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Abstract. The idea that the Universe is a program in a giant quan-
tum computer is both fascinating and suffers from various problems.
Nonetheless, it can provide a unified picture of physics and this can be
very useful for the problem of Quantum Gravity where such a unification
is necessary. In previous work we proposed Quantum Graphity, a simple
way to model a dynamical spacetime as a quantum computation. In this
paper, we give an easily readable introduction to the idea of the universe
as a quantum computation, the problem of quantum gravity, and the
graphity models.

1 Introduction

That the Universe can be thought of as a giant computation is a straightforward
corollary of the existence of a universal Turing machine. The basic idea (nicely
summarized, for example, by Deutsch in [1]) goes as follows. The laws of physics
allow for a machine, the universal Turing machine, such that its possible motions
correspond to all possible motions of all possible physical objects. That is, a
universal quantum computer can simulate every physical entity and its behavior.
This means that physics, the study of all possible physical systems, is isomorphic
to the study of all programs that could run on a universal quantum computer.
In short, our universe can be thought of as software running on a universal
computer.

Should this logical inference affect our understanding of physics, or even
change the way we do science? Several different lines of thought say yes, an
idea most concretely articulated in the field of cellular automata and quantum
information theory.

In 1969, Konrad Zuse, in his book Calculating Space, proposed that the phys-
ical laws of the universe are fundamentally discrete, and that the entire universe
is the output of a deterministic computation on a giant cellular automaton [2].
Cellular automata (CA) are regular grid of cells, and each cell can be in one of
a finite number of states, usually on or/off, or black/white. An initial state of
the CA is updated in global discrete time steps, in which each cell’s new state
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changes as a function of its old state and that of a small number of neighbors.
A concrete example of Zuse’s vision is Conway’s Game of Life. The rules are
simple: If a cell has 2 black neighbors, it stays the same; if it has 3 black neigh-
bors, it becomes black; otherwise it becomes white. The result is remarkably
rich behavior on the border between randomness and order. A striking feature
is the occurrence of gliders, small groups of cells that appear to move like inde-
pendent emergent entities. It is possible to arrange the automaton so that the
gliders interact to perform computations, and it can be shown that the Game
of Life is a universal Turing machine [3]. It is simple to see how this evokes the
possibility that we live in a giant CA [4]: In our CA Universe, what we think of
as elementary particles may just be emergent gliders. Since CAs exist that are
Turing machines, it is in principle possible to have any kind of glider behavior
generated by a CA, including gliders observing the laws of elementary particle
physics. We don’t know how these are generated because we have no access to
the microscopic cells, so we make physical theories about particle-like objects,
but, in reality, we live in a CA.

Quantum information theory has given a new and interesting twist on the
Universe as a Computation. A common idea that is advocated by many practi-
tioners in this field is that everything fundamentally is information, an old idea
that can be traced at least back to Wheeler’s influential it from bit [5]. In that
view, all interactions between physical systems in the universe are instances of
information processing, and the information involved in those processes is more
primary than the physical systems themselves. Instead of thinking of particles
as colliding, we should think of the information content of the particles being
involved in a computation. By simple interpolation, the entire universe is noth-
ing but a giant computation. As Lloyd puts it in [6], the universe computes “its
own dynamical evolution; as the computation proceeds, reality unfolds”.

These are fascinating ideas when loosely interpreted, but with obvious prob-
lems, including: 1. What does it mean that information is more fundamental than
its physical instantiation? 2. Since any observation we can make, and anything
physics describes, is just the program, there is no way to know the hardware
that runs that program. The program can perhaps give us some hints as to what
machine could efficiently run it, but at the end of the day this scenario assumes
a fundamentally unknowable machine. 3. Is that machine running just one pro-
gram, our universe? If yes, how is that “mother computation” chosen? If no,
we need a meta-program that runs multiple programs, a computer version of
the multiverse idea [7]. By one more iteration, multiple computers, each running
multiple programs, are a logical possibility, leading to an extreme form of a mul-
tiverse. Or are we secretly assuming a Programmer? 4. The idea requires that
all of physics is computable. 5. The CA Universe, in addition, advocates that
the universe is fundamentally discrete. Fundamental discreteness is a very old
and attractive idea but it remains to be seen whether it can be reconciled with
observable physics, and, in particular, with quantum mechanics and Lorentz in-
variance. Quantum mechanics makes essential use of the complex numbers, a
continuous field. It is, of course, logically possible to push fundamental discrete-



