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Abstract. We review and present a few new results of the program of emergent matter as braid
excitations of quantum geometry that is represented by braided ribbon networks, which are a gener-
alisation of the spin networks proposed by Penrose and thosein models of background independent
quantum gravity theories, such as Loop Quantum Gravity and Spin Foam models. This program
has been developed in two parallel but complimentary schemes, namely the trivalent and tetravalent
schemes. The former studies the trivalent braids on trivalent braided ribbon networks, while the lat-
ter investigate the tetravalent braids on tetravalent braided ribbon networks. Both schemes have been
fruitful. The trivalent scheme has been quite successful atestablishing a correspondence between
the trivalent braids and Standard Model particles, whereasthe tetravalent scheme has naturally sub-
stantiated a rich, dynamical theory of interactions and propagation of tetravalent braids, which is
ruled by topological conservation laws. Some recent advances in the program indicate that the two
schemes may converge to yield a fundamental theory of matterin quantum spacetime.

Key words: Quantum Gravity, Loop Quantum Gravity, Spin Network, Braided Ribbon Network;
Emergent Matter; Braid, Standard Model, Particle Physics,Unification, Braided Tensor Category,
Topological Quantum Computation

1 Introduction

1.1 An Invitation to emergent matter of quantum geometry

What is spacetime? What is matter? Physicists and philosophers have pondered these questions for
centuries. In fact, an ultimate goal of modern physics is to find a unified answer for both questions.
Recently, in order to answer these questions, a novel approach towards emergent1 matter as topological
excitations of quantum geometry has been put forward and extensively developed [1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14]. Provided with the results of two recentpapers[13, 14] along this course, an article
that offers a precise review and outlook of this research line seems timely.

A brief historical account is as follows. In 2005, Bilson-Thompson proposed a topological matter
model, the Helon model[1], which is based on the preon modelsof Harari and Shupe[15, 16] and is more
elementary than the Standard Model (SM) of particles by interpreting the elementary particles as braids
of three ribbons. At the time it was proposed, the Helon Modeltook the form of a combinatoric game
rather than a rigorous theory. In this model, the integral twists of ribbons of braids are interpreted as the
quantized electric charges of particles. The permutationsof twists on certain braids naturally account for
the color charges of quarks and gluons. This model incorporates a simple scheme of the color interaction

1Here we mean coexisting quantum geometry and matter becauseour program indicates that a background independent
quantum gravity theory may have built-in matter as topological excitations of the quantum geometry described by the theory.

http://arxiv.org/abs/1109.0080v1
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and the electro-weak interaction with lepton and baryon number manifestly conserved. It may also be
able to account for the three generations of elementary fermions.

In 2006, Bilson-Thompson, Markopoulou and Smolin[2] codedthe Helon Model in certain back-
ground independent Quantum Gravity models such as Loop Quantum Gravity (LQG) and Spin Foam
(SF) models, by identifying helons with emergent topological excitations of embedded trivalent spin net-
works that label the states in LQG. Hereafter this will be called the trivalent scheme. Developments of the
trivalent scheme[3, 4, 11, 12] allowed the Helon Model to be used as a dictionary between the 3-strand
braids of embedded trivalent spin networks and the SM particles. The trivalent scheme led to a new
perspective; instead of treating the Helon Model as yet another model of elementary particles, one can
encode it in LQG and SF models to make a theory of both spacetime and matter. The dynamics govern-
ing particle interactions would then be a consequence of thedynamics of the discrete building blocks of
quantum spacetime. In this setting, matter is emergent fromquantum spacetime, and the corresponding
low energy effective theories may give rise to general relativity coupledwith quantum fields.

Unfortunately, results on the stability of braided states[2] in the trivalent scheme strongly suggested
that the dynamics of spacetime would allow particle propogation, but not interactions. In effect, braids
in the trivalent scheme are “too stable”. To address this issue, and because of the geometrical corre-
spondence between framed 4-valent spin networks and 3-space, a 4-valent scheme was developed[5, 6,
7, 8, 9, 10, 17]. In the 4-valent scheme, the topological structures that can potentially be identified with
particles are also 3-strand braids, each of which is formed by the three common edges of two adjacent
4-valent nodes of embedded, framed 4-valent spin networks.The 4-valent scheme gives rise to forms of
braid propagation and interaction that are analogous to thedynamics of particles. Nevertheless, the lack
of sufficient super-selection rules over an enormous zoo of 3-strand braids in 4-valent scheme withholds
a Rosetta Stone that maps the braids to the SM particles. On the other hand, the 4-valent braids may be
more elementary, high-energy entities whose low energy limit produces the SM particles[10, 17].

Very recently, two papers by Hackett[13, 14] and work by Bilson-Thompson reported here in Section
4.3, provide a framework that may encode both the trivalent and 4-valent schemes. This would allow the
economical reproduction of SM particle states that occurs in the trivalent scheme, and the propogation
and interactions that occur in the 4-valent scheme to be combined into a single theory.

As a historical remark, the idea that matter is topological defects of spacetime is an old dream that
dates back to 1867 when Lord Kelvin proposed that atoms were knots in ether[18]. Kelvin’s idea failed
for its flaws and the limited knowledge people had about our universe then. Nevertheless, this dream has
persisted in physicists thereafter. Various proposals of topological matter have arisen as physicists deepen
and broaden their recognition of nature. An example is the topological Geon model due to Wheeler and
others[19, 20, 21, 22, 23] but the geons therein were unstable and classical. To make stable geons[20],
Finkelstein invented the notion of topological conservation laws that also led to advances in condensed
matter physics, e.g., topologically conserved excitations in the sine-Gordon theory. Finkelstein’s idea had
not been compatible with quantum gravity until the recent work by Markopoulouet al.[24, 25, 26] that
motivated our work. Analogously, certain condensed mattersystems have quasi-particles as collective
modes, e.g., phonons and rotons in superfluid He4. A recent example in condensed matter physics is a
unification scheme due to Wen,et al.[27, 28], where gauge theories and linearised gravity appear to be
low energy effective descriptions of a new phase, the string-net condensate of lattice spin systems.

In the rest of the Introduction, we briefly introduce concepts and ideas that underpin our approach to
emergent matter. We leave main discussions on the trivalentand 4-valent schemes to other sections.

1.2 Noiseless Subsystems

To appreciate the ideas of emergent matter of embedded, framed spin networks, one needs to understand
two notions, namely noiseless subsystems and spin networks. Let us address the former first. Noiseless
subsystems, put forward in quantum information and computation for quantum error correction[29, 30,
31, 32], are subsets of states of a quantum system that are preserved the evolution algebra of the system,
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and hence protected from any error. Markopoulouet al. adopted the idea of noiseless subsystems to solve
the problem of the low energy limit in background independent quantum gravity theories[25, 33, 34].

Background independence brings in difficulties that retain taking the low energy limit of a background
independent theory of quantum gravity[26] as a big open issue, although attempts have been made in var-
ious approaches of quantum gravity. In LQG, e.g., [35, 36, 37, 38] use the method of coherent states,
which are, according to quantum physics, the quantum statesclosest to classical ones. For another ex-
ample, in SF models, [39, 40, 41, 42, 43] utilizen-point correlations functions, which is reasonable
because all semiclassical observable are either correlation functions or their derivatives. In view of this,
Markopoulou and Kribs[33, 25, 26] proposed a new way to resolve this issue by looking for conserved
quantities in background independent theories of gravity.Since the aforementioned noiseless subsys-
tems are conserved states under the evolution algebra of a quantum system, there should be conserved
quantities associated with them. This is why one can adapt the method of noiseless subsystems to find
conserved quantities of quantum geometry in a large class ofbackground independent theories.

The first application of noiseless subsystems in LQG[34] gives a possible explanation to black hole
entropy and how symmetries can emerge from a diffeomorphism invariant formulation of quantum grav-
ity. The noiseless substructures of braided ribbon networks, which appear to encode the helons in models
of quantum gravity such as LQG, are braids whose associated conserved quantities are called reduced
link invariants[2, 3, 4, 13, 14].

1.3 Spin networks

Penrose invented spin networks as a fundamental discrete description of spacetime[44, 45]; later, Rov-
elli and Smolin found a more generalized version of spin networks to label the states in LQG Hilbert
space[46]. Although the context of spin networks in this article is mainly LQG and its path integral
formulation, SF models, it will be clear that our results do not really depend on these models but find
their natural home in a generalisation of Penrose’s version. Spin networks also arise in lattice gauge
theories[47, 48, 49, 50] and topological field theories[51,52, 53, 54], which are not discussed here.

1.3.1 Penrose’s spin networks

Penrose noticed the fundamental incompatibility between General Relativity and Quantum Physics, the
problem of the concept of continuum, and the divergences in quantum field theories. He thought that
resolving this incompatibility demands a discrete notion of spacetime at the Planck scale, where the clas-
sical notion of spacetime is no longer valid. Consequently,the concept of time and space gives way to a
more fundamental notion, the microscopic causal relation between quantum events2. Knowing that spin
(or angular momentum) is intrinsic and characteristic to both quantum systems and classical spacetime,
Penrose used combinatoric graphs, consisting of lines intersecting at vertices, to represent the fundamen-
tal states of spacetime. Each line in a graph is labeled by a spin, an integer or half integer. Hence, such a
graph is called a spin network. Later on, [56] showed that theclassical 3-dimensional angles of space can
be recovered from trivalent spin networks. Note that these spin networks are unembedded and, opposed
to those in LQG, are a direct construction of fundamental quantum spacetime, rather than obtained from
quantizing spacetime or General Relativity by any means.

1.3.2 Spin networks from LQG

LQG is a non-perturbative, canonical quantization of General Relativity3. The background independence
of General Relativity actually does not leave any room for perturbative quantization[57, 58, 59, 55]. LQG

2The underlying philosophy is relationalism, as opposed to reductionism, reviewed in [59, 62, 55].
3Other non-perturbative approaches to quantum gravity alsoexist; however, here we focus on LQG.
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assumes a (d + 1)-dimensional differential manifoldM with a foliation M = Σ × R, without metric but
merely a differential structure with a Lie algebra4 valued connection 1-form field. We taked = 3.

Our approach does not directly depend on any specific techniques and results of LQG but is only
inspired by them, so we do not review the technical settings and quantization procedure in LQG.

In LQG, the states are spin networks, which are graphs embedded inΣ (Fig. 1). An edgee is a flux
line, labelled by an irreducible representationje of a Lie group (usuallyS U(2) or S O(3)). A vertex is
labelled by an intertwiner that is the invariant tensor of the labels on the edges meeting at the vertex.

j1

j9

j2

j8

j3
j5

j4

j6
j7

Figure 1: A portion of a generic spin network. Some labels areomitted.

LQG has produced many physical results, which are extensively reviewed in [60, 61, 62]. The result
most relevant to this review is the evidence that the space atthe Planck scale is discrete because spin
network states are eigenstates of operators correspondingto geometric measurements such as area and
volume. For example the area operatorÂ acting on a 2-dimensional surfaceS has the spectrum

Â[S] |Γ〉 ∝ l2p
∑

i∈{Γ∪S}

√

j i( j i + 1) |Γ〉 , (1.1)

where lp is the Planck length, andΓ is a spin network that has no vertices on but only edges inS5.
Likewise, the intertwiners on the nodes of a spin network in aregion determine the 3-volume of the
region. This fundamental discreteness resolves the singularity problem and also eliminates ultraviolet
divergences, as it provides a natural cutoff at the Planck scale to the physical spectrum of the theory.

In general, a vertex of a spin network can have any valence greater than two, the number of edges
meeting at the vertex, as seen in Fig. 1. We may consider a basis of spin networks with definite valences,
i.e., spin networks respectively with three, four, and higher valences, such that a generic LQG state
is a linear combination of these basis states. one may also think that trivalent spin networks may be
sufficient to provide a complete basis that spans all spin networks. This is plausible and is suggested by
Rovelli[46, 55] for the case ofS U(2) andS O(3). The trivalent spin networks represent a basis of LQG
state space. That is, associated with a spin networkΓ is a state|Γ〉, and for two such states|Γ〉 and |Γ′〉,
〈Γ|Γ′〉 = δΓΓ′ . Spin network labels on edges and nodes are representationsof the group elements, labeling
the graphs in the classical configuration space, and the corresponding intertwiners.

Trivalent spin networks have difficulty in representing 3-space because their nodes have zero3-
volume. But each 4-valent node yields a 3-volume6[63, 64]. [65] also suggests to carry this correspon-
dence to any higher-valence. In this review, we shall study both trivalent and 4-valent spin networks.

Trivalent spin networks acquire dynamics by evolving underthe action of the Hamiltonian constraint
operator of LQG, which also helps to realize the 4D diffeomorphism invariance of the theory. The well-
accepted form of the Hamiltonian constraint acts only on vertices (Fig. 2)Thiemann[66, 67, 68]; hence,
it behaves as a local move that evolves a spin network state toanother. In fact, LQG has a path integral
formulation, SF models, casting the evolution of spin networks in a systematic, covariant way.

