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On precanonical quantization of gravity
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Abstract

Precanonical quantization is based on the mathematical structures of

the De Donder-Weyl Hamiltonization of field theories. The resulting for-

mulation of quantum gravity describes the quantum geometry of space-

time in terms of operator-valued distances and the transition amplitudes

between the values of spin connection at different points of space-time,

which obey the covariant precanonical analogue of the Schrödinger equa-

tion. In the context of quantum cosmology the theory predicts a proba-

bility distribution of a cosmological spin-connection field, which may have

an observable impact on the large scale structures in the universe.

Introduction. The attempts to construct quantum theory of gravity using

the methods of QFT originating from canonical quantization in Minskowski

space-time are known to lead to certain technical and conceptual difficulties.

One of them is the so-called “problem of time” which can be traced back to

the distinguished role of time in the canonical Hamiltonian formalism. The

approach of precanonical quantization is based on a different Hamiltonization

in field theory, which does not distinguish between the space and time variables.

The space-time variables are treated on the equal footing as a multidimensional

analogue of the time parameter in mechanics. This Hamiltonization is known

in the calculus of variations as the De Donder-Weyl (DW) theory (see e.g. [1]).

DW Hamiltonization. For a Lagrangian density L = L(ya, ya
µ, x

ν), which is

a function of the fields variables ya, their first space-time derivatives ya
µ, and

the space-time variables xµ, one defines the polymomenta: pµa := ∂L
∂ya

µ
, and the

DW Hamiltonian function: H(ya, pµa , x
µ) := ya

µ(y, p)p
µ
a − L. Then, in the regular

case det(∂2L/∂ya
µ∂y

b
ν) 6= 0, the Euler-Lagrange field equation can be written in

the DW Hamiltonian form:

∂µy
a(x) = ∂H/∂pµa , ∂µp

µ
a(x) = −∂H/∂ya, (1)
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which requires neither a splitting into the space and time nor infinite-dimensional

spaces of field configurations. Here the analogue of the extended configuration

space is the space of field variables ya and space-time variables xµ, and the ana-

logue of the extended phase space is a finite dimensional space of pµa , y
a and xµ.

Classical fields are sections in the corresponding bundles over the space-time.

DW theory and precanonical quantization. Field quantization based on

the above Hamiltonization uses the mathematical structures of DW Hamiltonian

formalism which were found in our earlier papers [2]. The polysymplectic form

on the polymomentum phase space: Ω := dpµa ∧ dya ∧ ̟µ, where ̟µ := ∂µ ̟

and ̟:=dx1 ∧ ... ∧ dxn is the volume form on n-dimensional space-time, leads to

the definition of Poisson brackets on forms of different degrees p and q which

represent dynamical variables: {[
p

F 1,
q

F 2 ]} = (−)(n−p)
n−p

X 1 d
q

F 2, where
n−p

X is a

Hamiltonian multivector field related to the p-form
p

F via the map:
n−p

X Ω =

d
p

F, p = 0, 1, ..., (n− 1). The space of forms for which this map exists is closed

with respect to the •-product:
p

F •
q

F := ∗−1(∗
p

F ∧∗
q

F ), and the bracket operation

equips it with the structure of the Gerstenhaber algebra, which appears here

as a generalization of the Poisson algebra structure to the DW Hamiltonian

formulation. Precanonical quantization relies on the fundamental brackets [2,3]:

{[pµa̟µ, y
b ]} = δba, {[p

µ
a̟µ, y

b̟ν ]} = δba̟ν , {[p
µ
a , y

b̟ν ]} = δbaδ
µ
ν . (2a, b, c)

Their quantization leads to the representation of polymomenta and (n−1)-forms

̟µ as Clifford-valued operators [3]:

p̂νa = −ih̄κγν ∂

∂ya
, ̟̂ ν =

1

κ
γν , (3a, b)

where the parameter 1
κ
appears on the dimensional grounds as a very small quan-

tity of the dimension of (n− 1)-volume; one could dub it a quantum of space.

The precanonical analogue of the Schrödinger equation [3,4]:

ih̄κγµ∂µΨ = ĤΨ, (4)

where Ĥ is the operator of DW Hamiltonian and Ψ(ya, xµ) is a Clifford-valued

wave function, is suggested by the fact that the DW Hamiltonian equations can

be writen in terms of the bracket of the fundamental variables in (2) with H [2],

which will generate their total co-exterior differential [3,4] (similarly to the gen-

eration of the total time derivative by the Poisson bracket with the Hamilton’s

function in mechanics). We can also argue [3] that (4) allows us to obtain the

classical field equations in DW form as the equations for the expectation values

of the corresponding precanonical operators, and to reproduce the Hamilton-

Jacobi equation of DW theory [1] in the classical limit. The scalar product is re-
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lated to the conservation law of (4): ∂µ

∫
dyTr

[
ΨγµΨ

]
= 0, where Ψ := γ0Ψ†γ0.