ness to an extremely small scale, perhaps the Planck scale, and claim that the
world appears continuous only by approximation, because we have no access to
that small scale. This is where Lorentz invariance comes in. The Lorentz trans-
formations form a non-compact group, meaning that by boosting an observer
sufficiently, we can blow up any tiny amount of discreteness to arbitrarily large
size. Depending on the details of the physics, even scales smaller than the Planck
scale can thus become observationally accessible. Reconciling observational con-
straints on Lorentz invariance violations and fundamental discreteness is a very
active subject of research in quantum gravity and quantum gravity phenomenol-
ogy [8].

At the end of the day, the Universe as a Computation idea may just reflect
the current way we understand and bring order to our surroundings. It is pos-
sible that all it does is shift us a little from the “Blind Watchmaker” to the
“Blind Programmer”. I find it very likely that the Universe as Computation is
a culturally determined and temporary idea. In any case, fun as it may be to
speculate about the universe being a computer, it is rather sterile to do so in
the abstract. The interesting question is whether this scenario can be put to
good uses: Does it give us useful new tools and methods with which we can solve
problems we couldn’t solve before? Does it raise new interesting questions? The
purpose of this article is to argue that it does, and that the relevant area of
physics to explore and use the idea of the Universe as a Computation is the field
of Quantum Gravity and Quantum Cosmology.

If there is merit to this idea, it should be useful in the physics of the entire
universe. This is the research field of Quantum Gravity and Quantum Cosmology.
Quantum Gravity needs to unify quantum field theory, the physics of matter,
with general relativity, the physics of spacetime, into a single consistent theory.
The universe as a Computation suggests a new kind of unification: physical
systems and their dynamics can be represented in terms of their information
content and their dynamics is the processing of that information.

We will illustrate this view with an example. In [22,17], we initiated a study
of quantum gravity using spin systems as toy models for emergent geometry
and gravity. These models, which we named quantum graphity models, are based
on quantum networks with no a priori geometric notions. We have repeatedly
found the quantum information perspective to be useful, both as a tool chest (for
example, as we will see, the Lieb-Robinson speed of information propagation can
be used to derive the speed of light [18], or error correction to define conserved
quantities [19]) and as an aid to conceptual clarity: the information theoretic
language allows us to do physics without reference to a background geometry.

The purpose of this introductory article is to illustrate these ideas in a brief
and self-contained format and invite discussion and exchange of ideas between
the fields of quantum gravity and computer science. Technical details the reader
can find in the suggested references. In the next Section, we state the problem
of Quantum Gravity in terms of the breakdown of classical spacetime at Planck
scale and the problem of time. In Section 3, we summarize the basics of Quantum
Graphity, the representation of pre-geometry as qubits of adjacency, an example



of interacting matter-geometry model, a sketch of the derivation of the speed
of light from the fundamental dynamics, the toy trapped surfaces that arise in
these systems, and the mechanism by which matter inside that world sees an
emergent curved geometry. We briefly summarize our conclusions in Section 4.

2 The Problem of Quantum Gravity

The field of Quantum Gravity is the attempt to unify General Relativity and
Quantum Theory. In spite of their impressive successes, the two theories leave us
with a gap in situations in which the quantum effects of the gravitational field
become important. This hampers our understanding of some of the most fasci-
nating modern physics, such as the physics of black holes [9], Hawking radiation
[10], and the very early universe [11], or leads to absurdities such as the cosmo-
logical constant problem [12]. These are all situations in which the curvature of
spacetime is so high that we are not confident in the reliability of quantum field
theory calculations.

