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Abstract

We postulate that the fundamental principles of Quantum Gravity
are diffeomorphism symmetry, unitarity, and locality. Local observ-
ables are compatible with diffeomorphism symmetry in the presence of
diff anomalies, which modify the symmetry algebra upon quantization.
We describe the generalization of the Virasoro extension to the diffeo-
morphism algebra in several dimensions, and its off-shell representa-
tions. These anomalies can not arise in QF T, because the Virasoro-like
cocycles are functionals of the observer’s spacetime trajectory, which
is not present in QFT. Possible implications for physics are discussed.

1 The postulate

All known physical phenomena are described by two theories: General Rel-
ativity (GR), which describes gravity, and Quantum Field Theory (QFT),
which describes everything else. For the past 85 years, physicists have seeked
to unify these two theories into a single theory of Quantum Gravity (QG).
Alas, GR and QFT are mutually incompatible, and despite an immense
amount of work by many leading physicists, there has been no clear progress.
In particular, the origin of mass quantization (why is m, ~ 1836 - m.?) re-
mains a complete mystery.

In view of this failure, I propose to take a step back and reexamine the
fundamental principles that QG should rest upon. A radical possibility is
that QG simply combines the fundamental properties of GR and QFT:

Postulate 1 (Main postulate, physical version) Quantum Gravity has
the following properties:
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1. Spacetime diffeomorphism symmetry (the gravity property).
2. Unitarity and energy bounded from below (the quantum property).

3. Locality (the field property).

None of the currently popular QG candidates satisfy all three properties.
There is of course an excellent reason for this: according to standard wisdom,
the three properties in the main postulate are mutually incompatible.

Theorem 1 (No-go theorem, physical version) There are no local ob-
servables in QG. In QFT, local observables are gauge-invariant unitary op-
erators. Since diffeomorphisms are part of the gauge group of GR, any
observable must be invariant under arbitrary diffeomorphisms, and hence it
can not be local. The three properties of Postulate [l are mutually exclusive.

To gain some further insight, let us rephrase the postulate in terms of
the representation theory of the diffeomorphism group.

Postulate 2 (Main postulate, representation theory version) Quantum
Gravity has the following properties:

1. All objects in the theory carry representations of the spacetime diffeo-
morphism group (the gravity property).

2. The representations are unitary and of lowest-energy type (the quan-
tum property).

3. At least some representations are non-trivial (the field property).
The no-go theorem can now be formulated as follows:

Theorem 2 (No-go theorem, representation theory version) The space-
time diffeomorphism group has no non-trivial, proper, unitary representa-
tions of lowest-energy type.

This theorem is correct as stated, but no theorem is stronger than its
axioms. The keyword is “proper”; if we relax that condition, the theorem
no longer holds, as the following example illustrates.

Consider the group of diffeomorphisms on the circle, and its Lie al-
gebra of vector fields vect(S!) = wvect(1); for brevity, the notation only



indicates the number of dimensions. The infinitesimal generators L,, =
—iexp(imx)d/0x, m € Z, satisfy

[Lm’ Ln] = (’I’L - m)Lm+n- (1)

The only unitary lowest-energy representation of vect(1) is the trivial one,
in accordance with Theorem 2l However, it is well known from conformal
field theory (CFT) how to solve this problem. vect(1) admits a non-trivial
central extension, the Virasoro algebra:

[Lim, Ln] = (n = m) Ly — 1_62(7”3 — )0t (2)

where §,, denotes the Kronecker delta and c is the central charge. A lowest-
energy representation has a unique vacuum vector |h), which satisfies

Lolh) = hlh),

(3)
L_,|h) = 0, for all —m < 0.
The Virasoro algebra has non-trivial unitary representations of lowest-energy
type, e.g. the entire Verma modules for ¢ > 1,k > 0 or the discrete unitary
series [3]:

6
c = 1——
m(m + 1) ()
1)r —ms)? —1
h = ((m+ )r —ms) , 1<r<m,1<s<nr.
4m(m + 1)

For these values of ¢ and h, CFT satisfies all conditions in Postulate

1. The theory has a symmetry under the diffeomorphism group on the
circle.

2. The theory is unitary and the energy is bounded from below - the Lg
eigenvalue is at least h for every state in the Hilbert space.

3. The theory is local in the sense that correlation functions depend on
separation. E.g., the correlator between two primary fields behaves
like

(3(2)p(w)) ~ (z —w) ™" (5)

when z — w.



