II model [276]

which contains one uncompactified extra dimension and length scale ΛR. The only difference

is the sign. The modification in the Newton’s gravitational potential on brane is given as

[277]

VRS =






−GmM
r

(
1 + 4ΛR

3πr

)
, r ≪ ΛR

−GmM
r

(
1 + 2ΛR

3r2

)
, r ≫ ΛR

, (486)

where r and ΛR are radius and the characteristic length scale, respectively. It is clear that

the gravitational potential is modified at short distance. We notice that Eq. (472) agrees

with Eq. (486) when r ≪ ΛR. The only difference is the sign. This result shows that

α ∼ ΛR, which would help to set a new upper bound on the value of the GUP parameter

α. This means that the proposed GUP approach [63, 113] is apparently able to predict the

same physics as Randall-Sundrum II model. The latter assumes the existence of one extra

dimension compactified on a circle whose upper and lower halves are identified. If the extra

dimensions are accessible only to gravity and not to the standard model field, the bound

on their size can be fixed by an experimental test of the Newton’s law of gravity, which has

only been led down to ∼ 4 mm. This was the result, about ten years ago [284]. In recent

gravitational experiments, it is found that the Newtonian gravitational force, the 1/r2-law,
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seems to be maintained up to ∼ 0.13 − 0.16 mm [285]. However, it is unknown whether

this law is violated or not at sub-µm range. Further applications of this modifications have

been discussed in [286] which could be the same for the GUP modification. This similarity

between GUP and extra dimensions applications would assumes a new bounds on the GUP

parameter α with respect to the extra dimension length scale ΛR.

The modification in Eq. (474) has multiple consequences. We have worked out one of

them. The Friedmann equations, Eq. (485), are derived. It is apparent that the entire

modification is placed in the second term in lhs, which obviously depends on H , as well.

The solution of H with respect to ρ is presented in Appendix A. It is obvious that the

dependence of H on ρ is not monotonic. Reducing ρ, or increasing the cosmic time t, is

accompanied with reducing H . Another behavior is characterized by certain value of ρ (or

at concrete t). The Hubble parameter H increases with the further decrease in ρ. The rate

strongly depends on geometry of the Universe, k.

H. Thermodynamics of high-energy collisions

As discussed, the GUP approach apparently causes modifications in the fundamental

commutator bracket between position and momentum operators. Then, it seems natural

that this would result in considerable modifications in the Hamiltonian. Furthermore, this

would affect a host of quantum phenomena, as well.

For a particle of mass M having a distant origin and an energy comparable to the Planck

scale, the momentum would be a subject of a tiny modification and so that the dispersion

relation can be expressed as in Eq. (348). Modified dispersion relations have be observed in

DSR [227, 228]. Calculations based on these have been presented [229].

The phase space integral can be expressed as follows [71].

∑

i

V

(2π)3

∫ ∞

0

d3p→
∑

i

V

2π2

∫ ∞

0

p2dp

(1− αp)4
. (487)

The partition function of an ensemble of N ideal (collision-free) constituents at vanishing
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chemical potential reads

ln z(T, V, α) =

N∑

i

±V gi
2π2

∫ ∞

0

p2

(1− α p)4

ln




1± exp


−

p

√
(1− 2α p) +

(
mi

p

)2

T







dp, (488)

where ± stand for bosons and fermions, respectively. Equation (488) can be decomposed

into

ln z(T, V, α) =
N∑

i

±V gi
2 π2

∫ ∞

0

p2 ln




1± exp


−

p

√
(1− 2α p) +

(
mi

p

)2

T








dp, (489)

+

N∑

i

±V gi
2 π2

∫ ∞

0

p2 F (α p) ln




1± exp


−

p

√
(1− 2αp) +

(
mi

p

)2

T








dp, (490)

where F (α p) is a series function.

The pressure is directly related to free energy of the system of interest; p(T, V, α) =

T∂ ln z(T, V, α)/∂V . The number density reads

n(T, V, α) =
N∑

i

± gi
2 π2

∫ ∞

0

p2

exp


−

p

√
(1−2αp)+(mi

p )
2

T




1± exp


−

p

√
(1−2α p)+(mi

p )
2

T



dp, (491)

+

N∑

i

± gi
2 π2

∫ ∞

0

p2 F (α p)

exp



−
p

√
(1−2αp)+(mi

p )
2

T





1± exp


−

p

√
(1−2αp)+(mi

p )
2

T



dp. (492)

The simplest way to calculate the energy density is to multiply the number of quantum

states n(T, V, α) by the energy of each state. Equations (490) and (492) take into account

possible modifications in the phase space [287–289]. In equations (489) and (491), the phase

space is apparently not a subject of modification, while the dispersion relation is.
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1. Linear GUP approach at the QCD scale

The central question is whether the GUP approach is applicable at the level of QCD scale,

∼ 1 GeV. If this would raise havoc with higher energy phenomena and would probably show

up in high-precision measurements at low energy before they showed up in QGP studies,

the experimental inferences of the QGP are barely better candidates to text this. The

phenomenology should be well thought out, as it seems that if the dispersion relation, Eq.