The length scale we expect quantum gravitational effects to become signifi-

cant is, by dimensional analysis, the Planck length, lPl =
√

GN h̄
c3 , the combina-

tion of Newton’s constant GN , Planck’s constant h̄, and the speed of light c. This
is incredibly small, lPl ∼ 10−35m, or, equivalently, corresponds to energy scales
of 1019GeV . At Planckian scales, the concepts of size and distance break down.
Any microscopic probe energetic enough to precisely measure a Planck-sized
object needs to be so energetic (to measure lPl, its Compton wavelength must
be ∼ lPl) that it would completely distort the region of space it was supposed
to measure. In this sense, the notion of a classical spacetime manifold breaks
down at Planck scale. A quantum theory of gravity that reconciles general rela-
tivity and quantum theory, or replaces them, is required to understand physics,
including spacetime, at that scale.

In spite of decades of research, finding a satisfactory quantum theory of
gravity still eludes us. Much of the difficulty in reconciling general relativity and
quantum theory comes from the fundamentally different assumptions that these
theories make on how the universe works. General relativity describes spacetime
as a manifoldM with a dynamical metric field gµν , and gravity as the curvature
that spacetime. Quantum field theory describes particle fields on a flat and fixed
spacetime. Naive quantization of gravity, treating it as another quantum field,
leads to nonsense as gravity is non-renormalizable. The difference between the
two theories can be phrased in terms of the way each treats time. A fundamental
lesson of general relativity is that there is no fixed spacetime background space-
time: geometry tells matter where to go and matter tells geometry how to curve.
The spacetime geometry is a dynamical field. In addition, physical quantities
are invariant under diffeomorphisms of M. This means (roughly) that general
relativity is a relational theory, i.e., the only physically relevant information is
the relationship between different events in spacetime [13]. On the other hand,
quantum theory requires a fixed background spacetime, either a Newtonian one



(quantum mechanics), or a fixed Minkowski spacetime (quantum field theory).
Time in quantum theory is not a dynamical field, it is a background parameter.

Turning the spacetime geometry into a quantum field is possible and the
task of conservative approaches to quantum gravity such as Loop Quantum
Gravity [14]. The result, however, of such quantizations is peculiar. We obtain
a so-called wavefunction of the universe |ΨU 〉, i.e., the diffeomorphism invariant
quantization of the metric gµν projected on a spatial slice of M. Instead of a
Schrödiger equation, the evolution of |ΨU 〉 is governed by the Wheeler-deWitt
equation:

Ĥ|ΨU 〉 = 0, (1)

where Ĥ is the quantization of the “projection” of the Einstein equations in the
direction normal to the spatial slice (for the actual details of this procedure, see,
for example, [15]). The Wheeler-deWitt equation is peculiar on two (related)
counts: it describes the evolution of the entire universe, not just a localized
system as in the Schrödinger equation, and the right hand side is zero (not time
evolution). That zero can be traced to the diffeomorphism invariance of general
relativity and the fact that the Einstein equations describe the dynamics of the
entire universe. The diffeomorphism symmetry gets mixed up with evolution in
ways that are very difficult to untangle12.

Despite repeated attacks on the problem from multiple fronts, finding a sat-
isfactory quantum theory of gravity remains an open problem. Much more can
be said about this, but the purpose of the present note is to point out that,
since quantum gravity needs to unify quantum theory and general relativity, a
unification of the corresponding descriptions of the physical world is required,
and that quantum information theory can provide this. Reducing both quantum
fields and differential manifolds to their information theoretic content can pro-
vide a common framework. The Universe as a Computation can, in that sense,
be seen as a useful and practical tool to solve a long-standing problem. Note
that do not need to resolve whether information precedes its physical instantia-
tion, or answer most of the problems listed above in order to put this notion to
useful work. All we need is that an information theoretic description is possible,
both for the physics of matter and for the physics of space-time. We have been
pursuing this idea in the Quantum Graphity models for quantum gravity and we
will give a concrete example of such a model in the next Section.

1 For a classic review of the longstanding effort to find gravity’s true degrees of
freedom (metrics modulo diffeomorphisms) see [16].

2 |ΨU 〉 is also where the subject of quantum cosmology comes in. General relativity
is a cosmological theory, meaning that it describes the entire universe. Making this
quantum raises numerous issues with the standard interpretation of quantum me-
chanics, such as the role of the observer and emergence of classicality. Such issues
are the subject of quantum cosmology.