It is now clear how the no-go theorem can be avoided: allow projective
representations of the spacetime diffeomorphism group.

Theorem 3 To satisfy all desiderata in the main postulate it is necessary
that symmetry of QG is some group extension of the spacetime diffeomor-
phism group. This converts the classical diffeomorphism gauge symmetry
nto a quantum global symmetry, which does not need to commute with ob-
servables.

On the Lie algebra level, this amounts to replacing vect(d), the Lie al-
gebra of vector fields in d dimensional spacetime, with a Lie algebra ex-
tension thereof. Since this extension generalizes the Virasoro algebra to
multi-dimensional manifolds, we call it the multi-dimensional Virasoro alge-
bra and denote it by Vir(d); Vir(1) is the ordinary Virasoro algebra.

2 The objections

Replacing vect(d) with Vir(d) is a drastic step, which may potentially lead
to several objections.

1. vect(d) does not possess any central extension at all when d > 1.

2. An extension of the diffeomorphism algebra is a diff anomaly. In QFT,
there are no diff anomalies in four dimensions [I].

3. Diffeomorphisms are part of the gauge symmetries of gravity. In QFT
observables are gauge-invariant operators, and hence all observables
must commute with diffeomorphisms.

4. A diff anomaly is a kind of gauge anomaly, which automatically renders
the theory inconsistent.

The first three objections are correct as formulated, but the statements
contain assumptions that are overly strong. The last objection is manifestly
false.

1. The diffeomorphism algebra in d > 1 dimensions does not possess
any central extension, but it does possess non-central extensions that
reduce to the Virasoro algebra in the case d = 1. Vir(d) is an exten-
sion of vect(d) by its module of one-forms modulo exact forms. When
d = 1, all one-forms on the circle are exact except the constant one,



and the extension is central. When d > 1, the extension does not com-
mute with diffeomorphisms, but there are still non-trivial Lie algebra
extensions.

The multi-dimensional Virasoro algebra is described explicitly in sec-
tion Bl For a classification of abelian extensions of vect(d) by modules
of tensor fields, see [4].

. There are no diff anomalies in four dimensions within the frame-
work of QFT. However, the multi-dimensional Virasoro extensions
described in section [ certainly exist. Hence there are diff anomalies in
arbitrary dimensions, in the same sense as the Virasoro central charge
is a conformal anomaly in two dimensions, but these anomalies can
not arise in QFT.

The off-shell representations of vect(d) act on tensor fields and tensor
densities. However, tensor densities are not a good starting point for
quantization when d > 1; in higher dimensions, normal ordering gives
rise to infinities coming from unrestricted sums over spatial degrees of
freedom. Instead we must start from histories in the space of tensor-
valued p-jets, p finite; locally, a p-jet is the same as a Taylor series
truncated at order p. Since a p-jet history consists of finitely many
functions of a single variable, normal ordering can be done without
introducing any infinitities.

A p-jet can be thought of as a regularization of the field, but not only
so. A Taylor series does not only depend on the function being ex-
panded, but also on the choice of expansion point, a.k.a. the observer’s
position. This is essential, because in all known representations of
Vir(d), the extension is a functional of the observer’s trajectory. The
Virasoro-like diff anomalies can not arise in QFT, because they depend
on degrees of freedom not available. To construct these diff anomalies,
we must replace QFT with a theory that depends on the observer’s
trajectory in addition to the fields. This theory is tentatively labelled
Quantum Jet Theory (QJT).

The off-shell representations of Vir(d) are explicitly described in sec-
tion M and some conjectured physical consequences of QJT in section

(6l

. Diffeomorphisms generate a gauge symmetry in the absense of diff
anomalies. A gauge anomaly converts a classical gauge symmetry
into a quantum global symmetry, which acts on the Hilbert space



rather than reducing it. Hence there may be local observables in QG
in the presence of diff anomalies.

4. It is simply not true that every theory with gauge anomalies is in-
consistent. Counterexample: according to the no-ghost theorem, the
free subcritical string can be quantized with a ghost-free spectrum de-
spite its conformal gauge anomaly ([5], section 2.4). A gauge anomaly
simply means that the classical and quantum theories have different
symmetry groups.