In many studies of SF models[69, 70], spin networks and theirhistories are unembedded, combina-
toric graphs. The key difference between embedded and unembedded spin networks is that the edges
in the former can knot, braid, and link. The role of these knots, braids, and links has been a big open

4Usuallysu(2) or so(3).
5If Γ has edges onS, a degeneracy arises and calls for regularization methods to obtain the correct spectrum[55].
6This correspondence is at the Planck level. Whether it holdsin a continuum limit is still open.
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H =

Figure 2: Sketch of of the Hamiltonian constraint acting on avertex. Irrelevant details are ignored.

issue. Nevertheless, in this article we will show the correspondence between some of these topological
structures of embedded spin networks and matter. [71] offers another perspective.

According to SF models[72, 73, 74, 55], trivalent spin networks evolve under two more moves, shown
in Fig. 3(a) and (b), including the one in Fig. 2.

i

j k

i

j k

(a) (b) (c)

Figure 3: (a): expansion and contraction move. (b): exchange move. (c) a duality.

Trivalent spin networks are the dual skeletons of triangulations of 2D surfaces (Fig. 3(c)), in which a
node (an edge) is dual to a triangle (a side of the triangle). This is consistent with 2D because the vertices
of trivalent spin networks have zero 3-volume. Hence, the evolution moves of trivalent spin networks are
dual to the Pachner moves[75] that relates triangulations of the same surface (Fig. 4). This topological
interpretation indicates that summing over histories of the evolution of certain fundamental building
blocks produces a quantum spacetime. That is, one can build (n + 1)D spacetime from the evolution
of n-valent spin networks. This picture is partly implemented in SF models and fully implemented in
another formulation of quantum gravity, Group Field Theories (GFT).

A subtlety exists, however. A spin network with structureless edges and nodes contains less infor-
mation than an exact dual of a 2D simplicial triangulation, in which two triangles can be glued along a
side in two opposite ways. To remedy this, trivalent vertices and their edges should be framed to disks
and ribbon respectively (Fig. 4a). We call these (embedded)framed spin networks the(braided) ribbon
networks7. We also name the evolution moves on the (braided) ribbon networks theadapted Pachner
moves(Fig. 48). The criteria for a legal 2D Pachner move is that the triangles before and after the move

(a) (b) (c)

Figure 4: Pachner moves. (a) 1→ 3. (b) 2→ 2.

bounds a 3D tetrahedron (Fig. 4). Interestingly, Major and Smolin[77, 78, 79, 80] suggested that when
LQG contains a non-zero cosmological constant, the corresponding spin networks become framed: edges
and vertices become ribbons and disks in the trivalent case,and become tubes and spheres in the 4-valent
case. We shall loosely call the (embedded) framed 4-valent spin networks the 4-valent (braided) ribbon
networks. Likewise, 4-valent ribbon networks evolve undera set of 4-valent adapted dual Pachner moves

7For embedded spin networks, the duality is in general only local, i.e., restricted to a single node. This restriction is
unnecessary in 2D because a braided ribbon network is dual toa topological manifold globally[76].

8This figure is adopted from [11] with the author’s permission.
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(Section 3.4). Moreover, labels of framed spin networks turn out to be representations of the quantum
group, e.g.,S Uq(2). In GFT’s, the spin networks arise as framed but unembedded.

Our third ansatz requires the embedded 4-valent spin networks to evolve under adapted dual Pachner
moves. These moves are adapted and are thus different from those in SF models. In many studies of spin
foam models, the spin networks and spin foam histories are taken to be abstract, or unembedded. Our
results do not directly apply to these models, as the topological structures our results concern arise from
the embedding of the graphs in a topological three manifold.But neither do such models give dynamics
for states of loop quantum gravity, which are embedded. A question therefore is how to build spin-foam
like dynamics for embedded spin networks. The adapted dual Pachner moves to be defined in Section
3.4 for the 4-valent braided ribbon networks will give an answer.

1.4 Three Ansatzes

All of the above encourages a unification scheme in which matter emerges as topological excitations
of the braided ribbon networks. We thus posit that braided ribbon networks are the most fundamental
entities of nature9, which is beyond LQG and SF Models and actually in accordancewith Penrose’s
original proposal of spin networks, with, however, a great deal of generalization. More precisely, the
unification scheme and its results we have obtained are basedon three ansatzes:

1. spacetime is pre-geometric and discrete at the fundamental scale.

2. The discrete space is a superposition of basis states represented by braided ribbon networks.

3. The braided ribbon networks evolve under a set of local moves.

These ansatzes are independent of the spacetime dimension.Here, we consider only (3+ 1)-dimensional
spacetime, consistent with the observable universe10. The braided ribbon networks are in general graced
with spin network labels, which are otherwise removed in this article because our results obtained so far
do not depend on them. The set of local moves include only the adapted dual Pachner moves;however, it
may extend to incorporate other moves in future. We hope thatclassical spacetime would exist as certain
limit of the pre-geometric history of the evolution of thesegraphs.

2 The Trivalent Scheme

The trivalent scheme is the most natural case in which to embed the Helon Model [1], which provides a
mapping between braided network states and the fermions andbosons of the SM. Here we will briefly
discuss the Helon Model in terms of abstract braided structures, and how those structures may be mapped
to particle states and quantities such as hypercharge, baryon number and lepton number. We will then
discuss how these braids may be characterised by appropriately chosen topological invariants. At the end
of this section we will discuss how such braided structures may be embedded in framed spin networks.
The possibility of a unified treatment of trivalent and tetravalent networks is discussed in section 4.3.

2.1 The Helon Model

In the helon model, the subcomponents of SM particles occurring in certain preon models are replaced
by a framed braid on three strands. The strands are joined to two surfaces of non-zero size (which we
may think of as one disk at each end), and we will suppose thereis a way of distinguishing these end

9Since all the information due to embedding can be characterized purely combinatorially, to be pointed out later, embedded
spin networks (or combinatorial spin networks with embedding data) are more general than the unembedded ones[98, 99].

10Why our spacetime is (3+1)-dimensional is a big open issue in physics and philosophy. The earliest reasonable argument
was due to Ehrenfest in 1917[81] that atoms are instable unless in 3D. Recently, anthropic arguments also arouse. Nevertheless,
all these arguments soundsa posteriori, and a theory that naturally gives rise to our (3+ 1) spacetime is still missing.
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surfaces so that the braids have a “top” and “bottom” (as shown in the left of Fig. 5). For brevity, let
us refer to these end surfaces as “caps”. Such a braid (all three strands and the two caps) constitutes
a two-dimensional surface and we will immediately restrictour attention to orientable surfaces. The
three strands between the caps can in general be distinguished by their relative crossings, and it becomes
meaningful to speak of the first, second, and third strand. Anentire braid on three strands will represent
a single type of fermion or boson.

The individual strands in a braid can carry twists, as mentioned above, and we identify right-handed
and left-handed twists as positive and negative electric charges. This is the basis of the name ‘helon’
(evoking the image of a helix) for a single strand. The requirement that we consider only orientable
surfaces restricts us to twists that are multiples of 2π, so let us interpret a twist through±2π on any
helon (that is, any strand) as an electric charge of±e/3. Twists through±4π, ±6π, and so on will not be
considered, as we shall see below that extra twists can be regarded as equivalent to crossings. Besides
the helons carrying twist through−2π and+2π, there is a third type to consider, carrying no twist. We
will denote the three types of helons asH−, H+, andH0 respectively.

Adapting a scheme originally devised by Harari [15] and Shupe [16], we construct braids composed of
threeH+s (corresponding in electric charge to positrons), threeH−s (corresponding to electrons), a single
H+ and twoH0s (corresponding to anti-down quarks), a singleH− and twoH0s (corresponding to down
quarks), a singleH0 and twoH+s (corresponding to up quarks), a singleH0 and twoH−s (corresponding
to anti-up quarks), and threeH0s (corresponding to neutrinos). This scheme reproduces thefermions of
the first generation of the SM, with no extra particles. Braids consisting of a mix ofH+ andH− helons
are not allowed when constructing fermions (but are in fact used to construct the gluons). We identify the
permutations of braids containing two helons of one type, and one of another (e.g.H+H+H0) with the
three colour charges of QCD, and write the helons in ordered triplets for convenience (this is, of course,
simply notation). The quarks are then as follows (subscripts denote colour);

H+H+H0 (uB) H+H0H+ (uG) H0H+H+ (uR)
H0H0H+ (dB) H0H+H0 (dG) H+H0H0 (dR)
H−H−H0 (uB) H−H0H− (uG) H0H−H− (uR)
H0H0H− (dB) H0H−H0 (dG) H−H0H0 (dR).

while the leptons are;

H+H+H+ (e+) H0H0H0 (νe) H−H−H− (e−)

Note that in this scheme we have identified neutrinos, but notanti-neutrinos. This has occurred
because while theH− may be regarded as the anti-partner to theH+, there is no anti-partner to theH0

helon. This apparent problem will be turned to our advantagein section 2.3.

2.2 Topological invariants of trivalent braids

The braids on three strands may be characterised by an invariant called thepure twist number, first
described in [12]. This is a triple of real numbers which count the twist remaining on each strand when
the braid is deformed such that all crossings are removed. This is possible because any braid onn strands
can be written as a product of the generatorsσ1, . . . , σn−1 and their inverses, whereσi crosses theith

strand in front of the (i + 1)th strand, andσ−1
i crosses theith strand behind the (i + 1)th strand. The

sequence ofσ factors defining a braid is called itsbraid word. Clearly, in the case of braids on three
strands we are only concerned withσ1, σ2 and their inverses. The generators induce permutations of the
strand ordering. The generatorσ1 induces the permutationP1,2 (that is, it swaps the 1st and 2nd strands),
while the generatorσ2 induces the permutationP2,3. Notice also that the same permutation is induced by
a generator or its inverse,σ−1

i . Therefore the generators contain more information than the permutations
- in particular the direction of the crossing is specified by the generators (as shown in Fig. 5).
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Figure 5: A braid, with the bottom cap denoted by a rectangular block (left) and the generators of the
braid group on three strands (right).

It is convenient to define a standardised form for framed braids in which all the twist is isotoped to
the top of the braid. Then we can write [r, s, t]B whereB is an ordinary braid word and [r, s, t] is a
triple of multiples of half-integers which catalogue the twists in the ribbons. We shall call this triple of
numbers thetwist-word. Thus a framed braid on three strands is completely specifiedby the twist word
and the braid word. Since these braids are taken to exist on networks embedded in a manifold of three
dimensions, we also allow the braids to be deformed such thatthe top end of the braid is flipped over
(effectively feeding it through the strands). This allows us to undo crossings and hence simplify the braid
structure, as illustrated in Fig. 6 where we show how a disk with three untwisted ribbons emerging from
it (but with two ribbons crossed), can be converted into a disk with uncrossed ribbons and oppositely-
directed half-twists in the upper and lower ribbons by flipping the disk over (in the illustration, a negative
half-twist in the lower ribbon and positive half-twists in the upper ribbons). In Fig. 7, we show the same
process performed on a disk whose (crossed) upper ribbons have been bent downwards to lie besides
and to the left of the (initially) lower ribbon. This configuration is nothing other than a framed braid
on three strands corresponding to the generatorσ1 (with cap at the bottom omitted). Keeping the ends
of the ribbons fixed as before and flipping over the cap so as to remove the crossings now results in
three unbraided (i.e. trivially braided) strands, with a positive half-twist on the leftmost strand, a positive
half-twist on the middle strand, and a negative half-twist on the rightmost strand. Hence the associated
twist-word is [12 ,

1
2,−

1
2]. This illustrates that in the case of braids on three strands, each of the crossing

generators can be isotoped to uncrossed strands bearing half-integer twists. By variously bending the top
two ribbons down to the right of the bottom ribbon, and/or taking mirror images, and flipping the cap
at the top of the braid appropriately we can determine that the generators may be exchanged for twists
according to the pattern;

σ1 →
[

1
2 ,

1
2, −

1
2

]

σ−1
1 →

[

−1
2, −

1
2,

1
2

]

σ2 →
[

−1
2,

1
2 ,

1
2

]

σ−1
2 →

[

1
2 , −

1
2, −

1
2

]

(2.1)

Figure 6: Swapping crossings for twist.
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Figure 7: Converting a braid generator into twists.

All braids on three strands can be built up as products of these generators. It should therefore be clear
to the reader that we may entirely eliminate the crossings from a braid on three strands. When we do so
we uncross the strands one generator at a time (hence permuting them by the permutationPσi associated
with the crossingσi being eliminated) and introduce the twists indicated in equation (2.1). In general,
this means that we iterate the process

[a1, a2, a3][b1, b2, b3]σiσ j . . . σm→ [a1 + b1, a2 + b2, a3 + b3]σiσ j . . . σm

→ Pσi ([a1 + b1, a2 + b2, a3 + b3])[ x, y, z]σ j . . . σm (2.2)

where [x, y, z] is the twist-word associated toσi (as listed in equation 2.1, wheni is specified), until the
braid word becomes the identity.