3 Quantum Graphity

Quantum Graphity models [22,17] are spin system toy models for emergent ge-
ometry and gravity. They are based on graphs whose adjacency is quantum and
dynamical: their edges can be on (connected), off (disconnected), or in a superpo-
sition of on and off. We can interpret the graph as pregeometry (the connectivity
of the graph tells us who is neighbouring whom). A particular graphity model
is given by such graph states evolving under a local Hamiltonian. The graphity
model of [17], for example, which will describe in the rest of this section, is a toy
model for interacting matter and geometry, a Bose-Hubbard model where the
interactions, or adjacencies, are quantum variables.

3.1 Qubits of adjacency

Let us assume a universe consisting of N fundamental constituents, systems
labeled by i = 1, , N . These are quantum mechanical, so we have {Hi}; i =
1, ..., N Hibert spaces. Let KN denote the complete graph that has these N

systems as its vertices, a graph with N(N−1)
2 links e ≡ (i, j). To every such e

we associate a Hilbert space He ' C2 . Basis states on He can be labeled by
|1〉, |0〉, and we choose to interpret |1〉 as the link e being on, or present, and |0〉
as the link being off, or missing. The total Hilbert space corresponding to KN

then is Hgraph =
⊗N(N−1)/2

e=1 He.
Our choice of basis in He means that every basis state in Hgraph corre-

sponds to a subgraph of KN . A generic state |Ψgraph〉 ∈ Hgraph is a quantum
superposition of subgraphs of KN . For N very large, the state space contains
superpositions of all possible finite graphs. By analogy with the adjacency ma-
trix of a graph, we call He a qubit of adjacency. States in Hgraph then provide
a simple discrete precursor to quantum geometry. Note, however, that since we
cannot assume a pre-existing spacetime on which our N systems live, we cannot
interpret the N vertices of KN as points in that spacetime. That is, we do not
have a discretization of a geometry, the geometry corresponding to a state is to
be inferred from the behavior of matter interacting with |Ψgraph〉.

To see how this works, let us next define a simple form of matter.

3.2 Interacting matter and geometry

We will assign simple matter degrees of freedom to the vertices of KN by as-
signing the Hilbert space Hi of a harmonic oscillator to each vertex i. We de-
note its creation and annihilation operators by b̂†i , b̂i respectively, where b̂†i |0〉i =

|1〉i, b̂i|1〉i = |0〉i, satisfying the usual bosonic relations, [b̂†, b̂†] = 0 = [b̂, b̂], [b̂, b̂†] =
1. Our N physical systems then are N bosonic particles and the total Hilbert
space for these bosons is given by Hbosons =

⊗N
i=1 Hi.

The total Hilbert space of the theory is the state space of the combined matter
and connectivity degrees of freedom, H = Hbosons ⊗ Hgraph. A basis state in
H has the form |Ψ〉 ≡ |Ψbosons〉 ⊗ |Ψgraph〉 ≡ |n1, ..., nN 〉 ⊗ |e1, ..., eN(N−1)

2
〉. The



first factor tells us how many bosons there are at every site i, while the second
factor tells us which pairs e interact. This is an unusual bosonic system, as the
structure of interactions is now promoted to a quantum degree of freedom.

This is interesting as generic state can be a quantum superposition of “in-
teractions”. For example, consider the systems i and j in the state |φij〉 =
(|10〉 ⊗ |1〉ij + |10〉 ⊗ |0〉ij)/

√
2. This state describes a particle in i and no par-

ticle in j, and a quantum superposition between i and j interacting or not. The
state, |φij〉 = (|00〉⊗|1〉ij + |11〉⊗|0〉ij)/

√
2, represents a different superposition,

in which the bosonic degrees of freedom and the graph degrees of freedom are
entangled. It is a significant feature of the model that matter can be entangled
with geometry.