This does of course not mean that every theory with a gauge anomaly
can be rendered consistent, but the crucial consistency criterion is
unitarity, not triviality. E.g., the gauge anomalies that appear in the
standard model are related to the Mickelsson-Faddeev (MF) algebr
[11], which is known to lack good quantum representations; more pre-
cisely, the MF algebra has no non-trivial, unitary representations act-
ing on a separable Hilbert space [12]. Gauge anomalies of this type
must therefore cancel, which is also the case in the standard model.
In contrast, Vir(d) may well have non-trivial unitary representations
(this is at least the case when d = 1), and such diff anomalies are not
necessarily a sign of inconsistency.

Treating an anomalous gauge symmetry as a redundancy is of course
inconsistent, since it becomes a global symmetry after quantization.

3 Multi-dimensional Virasoro algebra

Denote by Vir(d) the Virasoro algebra in d dimensions. In a Fourier basis on
the d-torus, the generators are L,(m) and S#(m), m = (mg,m1,...mq—1) €
7%, which satisfy

[Lu(m),L,(n)] = nuL,(m+n)—m,L,(m+n)

- (cmyny + camyn,)m,SP(m + n),
[Lu(m),S"(n)] = nuS”(m+n)+6,m,S"(m+n), (6)
[§¥(m), S8 (n)] = 0,

m,St(m) = 0.

To see that this algebra indeed reduces to the usual Virasoro algebra when
d = 1, we notice that the condition myS%(mg) = 0 implies that S°(mg) is

! Note that the MF algebra is substantially different from the multi-dimensional affine
algebra Af f(d, g) described in Section [{ below.



proportional to the Kronecker delta, which indeed commutes with diffeomor-
phisms. So the Virasoro extension is central when d = 1 but not otherwise.
Nevertheless, (@) defines a well-defined and non-trivial Lie algebra extension
of vect(d) for every d.

The cocycle proportional to ¢; was discovered by Rao and Moody [14],
and the one proportional to ¢, by myself [6]. We refer to ¢; and ¢ as abelian
charges, in analogy with the central charge of Vir(1).

In the sequel we will use a different formulation not specific to tori. Let
& = M(x)0, be a vector field, with commutator &, ] = £*0,n"0,—n"0,£"0,,.
The Lie derivatives L¢ are the generators of vect(d). Vir(d) is defined by
the following brackets

(Leca] = Liea+ 555 [ &t 01 0,06 (@)D a(t)) +

2711
+ ¢ apaug“(q(t))aun”(q(t))},
[Le,q" ()] = &'(a(t)), (7)
[¢"(t),¢"(t)] = O.

The connection between ([6]) and () is given by

L,u (m) = L exp(im-z)0y,

(®)
sim) = 5= [ dt explim - q(t) (1)

In particular, the last condition in (@) becomes [ dt %(exp(im -q(t))) =0.

4 Off-shell representations

To construct Fock representations of Vir(1) is straightforward:
e Start from classical fields, i.e. primary fields = scalar densities.
e Introduce canonical momenta.
e Normal order.

The first two steps of this procedure generalize nicely to higher dimensions,
but the third leads to infinitites due to unrestricted sums over spatial direc-
tions. This is the reason why the representations of Vir(d), d > 2, do not
act on quantum fields.



Instead, we notice that vect(d) can be embedded into a Heisenberg alge-
bra with 2d generators ¢* and p,, and brackets

[¢",py] = idl), [¢",4"] = [pp, pv] = 0. (9)

The embedding is given by

L = ig"(q)py- (10)

Hence vect(d) acts on the corresponding Fock module, which can be identi-
fied with the space of spacetime fields:

Le®(q) = §"(0)0uP(q)- (11)

Since the Heisenberg algebra (@) is finite-dimensional, the Fock represen-
tation of vect(d) is proper. To obtain the extensions in (6]), we need to find
an embedding into an infinite-dimensional Heisenberg algebra. To this end,
introduce infinitely many oscillators ¢#(t) and p,(t), t € St, with non-zero
brackets

(9 (), po (t)] = i06(t — 1) (12)

The embedding is given by

Le Zi/dt & (a(?))pu(t), (13)

where the integral runs over 0 < ¢ < 27.

Unlike the finite-dimensional case, the infinite-dimensional Heisenberg
algebra (I2)) has several inequivalent Fock representations. To satisfy the
quantum property, we must choose the one with energy bounded from below,
where energy is identified with the frequency dual to the circle variable ¢.
The Fock module consists of all functions of the positive-frequency Fourier
components, plus half of the zero-frequency components.