We shall refer to the form of a braid in which all the crossingshave been exchanged for twists as
the pure twist form. The list of three numbers which characterise the twists on the strands in the pure
twist form will be referred to as thepure twist-word. The pure twist-word is of interest because it is
a topological invariant (since it is obtained when a braid isreduced to a particular simple form i.e. all
crossings removed). An algorithm for calculating the pure twist-word of any three-strand braid was
described in [12].

One criticism that has been levelled at this research program is that braids appear somewhat ad-hoc
and unnatural, however it follows from the discussion abovethat the use of braids in the Helon Model
is a convenience, and that each such braid can be related to a topological invariant which is independent
of the way the structure is drawn. When we speak of a particular braid corresponding to a type of
fermion, we are therefore simply referring to an equivalence class of topological structures and using
one distinctive member of that equivalence class to refer tothe entire class. We will see shortly how such
general topological structures may be embedded in trivalent spin networks.

2.3 Quantum numbers of particle states

Given the discussion above, it is clear that rotating a diagram of a braid on a page does not change
which equivalence class that braid belongs to (and hence we may always perform such a rotation without
compromising the validity or usefulness of our model). Let us then pick a certain braid with untwisted
strands (i.e. composed entirely ofH0s) to act as a basic structure for one generation of fermions.Un-
like rotation, taking the mirror image of such a braid will produce a member of a different topological
equivalence class, in general. Such a braid and its mirror image can be regarded as left-handed and right-
handed fermions. By adding one, two, or three twisted strands (H+s or H−s, but not both at the same
time), we construct left-handed and right-handed fermionswith overall positive and negative charge.
This is illustrated in Fig 8. Notice that for any given non-zero magnitude of charge, there are four states
(left-handed and right-handed particle, and left-handed and right-handed antiparticle), but for the case of
zero charge there exist only two states. We identify these with the neutral left-handed fermion (neutrino)
and right-handed fermion (anti-neutrino).
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Figure 8: The fermions formed by adding zero, one, two or three charges to a neutral braid. Charged
fermions come in two handedness states each, whileν andν come in only one each. (3) denotes that there
are three possible permutations, identified as the quark colours. The bands at top and bottom represent
the nodes and connections to the external network (“the restof the Universe”).

The Helon Model allows us to describe electric charge and colour charge in terms of the topological
structure of braids, but we can similarly describe hypercharge and isospin. We begin by assigning a
scalar quantityβ to braids, such thatβ = +1 for the braids on the top row of Figure 8, andβ = −1 to
the braids on the bottom row. This effectively distinguishes between fermions with a net positive and net
negative charge (and establishes a definition of the equivalent quantity for the neutrinos). Of courseβ
provides only a very crude distinction. To rectify this shortcoming we will define a new quantity, given
by one-third the number of “more positive” helons, minus one-third the number of “less positive” helons.
We shall denote this quantity by the symbolΩ. To clarify, H+ helons are considered “more positive” than
H0 helons, which are “more positive” thanH− helons. IfN(H+) is the number ofH+ helons,N(H0) the
number ofH0s andN(H−) the number ofH−s within a triplet, and remembering thatH+ andH− helons
never occur within the same braided triplet, we may write

Ω = β

(

1
3

N(H+) +
1
3

N(H−) −
1
3

N(H0)

)

. (2.3)

Hence we haveΩ = +1 for thee+, Ω = +1/3 for the u, Ω = −1/3 for the d, andΩ = −1 for the
anti-neutrino. For the electron, anti-up, down, and neutrino the signs are reversed. With this definition,
noting thatN(H0) = 3− (N(H+) + N(H−)) and the total electric charge of a fermion is given by

Q = β

(

1
3

N(H+) +
1
3

N(H−)

)

, (2.4)

it is easy to show that

Q =
1
2

(β + Ω) . (2.5)

For the quarks and anti-quarksΩ reproduces the SM values of strong hypercharge, while for the leptons
β reproduces the SM values of weak hypercharge. We also observe that for quarksβ/2 reproduces the
values of the third component of strong isospin, while for leptonsΩ/2 reproduces the values of the
third component of weak isospin (in short, the roles ofβ andΩ as isospin and hypercharge are reversed
for quarks and leptons). With these correspondences the Gell-Mann–Nishijima relationQ = I3 + Y/2
for quarks may trivially be derived from Eq. (2.5). This construction does not distinguish between left-
handed and right-handed fermions, and so it does not match all values of weak isospin and hypercharge in
the SM. The reader should remember that the values of isospinand hypercharge in the SM are assigned
in an entirelyad hocmanner, to reflect the observed asymmetry of the weak interaction, while in the
Helon Model these values are constructed. It is possible that with further work the Helon Model may be
able to describe (if not explain) the asymmetry of the weak interaction from first principles.
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2.4 Interactions and embedding in trivalent networks

Although the Helon Model does not provide a dynamical framework, it is possible to represent the
electroweak interactions in a simple manner, by forming thebraid product of several braids. The product
of two braid diagrams is accomplished by adjoining the strands of the second braid to the corresponding
strands of the first braid, as in Fig. 9. The product of two braids,A1 andA2, is therefore a single braid,
the braid word of which is the concatenation of the generators in the braid words ofA1 andA2. It
therefore follows that ifA2 is the top-to-bottom mirror image ofA1 the product ofA1 andA2 will
contain no crossings. The reader can easily check that this is true for any braid in the top row of Fig. 8,
and the corresponding braid in the bottom row. Such a processsuggests particle-antiparticle annihilation.
More generally, when the product of two braids is formed, andthen decomposed into several braids, the
twists on the strands may be shuffled so that the outgoing braids are different from the incoming braids.
In this way an interaction such asu+e− → d+νe may be modelled, with the structure of the intermediate
braid product suggesting the structure of a boson. A more detailed discussion of how particle interactions
can be modelled using braid products is given in [1].

Figure 9: The product of two braids

Figure 10: A framed braid on three strands (right), equivalent to a braided substructure in a network (left)

Having established the mapping between braids and SM particles, we now turn to the matter of
embedding the Helon Model in trivalent spin networks. In this scheme, a braid occurs as a single node
from which three strands (helons) emerge. That is, the cap atthe top of a braid is identified as a trivalent
node. The strands braid around each other, and then join to the rest of the network at three other nodes
(see Figure 10). It was shown in [2] that such embedded braidscan be characterised by the linking of
the edges of the braid. If we take a diagram of a topological substructure in a trivalent network, and
trace along the left and right edges of each strand - discarding any unlinked closed loops - we obtain a
diagram of a link corresponding to that structure. This construction is illustrated in Fig. 11. The link
obtained may in general be simplified by applying a series of Reidemeister moves to the diagram, to
obtain a “reduced link”. The reduced link is an invariant of abraid, so that it does not change no matter
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how much the network of nodes and strands is deformed within the manifold in which it is embedded.
Likewise, the standard trivalent evolution moves (1-3 expansion move and 2-2 exchange move) do not
change the reduced link.

Figure 11: Finding the reduced link of a topological structure within a ribbon network

It is here that the difficulty regarding interactions occurs. In order for any process analogous to the
braid product to take place, two braids must be able to combine and then split apart. If the outgoing par-
ticle states are to be different from the incoming particle states, then the associated reduced links should
also be different. But as noted above, it was shown that this is not possible under the 1-3 and 2-2 evo-
lution moves. While this ensures that individual leptons and quarks will not decay (since the associated
reduced link cannot be changed), it also appears to prohibitany non-trivial particle interactions. It is
possible that this issue could be addressed by postulating anew evolution move. However in section 4.3
we wish to explore an alternative approach, in which we construct a correspondence between braided
networks in the trivalent and tetravalent cases.

3 The 4-valent Scheme

Having seen the results and limitations of the trivalent scheme, we shall move on to the 4-valent scheme,
which, although began as an extension to the trivalent one, turned out to be a rich, fully dynamical theory
of braids of 4-valent braided ribbon networks. The 4-valentscheme has been studied and cast in two
parallel but complementary formalisms, namely the graphicand the algebraic formalisms. While the
former offers a more intuitive picture, the latter provides a more convenient playground for theorem-
proving and investigating the properties of braids and their dynamics. Consequently, in this Section, we
shall adopt the graphic formalism for illustrative purposes only but the algebraic formalism extensively.

3.1 4-valent Braided Ribbon Networks

4-valent braided ribbon networks are framed 4-valent spin networks embedded inR3. The local duality
between a node of a 4-valent braided ribbon network and a tetrahedron allows representing a node by
a 2-sphere with four circular punctures and its edges by tubes that are welded at the punctures. This
is depicted in Fig. 12. We assume that each node is rigid and non-degenerate, such that it can only be
translated and rotated, its punctures where its edges are attached are fixed, and no more than two edges of
a node are co-planar. Because a tubular edge is dual to a triangular face of a tetrahedron, a tube implicitly
carries three racing stripes that record the twist of a tube,which dictates how two tetrahedra are glued on
a common face. Section 4 gives a further discussion of the racing stripes.

In a projection, we simplify the tube-sphere notation in Fig. 12(a) to a circle-line notation ((b) or
(c)), in which solid lines piercing through the circle represent tubes that are above in the 3D notation,
while a dashed line connects two lines as the tubes that are under. There is no information loss in doing
so because one can always arrange a node in the either the state in Fig. 12(b) or (c) by isotopy before
projecting it. Owing to the local duality between a node and atetrahedron and the symmetry on the
latter, if we grab an edge of a node, the other three edges are still on an equal footing, inducing a rotation
symmetry w.r.t. the edge being grabbed (Fig. 12(b) & (c)), which will be explained shortly. Therefore,
in a projection one can assign states to a node w.r.t. its rotation axis. If the rotation axis is an edge in the
back (front), the node is in state⊕ (⊖) and is called a⊕-node (⊖-node), as in Fig. 12(b) ((c)).
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=
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Figure 12: (a) is a tetrahedron and its dual node. In a diagram, a node can have two states, (b)⊕ and (c)
⊖. (f) shows an unambiguous label of the two right-handedπ/3 twists in (d) and (e).

Nonetheless, if the three edges other than the rotation axisof a node must be distinguished, e.g., to be
seen shortly in the case of the nodes of a braid, a degeneracy of each state of the node arises. Consider
Fig. 12(b), the node is in⊕ w.r.t. edgeB; rotating the node aboutB produces cyclic permutations of the
other edges. Ignoring the twists and crossings that are created by rotations, which will be our next topic,
it takes a full rotation for the node to roll back to its original configuration. Among all such permutations,
(C, A, D)11, (D, C, A), and (A, D, C) keep the node in⊕ w.r.t. B, whereas (A, C, D), (C, D, A), and
(D, A, C) flip the node to⊖. That is, each state has a 3-fold degeneracy; or in other words, each state is
a triplet. The six sub-states in total record the full configuration of the node w.r.t. the rotation axis.

If we denote a full rotation by 2π, then the amount of rotation keeping a node within a state triplet
is 2π/3; however, aπ/3 causes a node to jump back and forth between two state triplets. Note again
that this type of rotations are not the ones with a rigid metric but rather discrete and purely topological.
Details of these rotations will be studied in Section 3.3.1.

Naturally, an edges can be twisted discretely. The discussion above of rotations shows that the small-
est distinguishable twist isπ/3; higher distinguishable twists in the projection must be integral multiples
of π/3. Fig. 12(d)-(f) shows how the handedness and hence the signof a twist is unambiguously defined.

3.2 Braids

The graphic notation enables us to find an interesting type oftopological excitations of 4-valent braided
ribbon networks, namely3-strand braids or 4-valent braids, defined in Fig. 13(a). A 3-strand braid is

T l

Ta

Tb

Tc

S l Sr

Tr
X

(a)

e l er

Ta’

Tb’

Tc’

u u
-1

d d
-1

(b)

+2e e’

b

(c)

Figure 13: (a) A generic3-strand braid. (b) The four generators ofX. (c) An example.

made of twoend-nodesthat share threestrands, which are generically braided and twisted. Each end-
node has anexternal edgeattached elsewhere in the network. This definition is unambiguous because a
braid can always be arranged horizontally as in Fig. 13(a). We disallow the strands of a braid to tangle
with any other edges in the network, including the braid’s external edges.

A 3-strand braid characterized by an 8-tuple{Tl ,Sl ,Ta,Tb,Tc,X,Sr ,Tr } that consists of a pair of end-
node states (Sl ,Sr), a pair ofexternal twists (Tl ,Tr ), a crossing sequenceX, and a triple of internal
twists (Ta,Tb,Tc). (Sl ,Sr) is valued in{+,−}. S’s inverse is−S or S̄. X codes the braiding (from left to
right) of the three strands; it must be an element inB3, the group of ordinary braid of three strands, and
is thus generated by the four crossings in Fig. 13(b). All twists are valued inZ in unit of π/3.