When applied to the scalar field theory [3] with L = 1
2
∂µy∂

µy−V (y),we obtain

Ĥ = − 1
2
h̄2

κ
2 ∂2

∂y2 +V (y). For the free field theory with V (y) = 1
2

m2

h̄2 y2 the spectrum

of normal ordered 1
κ
Ĥ reproduces the mass spectrum of free particles: mN ,

where N is the quantum number of Ĥ . By writing (4) in the form ih̄∂µΨ = P̂µΨ

and defining ŷ(x) := eiP̂νxν

y e−iP̂νxν

, we can derive the standard correlators of

ŷ(x) from the precanonical theory [5].

Standard QFT as a limiting case. The comparison of probabilistic inter-

pretations of precanonical Ψ(y, x) and the canonical Schrödinger wave functional

Ψ([y(x)], t), and the corresponding equations, allows us to establish a relation

between them [6] in terms of the Volterra’s multidimensional product integral [7]:

Ψ = Tr

{

∏

x

e−iy(x)αi∂iy(x)dxΨΣ(y(x),x, t)| 1
κ

β 7→dx

}

, (5)

where ΨΣ(y(x),x, t) is the restriction of Ψ(y, x) to the subspace Σ: (y=y(x), x0= t),

and the notation ΨΣ| 1
κ

β 7→dx
means that every β/κ in the expression of Ψ is

replaced by dx before the product integral is evaluated. In [6b] it is expli-

citly demonstrated how this product integral formula leads to the vacuum state

wave functional of free scalar field from the ground state solution of precanon-

ical Schrödinger equation. Formula (5) also tells us that the standard QFT

obtained from canonical quantization is a limiting case of vanishing 1
κ

of the

theory obtained from precanonical quantization. To be more precise, the lim-

iting transition involves the inverse of the quantization map in (3b) at ν = 0:
β
κ
7→ dx, that implies an infinitesimal quantum of space 1

κ
.

Precanonical quantization of gravity. While precanonical quantization

of metric gravity was discussed by us earlier [8], the appearance of the Dirac

operator in (4) makes the vielbein formulation of general relativity a preferable

starting point for precanonical quantization. Here the Lagrangian density

L = 1
κE

ee
[α
I e

β]
J

(
∂αωβ

IJ + ωα
IKωβK

J
)
+ 1

κE
Λe (6)

with the vielbein components eµI , the torsion-free spin-connection coefficients

ωIJ
α , the Einstein’s gravitational constant κE := 8πG, and e := det ||eIµ|| leads

to the singular DW Hamiltonization with the primary constraints

p
α
eI
β
:=

∂L

∂αeIβ
≈ 0, p

α
ωIJ
β

:=
∂L

∂αωIJ
β

≈ 1
κE

ee
[α
I e

β]
J . (7)

We use our generalization of Dirac’s approach to constrained systems and the
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Dirac bracket to singular DW theories [9]. The Poisson brackets of (n−1)-forms

constructed from the constraints: CeI
β
:= pα

eI
β

̟α, CωIJ
β

:= pα
ωIJ
β

̟α − 1
κE

ee
[α
I e

β]
J ̟α:

{[Ce,Ce′ ]} = 0, {[Cω ,Cω′ ]} = 0, {[CeKγ
,CωIJ

β
]} = −

1

κE

∂

∂eKγ

(
ee

[α
I e

β]
J

)
̟α, (8)

indicate that the primary constraints of DW formulation are second class. Us-

ing our generalization of the Dirac bracket to DW theory we were able to show

[10] that the Dirac brackets between the vielbeins and their polymomenta vanish,

e.g. {[pαe ̟α, e
′ ]}D = 0, and the Dirac brackets between the spin connection coef-

ficients and their polymomenta are the same as if there were no constraints, e.g.

{[pαω̟α, ω
′ ]}D = δω

′

ω . This fact simplifies quantization performed in [10]using the

generalized Dirac’s quantization rule: [Â, B̂] = −ih̄ ̂e{[A,B]}D, where the operator

of e ensures that tensor densities are quantized as density-valued operators.

From quantization of fundamental Dirac brackets and using the equations of

constraints (7) we conclude that the precanonical wave function does not depend

on vielbein variables, i.e.Ψ = Ψ(ωIJ
α , xµ), and obtain a represenation of the opera-

tors of vielbeins: êβI = −ih̄κκE γ̄
J ∂

∂ωIJ
β

, and the polymomenta of spin-connection:

p̂α
ωIJ
β

= −h̄2
κ

2κ
E
ê γ̄KL ∂

∂ωKL
[α

∂
∂ωIJ

β]

, where γ̄J are the fiducial Minkowskian Dirac

matrices and ê =
(

1
n!
ǫI1...Inǫµ1...µn ê

µ1
I1
...êµn

In

)−1
. This allows us to construct the

operator of DW Hamiltonian density eH restricted to the constraints surface C:

