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Introduction to Quantum Gravity

Ricardo Paszko∗

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170, Santo André, SP, Brazil

In this talka, we give a glimpse of the problems with quantum gravity and some possible solutions.

I. INTRODUCTION

Over the centuries, physicists try to unify the funda-
mental interactions. An essential ingredient for these uni-
fication theories is the gauge symmetry, in particular, the
(special) unitary group.

Unification Group

Electromagnetic U(1)

Electroweak SU(2)× U(1)

Standard Model SU(3)× SU(2)× U(1)

Grand Unified Theory ?× SU(3)× SU(2)× U(1)

However, among the 4 fundamental interactions in na-
ture, only the gravitational interaction is related to other
group than the unitary. Furthermore, it is described by
other lagrangian than the Yang-Mills (despite the “acci-
dent” in (2 + 1)-dimensions [1]).

Interaction Group Lagrangian

Strong SU(3)

Weak SU(2)

}

Yang-Mills

Electromagnetic U(1)

Gravitational General Covariance Einstein-Hilbert

Therefore, from the unification viewpoint, it would be
reasonable to argue that general covariance is equivalent
to some unitary group and/or is the Einstein-Hilbert la-
grangian tantamount to Yang-Mills lagrangian? As we
will see, the answer to both questions is no.

II. COMPARISON BETWEEN YANG-MILLS

AND EINSTEIN-HILBERT LAGRANGIANS

The Yang-Mills lagrangian

LY M =
1

κ2
tr(⋆F ∧ F ),

where the curvature F = dA+A∧A, ⋆ is the Hodge dual
operator, tr is the trace over su(N) algebra and κ is the
coupling constant, can be rewritten, after rescaling the
gauge field A → κA, symbolically as

LYM = (dA)2
︸ ︷︷ ︸

Lfree

+ κ(dA)A2 + κ2A4

︸ ︷︷ ︸

Linteraction

, (1)
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and thus is easy to quantize — a free propagator and a
finite number of (two) vertices — at least in the high-
energy limit, where κ is small and perturbation theory
makes sense.

On the other hand, the Einstein-Hilbert lagrangian

LEH =
1

κ2

√
gR,

where κ2 = 16πG, G is Newton’s constant, the scalar
curvature R = gµν(Γα

µα,ν − Γα
µν,α + Γβ

µαΓ
α
βν − Γβ

µνΓ
α
βα),

the Christoffel symbol Γα
µν = 1

2g
αβ(gνβ,µ + gµβ,ν − gµν,β)

and g = det(gµν) is the determinant of the metric gµν , is
distinct from the Yang-Mills lagrangian. Even the equiv-
alent ΓΓ lagrangian [2]

LΓΓ =
1

κ2

√
ggµν(Γβ

µνΓ
α
βα − Γβ

µαΓ
α
βν)

is completely different from Yang-Mills, as can be seen
explicitly in some D-dimensional examples

D = 1, LΓΓ = 0

D = 2, LΓΓ =
1

2κ2

∣
∣
∣
∣
∣
∣
∣

g11 g12 g22
g11,1 g12,1 g22,1
g11,2 g12,2 g22,2

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

g11 g12
g12 g22

∣
∣
∣
∣
∣

3/2
(2)

D = 3, LΓΓ = · · ·

(after some algebra, the 2-dimensional case simplifies to
this fraction of determinants, this simplification doesn’t
seem to occur for higher dimensions). Proceeding as be-
fore, by rescaling the metric gµν → κgµν , is useless, spe-
cially in the 2-dimensional case which is scale invariant.
So, how to quantize?

III. THE QUANTIZATION PROBLEM

A. Quantization methods

There exist several methods of quantization: canon-
ical, constrained, path-integral, stochastic, etc. There
are pros and cons to each method, but all are solv-
able, roughly, only for quadratic terms in the lagrangian.
For example, the path-integral of the free Yang-Mills la-
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grangian, Eq. (1) with κ = 0, plus a source term J(x),

Zκ=0[J ] =

∫

DAe−
∫
d4x(Lfree+J·A)

=

∫

DAe−
∫
d4x[(dA)2+J·A],

can be done exactly, since these are gaussian integrals.
From the functional generator Z[J ], through differentia-
tion in J , the propagator, vertices, etc. can be calculated.
Some details still need attention, such as ghosts, owing
to gauge invariance, although the remaining is just a
power series expansion in κ. How about the free Einstein-
Hilbert lagrangian? Eqs. (2) with κ = 0?