11In this notation, e.g., (C, A, D) meansC 7→ A, A 7→ D, andD 7→ C.
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An X of order n = |X|, the number of crossings, readsX = x1x2 · · · xi · · · xn, wherexi ∈ {u, u−1, d, d−1}

is the i-th crossing. We also assign+1 or −1, the crossing number, to each generator according to its
handedness, i.e.,u = d = 1 andu−1 = d−1 = −1. Thus, anxi is an abstract crossing in a multiplication
but+1 or−1 in a summation. SupposeX′ is a segment ofX, then|X| ≥ |X′| and three cases exist: Assume
X′ = x1x2 · · · xn, 1) if X = X′xn+1 · · · , we writeX′ 4 X, 2) if X = xi1 xi2 · · · ximX′, we writeX′ 2 X, and
3) otherwise, we writeX′ ≺ X. X clearly induces a permutationσX of the three strands of a braid, which
takes value in the permutation groupS3 = {1, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}.
σX is left-acting on the triple of internal twists because it permutes the triple (Ta,Tb,Tc) on the

left of the X to the triple (Ta′ ,Tb′ ,Tc′) on the right by (Ta,Tb,Tc)σX = (Ta′ ,Tb′ ,Tc′). Equivalently,
we have (Ta,Tb,Tc) = σ−1

X (Ta′ ,Tb′ ,Tc′), whereσ−1
X is the inverse ofσX and isright-acting. Besides,

(Ta,Tb,Tc) = (Td,Te,T f ) meansTa = Td, Tb = Te, andTc = T f , and we also have (Ta,Tb,Tc) ±
(Td,Te,T f ) = (Ta±Td,Tb±Te,Tc±T f ). Therefore, A braid can take either of these two algebraic forms,

Sl
Tl

[(Ta,Tb,Tc)σX]Sr
Tr
, (3.1)

Sl
Tl

[σ−1
X (Ta′ ,Tb′ ,Tc′)]

Sr
Tr
. (3.2)

For instance, the braid in Fig. 13(c) can be written as+0[(0, 2, 0)σu−1d]−0 or +0[σ
−1
u−1d

(2, 0, 0)]−0 , where
σdu−1 = (3 1 2) andσ−1

u−1d
= (2 3 1). Note that in a braid’s expression one should not writethe value of

σX in S3 explicitly, asσX is also responsible for keeping track ofX.
We shall see that different types of braids pattern the corresponding 8-tuples differently. For a trivial

braid, itsX is trivial, andσX = 1; hence, the generic notation uniquely boils down toSl
Tl

[Ta,Tb,Tc]
Sr
Tr

.
Four-valent braids are noiseless topological excitationsof braided ribbon networks[24, 2, 26]. We

emphasize that 4-valent braids are 3D structures that are better studied in their 2D projections, which are
calledbraid diagrams hereafter. In fact, we are dealing with equivalence classesof braids because each
braid is equivalent to an infinite number of braids under a setof isotopy moves (to be introduced soon),
whose 2D projections relate equivalent braid diagrams. Equivalence classes of braids are in one-to-one
correspondence with those of braid diagrams[5, 6, 17]; hence, we need not to distinguish a braid from its
diagrams. That is, by a braid we mean all its isotopic braids,and we study this braid by its equivalence
class of braid diagrams. In the sequel, we may use braids and braid diagrams interchangeably.

The generators of theX of a 4-valent braid obey the well-known braid relations ofB3, which are

udu−1 = d−1ud, u−1du= dud−1, udu= dud (3.3)

We assume in anyX, these relations have been applied, such that, e.g.,udu−1d−1 should have been written
asudu−1d−1 = d−1udd−1 = d−1u by the first relation above. This assumption ensures that each 4-valent
braid we study has least number of crossings among all the braids related to it by Eq. 3.3. As such, we
consider braid diagrams with the same number of crossings and equivalent crossing patterns as the same!

3.3 Equivalence Moves

As aforementioned, equivalent braids and hence equivalentbraided ribbon networks are related by a set
of local, equivalence moves that act on the nodes and edges ofa network without altering the diffeomor-
phism class of the embedding of the network. One type of thesemoves are the well-known Reidermeister
moves[82], which are translations of nodes and continuous deformation of ribbons[5, 17]. We shall focus
on the other type, discrete rotations of nodes, which are peculiar to braided ribbon networks.

3.3.1 π/3-Rotations: Generators of rotations

With respect to any of its four edges, a node admits discrete,purely topological rotation symmetries that
are not those with a rigid metric and do not affect the diffeomorphism class of the embedding of the
node. Section 3.1 points out that each end-nod state is a triplet preserved by a 2π/3 rotation but mapped
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Figure 14: (b) & (c) are results of (a) by rotating the⊕-node in (a) w.r.t. edgez in two directions
respectively. Red dots are assumed connected elsewhere andfixed.

to the other state by aπ/3 rotation. Because two consecutiveπ/3 rotations comprise a 2π/3 rotation,π/3
rotations are generators of all possible discrete rotations of a node w.r.t. an edge of the node. We now
show howπ/3 rotations affect a subgraph, in which a node is rotated. In either a⊕ or a⊖ state, a node
can be rotated in two opposite directions. Fig. 14 shows the case where a is in a⊕-state w.r.t. its rotation
axis before theπ/3 rotation is done. The effect of aπ/3 rotation on a⊖-node is the mirror image of Fig.
14. A π/3 rotation of a node always flips the state of the node, createsa crossing of two edges of the
node, and generates a±1 on the rotation axis and a∓1 twist on each of the rest three edges.

Since our key topological structures are braids, we wonder how the rotations act on a braid. In this
case, e.g., in Fig. 15, we only allow an external edge of a braid to be an rotation axis[5]. In Fig. 15 the left
braid is equivalent to the right one with one less crossing. This observation motivates a classification of
braids as if they are isolated structures. We name a few important definitions, whose details are referred
to [5, 6]. A braid isreducible if it is equivalent to a braid with fewer crossings and otherwiseirreducible .
A braid is left-, right- , or two-way-reducible if it can be reduced by rotations on either its left, right,
or both end-nodes. A braid equivalent to a trivial braid, i.e., a braid without crossings, iscompletely
reducible. The algebraic form of a rotation on a braid as a whole can be found in [8].

1 2
+1

z
p/3

z

1 2 z

2

p/3

z2

-1

-1

-1

Figure 15: Two braids are equivalent under aπ/3-rotation of node 2.

As equivalence moves, the rotations and translations should have associated invariants. Although
such an invariant exist on arbitrary sub-graph of braided ribbon network, in which equivalence moves
act[5, 6], we are more interested in restricting the sub-graphs to be 4-valent braids only. In this case, a
braid bears two invariants of discrete rotations, namely itseffective twist andeffective state[8],

Θ = Tl + Tr +

c
∑

i=a

Ti − 2
|X|
∑

i=1

xi

χ = (−)|X|SlSr . (3.4)

Moreover, we shall see that both quantities in Eq. 3.4 are also conserved quantities of braid interactions.

3.3.2 Braid Representations

As an equivalence class, a braid should be studied in terms ofcertain convenient representative of the
class. Each braid bears aunique representation, in which the braid has twist-free external edges12.
Here is why. Were there two braids with twist-free external edges in one equivalence class, they had

12This uniqueness is defined modulo the ordinary braid relations, as explained in Section 3.2.
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to be related by rotations, which is contradictory to that any rotation creates twists on an external edge.
This representation is convenient to the study of braid dynamics in general.

All irreducible braids in a class must have the same number ofcrossings; otherwise, the longer ones
should either be reducible or belong to another class. Therefore, irreducible braids in a class must have
the smallest number of crossings. We henceforth call an irreducible braid anextremum of a class. A
braid is in anextremal representation if it is represented by its extremum. the extremal representation
is not unique because a braid has infinite number of extrema[8, 17]. An extremal representation is called
a trivial representation if the associated extremum has no crossings.

3.4 Dynamics: Evolution Moves

To define the models our results apply to, we have to choose a set of dynamical moves. In SF and other
models of spin networks, dual Pachner moves are a common choice[74, 73, 55], as seen in Section 1.3.2
for the trivalent scheme. We now discuss the dual Pachner moves on 4-valent braided ribbon networks.

Let us fix a non-singular topological manifoldM and choose a triangulation of it in terms of tetrahedra
embedded inM whose union is homeomorphic toM. Any such simplicial triangulation ofM has a
natural dual that is a framed 4-valent graph embedded inM. The framing determines how the tetrahedra
are glued on their faces. Thus, a Pachner move on the triangulation should result in a local move in the
framed graph, i.e., the dual Pachner move.

Nevertheless, not every embedding of a framed four valent graph inM is dual to a triangulation of
M. Examples of obstructions to finding the dual include the case of braids (e.g., Figure 13). This is an
embedding of a graph that could not have arisen from taking the dual of a regular simplicial triangulation
of M. We note that these obstructions are local, in the sense thata sub-graph of the embedded graph
could be cut out and replaced by another sub-graph that wouldallow the duality to a triangulation ofM.

The question then is how to define the dual Pachner moves on sub-graphs that are not dual to any part
of a triangulation ofM. The answer is that we do not. We thus have the basic rule:

Basic rule:13 The evolution moves on 4-valent braided ribbon networks arethe dual Pachner moves
that are allowed only on subgraphs which are dual to a 3-ball.

The Pachner moves and the dual evolution moves that obey the basic rule on the 4-valent braided
ribbon networks, namely the 2→ 3 (3→ 2) and 1→ 4 (4→ 1) moves, are respectively explained by
Fig. 16 and Fig. 17 and their captions. The result of a dual Pachner move is unique up to equivalence

3 2a

2 3a

yx

1

2

a

c

b

a’

b’

c’

a a’

c c’

b b’
3

3 2a

2 3a

(b)

(c) (d)

(a)

Figure 16: The 2↔ 3 Pachner moves between (a) two and (b) three tetrahedra. Thedual 2↔ 3 move
between (c) two nodes in⊕-state and (d). (c) and (d) are dual to (a) and (b). The red and dashed green
lines in (b) outline the three tetrahedra. Green edges in (d)are generated by the dual 2→ 3 move. If the
two nodes in (c) are in⊖-state, the result of a 2→ 3 move is the left-right mirror image of (d).

moves, i.e., the discrete rotations and adapted Reidemeister moves. The basic rule we posit, which
dictates the legitimacy of a dual Pachner move, actually boils down to the following conditions.

Condition 3.1. A legal dual Pachner move falls into the following three cases.

1. Two nodes allow a2→ 3 move iff they share only one edge and can be put by equivalence moves
in the same state with the common edge twist-free (Fig. 16(b)or its mirror image).

13This rule and other possible rules are discussed in detail in[11].
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Figure 17: (a) The 1↔ 4 Pachner moves between one and four tetraheda. The dual 1↔ 4 moves are
between (b) and (c). Red edges in (c) are the generated by the dual 1→ 4 move.

2. Three nodes allow a3→ 2 move iff they and their edges can be set by equivalence moves as either
Fig. 16(c) or its mirror image, where there is a contractibleloop made of three twist-free edges.

3. A 1 → 4 move is always doable; however, a4 → 1 on four nodes is doable iff the four nodes
together with their edges can be arranged in the form of either Fig. 17(c) or its mirror image, in
which there is a contractible loop and all common edges are twist-free.

In view of Condition 3.1, a 2→ 3 move is illegal on the two end-nodes of the braid in Fig. 13(c),
so is a 3→ 2 move on any three nodes that contain this pair, which makes this braid stable under single
evolution moves. This generalise to that any nontrivial braid with internal twists is stable under single
evolution moves. Thestable braid are thus considered noiseless subsystems[6] and local excitations
with conserved quantities[7, 8]. Section 3.7 has more on thestability and locality of 4-valent braids.

The dual Pachner moves in SF models contain only the permutation relations of edges, which is
sufficient only for triangulations. In contrast, our dual Pachner moves are adapted to the embedded case
by recording the spatial relation (under or above) of the edges and nodes in a projection of the 3D graph;
they are thus called theadapted dual Pachner movesand are able to endow embedded 4-valent spin
networks a spin-foam like dynamics. This answers the question raised at the end of 1.3.2.

3.5 Dynamics: Propagation, Direct and Exchange Interaction of Braids

In order that the stable braids, as topological excitationsof the 4-valent braided ribbon networks, can be
candidates for particles or pre-particles, they must be dynamical. Indeed, the evolution moves endow the
stable braids rich dynamics: they can propagate and interact. We briefly address braid propagation first.

Since a braid can be considered an insertion in an edge, it makes sense to speak of them propagating
to the left or to the right along that edge. To help visualize this in the diagrams we will always arrange
a braid so that the edge of the graph it interrupts runs horizontally on the page. There are two types of
propagation of braids, namely induced propagation and active propagation.

Under the evolution moves, especially the 1↔ 4 moves, the ambient network of a braid may expand
on one side of a braid but contract on the other side, such thatthe braid effectively moves towards the
side of contraction. We call this phenomenoninduced propagation because the braid is not directly
involved in the evolution and remains the same. Any braid canpropagate in this induced way.