(348), were sufficiently modified to affect QGP observations, it would seem to alter other

measurements in a more easily measured way.

Instead of modifying the dispersion relation, we may allow the phase space to be modified.

In doing this, we start with the single-particle equilibrium distribution function [287, 289,

290]. The maximum number of micro states is given by solving

∂

∂nj

(S − αN − βE) =
∂

∂nj

(
lnN ! + lnΠn

i g
ni

i −
n∑

i

lnni!− αN − βE

)
= 0, (493)

which means that only the terms having same subscript j remain finite. The coefficients α

and β are Lagrange multipliers in entropy maximization. Each of these multipliers basically

adds some unknown amount of each independent constraint to the function being optimized

and ensures that the constraints are satisfied.

∂

∂nj
lnΠjg

nj

j − ∂

∂nj
lnnj !− α− βǫj = 0. (494)

Utilizing the Stirling approximation, then the occupation number,

nj = gj exp (−α− βǫj) , (495)

which apparently falls off exponentially with increasing ǫ, since, as will be shown below,

γ = exp(−α) is constant.
Then, the grand-canonical partition reads

Zgc(T, V, µ) = Tr
[
exp

µb̂−Ĥ

T
−α
]
, (496)

fgc(T, V, µ) =
exp

(
−Ĥ
T

− α
)

Zgc(T, V, µ)
. (497)

With these assumptions, the dynamics of the partition function can be calculated as sum
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over single-particle partition functions Z i
gc of all hadrons and resonances.

lnZgc(T, V, µ) =
∑

i

lnZ i
gc(T, V, µ)

=
∑

i

± gi
2π2

V

∫ ∞

0

k2dk ln
(
1± γ λi e

−ǫi(k)/T
)
, (498)

where λi = exp(µi/T ) is the i-th particle fugacity and γ = exp(−α) is the quark phase space

occupation factor.

Furthermore, constraints on Lorentz invariance violation are very essential. If Lorentz

invariance is instead deformed and the quantities in Eq. (488) transform under this deformed

transformation, this necessarily leads to a modification of the addition law of momenta, as

well. The definition of ”temperature”, the parameter β given in Eq. (494), involves taking

an average and thus summing energies. Then, it becomes non-trivial, i.e., β = 1/T would

be also a subject of modification.

2. Conclusions

The works on this topics are still ongoing [71]. At QCD scale, which is accessible by

means of high-energy experiments and lattice QCD simulations at high temperature. The

GUP approach would be applicable. In this limit, modifications on the phase space, Lorentz

invariance and even temperature should be utilized.
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VIII. ALTERNATIVE APPROACHES TO GUP

In this section, we introduce other GUP approaches, which introduce higher order modifi-

cations. One approach gives prediction for the minimal length uncertainty, section VIIIA. A

second one predicts maximum momentum besides the minimal length uncertainty, section

VIIIB. An extensive comparison between three GUP approaches is elaborated in section

VIIIC.

A. Higher order GUP with minimal length uncertainty

Nouicer suggested a higher order GUP approach [65] which agrees with the GUP given

in Eq. (75) to the leading order and predicts a minimal length uncertainty, as well. The

Heisenberg algebra of the new GUP approach can be given by

[x, p] = i h̄ exp
(
β p2

)
. (499)

Apparently, this algebra can be fulfilled from the following representation of position and

momentum operators:

X ψ(p) = i h̄ exp
(
β p2

)
∂p ψ(p), (500)

P ψ(p) = p ψ(p). (501)

These position and momentum operators are symmetric. Both imply modified completeness

relation

〈φ|ψ〉 =

∫ ∞

−∞
dp exp

(
−β p2

)
φ∗(p)ψ(p). (502)

The scalar product of the momentum eigenstates changes to

〈p|p′〉 = exp
(
β p2

)
δ(p− p

′
). (503)

Also, the absolutely smallest uncertainty in position is given as

(∆ x)min =

√
e

2
h̄
√
β. (504)
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B. Higher order GUP with minimal length and maximal momentum uncertainty