However, the operators (I3)) do not act in a well-defined manner on
this Fock space, because the action on the Fock vacuum is infinite. To
remove this infinity, we must normal order. Because the oscillators g ()
commute among themselves, this amounts to moving the positive-frequency
components of p,,(t) in (I3) to the left. The normal ordered-operators satsify
the multi-dimensional Virasoro algebra () with ¢; = 2d, ca = 0. ¢*(¢) is
the same in both (7)) and (I3)).

More general Fock representations act on histories the the space of p-jets
[7], which locally can be identified with the space of Taylor series truncated



at order p. Consider a spacetime field ¢(z), expand it in a Taylor series
around ¢, and truncate at order p.

Ba)= Y —omlr—a)™ (14)

|m|<p

where m = (mq, m1,...,mg—1), all m;, > 0, is a multi-index of length |m| =
d—1
szo my, m! = mglm!..mg_1!, and

(@ — @)™ = (2% = ") (2" — g™ (@ — gt (15)

The space of p-jets is spanned by the Taylor coefficients ¢p,, |m| < p and
the expansion point ¢*.

Now consider p-jet histories by letting everything depend on an extra
circle parameter t € S'. The Heisenberg algebra is spanned by the oscillators

q"(t), pu(t), dm(t), and 7™ (¢), obeying ([I2) and
[dm (), ()] = idmo(t —t'). (16)

After normal ordering, denoted by double dots : :, we obtain a projective
Fock representation of the diffeomorphism algebra

Le=i [t { € @@pa0): = X A OTREO)om(D): }o (17

m,n

where the sum runs over all m and n such that jm| < |n| < p. T*(&) are
some functions of £ and its derivatives up to order p + 1, explicitly written
down in [7].

The construction is readily generalized to fermionic fields, but the ex-
pansion point ¢#(t) is of course always bosonic.

A major shortcoming of this construction is that only linear represen-
tations have been considered. In physics, we are ultimately interested in
unitary representations, but this leads to complications. One problem is is
that there is that the Fock space is too large — momenta and velocities are
unrelated.

Consider the observer’s position and momentum. We could try to impose
the constraint

pu(t) ~ i¢"(t), (18)

but this does not work because the two sides do not transform in the same
way (covariant vs. contravariant vectors). Nor can we lower indices with



the Minkowski metric, which is meaningless in the context of general dif-
feomorphisms (a two-tensor does not transform trivially under arbitrary
diffeomorphisms). To construct a meaningful phase space, we hence need to
consider on-shell representations. Let g, (x) be a metric field and g, m(?)
the corresponding Taylor coefficients. Then we may impose the constraint

Pu(t) & iguw,0()4" (1), (19)

which involves the zeroth order Taylor coefficient with multi-index m =
0. Unlike (I8]), the two sides of this equation transform identically under
vect(d), so the condition is meaningful.

The same type of condition must be imposed on the Taylor coefficients as
well. Morally we want to identify 7™ () and ¢y, (t), but this is complicated
and no explicit results have been found.

5  Multi-dimensional affine algebra

There is an analogous multi-dimensional affine algebra ([13] section 4). Let
map(d, g) be the algebra of maps from d-dimensional space to a Lie algebra
g with basis J¢, structure constants £, and Killing metric 6?°. Aff(d, g)
is defined by the brackets

Te.Tv] = Ty = 5 0% [ de POIXla®Wilale), (20

where X = X, (z)J* is a g-valued function. In the Fourier basis, this be-
comes

[J%(m), J°(n)] = if*J(m + n) — kd®m,S*(m + n). (21)

The Aff(d,g) generators commute with ¢#(¢) and S¥#(m), and admit an
intertwining action of Vir(d).

Note that this cocycle is proportional to the second Casimir operator.
Af f(d,g) is thus unrelated to the gauge anomalies appearing in the standard
model, which are proportional to the third Casimir.

Off-shell representations of Aff(d,g) are constructed in analogy with
Vir(d). Let M® denote matrices in some finite-dimensional representation
of g. The following expression defines an embedding of Af f(d,g) into the
Heisenberg algebra:

Tx= =i [t 3w O I (X a(®))dm(0) - (22)

10



where
n n—m-<‘q .

Hence Af f(d,g) acts on the Fock space.