Opposed to induced propagation isactive propagation, which occurs only to specific network con-
figurations and braids; it is called active because the braid’s structure undergoes intermediate changes
(and probably permanent change of its internal twists) during the propagation. Braids that can propa-
gate in this way are calledactively propagatingand otherwisestationary or non-actively propagating.
Nevertheless, active braid propagation needs some specialcare that may modify the overall settings of
the 4-valent scheme, we thus refer to [6, 17] for details.

Two braids may propagate and meet each other in a situation, such that they can interact. Two interac-
tion types exist: direct interaction and exchange interaction. We shall illustrate these striking behaviours
of the braids by figures and present some key results of the dynamics in the algebraic notation.
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We first elucidate the direct interaction. In adirect interaction of two adjacent braids, one can merge
the other, through a sequence of evolution moves. We shall deliver this by a complete example and then
by the generalised definition. Fig. 18 depicts all the steps that the two braids in (a) take to become
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Figure 18: An example of direct right-interaction

the single braid in (h) to complete an interaction. Despite this self-explaining figure, a few remarks are
in order. In this example, the equivalence moves - the rotations and translations - are nondynamical but
are there only to set the nodes and edges in an proper configuration that manifests the legitimacy of an
evolution move, e.g., the final 4→ 1 move (compare it to Fig. 17).

Braid B in Fig. 18(a) is an example of what we callactively interacting braids because all the moves
are done basically onB’s nodes and edges;B′, except its left end-node, plays no role. Moreover, we Fig.
18 is an example ofdirect right-interaction , in the sense that the actively interacting braid merges with
the braid on its right. In fact, a direct interaction always involve at least one actively interacting braid.

For simplicity braidB′ is assumed twist-free. One may notice that the twist of−2 on strandc of
braid B appears again in the braid in Fig. 18(h). This is not a coincidence but an instance of certain
conservation laws that braid interactions follow.

Bearing this example in mind, Fig. 19 serves as an understandable graphical definition of thedirect
right-interaction of two braids. Note that translating the nodes 2, 3, and 4 together with their common
edgeg, g′, andg′′ to the left, passing through all ofB’s crossingsXB in Fig. 19 is certainly not always
possible becauseXB may obstructs the translation by creating a tangle like thatin Fig. 19(d). This
translation is guaranteed viable only when braidB is at least completely right-reducible (see Fig. 18).
Note also that nodes 1, 2, 3, and 4 with their edges cannot always be arranged by equivalence moves to
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Figure 19: (a)-(c) Definition of the direct right-interaction. (d) An obstructed translation.

meet Condition 3.1(3), such that the final 4→ 1 move can be done to complete the interaction. If all
steps in Fig. 19 are possible, braidB must be actively interacting.

It is a theorem[6, 7] that a braid is actively interacting constrains the braid to be equivalent to a trivial
braid with both end-nodes in the same state (e.g., Fig. 20). Recall that an actively interacting braid is
studied most conveniently in its trivial representation, which should readSTl

[Ta,Tb,Tc]S
Tr
.
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Figure 20: The braidB in 18 is equivalent to a trivial braid.

The discussion above is all about direct right-interaction. Direct left-interaction is defined analo-
gously and can be visualized as the left-right mirror image of right-interaction. Thus, in the sequel, we
assume direct left-interaction is understood. We denote a direct interaction of two braidsB1 andB2 by
B1 +d B2 = B; whether it is a left- or right-interaction is manifest contextually.

A formal division of braids in now natural. We temporarily denote the set of stable braids byBS
0 .

Nevertheless, for reasons to become transparent we enlargeB
S
0 by adding two more braids:

B±0 =
±
0[0, 0, 0]±0 , (3.5)

which are completely trivial14. B±0 are actually unstable because they are dual to a 3-ball. If wetolerate
their instability they are obviously actively interacting. As such, let us still call the enlarged set the set of
stable braids but denote it byBS. BS admits a disjoint union of three subsets:

B
S = Bb ⊔B f ⊔Bs, (3.6)

whereBb, B f , andBs are the sets respectively of actively interacting braids (includingB±0), all actively
propagating braids that do not actively interact, and stationary braids. Meaning of the superscripts will
be clear later. Although actively interacting braids are also actively propagating[6, 10], they are excluded
fromB f . It is a theorem that∀B ∈ Bb, the effective state ofB, χB ≡ 1[8].

We now dwell on the algebra of direct interactions. For simplicity, let us considerB, B′ ∈ Bb, B =
S
Tl
[Ta,Tb,Tc]S

Tr
on the left ofB′ = S′

T′l
[T′a,T

′
b,T

′
c]

S′

T′r
. If B andB′ satisfy the interaction Condition3.1(1)

14Note again that at this point spin network labels are not in play. Including spin network labels has two immediate con-
sequences. Firstly, like any other braid inBS, B±0 are not just two braids but infinite ones coloured by different sets of spin
network labels. Secondly,B±0 are only trivial topologically but neither algebraically nor physically.
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trivially, i.e., if Tr + T′l = 0 andS = S′, then the direction interaction ofB andB′ is simply

B+d B′
Tr+T′l =0
= S

Tl
[(Ta,Tb,Tc) + (T′a,T

′
b,T

′
c)]

S
T′r
= S

Tl
[Ta + T′a,Tb + T′b,Tc + T′c]

S
T′r
. (3.7)

If, however,B andB′ satisfy the interaction condition nontrivially, i.e. if eitherB’s right end-node orB′’s
left end-node must be rotated to make them meet Condition3.1(1), some algebra is needed. We would
refer to [7, 8] for the details; rather, we present the Lemma 3.1 as the general result. Note that we put an
actively interacting braid in its trivial representation and an arbitrary braid in its unique representation.

Lemma 3.1. Given a braid B= S
Tl
[Ta,Tb,Tc]S

Tr
∈ Bb on the left of a non-actively interacting braid,

B′ = Sl
0[(T

′
a,T

′
b,T

′
c)σX]Sr

0 , with the interaction condition satisfied by(−)Tr S = Sl , the direct interaction
of B and B′ results in a braid

B′′ = (−)Tl S
0[((P

S
−Tl

(Ta,Tb,Tc)) + (P(−)Tr S
−Tl−Tr

(T′a,T
′
b,T

′
c)) + (Tl + Tr , ·, ·))σXl((−)Tr S,−Tl−Tr )X]Sr

0 ,

where(Tl + Tr , ·, ·) is the short for(Tl + Tr ,Tl + Tr ,Tl + Tr ).

ThePSl
m in theB′′ in Lemma 3.1 is a permutation on the triple, determined bySl andmand valued in

the groupS3. Fig. 14 and its mirror images readily showsP+
+1 = (1 2), P+

−1 = (2 3), P−
+1 = (3 2), and

P−
−1 = (1 2). More general equalities can be derived recursively and found in [7]. The functionsXl(Sl ,m)

andXr(Sr , n) return crossing sequences generated by the rotations needed to setB’s right end-node and
B′’s left end-node ready for a 2→ 3 move. [8] offers their definitions and properties. We show only
an example here:Xl(+, 2k) = (ud)−k andXl(+, 2k − 1) = d(ud)−k, wherek ∈ Z. An positive exponent
of a crossing sequence means, for example, (ud)2 = udud, while a negative one means, for instance,
(ud)−2 = d−1u−1d−1u−1. Lemma 3.1 is independent of the trivial representation chosen forB[8]. Eq. 3.7
is merely a special case of Lemma 3.1. We are now ready for a main result.

Theorem 3.1. Given B= S
Tl
[Ta,Tb,Tc]S

Tr
∈ Bb, and any braid, B′ = Sl

0[(T
′
a,T

′
b,T

′
c)σX]Sr

0 ∈ BS, such

that B+B′ = B′′ ∈ BS, the effective twist numberΘ is an additive conserved quantity, while the effective
stateχ is a multiplicative conserved quantity, namely

ΘB′′ = ΘB + ΘB′

χB′′ = χBχB′ .
(3.8)

This theorem, proved in [8], demonstrates that the two invariants of equivalence moves of braids,
Θ andχ, are also conserved charges of direct interactions. Conservation laws play a pivotal role in
revealing the underlying structure of a physical theory. Byinvariants and conserved quantities we are
able to determine how the content of our theory may relate to particle physics and if extra inputs are
compulsory. In Section 3.6, we try to identify our conservedquantities with particle quantum numbers.

SinceχB ≡ 1∀B ∈ Bb, Theorem 3.1 shows that ifB directly interact with a braid withχ = −1, the
result must be a braid withχ = −1 too and is thus not inBb. Moreover,Bb +d B

S \Bb ⊆ BS \Bb.
Because fermions usually do not directly interact with eachother but can interact with (gauge) bosons,

that a direct interaction always involve at least one actively interacting braid implies an analogy between
actively (non-actively) interacting braids and bosons (fermions). The evidence of this analogy will be-
come stronger soon, after we study exchange interaction. This analogy manifests the meaning of the
superscript “b”, as for bosons, ofBb, the set of actively interacting braids. As to the set of non-actively
interacting braids, we divided it intoB f andBs, and we are more inclined to consider the former analo-
gous to the set of fermions because the braids inB f are chiral[6], analogous to that the SM elementary
fermions are chiral, which manifest the superscript “f” in B f .

The result of a direct interaction of two braids is unique! Nonetheless, this uniqueness may cease
to hold if the braided ribbon networks are graced with spin network labels, such that the result of an
evolution move becomes a superposition of outcomes with thesame topology but different sets of labels.
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Figure 21: Definition of braid decay:B
 

→ B′ + B′′, B, B′ ∈ BS, B′′ ∈ Bb. The dashed lines emphasize
the dependence of their relative positions on the stateSr .

It is natural to ask if a braid can decay, like a particle. The answer is Yes. A braid decay is a reversed
process of a direct interaction. Hence, through decay a braid always radiates an actively interacting
braid, ot its left or its right. We thus differentiate a left-decay from a right-decay, which are symbolized
respectively byB

f

→B′ + B′′, indicating thatB′ ∈ Bb, andB
 

→B′ + B′′ becauseB′′ ∈ Bb.
Fig. 21 defines right-decay. Fig. 21(a) shows a right-reducible braid,B = Sl[(Ta,Tb,Tc)σXX′]Sr ,

with a chosen reducible crossing segmentX′, X′ 2 Xmaxred2 X, whereXmaxred is the maximal reducible
segment ofX. This indicates that, in contrast to direct interaction, a braid may decay in multiple ways,
each corresponding to a choiceX′ that must be specified in a decay process. As the reverse of direct
left-interaction, Fig. 21 should be easily understood, whose algebraic form is

B = Sl[(Ta,Tb,Tc)σXX′]
Sr  → Sl[((Ta,Tb,Tc) − σ

−1
X (T′a,T

′
b,T

′
c))σX]S′ + S′[(T′a,T

′
b,T

′
c)σX′ ]

Sr

= B′ + B′′,
, (3.9)

whereS′ = (−)|X
′|Sr , B′′ ∈ Bb, and the “+” denotes the adjacency ofB′ andB′′. Left-decay is defined

similarly. The relation between decay and direct interaction ensures that effective twistΘ and effective
stateχ are also additively and multiplicatively conserved in braid decay.

Not only a reducible braid but also an irreducible - in fact any - braid can radiate. What an irreducible
braid emits is but either ofB±0 in Eq. 3.5. In fact, because a 1→ 4 can always take place on either
end-node of any braid, a subsequent 3→ 2 on three of the four nodes generated by the 1→ 4 move
results in either aB+0 or aB+0 , depending on the state of the end-node. This is whyB±0 are included inBS

although they are unstable. It is therefore plausible thatB±0 are analogous to gravitons.
We now proceed to the exchange interaction of braids. Unlikea direct interaction, an exchange

interaction can be defined on the wholeBS as a map,+e : BS × BS → BS × BS. Exchange interaction
gets its name because each such process always involves an exchange of a virtual actively interacting
braid. It is useful to keep track of the direction of the flow ofthe actively interacting braid during an
exchange interaction. Therefore, we differentiate aleft and aright exchange interaction, respectively
denoted by

←

+e and
→

+e. The arrow indicates the ”flow” of the virtual actively interacting braid.
The graphic definition ofright exchange interaction is illustrated in Fig. 22. The left exchange

interaction is defined likewise. We now make a few remarks.
Firstly, we begin with theB1 =

S1l[(T1a,T1b,T1c)σX1AX1B]S andB2 =
S[(T2a,T2b,T2c)σX2]

S2r , which
are two stable braids, in Fig. 22(a). The zero external twists are omitted asB1 andB2 are in their unique
representations.B1’s right end-node andB2’s left end-node are set in the same state,S, to satisfy the
interaction condition. We also assume thatB1 has a reducible crossing segment, sayX1B.
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(e) The virtual actively interacting braid exchanged fromB1 to B2.