Another higher order GUP* approach was proposed by Pedram [64] assuming n dimen-

sions and implying both minimal length uncertainty and maximal observable momentum,

i.e.,

[Xi, Pj ] =
i h̄ δij

1− β p2
, (505)

where p2 =
∑3

j pj pj . If the components of the momentum operator are assumed to com-

mutate,

[Pi, Pj] = 0. (506)

The Jacobi identity determines the commutation relations between the components of the

position operator

[Xi, Xj ] =
2 i h̄ β

(1− β p2)2
(PiXj − Pj Xi), (507)

which apparently results in a non-commutative geometric generalization of the position

space. In order to fulfil these commutation relations, the position and momentum operators

in the momentum space representation can be written as

Xi φ(p) =
i h̄

1− β p2
∂piφ(p), (508)

Pj φ(p) = p φ. (509)

In one dimension, the symmetricity condition of the position operator implies the following

modified completeness relation with a domain varying from −1/
√
β to +1/

√
β [64] (appar-

ently differs from KMM [29]):

〈φ|ψ〉 =

∫ +1/
√
β

−1/
√
β

dp(1− βp2)φ∗(p)ψ(p). (510)

Furthermore, the scalar product of the momentum eigenstates will be changed to

〈p|p′〉 =
δ(p− p

′
)

(1− βp2)
. (511)

Also, the particle’s momentum is bounded from above

Pmax =
1√
β
. (512)
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The presence of an upper bound on the momentum agrees with DSR theories [62, 108].

As we shall see, the physical observables such as energy and momentum are not only non-

singular, but they are also bounded from above. The absolutely smallest uncertainty in

position reads

(∆X)min =
3
√
3

4
h̄
√
β. (513)

This new GUP* approach [64] gives an estimation for the minimal length uncertainty

and the maximal observable momentum, simultaneously. It includes a quadratic term of

momentum and apparently assures non-commutative geometry. The maximal observable

momentum agrees with the one estimated in DSR [62, 108]. If the binomial theorem is

applied on this GUP* approach, the GUP approach which was predicted in the String

theory [46, 100], black hole physics [44, 66] can be reproduced.

It is worthwhile to notice that his new GUP* approach [64] does not agree with the

commutators relation which was predicted in DSR [62, 108]. The latter contains a linear

term of momentum that is responsible for the existence of maximal observable momentum.

C. Comparison between three GUP approaches

Tab. VIIIC summarizes an extensive comparison between the GUP approaches of KMM

[29], Ali, Das, Vagenas (ADV) [63, 113] and Pedram [64]. The minimum position uncer-

tainty varies from h̄ α or h̄
√
β (both are equivalent) and

√
27 h̄ α/4, respectively. There is a

maximum momentum uncertainty in ADV, although, it is wrongly called maximum momen-

tum. The maximum momentum diverges in KMM, while it remains finite, 1/4α and 1/
√
β,

respectively, in ADV and Pedram. The momentum operator and resulting geometry remain

unchanged in all approaches. The position operator characterizes the different approaches.

The maximum localised state slightly varies. The resulting energy (wavelength) related to

quasiposition and wavefuction are very characteristic.
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Comparsion KMM [29] ADV [63, 113] Pedram [64]

Algebra [x, p] ih̄
(
1 + βp2

)
ih̄
(
1− αp + 2α2p2

)
ih̄

1−βp2

(∆x)min h̄
√
β h̄α 3

√
3

4 h̄β

(∆p)max -
Mplc
α0

-

Pmax Divergence ( 1
4α ) ( 1√

β
)

P.φ(p)

X.φ(p)

pφ(p)

ih̄
(
1 + βp2

)
∂pφ(p)

pφ(p)

ih̄
(
1− αp+ 2α2p2

)
∂pφ(p)

pφ(p)

ih̄
1−βp2

∂pφ(p)

Geometry [xi, xj ] 6= 0 [xi, xj ] 6= 0 [xi, xj ] 6= 0

〈 p2

2m〉max−localize−state
1

2mβ
1

32mα2
3

2mβ

(E(λ) or λ(E))quasi−position
1

2mβ

(
tan 2πh̄

√
β

λ

)2
2

mα2

(
tan( h̄α

√
7

λ
)π

tan( h̄α
√

7
λ

)π+
√
7

)2
2πh̄

(1− 2
3
mβE)

√
2mE

λ0 of wavefuntion 4h̄
√
β παh̄

√
7(

tan−1 η
3
+tan−1

4αppl−1
√

7

) 3πh̄
√
β

Tab. I: A comparison between the main features of the GUP approaches that were proposed by

KMM [29], ADV [63, 113] and Pedram [64].