Whereas the off-shell representations of Vir(d) are only understood at
the linear level, an exhaustive classification of unitary irreps of Af f(d, g) was
made long ago ([13], section 4). Consider the representation induced from a
unitary irrep of Af f(1,g) = g, living on some circle embedded in spacetime.
It turns out that each such representation is unitary and irreducible, and
that this exhausts the possibilities.

In the present formalism, this corresponds to specializing ([22]) to zero-
jets:

Tx = / dt X (q(t))J°(1), (24)
where
JUE) = —i s 7O ()M o(t) : . (25)

To verify that (24]) satisfies Af f(d, g), we only need to use that the J*(t) sat-
isfies g, which conversely means that we obtain an Af f(d, g) representation
for every g representation.

Pressley and Segal [13] found this result rather disappointing, but the
reason why the irreps only require zero-jets is that the current algebra does
not explore neighboring spacetime points. The circle ¢*(¢) commutes with
everything in sight and can therefore be replaced with a c-number; the
extension becomes central. In physics, there is always an intertwining action
of diffeomorphisms or some subgroup thereof, such as the Poincaré group.
Once such spacetime groups are taken into consideration, ¢/(t) becomes an
operator, the extension is no longer central, and interesting representations
depend on more than g.

6 Quantum Jet Theory

In order to fulfill all three desiderata in the main postulate, we must con-
struct projective representations of the diffeomorphism algebra. A necessary
condition is that we quantize histories in the space of p-jets rather than the
fields themselves. This theory will be named Quantum Jet Theory (QJT).

11



Since diff anomalies of the type in (6 can not arise in QFT, QJT is sub-
stantially different from QFT.

The Pressley-Segal classification of Af f(d, g) irreps mentioned in Section
may be regarded as a result in QJT.

In this section we explore some physical consequences of this insight,
ranging from the obvious to the speculative.

6.1 QJT as a regularization

p-jet histories arise naturally in the time evolution of physical systems. Re-
call that a spacetime tensor field is the history of a tensor field in space, or
a collection of such fields. Similarly, a p-jet history is the time evolution of
a p-jet in space. From this point of view, QJT is merely a regularization.
A spacetime field ¢(x), which depends on d variables x*, is replaced with
finitely many Taylor coefficients ¢, (t), which depend on a single variable
t. A problem in QFT is thus replaced by a problem in ordinary quantum
mechanics, and hence infinities are regularized.

What make the QJT regularization unique is that it is compatible with
spacetime diffeomorphism symmetry. The operators (I7)) act on the trun-
cated jet space, and satisfy the full diffeomorphism algebra without any
modification, apart from the abelian extensions. No other regularization
has this property.

An analogous statement holds for Aff(d,g). It is often claimed that
lattice gauge theory preserves the gauge symmetries of Yang-Mills theory,
but this is not quite true. When replacing spacetime R¢ with a lattice A, the
gauge group is changed from Map(R¢,G) to Map(A,G). Since the former
is infinite-dimensional and the latter finite-dimensional, the two groups are
not the same. In contrast, the full infinite-dimensional Lie algebra of gauge
transformations acts projectively in the QJT regularization of Yang-Mills
theory.

6.2 Field theory limit and anomaly almost-cancellation

At the end of the day, the regulator must be removed. In QJT this amounts
to take the truncation order p to infinity, assuming that an infinite jet can be
identified with the field itself. However, this limit is problematic because the
abelian charges ¢; and ¢y in ([7l) diverge in this limit; they typically behave
like p¢ for large p. E.g., for a scalar field, a p-jet has (d;p ) Taylor coefficients,
each of which contributes a finite amount to the abelian charges. The sum

thus diverges when p — co.
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This is not surprising, since normal ordering the fields directly formally
yields an infinite extension, i.e. nonsense. The p-jet regularization made it
possible to formulate the anomalies, but when the regulator is removed the
field theory problems resurface in the form of divergent anomalies.

A way to avoid this problem was discovered in [§]. If we start with
several fields, the leading divergencies can be cancelled, because the abelian
charges are polynomials in p. There must be both fermionic and boson
fields to obtain terms with different signs, and different Taylor series must
be truncated at different orders; we need jets of order p, p—1, ..., p—d+1
to cancel all terms in the abelian charges except for the p-independent one.
Explicit expressions can be found in [§].