In [17], we proposed a simple Hamiltonian for the dynamics of the matter-
geometry interaction. If the bosons are not interacting, their total Hamiltonian is
trivial, Ĥv =

∑N
i=1 Ĥi = −

∑
i µb̂
†
i b̂i. An interesting interaction term is hopping,

the physical process in which a quantum i is destroyed at i and one is created
at j. We will require that hopping is possible only if there is an on edge between
i and j. Such dynamics is described by a Hamiltonian of the form

Ĥhop = −Ehop
∑
(i,j)

P̂ij ⊗ (b̂†i b̂j + b̂ib̂
†
j), (2)

where P̂ij = |1〉〈1|(i,j) is the projector on the edge (i, j) being in the on state.
This projector is important, it means that it is the dynamics of the particles
described by Ĥhop that gives to the link degrees of freedom the meaning of
geometry: the state of the graph determines where the matter is allowed to go.

In the spirit of “geometry tells matter where to go and matter tells geometry
how to curve”, we need graph and matter to interact. To avoid interpretational
problems, we also need the interaction to be unitary. The simplest unitary ex-
change term is

Ĥex = k
∑
(i,j)

|0〉〈1|(i,j) ⊗ (b̂†i b̂
†
j)
R + |1〉〈0|(i,j) ⊗ (b̂ib̂j)

R. (3)

This destroys an edge (i, j) and create R quanta at i and R quanta at j, or,
vice-versa, destroys R quanta at i and R quanta at j to convert them into an
edge. An example is shown in Figure 1. Of course, we need dynamics also for
the graph degrees of freedom alone. The simplest choice is simply to assign some
energy to every edge, Ĥlink = −U

∑
(i,j) σ

z
(i,j).

This final step brings us to the total Hamiltonian for the model proposed in
[17]:

Ĥ = Ĥlink + Ĥv + Ĥex + Ĥhop. (4)

It is possible to design such systems in the laboratory. For instance, one can use
arrays of Josephson junctions whose interaction is mediated by a quantum dot
with two levels.

This is a peculiar system in that who interacts with whom is a quantum
degree of freedom, but otherwise it is an extremely simple system. Does it lead



Fig. 1. Graph-matter dynamics: A link is is exchanged for two particles at its vertices;
the particles hop on existing links; two particles are destroyed and a link is created
between the corresponding vertices.

to any interesting behavior? Yes, more than one would expect, as we will see
next.

3.3 Calculating the speed of light as propagation of information

Ĥhop tells us that it takes a finite amount of time to go from i to j. If the graph
was a chain, it would take a finite amount of time (modulo exponential decaying
terms) for a particle to go from one end of the chain to another. This results
to a “spacetime” picture (the evolution of the adjacency graph in time) with a
finite lightcone structure. We can calculate this speed of light from the speed
with which information propagates using methods from quantum information
theory. From a local Hamiltonian, that is, a Hamiltonian that is the product
of local terms, H =

∑
〈ij〉 hij , we can define the Lieb-Robinson speed of infor-

mation propagation [18] as follows. Consider two points P and Q on a lattice,
distance dPQ apart. A disturbance at P is felt at Q a time t later with strength
‖[OP (0), OQ(t)]‖, where OP (0) and OQ(t) are operators at P at time 0 and Q
at time t respectively. It is shown in [18] that this signal strength is bound by

‖[OP (0), OQ(t)]‖ ≤ 2‖OP ‖‖OQ‖
∑
n

(2|t|hmax)
2

n!
NPQ(n), (5)

where hmax is the maximum coupling strength in the Hamiltonian and NPQ is
the number of paths of length n in the lattice that connect P and Q. This can
be rewritten as

‖[OP (0), OQ(t)]‖ ≤ 2‖OP ‖‖OQ‖C exp [−a (dPQ − vt)] . (6)

Saturating the above inequality defines the maximum speed v of information
propagation in this system. Combining the two bounds allows us to calculate
this speed in terms of the couplings in the Hamiltonian and the connectivity of
the lattice.