IX. EQUIVALENCE PRINCIPLES AND KINETIC ENERGY

In this section, we review the argumentation against the GUP approaches. It seems

that dogmatic concepts would derive others to stand against the implementation of GUP.

But, any scientific discussion is concentrated on abstract argumentation. We start with the

”equivalence principle”, which is one of the five principles forming the basis of GR, where

the motion of a gravitational test particle in a gravitational field should be independent on

the mass and composition of the test particle [291]. On the other hand, when taking into

consideration the Strong (SEP) [66] and the Weak Equivalence Principle (WEP) [66], the

gravitational field is coupled to almost everything [291].

The GUP effects on the equivalence principles shall be studied in section IXA. The

universality of the gravitational redshif shall be discussed in section IXA1. The law of

reciprocal action shall be given in section IXA2. This leads to study of the universality

of the free fall, section IXA3. Finally, section IXB is devoted to the kinetic energy of

composite system.
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A. GUP effects on equivalence principles

The Newtonian mechanics in a gravitational field apparently fulfils WEP effects [66, 302].

This is nothing but the equivalence of inertial and the gravitational masses effects. The

QM apparently does not violate the equivalence principle effects. This can be shown from

studying the Heisenberg equations of motion. For simplicity, let us consider one-dimensional

motion with the Hamiltonian of a test particle. A macroscopic body considered as a point-

like particle of mass m embedded a uniform gravitational field. The Hamiltonian is given

by

H =
p2

2m
−mg x. (514)

The gravitational field is characterized by the acceleration g, which is directed along the x

axis. Note that the inertial mass m (in the first term) is equal to the gravitational mass m

(in the second one). Let us consider the classical limit using the correspondence between

the commutator in QM and the Poisson bracket in classical mechanics

{A, B} =
1

ih̄
[A, B]. (515)

The Heisenberg equations of motion reads

ẋ = {x, H} = {x, p}∂ H
∂ p

=
p

m
, (516)

ṗ = −{p, H} = −{x, p}∂ H
∂ p

= mg. (517)

These two equations ensure that the momentum at the quantum level is given as p = mẋ

and the acceleration ẍ is mass-independent as the case in the classical physics. It is obvious

that the equivalence principle is preserved at the quantum level, where {x, p} is unity.

According to KMM algebra, Eq. (76), the modified Heisenberg equations of motion read

ẋ = {x, H} = {x, p}∂H
∂p

=
p

m

(
1 + β p2

)
, (518)

ṗ = −{p, H} = −{x, p}∂H
∂p

= mg
(
1 + β p2

)
. (519)

In deformed space, the trajectory of the point-like mass in the gravitational field depends

on the particle’s mass [291]. If we suppose that the deformation parameter is the same

for all bodies, then the equivalence principle should be violated. The acceleration ẋ is not

mass-independent because of the mass-dependence through the momentum p. Therefore,
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the equivalence principle is dynamically violated because of GUP [292, 294]. In other words,

any added term of momentum to the Heisenberg relation leads to violating the equivalence

principle [292, 294]. The predicted violations of the equivalence principle are compared

to experimental observations for the universality [293] of the gravitational redshift, law of

reciprocal action and universality of free fall.

The bounds derived for β, the GUP parameter as given in KMM, are tighter than those

obtained from quantum mechanical predictions given in Ref. [74]. Keeping the same level

of approximation, the modified geodesic equation is given as [294]

d2 xi

dt2
≈ 1

2
(1 + 5 βm) ∂

i h00, (520)

where βm = β m2/2.

1. Universality of gravitational redshift

In the conventional case, βm = 0, Eq. (520), and from the Newtonian equation of the

gravitational potential at a distance r from a mass M [293, 294],

d2x

dt2
= −∇φ, (521)

φ = −GM
r
. (522)

As given in Ref. [295], h00 = −2φ =⇒ g00 = −(1 + 2φ), In the present case, we have

(1 + 5βm)h00 = −2φ =⇒ h00 ≈ −2φ(1− 5βm) =⇒ g00 = −(1 + 2φ(1− 5βm)) [294].

A test of the universal influence of the gravitational field on clocks based on different

physical principles requires clock comparison during their common transport through dif-

ferent gravitational potentials [293, 294]. There is a large variety of clocks which can be

compared in [293]:

• light clocks (optical resonators),

• various atomic clocks,

• various molecular clocks,

• gravitational clocks based on the revolution of planets or binary systems,

• the Earth rotation,
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• pulsar clocks based on the spin of stars

• clocks based on decay of particles.

In order to measure the gravitational redshift effect [295], one needs two observation points,

say x1, x2 and consider a given atomic transition [293, 294].