The diff anomalies in QJT correspond to new degrees of freedom (dofs).
These dofs can not be local, because a field has infinitely many dofs and
accordingly yields infinite anomalies. If the local parts of the anomalies
cancel, the become invisible in field theory. The finite remainder must hence
be associated with finitely many non-local, distributed dofs.

The key theme of this paper is that diff anomalies are necessary to com-
bine diffeomorphism symmetry and locality. This statement must now be
refined. The diff anomalies in (7)) do not cancel, but they almost cancel in
the sense that they remain finite in the field theory limit.

6.3 The origin of the anomalies

Gauge anomalies arise when it is impossible to make a regularization that
preserves gauge symmetries. However, we noted that passage to jet space is
the unique regularization that preserves diffeomorphism symmetry, so how
can anomalies arise in QJT? The answer is that although QJT preserves the
symmetries, it does not preserve the equations of motion.

To make the point, it suffices to consider a free scalar field ¢(x) in
Minkowski space. The equations of motion read

E(x) = 1" 9,0, 6(x) — w(x) = 0. (26)

Pass to the corresponding space of p-jets (I4]). The Taylor coefficients obey
the equations of motion

Em(t) =D 0" Smspro(t) —wdm(t) =0, (27)
%

where we identified ¢ = 2°. m + p + v is the multi-index obtained from m

by adding unity to both m, and m,,.

13



The key observation is now that £y (t) does not belong to p-jet space
unless i m| <p—2. If ) m|=p—1orp, [m+pu+vl >pand ¢pmipuss(t) is
not a Taylor coefficient of order at most p. Hence the equations of motion
are undefined for the two highest orders of Taylor coefficients. The correct
configuration space is hence spanned by

e om(0) for jm| < p— 2. This part is finite-dimensional.
e ¢Om(t) for |[m| = p — 1,p. This part is infinite-dimensional.

The elements in the second group must be normal ordered, which gives rise
to anomalies.

The analysis was carried out for the free scalar field, but the conclusion
is general. In a theory where the equations of motions have order n, only
Taylor coefficients up to order p — n have equations of motion. The top n
orders have no well-defined equations of motion within p-jet space, and their
histories are not fixed by their values at ¢ = 0.

6.4 Four dimensions

On-shell representations on the p-jet phase space are natural candidates to
cancel the divergent part of the abelian charges. Starting with fermionic
and bosonic p-jets, the equations of motion are (p — 1)-jets and (p — 2)-jets,
respectively, and the continuity equation associated with a gauge symmetry
is a (p — 3)-jet. We can therefore hope to cancel the leading terms of the
anomalies as in Section [6.2] leaving only a finite contribution when p — co.

Assuming that the theory has fermions, bosons and irreducible gauge
symmetries, but no reducible gauge symmetries, the field content can be
chosen to make the divergent parts of all anomalies cancel in exactly four
dimensions. Details can be found in [9] [10]. That QJT seems to prefer four
dimensions is a quite robust prediction independent of the details of the
model.

Alas, applying the same reasoning to gauge symmetries in Yang-Mills
theory leads to serious problems, which casts some doubt on this argument.
Nevertheless, it is encouraging that the multi-dimensional Virasoro algebra
not only seems to predict the number of dimensions, but actually the correct
number.

6.5 Ultralocality and the observer

QJT is a regularization of QFT, but not only so. A p-jet depends not only
on the field being expanded, but also on the choice of expansion point.

14



Classically, the numerical value of a Taylor series in the limit p — oo is
independent of the expansion point, but for finite p this is not the case.
Moreover, we have seen that diff anomalies are functionals of the expansion
point, so the quantum theory must depend on it even in the field theory
limit.

The expansion point has a natural physical interpretation: it is the ob-
server’s position in spacetime.

QJT enjoys a stronger notion of locality than QFT: ultralocality. The
observables in QJT are built from Taylor coefficients, which are located on
the observer’s trajectory. Points away from the observer’s trajectory can
only be accessed in the field theory limit p — co. Not only must interaction
terms be local, but observables are local to the observer.

Ultralocality is quite natural from a physical point of view, because every
experiment is located inside a detector. E.g., a terrestial observer can not
observe the sun directly. Instead, a detector interacts with photons. The
observer may then deduce that the photons emanated from the sun eight
minutes ago, but a physical theory only needs to be concerned with the
primary observation of photons inside the detector.