In [20], we tested that v above can be the speed of light, by showing that in
string net condensation, a spin system whose emergent excitations are photons
[21], v agrees with the speed of light in the emergent Maxwell equations3. This
is an interesting result as it allows us to reconcile emergent finite light cones

3 Note, however, that this derivation does not assure us that this maximum speed is
universal for all species of matter.



and non-relativistic quantum mechanics. The underlying physics is, of course,
quantum mechanics, but, within the bounds defined above, the system appears
to have a finite light cone. A signal is possible outside the light cone, but it
is exponentially suppressed. In fact, recent results show that in the continuum
limit the finite light cone becomes exact as that signal vanishes in the continuum
limit. Further work in [23] and results in [24] indicate that the emergence of a
Minkowski metric is a behavior that can be extended to infinite-dimensional
systems, i.e., the physics we are studying is not limited to spin systems.

Note that this speed v increases with the number NPQ of paths connecting
P and Q, and therefore it is a function of the connectivity of the lattice. Higher
connectivity (vertex degree) means higher speed of light. This is used in what
follows to derive the effective curved geometry matter sees.

3.4 Analogue black holes

One of the features of the above Hamiltonian acting on states which are not
degree-regular graphs, observed in [17], was the trapping of bosons into regions
of high degree (see Fig. 2). The basic idea is the following: consider two sets of
nodes, A and B, separated by a set of points C on the boundary, and let the
vertices in A be of much higher degree than the vertices in B, dA � dB . If the
number of edges departing from the set C and going to the set A is much higher
than the number of edges going from C to B, then the hopping particles have a
high probability of being “trapped” in the region A.

Fig. 2. Toy black hole configuration.

A way to see the trapping is to study the Lieb-Robinson speed of particle
propagation. Since the speed of propagation of particle probability is degree
dependent, in the two regions we have two different speeds. Their ratio depends
uniquely on the ratio of the degree of the two regions. Then, using the laws of
optics, probability is reflected at the boundary due to Snell’s law: for dB

dA
∼ 1

N →
0, and the region A acts as a trap.

This heuristic argument can be made precise. In [25], it was shown that
matter propagating on the graph state shown in Fig. 2 has a unique ground
state which is protected by a gap which increases linearly with the size N of



the completely connected region. That is, high connectivity configurations are
spin-system analogues of trapped surfaces.

3.5 Geometry: what the matter sees

While it is possible to assign a metric to the graph itself, for the purposes of an
analogue model for quantum gravity, the relevant geometry is the one the metric
sees. Clearly, that metric can be affected both by the graph state and by the
matter Hamiltonian.

Solving this problem is not easy. Our model may be simple conceptually, but
it is a Hubbard model on a dynamical irregular lattice and, as is well-known,
the Hubbard model beyond 1d quickly becomes intractable. Luckily, it turns out
that a large and interesting sector of our model can be reduced to an effective
1d Hubbard model with modified couplings.

In order to do this, we restrict the time-dependent Schrödinger equation
to the manifold formed by the classical states, that is, single-particle states
with a well-defined but unknown position. The equation of motion obtained
corresponds to the equation of propagation of light in inhomogeneous media,
similarly to black hole analogue systems. Once we have such a wave equation,
we can extract the corresponding metric. This is a one-dimensional Hubbard
model on a lattice with variable vertex degree and multiple edges between the
same two vertices. The probability density for the matter obeys a (discrete)
differential equation closed in the classical regime. This is a wave equation in
which the vertex degree is related to the local speed of propagation of probability.
This allows an interpretation of the probability density of particles similar to that
in analogue gravity systems: the matter sees a curved spacetime.

This establishes the desired relation between the connectivity of the graph
and the curvature of its continuous analogue geometry. The overall scheme is
illustrated in 3.

Fig. 3. The scheme representing how the graph relates the hopping energies fi,j of the
Bose-Hubbard model and the emergent metric: the graph modifies the strength of the
interaction in the Bose-Hubbard Hamiltonian, which in turn translates into a curved
geometry (for the appropriate states).



4 Discussion

We have seen that the idea of the Universe as a Computation is useful because
information provides a route to a unification of matter and geometry. In the
above, however, the Computation idea is a tool, not necessarily a fundamental
ontology, and our results do not imply or require it from bit. It simply helps to
talk about information as the primary object. It can be tempting to interpret
this phrase as meaning that bit pre-exists it. However, I must admit that I do
not understand what we can mean by information as decoupled from its physical
realization. I prefer to simply take advantage of the fact that it allows us to study
a system without having to specify the details of unknown physics.