The ratio of frequencies ν2 and ν1, where ν2 refers to a light beam coming from x2 and

goes to x1 and ν1 refers to the end position, i.e., the position of observation, is given as

[97, 293, 294]

ν2(x2)

ν1(x1)
=

(
g00(x2)

g00(x1)

)1/2

=

(
1 + 2(1− 5βm)φ(x2)

1 + 2(1− 5βm)φ(x1)

)1/2

≈ 1 + (1− 5βm) (φ(x2)− φ(x1)) . (523)

On a phenomenological level, the comparison of two collocated clocks A and B was given in

Ref. [295]

νA(x2)

νA(x1)
= 1 + (1− 5(βm)A) (φ(x2)− φ(x1)) , (524)

νB(x2)

νB(x1)
= 1 + (1− 5(βm)B) (φ(x2)− φ(x1)) . (525)

Combining these two equations leads to

νA(x2)

νB(x2)
≈ (1− 5 [(βm)A − (βm)B]) (φ(x2)− φ(x1))

νA(x1)

νB(x1)
. (526)

A mismatch of the frequency ratios will signal a violation of the equivalence principle.

According to recent observational result, |αHg − αCs| ≤ 5× 10−6, where αHg, αCs stand for

clock dependent parameters for Mercury and Cesium [293, 294]. In our case αHg = 5βm2
Hg

and αCs = 5βm2
Cs [293, 294]. Conventionally, one considers β = β0/M

2
pl with β0 = 1 [74], in

which the mismatch turns to be

m2
Hg −m2

Cs

M2
pl

≈ 10−32. (527)

This signal is very small. Another interpretation [74] is to consider an upper bound for

β0 ≤
(

10−9

10−25

)2

× 10−6 ≈ 1026. (528)

Where β0 be the upper bound of the GUP paramter. This is below the upper bound of

β0 ≤ 1034. On the other hand, this is compatible with the electroweak scale but much tighter

than the bounds suggested in Ref. [74] from Lamb shift and Landau level measurements

[74, 90], but also weaker than β0 ≤ 1021 derived from scanning tunnelling microscope which

is the current measurement [74].
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2. Law of reciprocal action

A key model of the violation of the reciprocal action law is the estimation of the difference

in active and passive gravitational masses [293, 294]. This is accessed through the motion

of active and passive masses and their possible non-equality. The active mass mA is the

source of the gravitational field, where the gravitational potential ∆U = 4πmaδ(x), whereas

the passive mass mp reacts to it, miẍ = mp∇U(x). Here, mi is the inertial mass and x the

position of the particle. The equations of motion for a gravitationally bound of a two-body

system are given as [293, 294]

m1i ẍ1 = Gm1pm2a
x2 − x1
|x2 − x1|3

, (529)

m2i ẍ2 = Gm2pm1a
x1 − x2
|x1 − x2|3

, (530)

where the indices 1 and 2 refers to first and second particles. The motion of the center-of-

mass coordinate reads [293, 294].

X =
m1i x1 +m2i x2
m1i +m2i

, (531)

Ẍ = G
m1pm2p

m1i +m2i
C21

x2 − x1
|x2 − x1|3

, (532)

C21 =
m2a

m2p
− m1a

m1p
. (533)

Thus, if C21 6= 0, then the active and passive masses are different and the center-of-mass

shows a self-acceleration along the direction of x. This is a violation of Newtonian actio-

equals-reactio-law [293, 294]. A limit has been derived by Lunar Laser Ranging (LLR)

[293, 294, 296]. No self-acceleration of the moon has been observed yielding a limit of

|CAl−Fe| ≤ 7 × 10−13 [293, 294, 296]. This provides a considerably tighter bound β0 ≤ 1019

than the one provided by gravitational redshift (see above) and other earlier bounds [74].

3. Universality of free fall

According to GR, the neutral free particles follow the geodesic and hence the motion is

independent of the nature of the neutral particle. Its validity is tested by measuring the

so-called Eötvös parameter [293, 294].

η =
(gA − gB)
1
2
(gA + gB)

, (534)
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where gA and gB are accelerations of two particles A and B, respectively, in the ”same”

gravitational field. A non-zero η signals violation of universality of free fall. But in the

present case, the active mass gets different corrections for A and B and in turn the gravi-

tational field perceived by them is not the same. In the field of mass M , the acceleration of

A and B can be given as

gA = (1− 5(βm)A) g, (535)

gB = (1− 5(βm)B) g. (536)

Thus, we find that

η =
(1− 5(βm)A)− (1− 5(βm)B)

1
2
[(1− 5(βm)B) + (1− 5(βm)B)]

≈ β0
5m2

B − 5m2
A

M2
pℓ

. (537)

The torsion pendulum leads to η ≤ 2 × 10−13 which yields once again β ≤ 1019 [74, 90].