6.6 The physical observer and QG

The previous section suggests that the physical problem with QG is that
the observer’s dynamics is ignored in present theories. The following simple
argument makes this explicit.

Every real experiment is an interaction between a system and an ob-
server, and the outcome of the experiment depends on the physical proper-
ties of both. In particular, it depends on the observer’s mass. Neither QFT
nor GR depend on the observer’s mass, so some tacit assumptions have been
made:

e In GR, the observer’s heavy mass is assumed to vanish, so the observer
does not disturb the fields.

e In QFT, the observer’s inert mass is assumed to be infinite, so the fields
do not disturb the observer. More precisely, the observer’s position and
velocity at equal times commute, so he can know his position at all
times with arbitary precision.

This suggests that the quantization of gravity does not necessarily in-
volve any new physics. Instead the crucial new ingredient is to include the
observer, and in particular the observer’s trajectory, into the dynamics. This
is automatically taken care of in QJT.

15



6.7 Cosmological constant

How can the diff anomalies in QJT manifest themselves in physical experi-
ments? The abelian charges in (7)) are generalizations of the Virasoro central
charge, which is known to couple to length scales. E.g. in Einsteins gravity
in three-dimensional AdS space, the central charge ¢ = —3¢/2G, where ¢
is the AdS radius and G is Newtons constant [2]. By analogy, we expect
that the abelian charges are manifested in the large-scale structure of the
universe, e.g. as a cosmological constant.

At the very least the anomalies can not correspond to new local fields,
since the number of new dofs is finite if the abelian charges remain finite in
the field theory limit.

6.8 Towards the end of physics

The situation in experimental physics today is somewhat schizophrenic. On
the one hand, the standard model (SM) describes all laboratory experiments
perfectly, making all BSM (beyond the SM) models look increasingly con-
trieved. On the other hand, cosmological data suggest that visible matter
only accounts for 5% of the universe’s mass, so most of the universe should
be described by BSM physics.

I suggest that one should take the laboratory data seriously, and that
(almost) all experimental physics has already been found, but that the re-
sults must be interpreted within the context of QJT. Let us address the
most serious objections to this conjecture:

e We know that 95% of the universe’s mass consists of dark matter and
dark energy. However, medieval astronomers knew that the universe
was a mechanical clockwork with at least thirteen epicycles. The re-
sult of an observation is always interpreted within some context, be
it epicycles or dark matter/energy. The diff anomalies in QJT must
manifest themselves in some way, quite likely in the large-scale struc-
ture of the universe. If the observation is parametrized in terms of dark
matter and energy, the diff anomalies could be mistaken for those.

e Gravity is not part of the SM, so there is at least some BSM physics.
However, gravity is very different from flat-space BSM physics. As
we argued in Section [6.6] the conceptual problem with gravity has to
do with the observer. Once the physical observer has been properly
included into the theory, the problems with quantizing gravity may
well disappear.
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This hypothesis would be invalid if the Higgs particle had turned out to
be a few GeV lighter. As far as I understand, the observed Higgs mass of 125-
126 GeV is exactly at the lower boundary of the region where the vacuum
is stable. That the SM seems to balance at the verge of inconsistency is
an interesting observation, and may be an important hint, as the following
historical parallel suggests. In the 1940s Lars Onsager wrote down some
inequalities that critical exponents must satify for consistency. Twenty years
later people realized that these inequalities were in fact equalities, i.e. critical
exponents balance on the verge of inconsistency. The underlying reason for
this is scale symmetry. By analogy, the almost inconsistent Higgs mass may
be due to some symmetry principle. The multi-dimensional Virasoro and
affine algebras are natural candidates.

7  Conclusion

Local observables are compatible with spacetime diffeomorphism symmetry,
provided that the latter is represented projectively, i.e. with diff anomalies.
Generalizations of the Virasoro extensions to the diffeomorphism algebra in
arbitrary dimension have been presented, and the off-shell representations
have been constructed. There are no definite results on unitarity, because
that requires of on-shell representations, which remain an elusive goal. Fi-
nally, we speculated on the physical implications of QJT.

It should be emphasized that QJT is substantially different from QFT,
as well as from all other approaches to QG. This is proved by the existence
of the non-trivial diffeomorphism cocycles in Vir(d). Only in the presence
of such diff anomalies can diffeomorphism symmetry be compatible with
locality.
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