Secondly, ifX1B is not trivial, i.e., if B1 is right-reducible, translating the three nodes on the loop
in (b) and rearranging them by equivalence moves into a proper configuration ready for a 3→ 2 move
generates a pair of triples of internal twists,−(Ta,Tb,Tc) and (Ta,Tb,Tc), and causesS′ = (−)|X1B|S, as
in (c). Taking the permutations induced byX1A and byX1B into account, in (d) we have the relations:

(T′1a,T
′
1b,T

′
1c) = (T1a,T1b,T1c) − σ

−1
X1A

(Ta,Tb,Tc) (3.10)

(T′2a,T
′
2b,T

′
2c) = (Ta,Tb,Tc) + σ

−1
X1B

(T2a,T2b,T2c), (3.11)

which produce the two adjacent braids,B′1 andB′2, related toB1 andB2.
Thirdly, according to direct interaction, the only possible triple (Ta,Tb,Tc) in Fig. 22(c) is exactly the

same as the triple of internal twists of an actively interacting braid -B = S′[(Ta,Tb,Tc)σX1B]S - in Fig.
22(e). For an actively interacting braid of the form in Fig. 22(e),S′ = (−)|X1B|S; hence,B’s left and right
end-nodes are respectively in the same states as that of the left end-node ofB′2 in Fig. 22(d) and that of
the right end-node ofB1 in Fig. 22(a). Thus, the form of braidB′2 in Fig. 22(d) must be precisely the
result of the direct interaction ofB andB2, which by Lemma 3.1 is

B+d B2 =
S′[((Ta,Tb,Tc) + σ

−1
X1B

(T2a,T2b,T2c))σX2]
S2r = B′2,

which validates the relation in Eq. 3.11.
Therefore, the process of the right exchange interaction defined in Fig. 22 is as ifB1 andB2 interact

with each other via exchanging a virtual actively interacting braidB, then becomeB′1 andB′2. Or one
may say that an exchange interaction is mediated by an actively interacting braid. This reinforces the
analogy between actively interacting braids and bosons15. Note that in an exchange interaction, there
does not exist an intermediate state in which only the virtual actively interacting braid is present because
our definition of a braid requires the presence of its two end-nodes. The following theorem summarizes
the above as another main result. (The case of left exchange interaction is similar.)

Theorem 3.2. Given two adjacent braids, B1, B2 ∈ B
S. B1 =

S1l[(T1a,T1b,T1c)σX1AX1B]S is on the left
and has a reducible crossing segment X1B, and B2 =

S[(T2a,T2b,T2c)σX2]
S2r , there exists a braid B∈ Bb,

15More generally, this should imply the analogy between actively interacting braids and particles that mediate interactions,
which should potentially include super partners of gauge bosons.
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B = S′[(Ta,Tb,Tc)σX1B]S with S′ = (−)|X1B|S , such that it mediates the exchange interaction of B1 and
B2 to create B′1, B

′
2 ∈ B

S, i.e.,

B1
→

+eB2→ B′1 + B′2
= S1l[((T1a,T1b,T1c) − σ

−1
X1A

(Ta,Tb,Tc))σX1A]S′ + S′[((Ta,Tb,Tc) + σ
−1
X1B

(T2a,T2b,T2c))σX2]
S2r .

(3.12)

The fourth remark is, ifX1B = I, however, (Ta,Tb,Tc) = (0, 0, 0), and hence (T′1a,T
′
1b,T

′
1c) =

(T1a,T1b,T1c), (T′2a,T
′
2b,T

′
2c) = (Ta,Tb,Tc), andS′ = S. That is,B′1 = B1 and B′2 = B2. Thus, the

virtual actively interacting braid exchanged in the interaction is eitherB+0 or B−0 , which were aforemen-
tioned to be analogous to gravitons.

Here is the final remark. By the same reason why a braid can decay in multiple ways, two braids
can have exchange interactions in more than one ways too, as opposed to direct interaction. This non-
uniqueness of exchange interaction has an analogy in particle physics. For instance, quarks have both
electric and color charges, both photons and gluons can mediate forces on quarks. The relation between
actively interacting braids and bosons is yet not an actual identification, however. In fact, if each actively
interacting braid corresponded to a boson, there would be too many ”bosons”. The underlining physics
of that two braids can have exchange interactions in different ways deserves further studies.

It should be emphasized that each individual exchange interaction is a process that yields a unique
result16. An expression likeB1

→

+eB2 is only formal. Only when the exact forms ofB1 andB2 with their
reducible segments are explicitly given,B1

→

+eB2 acquires a precise and unique meaning. In computing
an exchange interaction, we have to specify our choice of thereducible crossing segment of the braid
that gives out the virtual actively interacting braid. For any such choice Theorem 3.2 holds.

The following Theorem shows that the additive and multiplicative conserved quantities of direct in-
teraction in Theorem 3.1 are also conserved in the same manner under exchange interaction.

Theorem 3.3. Given two neighbouring stable braids, B1, B2 ∈ B
S, such that an exchange interaction

(left or right or both) on them is doable, i.e., B1 +e B2 → B′1 + B′2, B′1, B
′
2 ∈ B

S, the effective twistΘ is
an additive conserved quantity, while the effective stateχ is a multiplicative conserved quantity, namely

ΘB′1
+ ΘB′2

+e
= ΘB1 + ΘB2

χB′1
χB′2

+e
= χB1χB2,

(3.13)

independent of the virtual actively interacting braid being exchanged during the exchange interaction.

This Theorem is proved in [10]. Consequently, exchanges of actively interacting braids give rise to
interactions between braids that are charged under the topological conservation rules. The conservation
of Θ is analogous to the charge conservation in particle physics.

3.6 Dynamics: CPT and Braid Feynman Diagrams

In this Section we discuss the charge conjugation, parity, and time reversal symmetries of stable braids,
and the braid Feynman diagrams. We shall present some key results with a few remarks.

3.6.1 C, P, and T

Though not separately, as a theorem the combined action CPT is a symmetry in any Lorentz invariant,
local field theory. Being a physical model of QFT, the SM respects the CPT-symmetry too. This urges
the search for the possible discrete, non-equivalence, transformations of 4-valent braids and check their
correspondence with C, P, and T transformations. Whether our braids would eventually be mapped to or

16With spin network labels the result is not unique any more because two topologically equal braids can be decorated by
different sets of labels, and an interaction should result in a superposition of braids labelled differently.
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more fundamental than the SM particles, they should possessquantum numbers that are transformed by
C, P, and T. Conversely, investigating the action of discrete transformations on our braid excitations can
help us to construct quantum numbers of a braid.

A large number of possible discrete transformations of the 4-valent braids exist, however, e.g., the
permutation groupS3 on the triple of internal twist, several copies ofZ2 that flip a twist, an end-node
state, and a crossing respectively, etc.. The challenge then is to filter out the unwanted discrete transfor-
mations. Surprisingly, the braid dynamics introduced above turns out to naturally select exactly seven
legal discrete transformations of the braids, as C, P, T, andtheir products add up to seven in total (eight
including identity). Now we show how this “super-selection” works. In view of that QFT does not bear
a transformation that magically changes a particle to something else, the dynamics of the braids of em-
bedded 4-valent spin networks, namely propagation and interaction, naturally constrains what discrete
transformations are allowed on braids, which is summarizedas a guideline in the following Condition.

Condition 3.2. A legal discrete transformationD on an arbitrary braid B must be an automorphism on
B

b,B f , andBs separately.

We expect the discrete transformations to be representation independent; therefore, the study of their
effects should be made on braids in their generic forms (Fig. 13(a) and Eq. 3.1). Table 1 displays the
result, in which explicit identification of the legal discrete transformations with C, P, and T is made.

Discrete Action on Prop- Action on
Transformation B = Sl

Tl
[(Ta,Tb,Tc)σX]Sr

Tr
Direction |p, σ, n〉

1
Sl
Tl

[(Ta,Tb,Tc)σX]Sr
Tr

+ |p, σ, n〉

C
S̄l
−Tl

[−(Ta,Tb,Tc)σIX(X)]
S̄r
−Tr

+ ∝ |p, σ, nc〉

P
S̄r
Tr

[(Ta′ ,Tb′ ,Tc′ )σR(X)]
S̄l
Tl

− ∝ |−p, σ, n〉

T
Sr
Tr

[(Tc′ ,Tb′ ,Ta′)σScR(X)]
Sl
Tl

− ∝ (−)J−σ |−p,−σ, n〉

CP
Sr
−Tr

[−(Ta′ ,Tb′ ,Tc′)σX−1]Sl
−Tl

− ∝ |−p, σ, nc〉

CT
S̄r
−Tr

[−(Tc′ ,Tb′ ,Ta′)σIXScR(X)]
S̄l
−Tl

− ∝ (−)J−σ |−p,−σ, nc〉

PT
S̄l
Tl

[(Tc,Tb,Ta)σSc(X)]
S̄r
Tr

+ ∝ (−)J−σ |p,−σ, n〉

CPT
Sl
−Tl

[−(Tc,Tb,Ta)σIXSc(X)]
Sr
−Tr

+ ∝ (−)J−σ |p,−σ, nc〉

Table 1: The group of discrete transformations on a generic braid diagram. In column-3, a− (+) means
the propagation direction of the braid is flipped (unaffected). For comparison, column-4 is the action of
the group on a one-particle state, with 3-momentump, 3rd componentσ of spin J, and chargen.

In column-2 of Table 1,R, IX, andSc are discrete operations on the crossing sequenceX of a braid,
respectively defined byR : X = x1x2 · · · xn 7→ xnxn−1 · · · x1, IX : X = x1x2 · · · xn 7→ x−1

1 x−1
2 · · · x

−1
n , and

Sc : ∀xi ∈ X, xi 7→ d if xi = u andxi 7→ u if xi = d. Hence,X−1 = IXR(X). Note thatσ−1
X , σX−1 in

general. These operations are commutative and are elaborated in [9, 17].
In Table 1, we chose to denote C, P, and T transformations in the Hilbert space by calligraphic letters

C, P, andT because braids are topological excitations of embedded spin networks that are the states
in the Hilbert space describing the fundamental spacetime.One can easily check that the eight discrete
transformations including identity in the first column of Table 1 indeed form a group, which is actually
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the largest group of legal discrete transformations of 3-strand braids[9, 17]. This is the first reason why
they can be identified with C, P, T, and their products.

We emphasize again that these discrete transformations of braids are not equivalence moves; they take
a braid to inequivalent ones, as seen in Table 1. Staring at the 3rd column of the table, one readily finds
that some characterizing quantities of a braid, e.g., the effective twist and effective state, are invariant
under some transformations but not under others. Table 1 is obtained by utilizing these topological
characterizing quantities, without involving spin network labels. We do not count in the phase and
sign factors in the 4th column of Table 1 either. All the transformations are restricted to local braid
states, rather than a full evolution picture. Given these, surprisingly, the map between the legal discrete
transformations of braids and those on single particle states appears to be unique.

According to column-4 in Table 1, the transformationsP, T , CP, andCT reverse the three momen-
tum of a one-particle state. But then, what is the momentum ofa braid? Fortunately, we need not to
explicitly define the 3-momentum of a braid for the moment to tell the discrete transformations that can
flip the momentum because it should always agrees with the braid’s local propagation direction, however
it is defined[9]. Therefore, the discrete transformations reversing the 3-momentum of a braid are exactly
those flipping the propagation direction of the braid. This also helps to pins down Table 1.

The effective twistΘ and effective stateχ are representation-independent invariants and dynamically
conserved quantities of a braid, while charges, e.g., electric and color chargers, are quantum numbers of
a particle. Hence, onlyΘ, χ, and functions of them can be candidates for certain chargesof a braid. As
we know, the electric charge of a particle is an integral multiple of 1/3, an additively conserved quantity,
and a result ofU(1) gauge symmetry. The effective twist of a braid has three similar traits. We have
seen the first two and now talk about the third property. The framing that inflate a spin network edge to
a tube is in fact aU(1) framing. That is, a tube is essentially an isomorphism from U(1) to U(1), which
is characterized by its twists. A twist-free tube is an identity map, whereas a twisted tube represents a
non-trivial isomorphism. These suggest to interpretΘ or an appropriate function of it as the ”electric
charge” of a braid, which may in turn explains the origin and quantization of electric charge.

Here is the final remark on Table 1. On a single particle state,a CPT has one more effect than a
C because it also turnsσ, thez-component spin, to−σ. Although we do not know yet what of a braid
corresponds toσ, we can still nail down theCPT . [9, 17] argue that spin network labels should play the
role that determines the “spin” of a braid state.

The C, P, and T group stable braids into CPT-multiplets. The braids in a multiplet are not equivalent
but may share some traits. It would be heuristic to find how a CPT-multiplet of braids is characterized.
Theorem 3.4 shows that only CPT-multiplets of actively interacting braids have a topological character.

Theorem 3.4. All actively interacting braids in a CPT-multiplet have thesame number of crossings if
each of them is in its unique representation. This number uniquely characterizes the CPT-multiplet.