It should be noted that the results will not hold for macroscopic bodies, due to βm ≪ 1

[293, 294].

So far, we conclude that the minimally extended point-particle-model satisfying GUP

approach leads to a modified geodesic equation. At low energy and in the limit of weak

gravity, as considered in previous sections, this effect translates into a modified gravitational

potential. Furthermore, the correction depends on the test particle energy or its mass [294].

This leads to a violation in the equivalence principle. Results were predicted for the violation

in the contexts of gravitational redshift, law of reciprocal action and universality of free fall.

The comparison with experimental results predicts improved bounds for the GUP parameter

[294].

B. Kinetic energy of composite system

We recall that the kinetic energy has the additivity property and does not depend on

composition of a body but only on its mass. Then, we consider N particles with masses mi

and deformation parameters γi. It is equivalent to the situation when the macroscopic body

is divided into N parts, which can be treated as point-like particles with the corresponding

masses and deformation parameters [292]. We consider the case when each particle of the

system moves with the same velocity as the whole system. The kinetic energy can be given

as a function of velocity. From the relation between velocity and momentum, Eq. (518), in
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the first approximation over γ, we find [292]

P = mẊ
(
1− γm2Ẋ2

)
. (538)

Then, in the first order approximation of γ, the kinetic energy is given as function of velocity

K.E =
1

2
mẊ2 − γm3Ẋ4. (539)

At the quantum level, we show that the motion of the center-of-mass of a composite system

in deformed space is governed by an effective parameter. In other words, the deformation

parameter for a macroscopic body is given as

γ =
∑

j

µ3
iγi, (540)

where µj = mi/
∑

j mi and γi are the masses and deformation parameters of particles of

composite system (body).

C. Conclusions

The presence of GUP effects implying some noise in GR, where the equivalence principle

should be postulates of it. GUP introduces a mass term to the geodesic equation which

violates the equivalence principle. In section IX, various observations in GR were studied.

These should be estimated again the presence of these effects, and compared to the upper

bounds of the GUP approach. The latter was estimated in these observations with the

upper bounds [74, 90]. The scanning tunnelling microscope [74] appears differently [294].

This means that the violation of the equivalence principle does not support the idea of

modification of the Heisenberg principle. The presence of GUP effect corrects the kinetic

energy, which as known is independent on the composition of the system.
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X. DISCUSSION

The quantum aspects of the gravitational fields can emerge in the limit, in which the

different types of interactions, like strong weak and electromagnetism can be distinguished

from each other. In the string theory, the particles are conjectured to have their origin in

the fundamental strings. This fundamental scale is nothing but the string length, which is

also supposed to be in order of the Planck length. The current researches of the quantum

problems in the presence of gravitational field at very high energy near to the Planck scale

implies new physical laws and even corrections of the spacetime of our Universe. The

quantum field theory in curved background can be normalized by introducing a minimal

observable length as an effective cutoff in ultraviolet domain. The string cannot probe

distances smaller than its own length.

We review different approaches of GUP, that predict the existence of a minimal length

uncertainty. The non-zero length expresses a non-zero state in the description of the Hilbert

space and is able to fulfil the non-commutative geometry. These should have impacts on

discreteness and quantization of space and on aspects related to the quantum field theory.

The elicitation of the minimal length from various experiments, such as string theory, black

hole physics and loop quantum gravity, imitates the quantum gravity. All of them predict

corrections to the quadratic momentum in Heisenberg algebra. Many authors represent

such algebra under modification in position operator which agrees with the Hilbert space

representation and takes into consideration the states of space (eigenvectors) corresponding

to the energy (eigenvalue). Others represent such modified algebra by modification in the

linear momentum. This is motived by momentum modification at very high energy, which

is supposed to fulfil the Hilbert space representation but also approves the idea of modified

dispersion relation of the energy-momentom relation.

The Doubly Special Relativity should provide a GUP approach with an additional term

reflecting the possibility to deduce information about the maximum measurable momentum.

This new term and the one related to the minimal uncertainty on position are - in modified

Heisenberg algebra - of first order of momentum. Some authors suggest a combination of

all previously-proposed GUP-approaches in one concept, as anticipated in DSR and the

String theory, black hole physics and Loop quantum gravity. Others prefer to revise the

GUP of minimal length in order to overcome some obstacles. Another suggestion for GUP
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dependent on Feynman propagator should display an exponential ultra-violet cutoff. All of

these verify the predication of minimal length at very high energy, in spite of the different

physical expression or the algebraic representation of Heisenberg principle. In summary, we

have different GUP approaches with a lot of applications in various branches of physics.