B. Early attempts

Historically, the first attempt to quantize gravity was
done by Rosenfeld [3] through a “scale-shift” transforma-
tion, best known as a fixed background field, i.e.,

gµν(x) = δµν + κhµν(x),

(in this case the expansion is around a flat spacetime,
where gκ=0

µν (x) = δµν is the euclidean metric) such that,
after expansion in κ, the Einstein-Hilbert or the ΓΓ la-
grangian become

LEH = (dh)2
︸ ︷︷ ︸

Lfree

+ κ(dh)2h+ κ2(dh)2h2 + κ3(dh)2h3 + · · ·
︸ ︷︷ ︸

Linteraction

which resembles the Yang-Mills lagrangian, Eq. (1), but
has an infinite number of vertices.
Other attempts employing different types of transfor-

mations, for example, another choices of scale-shift such
as

√
ggµν = δµν + κhµν , g

µν = δµν − κhµν , . . . Or dis-
tinct background fields gµν = ϕµν + κhµν , where ϕµν is,
e.g., the (anti) de Sitter metric. Still another type using
the first order formalism as eiµ = δiµ + κhi

µ, where eiµ is
the tetrad field, etc. All have an identical problem —
the renormalization problem — after all, they share the
same properties, i.e., a fixed background field and a per-
turbative expansion in a dimensional coupling constant
κ ∝

√
G with length dimension [4].

C. The renormalization problem

Despite the initial miracle [5] in the pure gravitational
sector, in the presence of matter fields the one-loop cal-
culation has a divergence of the form c1R

2 + c2R
µνRµν ,

where c1 and c2 are constants. One possible way out was
to modify the Einstein-Hilbert lagrangian to a higher-
derivative lagrangian

L =
1

κ2

√
g(R+ αR2 + βRµνRµν),

which makes the theory renormalizable [6] but, unfortu-
nately, suffers from other problems [7]. Another way out
is to consider a more general function in the lagrangian
f(R) = R+ αR2 + βRµνRµν + · · · , although it becomes
more difficult the interpretation of the constants α, β, . . .
because of the lack of experimental data, since the energy
scale is the Planck energy 1/κ ∝ 1/

√
G ∼ 1028eV.

IV. SOME RECENT THEORIES

A. Perturbative theories

The renormalization problem found using perturbation
theory has alternative solutions, to wit: the semiclassi-
cal [8] and effective [9] methods. In the former, gravity
is a classical field and everything else is quantized; now
in the latter, everything is quantized, including gravity,
but the Feynman amplitude is expanded in terms of the
momentum exchanged. Despite being quite different ap-
proaches, they are equivalent [10] in the sense that both
give results strictly valid in the low-energy limit.

B. Non-perturbative theories

We do not intend to discuss these theories, although
some comments are in order. As far as we know, even in
the 2-dimensional toy model, there is no choice of vari-
ables that makes the fraction of determinants, Eq. (2),
into a fourth order polynomial, Eq. (1), at least with-
out ruining the measure in the path-integral as in the
unimodular gravity [11]. Therefore, other choices of vari-
ables seem unhelpful, specially in the 4-dimensional case.
Besides that, theories of everything have struggled to
overcome worse problems than the renormalization prob-
lem. In view of Occam’s razor, it is reasonable to search
for a simpler solution.

C. Modified BF theory

A possible solution to the presented problems is a ex-
pansion in the dimensionless and extremely small cou-
pling constant κ2 = GΛ ∼ 10−120, where Λ is the cosmo-
logical constant. This is achieved through a modification
of the BF theory lagrangian L = tr(−iB ∧ F ), namely,

L = tr(−iB ∧ F − κ2B ∧ ΓB), (3)

which is polynomial, and for Γ = γ5 reproduces the
Einstein-Hilbert lagrangian [12], and for Γ = ⋆ also re-
produces the Yang-Mills theory [13].
In this approach, the metric is a derived object, i.e.,

the SO(5) gauge field AIJ
µ breaks into a SO(4) spin con-

nection Aij
µ = ωij

µ and a tetrad field Ai5
µ =

√
Λeiµ, and

thus

gµν = eiµe
j
νδij =

1

Λ
Ai5

µ Aj5
ν δij . (4)



3

Even in the lorentzian case the gauge group is SO(4, 1)
or SO(3, 2), and hence the general covariance group
seems related to the (broken symmetry) special orthogo-
nal group. Moreover, as an expansion around a topolog-
ical theory, it is background independent.
Despite some discussions [14], common to new ideas,

it is worth noting that Eq. (4) is a sign of the conjecture
that gravity is the square of a gauge field [15].

V. CONCLUSIONS

In this talk, we give a glimpse of the quantization prob-
lem of gravity. As argued, this problem is due to the non-

polynomial form of the Einstein-Hilbert lagrangian. At-
tempts to recast this expression into a polynomial form,
as the fixed background field, seem unhelpful and lead
to another problem — the renormalization problem —
that is also related to the dimensional coupling constant
κ2 ∝ G.

Therefore, a simple theory that can be written in poly-
nomial form, with background independence and a di-
mensionless coupling constant, is a serious candidate as
a possible solution to these problems. As we have seen,
a theory that fulfills all these prerequisites is the Modi-
fied BF. Furthermore, from the unification point of view,
this theory is worthwhile, inasmuch as it reproduces the
Einstein-Hilbert and the Yang-Mills lagrangians.
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