In summary, it is possible to formulate Planck scale physics as a quantum
information processing system, as we demonstrated in previous work (Quan-
tum Causal Histories [26]). It is also useful to formulate Planck scale physics
as a quantum information processing system because: 1. Quantum information
provides an unambiguous description of physics before geometry. 2. It is suit-
able for emergence problems, just as classical information is useful for statistical
physics. 3. It provides a new toolbox well-adapted to background independent
problems and, in particular, it lets us import methods from statistical physics
to a background independent context.

Information is useful precisely because it allows us to study the behavior of a
system without committing to a particular ontology, necessary when the ontology
is ambiguous, as is the case in emergence approaches to quantum gravity.

Even though I am not a believer in the full-blown Universe as a Computation
philosophy, it can be fun to explore some of the questions that it raises from the
rather concrete viewpoint described above. We will end with a sample of such
questions.

Information as unification. The old version of unification is the picture of
group theory and symmetry breaking and the convergence of fundamental cou-
plings. While this is now outdated, some level of unification is necessary in
quantum gravity to allow for quantum matter to interact with dynamical space-
time, as the language clash between differentiable manifolds and quantum fields
on a fixed background has long been an obstacle to quantum gravity. The idea
that information underlies everything allows a new path: express both gravity
and matter in information theoretic terms. Quantum graphity models are a first
step in that direction. It is a long way to go but we are catching a promising
glimpse of a novel form of unification.

Why is the universe so stable? If the universe is a computer program, how
come it doesn’t crash, or at least it hasn’t crashed yet? This sounds like a joke,
but it is a relevant question in cosmology: is our universe a stable attractor, and if
so why? It is interesting to look for potential commonalities between mechanisms
for stability in computers and in physics. In computers, stability comes from some
kind of built-in redundancy that provides error correction. In physics, certain
symmetries can be seen as a kind of error correction. Elsewhere, we noted that
the notion of decoherence-free subsystems used in quantum computing to protect
against noise and errors is very similar to the notion of conserved quantities,



something we used in [19] to find a large class of conserved quantities in Loop
Quantum Gravity. I believe these results are only just scratching the surface.

How are the physics laws/computer program selected? Why our universe is
what it is is a perennial problem in quantum gravity and cosmology. In the Uni-
verse as a Computation scenario it directly translates to the question of how
the Program is selected, and this new viewpoint brings new possibilities. There
are four commonly given answers: 1. Anthropic arguments: by construction, the
universe we observe has to be compatible with the conscious life that observes it,
hence it is unremarkable that the fundamental constants happen to fall within
the narrow range that allows life. This is currently a very popular idea, supported
by logic and possibly inflation and string theory, but also widely criticized as
unscientific and non-explanatory. 2. Our laws have evolved through the history
of the universe. This generally leads to meta-laws selecting the laws and a re-
sulting circular argument. 3. Multiverse: our universe is one of many physically
realized universes. The many can be arranged in various ways which have been
thoroughly classified by Tegmark [7]. Unlike the anthropic argument, this sce-
nario is wider, and, in some forms, in principle testable. But there is a huge
proliferation of potential universes, not just those we can generate by allowing
the fundamental constants to take other values (the usual multiverse), but also
all possible laws or programs. This is an instantiation of Tegmark’s multiverse.
4. Ideas of self-organized criticality (SOC): our universe is a stable attractor.
One may think that this should be the most promising direction, however, such
ideas have hardly been explored. To a great extend, there is a serious techni-
cal obstacle. SOC is typically observed in non-equilibrium systems, while all of
fundamental physics uses equilibrium quantum field theory. Properly introduc-
ing SOC ideas in cosmology requires a departure from the standard framework.
Since many of the results in this area are already expressed in algorithmic terms,
a description of the Universe as a computation can make it easier to introduce
SOC ideas to a (quantum) cosmological setting. It will, of course, be necessary
to study quantum systems that exhibit SOC first. This is a fascinating long-term
direction for this kind of work.
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