(eH)|C = −pα
ωIJ
β

ωIK
α ωβK

J − 1
κE

Λe, which is derived from (6), so that

Ĥ = h̄2
κ

2κE γ̄
IJω[α

KMωβ]M
L ∂

∂ωIJ
α

∂

∂ωKL
β

−
1

κE
Λ, (9)

and to obtain the covariant precanonical analogue of the Schrödinger equation

for quantum gravity:

ih̄κ /̂∇Ψ = ĤΨ, (10)

where /̂∇ := γ̂µ(∂µ + 1
4
ωµIJ γ̄

IJ ), in the explicit form:

(11)γ̄IJ

(
∂µ +

1

4
ωµKLγ̄

KL − ωK
µMωML

β
∂

∂ωKL
β

)
∂

∂ωIJ
µ

Ψ+ λΨ = 0,

where λ := Λ/(h̄2
κ2κ2

E) is a dimensionless constant.

The Hilbert space of the theory is defined by the scalar product with the

operator-valued invariant measure on the space of spin-connection coefficients:

〈Φ|Ψ〉 := Tr

∫
Φ [̂dω]Ψ, [̂dω] = ê

−n(n−1)
∏

µ,I<J

dωIJ
µ , (12)

which is obtained using the arguments similar to those in [11]. It is interesting

to note that the normalizability of precanonical wave functions actually implies

the quantum singularity avoidance, because Ψ should vanish at large ω-s, i.e.

at large space-time curvatures.
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Note that the potential issues related to the indefiniteness of Tr[ΨΨ] and the

gauge fixing, i.e. the choice of the coordinate systems and local orientations

of vielbeins on the average, when extracting a physical information from the

solutions of (11), are not yet sufficiently clarified.

The Green functions of (11): 〈ω, x|ω′, x′〉, which are the transition ampli-

tudes from the values of the spin-connection components ω′ at the point x′

to the values ω at the point x, provide an inherently quantum description of

space-time geometry, which generalizes the classical description of geometry

in terms of smooth spin-connection fields ω(x). Besides, the distances between

points are given by quantum operators, because the metric tensor in the present

formulation is operator-valued: ĝµν = −h̄2
κ

2κ2
Eη

IJηKL ∂2

∂ωIK
µ ∂ωJL

ν
. This type of

description of quantum geometry of space-time in terms of the transition ampli-

tudes on the connection bundle and the operator-valued metric structure on the

space-time complements the current intuitive ideas about the quantum space-

time suggested by quantum geometrodynamics, loop quantum gravity, string

theory and non-commutative geometry.

The fact that all dimensionful constants in (11) are absorbed in one dimen-

sionless constant λ, which depends on the ordering of operators ω and ∂ω, seems

to be important. Knowing λ we would be able to determine the value of our

constant κ. A naive estimation yields λ ∼ n6 and then κ at n = 4 is at the

nuclear scale, which is unexpected. If, however, we assume that κ is Planckian,

then the estimated value of Λ is ∼ 10120 times higher than the observable one,

which is a usual problem in naive QFT-based estimations of Λ. This coincidence

confirms that κ of precanonical quantization is related to the ultra-violet cutoff

scale in standard QFT and indicates that the cosmological constant is not likely

to be related to the ground state of pure quantum gravity alone.

Precanonical quantum cosmology. For n = 4 flat FLRW metric with a

harmonic time τ :
ds2 = a(τ )6dτ 2 − a(τ )2dx2, (13)

let us choose e0ν = a3δ0ν , e
I
ν = aδIν , so that ωI0

ν = ȧ/2a3δIν =: ωδIν (I = 1, 2, 3).

Then the precanonical Schrödinger equation, eq. (11), takes the form(
2

3∑

i=I=1

γ0I∂ω∂i + 3ω∂ω + c

)
Ψ = 0, (14)

where, if ω∂ω is Weyl-ordered, c = 3
2
+ Λ

(ℏκκE)2
is the effective cosmological con-

stant. By separation of variables Ψ := u(x)f(ω) we obtain: 2
∑3

i=I=1 γ
0I∂iu = iqu,

and (iq∂ω +3ω∂ω + c)f = 0. The solution of the latter: f ∼ (3ω+ iq)−c/3, yields
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the probability density

ρ(ω) := f̄f ∼
1

(9ω2 + q̄q)c/3
. (15)

One can either interpret it as a distribution of quantum universes according to

the value of ω = ȧ/2a3, i.e. essentially the expansion rate ȧ, or as a spatially

homogeneous distribution function of quantum fluctuations of the random cos-

mological spin-connection field ω. The possibility of the latter point of view

within the precanonical approach makes the usual interpretational issues of

quantum cosmology much less troublesome.

Note that our discussion is based on a toy quantum cosmology model, where

no influence of matter fields is taken into account so far. It would be interesting

to investigate if the probability distribution of spin connection (15) predicted by

precanonical quantum gravity theory manifests itself in the large scale structures

in the universe and can be tested by cosmological observations.
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