The proof of the theorem can be found in [9, 17]. Theorem 3.4 does not apply to non-actively inter-
acting braids. In fact, we can always find two non-actively interacting braids withm crossings (m > 1),
in their unique representations, which are not related to each other by any discrete transformation. For
example, the 2-crossing braidsSl[(Ta,Tb,Tc)σud−1]Sr and S′l[(T′a,T

′
b,T

′
c)σuu]S′r can never belong to the

same CPT-multiplet, regardless of their internal twists and end-node states. Nevertheless, it is still true
thatall the non-actively interacting braids in a CPT-multiplethave the same number of crossings if they
are in the same type of representation[9]. This is simply because the discrete transformations donot alter
the representation type and the number of crossings of a braid.

Having seen the effects of C, P, and T on single braid excitations, we now discussthe action of these
discrete transformations on braid interactions.Braid interactions turn out to be invariant under CPT, and
more precisely, under C, P, and T separately[9, 10]. By this we mean, say, for a direct interaction under
a C,C(B)+dC(B′) = C(B+d B′), while under a P, it meansP(B′)+dP(B) = P(B+d B′). Note that the P-
transformation of a direct interaction swaps its direction. A subtlety arises in the case of T, however. An
interaction involves the time evolution of a spin network. To apply our T-transformation to an interaction,
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one should reverse all the dynamical moves. Hence, a T-transformation turns a direct interaction into a
decay. That is, to show the invariance ofB +d B′ −→ B′′ under time reversal, it suffices to show that
T (B′′)

 

→T (B′)+T (B). Analogous, the invariance of an exchange interaction,B1
→

+eB2→ B′1+B′2, under
time reversal readsT (B′2)

←

+eT (B′1)→ T (B2) + T (B1). The case of braid decay follows similary[10].
This observation of the absence of CP-violation in our theory does not comply with the SM of parti-

cles, which seems to infer an issue that the interactions of braids are deterministic, in the sense that an
interaction of two braids produces a definite new braid. Nevertheless, this may not be a problem at all
because we have only worked with definite vertices of interactions. In terms of vertices we have definite
result for an interaction as to the case in QFT; this is similar to what have been done in SF models or
GFTs. Besides, one can certainly argue that if our braids aremore fundamental entities, the CP-violation
in particle physics need not to hold at this level. Putting this CP-violation problem aside, however, a
fully quantum mechanical picture should be probabilistic17.

If the absence of CP-violation was truly an issue, we would consider braids with the same topological
structure but different sets of spin network labels as physically different. One may adapt some SF meth-
ods to assign amplitudes to the adapted dual Pachner moves ofthe braided ribbon networks. An evolution
move may then yield outcomes with the same topological configuration but different spin network labels;
each outcome has a certain probability amplitude. As a result, an interaction of two braids may give rise
to superposed braids, each of which has a certain probability to be observed, with the same topological
content but different set of spin network labels. With this, CP-violating interactions may arise.

Note that the current study of discrete transformations of braids would not be impact by just adding
spin network labels in a straightforward way in to our scheme. A reason is that the discrete transforma-
tions of the braids do not change the spin network label of each existing edge of the network. One may
try to construct discrete transformation that change the spin network labels on braids, but one does not
havea priori a reason to make a special choice among many arbitrary ways ofdoing this.

3.6.2 Asymmetry of Braid Interaction

Both direct and exchange interactions are asymmetric. A brief description is as follows. That direct
interaction is asymmetric means: Given an actively interacting braid B and an arbitrary braidB′, in
general either of the direct right interactionB+d B′ or the left interactionB′ +d B cannot occur because
of the violation of the corresponding interaction condition. Even if both interactions are feasible,B+d B′

andB′ +d B are two inequivalent braids in general, which readsB+d B′ � B′ +d B. Two exceptions exist.
In the cases whereB andB′ meet certain constraints,B+d B′ andB′ +d B can simply be equal[8].

On the other hand, interestingly,B +d B′ and B′ +d B can be related by discrete transformations.
Because P-transformation swaps the two braids undergoing adirect interaction, i.e.,P(B +d B′) =
P(B′) +d P(B), we immediately have

B′ +d B = P(B+d B′), if B = P(B), B′ = P(B′) (3.14)

where theP can be replaced byCP by the same token. Note that, however, time reversal cannot relate
B+d B′ andB′ +d B because it turns a direct interaction into a decay.

As aforementioned, the set of actively interacting braids is closed under direct interaction. This and
the asymmetry of direct interaction then give rise to the following theorem[6, 8].

Theorem 3.5. The set of actively interacting braidsBb is an algebra under direct interaction, namely
B

b +dB
b = Bb. This algebra is associative and non-commutative.

It follows that braid decay also asymmetric but we shall skipthis and move on to the asymmetry of
exchange interaction, which is subtler.

The asymmetry of exchange interaction is three-fold. Firstly, for B1, B2 ∈ B
S, in generalB1

→

+eB2 �

B2
→

+eB1 (B1
←

+eB2 � B2
←

+eB1), which is called theasymmetry of the first kind. Secondly, in general

17One should note that a few theoretical physicists may not agree on this.
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B1
→

+eB2 � B1
←

+eB2, which is christened theasymmetry of the second kind. The asymmetry of the
third kind states that genericallyB1

→

+eB2 � B2
←

+eB1. As in the case of direct interaction, whenB1

andB2 satisfy certain constraints, symmetric exchange interactions arise; however, a subtlety should be
noted. Since two braids may have different exchange interactions,B1

→

+eB2 andB2
→

+eB1 cannot be equal
for all possible ways of howB1 andB2 may interact. The right question to ask is, taking right exchange
interaction as an example: For anyB1 andB2, do there exist an instance ofB1

→

+eB2 and one ofB2
→

+eB1

among all possible ways of these two interactions, such thatB1
→

+eB2 = B2
→

+eB1? [10] answers this
question for the first two kinds of asymmetry. This asymmetryof the third kind is new and not studied
in [10] but it would not be hard by following the derivations in [10].

Like direct interactions, asymmetric exchange interactions may be related by discrete transformations,
but only for the asymmetry of the third kind. Since in the asymmetry of the third kind, the positions of
the braids and the interaction direction are both swapped, we immediately see that only P and CP are
able to do this. Therefore, we obtain Eq. 3.15, in whichP can be replaced byCP.

B2
←

+eB1 = P(B1
→

+eB2), if B1 = P(B1), B2 = P(B2). (3.15)

3.6.3 Braid Feynman Diagrams

An effective theory of the dynamics of 4-valent braids based on Feynman diagrams is possible, which
are calledbraid Feynman diagrams. Unlike the usual QFT Feynman diagrams having no internal
structure, each braid Feynman diagram is an effective description of the whole dynamical process of a
braid interaction and has internal structures that record the evolution of the braid and its ambient.

We use and for respectively outgoing and ingoing braids inB f , and
for respectively outgoing and ingoing non-actively propagating braids18 in Bs. Outgoing and

ingoing braids inBb are better represented by and respectively.
In accordance with left and right-decay, we will henceforthdenote left and right direct interactions

by
←

+d and
→

+d respectively. Note that if the two braids being interactingare both inBb, the direction of
the direct interaction is irrelevant because the result is independent of which of the two braids plays the
active role in the interaction. SinceBb→+dB

b ⊆ Bb andBb→+d(B f ⊔ Bs) ⊆ B f ⊔ Bs, the only possible
single vertices of right direct interaction and of right decay are respectively listed in Fig. 23(a) and (b),
whose left-right mirror images are vertices of direct left-interaction and left-decay. The arrows over the
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Figure 23: (a) All vertices of direct right-interaction. (b) All vertices of right-decay. Time flows up.

wavy lines in Fig. 23 are important for they differentiate a direct interaction from a decay.
Fig. 24 depicts all possible basic 2-vertex diagrams for right exchange interaction, whose left-right

mirror images are certainly the basic diagrams for left exchange interaction. These diagrams manifests
the invariance of the exchange interaction under the C, P, T and their products.

Whether an exchange interaction can have symmetric instances is lucid in its diagram. Taking the
asymmetry of the first kind as an example, if a diagram looks formally the same as its left-right mirror
image with the arrow over the virtual braid not mirrored, thecorresponding exchange interaction allows
symmetric instances. It follows that Fig. 24(a), (b), (e), (f), (p), and (u)-(x) are such diagrams.

18These braids can still propagate in an induced way.
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Figure 24: Possible right exchange interaction 2-vertices. Time flows up.

The diagrams in Figures. 23 and 24 crystallizes the analogy between braids inBb and bosons, as the
topological conservation laws permit them to be singly created and destroyed and as exchanges of these
excitations give rise to interactions between braids charged under the topological conservation rules.

Multi-vertex and loop braid Feynman diagrams can be constructed out of these basic vertices. As
a result, there should exist an effective field theory based on these diagrams, in which the probability
amplitudes of each diagram can be computed. For this one should figure out the terms evaluating external
lines, vertices, and propagators of braids. In a more complete sense, an action of the effective fields
representing braids that can generate these braid Feynman diagrams should be devised. Each effective
field is a function of the representations of the group elements in the characterizing 8-tuple (and spin
network labels if necessary) of a braid; these representations label a line in the corresponding braid
Feynman diagram. An easier task is to assign a reasonable probability amplitude of each braid Feynman
diagram. In either case, the very first challenge is to find an appropriate mathematical language to study
the 4-valent scheme analytically. In the next section we will briefly mention three possible formalisms.

3.7 Discussions and Outlook

The 4-valent scheme resolves some issues and limitations persisting in the 3-valent approach but also
raises new issues. In the first place, we obtain a (3+ 1)-dimensional evolution of quantum states of
spacetime, which has intrinsic dynamics of the braid excitations of these states. Because of the framing
and embedding of spin networks, strands of a braid excitation admit twists only in units of 1/3. The twists
of a braid is directly related to its electric charge, which naturally, rather than by hand, gives rise to charge
quantization and fractional charges such as quark charges.The 4-valent theory also contains another
natural selection: braid dynamics magically picks out a group of exactly eight discrete transformation,
including identity, which can be identified with analogues of C, P, T, and their products.

Some issues the 4-valent scheme raises have been discussed more or less previously. In the sequel,
we shall analyse some issues that bear on the interpretationof these results. In the last section, however,
we shall introduce ideas, future work, and work in progress,which may remove these issues.
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Stability and locality

We argued that the stable braids are local excitations of 4-valent braided ribbon networks because they
are noiseless subsystems of the networks. Nevertheless, the comparison with topological field theories
that do not bear any local degrees of freedom seems to set the locality of 4-valent braids in doubt. In
fact, locality in background independent theories of quantum gravity is delicate, as it is correlated with
two other important issues, namely the problem of the concept of spacetime and that of low energy limit.
Moreover, the locality and stability of a braid are also entangled.

A background independent quantum gravity theory usually lacks a metric that directly measures spa-
tial locality. But the graph metric of a spin network may define the network locality. In this sense, a
stable braid is local because it is confined between two nodes. Unfortunately, the issue in the stability of
a braid may damage its locality because Condition 3.1 only protects the a stable braid from being undone
but does not prevent the braid’s end-nodes from being expanded by 1→ 4 moves. In the latter scenario,
the three strands of a braid may turn out to be attached to nodes far from each other on the network,
causing the braid nonlocal. We might strengthen the stability condition by further forbidding the action
of a 1→ 4 move on either end-node of a stable braid but the pay is the loss of braid decay.

Moreover, the locality discussed above is micro-locality,opposed to which is macro-locality that
is defined in the low energy end of the theory. Markopoulou andSmolin proposed these two notions
of locality and found that they do not match in general[24], which is also exemplified in [83]. The
quantum spacetime in our context is pre-geometric, as it is asum over quantum histories of superposed
pre-geometric spin networks; it is conjectured that continuous spacetime emerge as certain limit of this
quantum spacetime. Hence, requiring the micro-locality defined on each spin network to match the
macro-locality in continuous spacetime makes no sense.

Macro-locality is more relevant to the known physics; however, it is obtained from micro-locality.
This leads back to the problem of low energy limit, to resolvewhich Markopoulouet al. adapted the
idea of noiseless subsystems with micro-symmetries from Quantum Information. Therefore, we expect
that the symmetry of the braid excitations will induce emergent symmetries, including time and space
translation invariance, in the low energy effective description of the braids.

Particle identification and mass

The ultimate physical content of the 4-valent scheme is not fully comprehensible at this stage. In the
trivalent scheme, [4] tentatively maps the trivalent braids to SM particles. Whether such a map exists in
the 4-valent scheme is yet obscure. A reason is that althoughthe dynamics of 4-valent braids strongly
constrains the defining 8-tuple of a stable braid, in particular the actively interacting braids, the closed
form of this constraint is still missing. Consequently, we lack for a censorship to pick out the 4-valent
braids that may be mapped to SM particles. Nonetheless, we are inclined to another prospect: Braid
excitations are fundamental matter whose low energy effective theory yield the SM particles.