An unambiguous experiment evidence to ensure these ideas is till missing. Some physicists

prefer to deny due to their convention. Some have objections. Here we review both points-

of-views. Value of the GUP parameter remains another puzzle to be verified. For example,

the principles of GR developed by Einstein are seen as obstacles against the interpretation of

the GUP approaches. It is thought that they violate the equivalence principle, for instance.

In thermodynamics, the natural property of the kinetic energies of particles is assumed to be

violated under consideration of these approaches. As a reason, symmetries can be broken in

quantum field theory. The value of the Keplerian orbit and the correction of the continuity

equation for some fields are no longer correct. In the present review, we have summarized all

these proposals and discussed their difficulties and applications. We aimed to elucidate some

of these proposals. On the other hand, from various gedanken experiments that have been

designed to measure the area of the apparent horizon of a black hole in QG, the uncertainty

relation is found preformed. The modified Heisenberg algebra, which was suggested to

investigate GUP, introduces a relation between QG and Poincare algebra. Under the effect

of GUP in an n-dimension space, it is found that even the gravitational constant G and the

Newtonian law of gravity are subject of modifications. The interpretation of QM through a

quantization model formulated in 8-dimensional manifold implies the existence of an upper

limit in the accelerated particles. Nevertheless, GUP approaches given in forms of quadratic

and linear terms of momenta assume that the momenta approach maximum value at very

high energy (Planck scale).

The Heisenberg uncertainty principle expresses one of the fundamental properties of the

quantum systems. Accordingly, there should be a fundamental limit of the accuracy with

which certain pairs of physical observables, such as the position and momentum of particle,

can be measured, simultaneously. In other words, the more precisely one observable is

measured, the less precise the other one can be determined. In QM, the physical observables

are described by operators acting on the Hilbert space of states.

Various examples can be mentioned to support the phenomena that uncertainty principle

would be affected by QG. In context of polymer quantization, the commutation relations
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are given in terms of the polymer mass scale. The standard commutation relations are

conjectured to be changed or better expressed to be generalized at Planck length. Such

modifications are supposed to play an essential role in the quantum gravitational corrections

at very high energy. Accordingly, the standard uncertainty relation of QM should be replaced

by a gravitational uncertainty relation having a minimal observable length of the order of

the Planck length. On the other hand, the detectability of quantum space-time foam with

gravitational wave interferometers has been addressed. The limited measurability of the

smallest quantum distances has been criticized. An operative definition for the quantum

distances and the elimination of the contributions from the total quantum uncertainty were

given. Barrow applied Wigner inequalities in order to describe the quantum constrains on the

black hole lifetime. It was found that the black hole running time should be correspondent

to the Hawking lifetime, which is to be calculated under the assumption that the black hole

is a black body. Therefore, the utilization of Stefan-Boltzmann law is eligible. It is found

that the Schwarzschild radius of black hole is correspondent to the constrains on Wigner

size. Furthermore, the information processing power of a black hole is estimated by the

emitted Hawking radiation.

There are several observations supporting GUP approaches and offer a valuable possibility

to study the influence of the minimal length on the properties of a wide range of physical

systems, especially at quantum scale. The effects of linear GUP approach have been studied

on compact stars, Newtonian law of gravity, inflationary parameters and thermodynamics

of the early Universe, Lorentz invariance violation and measurable maximum energy and

minimum time interval. It was observed that GUP can potentially explain the small observed

violations of the weak equivalence principle in neutron interferometry experiments and also

predicts a modified invariant phase space which is relevant to LT. It is suggested that GUP

can be measured directly in Quantum Optics Lab.

For example, the experimental tests of Lorentz invariance become more accurate. A

tiny Lorentz-violating term can be added to the conventional Lagrangian, then experiments

should test Lorentz invariance by setting upper bounds to the coefficients of this term, where

the velocity of light c should differ from the maximum attainable velocity of a material body.

This small adjustment of the speed of light leads to focus of the modification of the energy-

momentum relation and to add possible δv to the vacuum dispersion relation which could be

sensitive to a type of candidates for the quantum gravity effect that has been recently consid-
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ered in the particle physics literature. In additional to that, the possibility that the relation

connecting energy and momentum in special relativity may be modified at Planck scale, be-

cause of the threshold anomalies of ultra-high energy cosmic ray (UHECR) is conventionally

named as Modified Dispersion Relations (MDRs). This can provide new and many sensitive

tests for the special relativity. Successful searches would reveal a surprising connection be-

tween the particle physics and cosmology. The speed of light not limited to that but many

searchers about the modification of the energy-momentum conservations laws of interaction

such as pion photo-production by inelastic collisions of cosmic-ray nucleons with the cosmic

microwave background and higher energy photon propagating in the intergalactic medium

which can suffer inelastic impacts with photons in the Infra-Red background resulting in the

production of an electron-positron pair.

The systematic study of the black hole radiation and the correction due to entropy/area

relation gain the attention of theoretical physicists. For instance, there are nowadays many

methods to calculate Hawking radiation. Nevertheless, all results show that the black hole

radiation is very close to the black body spectrum. This conclusion raised a very difficult

question whether the information is conserved in the black hole evaporation process? The

black hole information paradox has been puzzled problem. The study of thermodynamic

properties of black holes in space-times is therefore a very relevant and original task. For in-

stance, based on recent observation of supernova, the cosmological constant may be positive.

The possible corrections can be calculated by means of approaches to the quantum gravity.

Through the comparison of the corrected results obtained from this alternative approaches,

it can be shown that suitable choice of the expansion coefficients in the modified dispersion

relations leads to the same results in the GUP approach.

The existence of minimal length and maximum momentum accuracy is preferred by var-

ious physical observations. Thought experiments have been designed to illustrate influence

of the GUP approaches on the fundamental laws of physics, especially at Planck scale. The

concern about the compatibility with equivalence principles, universality of gravitational

redshift and free fall and reciprocal action law should be addressed. The value of the GUP

parameters remains a puzzle to be verified. Furthermore, confronting GUP approaches to

further applications would elaborate essential properties. The ultimate goal would be the

empirical evidence that the same is indeed quantized and its fundamental is given by the

minimal length accuracy. If the current technologies would not able to implement this pro-
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posal, we are left with the empirical prove that the modifications of various physical systems

can be estimated, accurately. To this destination, we should try to verify the given ap-

proaches, themselves. We believe that the compatibility with MDR would play the role of

the Rosetta stone translating GUP in energy-momentum relations. The latter would have

cosmological and astrophysical observations.
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Appendix A: Solution of Eq. (485)

Equation (485) can be solved with respect to H . The first two real roots read

H = ±
(
−A +

D

3 3
√
2B2

− 2 3
√
2Cρ

D
+

3
√
2

3B2D
+

1

3B2

)1/2

, (A1)

where A = k/a2, B = α
√
µ(3ω + 1)/3 and C = 8πG/3. While

D =
3

√
27C2ρ2B4 − 18CρB2 + 3

√
3
√
27B8C4ρ4 − 4B6C3ρ3 + 2 (A2)

is real and strongly depends on ρ. H remains real as long as

D

3 3
√
2B2

+
3
√
2

3B2D
+

1

3B2
> A+

2 3
√
2Cρ

D
, (A3)

which is apparently valid, because of the denominator B. Fig. fig:AppndxH shows the

Hubble parameter H as a function of energy density ρ, positive root in Eq. (A1). The three

curves represents the three values of the curvature parameter k, 1 (dotted curve), 0 (solid

curve) and −1 (dashed curve) . The region of discontinuity reflects rho-values, at which the

square root, Eq. (A1), gets imaginary. In calculating these curves, we use a = G = α = 1,

ω = 1/3 and µ = (2.82/π)2. It is apparent, that the dependence of H on ρ is not monotonic.

Reducing ρ, which is corresponding to increasing the cosmic time t, is accompanied with

reducing H , as well. Then, starting from a certain value of ρ (and indirectly of t), H increases
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with the further decrease in ρ. In other words, the rate of expansion reduces. Then, then

rate rapidly increases. The rate strongly depends on geometry of the Universe, k.

0.1 0.2 0.3 0.4 0.5
Ρ

0.5

1.0

1.5

H

Fig. 16: The Hubble parameter H is given as a function of the energy density ρ. The three curves

represents the three values of curvature parameter k, 1 (dotted), 0 (solid) and −1 (dashed) from

top to bottom. The discontinuity reflects the region, in which the square root gets imaginary.
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H. Rechenberg, (Springer Verlag, Berlin, 1984).

[5] W. Pauli, ”Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a. / Scientific

Correspondence with Bohr, Einstein, Heisenberg a.o”, 2, years 1930-1939, (Springer, Berlin,

1993).

[6] H. T. Flint, Proc. Roy. Soc. A 117, 630-637 (1928).

[7] A. March, Z. Phys. 104, 93 (1936).

137
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