If the latter is true, the potential instability and non-locality of stable braids may not be an issue
because only the low energy effective counterparts of the braids are physically relevant.

In any case, is how mass arises? Two likelihoods are in order.First, a braid may acquire zero or
nonzero mass from some of its intrinsic attributes. Second,mass is not well-defined at the level of
spin networks but is emergent in the low energy limit, directly or via certain symmetry breaking. The
latter requires working out the effective theory, which is our future work. As to the former, a braid’s the
number of crossings can be a candidate for its mass (this is also conjectured in the trivalent scheme[2, 4]).
Here is the logic. The number of crossings of an actively interacting braid in its unique representation
uniquely characterizes the CPT-multiplet the braid belongs to; hence, this number cannot be the charge
(already mapped to the braid’s effective twists) or 3-momentum of the braid but probably related to the
energy of the braid. Besides, actively interacting braids are equivalent to trivial braids, whereas non-
actively interacting ones are not. If we associate a braid’smass to its number of crossings, all actively
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interacting braids seem massless, consistent with their analogue with (gauge) bosons. and most non-
actively interacting braids are massive because they not fully reducible.

Other questions pending for answers

• At the level of spin networks, is there a quantum statistics of braids that can turn the analogy
between actively interacting braids and bosons affirmative? If true, are there anyonic braid states?

• Both trivalent and 4-valent schemes need a mechanism to create nontrivial braids on unbraided
networks19. Section 3.7.1 discusses a possible way out.

• Our ansatz that spacetime is fundamentally discrete is partly inspired by the LQG area and vol-
ume operators with discrete spectra. Nevertheless, whether these area and volume operators are
physical is still under debate[84, 85]. On the one hand, these operators are not gauge invariant.
On the other hand, the areas and volumes that we routinely measure are associated to spatial re-
gions determined by matter[86, 64] but LQG was devised to be atheory of gravity only. Now
that our program of emergent matter shows that matter may be encoded in LQG as emergent braid
excitations of spin networks, it may help to settle the debate.

• Our program of emergent matter is also related to Quantum Graphity, a class of general theories of
background independent quantum gravity based on graphs[89, 90]. [87] finds the speed of light20

as a Lieb-Robinson bound[88] in certain Quantum Graphity models. As both trivalent and 4-
valent braids can propagate, does a Lieb-Robinson bound of braid propagation exist? The 4-valent
scheme expects that actively interacting braids saturate the Lieb-Robinson bound of the system but
non-actively interacting ones do not, such that they are respectively massless and massive.

3.7.1 Future directions

We now sketch our plan of reformulating the 4-valent scheme or even our whole program of emergent
matter in other frameworks of mathematical physics, such asGFT, Tensor Category, and so on.

Group Field Theories with braids
GFTs21 consider d-dimensional simplicies the fundamental building blocks of (d+1)-dimensional space-
time and treat them as fields whose variables are elements in the group defining the simplicies. That is,
a GFT is a local, covariant quantum field theory of universes”in terms of the fields associated with the
fundamental building blocks. It would produce a transitionamplitude between quantum ”universes” by
summing over the Feynman diagrams of this transition, i.e.,summing over all triangulations and topolo-
gies as the histories built from the evolution of the fundamental d-simplicies. These Feynman diagrams
can also be viewed as spin networks and dual to (d + 1)-simplicies. Group Field Theories encompass
most of the other approaches to non-perturbative quantum gravity, such as Loop Quantum Gravity and
Spin Foam models, provide a link between them, and go beyond the limitations of them[94].

We name two viable routes of formulating a GFT of 4-valent braids. Spin networks are purely com-
binatoric and unembedded in GFTs, so the first strategy is to enlarge the configuration space of certain
(3+ 1) GFT by adding to its fundamental field group variables thatcharacterize a 4-valent braid.

Inspired by constructing theories of collective modes in condensed matter physics, our second, sim-
pler strategy is to devise a braid field as a composite field of apair of fundamental group fields whose
group variables are identified in a braided way, and then integrate out the fundamental fields to obtain an
effective theory of the composite fields in certain background given by the fundamental ones.

19Trivial braidsB±0 in Eq. 3.5 can be otherwise created and annihilated, in the 4-valent scheme.
20This is understood as the maximum speed, at which information can propagate in a system.
21The first GFT - the Boulatov model - originated as a generalization of the Matrix Models of 2D gravity to 3D[91]. GFTs in

3D and 4D were realised to be generating theories of Spin Foammodels[92, 93]. Later, GFTs are suggested to be fundamental
formulations of quantum gravity[94]. [95] presents an extensive review on the subject.
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Both ways combine spin network labels automatically and is expected to result in a low energy ef-
fective theory of braid excitations in a background spacetime. The former sounds more fundamental and
should be able to solve the issue that nontrivial braids cannot be created from spin networks initially free
of braids. The latter is what we are currently taking, by which we found it is likely to construct a toy
GFT with only certain trivial braids, whose effective theory is a scalarφ4 theory.

Tensor Categorical methods
Braided tensor Categories[96] appear to be another elegantand unified way to resolve many aforemen-
tioned issues once and for all. In fact, the connection between LQG and SF Models and Tensor Cate-
gories has been recognized for about decades[97, 98, 99]. Note that the string-net condensate due to Wen
et al[100, 101] also illuminates that tensor categories may be the language underlying a unification of
gravity and matter. Braided tensor categories can unleash our program from embedding by casting both
trivalent and 4-valent braids combinatorially[98], whichis beyond the context of LQG.

A twist of a strand of a braid can be interpreted as characterizing a non-trivial isomorphism from
U(1) to U(1). Nonetheless, the concept of twist can be generalized toany vector spaces, which is how
it is defined in braided tensor categories. In this manner, wemay view spin network labels as if they
represent generalized framing of spin networks other than theU(1) framing we have just studied, such
that generalized twists can arise, which may offer a unification of our twists and spin network labels, as
well as of internal symmetries and spacetime symmetries.

The end-nodes and external edges of 4-valent braids may exert further constraints on what tensor
categories are at our disposal or even motivate new types of tensor categories. Tensor-categorized 4-
valent braids and evolution moves may be evaluated by the relevant techniques already defined in theories
of tensor category or new techniques adapted to our case.

3.7.2 Relation to Topological Quantum Computing

One should not be surprised to notice that the 4-valence scheme of emergent matter is related to Topo-
logical Quantum Computing (TQC). This relation has three facets. Firstly, though seemingly superficial,
braids and their algebra are present in both disciplines. A major difference is that each 4-valent braid
have two end-nodes and has only three strands, which is not the case in TQC.

Secondly, as aforementioned, being a concept rooted in Quantum Computing/Information and adapted
to models of quantum gravity, noiseless subsystems are a keyunderlying notion of the program of emer-
gent matter. Furthermore, [25, 26] suggest that backgroundindependent quantum gravity is a quantum
information processing system. On the other hand, in [27, 28, 102] topological quantum phase transitions
have proven to give rise to emergent gauge and linearized gravitons.

Thirdly, one of our future directions is to employ tensor categories - in particular braided ribbon cate-
gories - to make an elegant reformulation of the 4-valent scheme, while TQC is also naturally described
in the language of tensor category[103, 104] and related to framed spin networks[99].

Therefore, it is interesting to study TQC from the viewpointof quantum gravity and vice verse,
which may shed new light on both disciplines. For example, wemay interpret each 4-valent braid
as representing a process of quantum computation, with an end-node of the braid as a fusion rule of
anyons or a quantum gate in TQC. We wonder if the interactionsof 4-valent braids can be introduced to
TQC to study how two quantum processes can join, how one quantum process can split, and when two
sequences of quantum processes can be equivalent. Conversely, TQC may assist to decipher or assign
new significances of the conserved quantities of 4-valent braids.

4 A Unified Formalism

Recently in [13] the trivalent nodes were recast into the tetravalent scheme, giving a consistent footing
to study which results from each scheme could be transferredover to the other. Here we reproduce the
unified definition of Braided Ribbon Networks of valencen (with n ≥ 3) as follows:
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• We begin by considering ann-valent graph embedded in a compact 3 dimensional manifold.We
construct a 2-surface from this by replacing each node by a 2-sphere withn punctures (1-sphere
boundaries on the 2-sphere), and each edge by a tube which is then attached to each of the nodes
that it connects to by connecting the tube to one of the punctures on the 2-sphere corresponding to
the node.

• Lastly we add to each tuben − 1 curves from one puncture to the other and then continue these
curves across the sphere in such a way that each of then tubes connected to a node shares a curve
with each of the other tubes.

• We will freely call the tubes between spheresedges, the spheresnodesand the curves on the tubes
racing stripesor less formallystripes.

• We will call a Braided Ribbon Network the equivalence class of smooth deformations of such an
embedding that do not involve intersections of the edges or the racing stripes.

We immediately face the following consequence: under this definition there are only braided ribbon
networks of valence 2,3 or 4 (with valence 2 being a collection of framed loops). To see this fact we
consider a 5-valent node - a 2-sphere with 5 punctures, with each puncture connected to each other
puncture by a non-intersecting curve. Taking each punctureas a node, and the curves as edges, we then
get that these objects would constitute the complete graph on 5 nodes and as they lie in the surface of a
2-sphere, such a graph would have to be planar. This is impossible by Kuratowski’s theorem[105]: the
complete graph on 5 nodes is non-planar. Likewise, we have for any higher valencen that the graph that
would be constructed would have the complete graph on 5 nodesas a subgraph, and so they too can not
be planar. If the reader desires an intuition for this, it maybe instructive to recall that these statements
follow from the four colour theorem - the existence of such a node would imply the existence of a map
requiring five (or more) colours.

(a) (b)

Figure 25: (a) Trivalent node. (b) Four-valent node

We can also introduce a modification to the framework that allows for higher valence vertices. To do
this we first make a few definitions.

Definition 4.1. We define thenatural valenceof a braided ribbon network to be the number of racing
stripes on each edge.

Definition 4.2. We say that a node isnatural if each of the tubes which intersect share a racing stripe
with each of the other tubes. Otherwise we will say that a nodeis composite.

We can then define an-valent BRN with natural valencem (heren can take values ofn = km−2(k−1)
for any integerk) as a braided ribbon network where each of the nodes hasn tubes which intersect it but
where each of the tubes hasm− 1 racing stripes. Likewise we can define a multi-valent BRN with
natural valencem in a similar manner but without fixing the value ofk for all nodes. We then construct
composite nodes by connecting natural nodes in series by simple edges and shortening the edges which
connect them internally until all of these nodes combine into a single sphere with the appropriate number
of punctures (see figure 26). As these combined nodes are simply glued they are then dual to gluings of
simplices which when grouped together would be equivalent to a polygon (for a natural valence of 3) or
a polyhedron with triangular faces(for natural valence of 4).
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Figure 26: Forming Composite nodes

4.1 Relating to the Ribbon pictures

Figure 27: From BRN to trinions

We can construct from the previous form of trivalent braidedribbon graphs a braided ribbon network
as we’ve now defined them as follows: for each node of the network we consider a closed ball in the
embedding space which has the node on its surface but which has an empty intersection with the rest of
the ribbon graph. These spheres then define the nodes of the braided ribbon network. The edges of the
braided ribbon networks are then defined by similarly constructing tubes between these spheres so that
the boundaries of the edges of the ribbon graph coincide withthe boundary of the tubes. The boundaries
of the surface of the ribbon graph then become the racing stripes of the braided ribbon network.

Likewise we can construct a traditional braided ribbon network from a 3-valent braided ribbon net-
work by making the following observation: at each node the racing stripes divide the sphere into two
parts, likewise along each edge the tube is divided in two by the racing stripes. We can consistently
choose one side or the other and identify this as the surface of a traditional braided ribbon network (al-
ternatively we can think of ‘squishing’ the two halves together into a single surface, in a sort defining
one side to be the ‘front’ and the other the ‘back’).

4.2 Applications of the Unified Formalism

In [13] and [14] this formalism was used to demonstrate several general results for Braided Ribbon
Networks and embedded spin networks. We shall not reproducethese results here, but instead direct the
reader to those papers for demonstrations of:

• The generalization of the reduced link to the unified formalism, and hence to 4-valent BRNs.

• The demonstration of the conservation of the 4-valent reduced link.

• The Construction of maps between BRNs and Spin Networks.

• The demonstration that the reduced link is a conserved quantity for Spin Networks.

These results give us a new use for Braided Ribbon Networks: they have become an effective tool for
understanding the information in the embedding of Spin Networks. They also demonstrate that a great
deal of the structures that we study in BRNs also exist and areconserved in embedded spin networks.
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4.3 Correspondence between the trivalent and tetravalent cases

The natural formulation of framed tetravalent networks, asmentioned in section 3.1, is as tubular links
between spherical nodes. It is in fact quite easy to see that such a network can be matched up to a
framed trivalent (ribbon) network, by simply “slicing” a tubular link down opposite sides, as discussed
in section 4.1

Given any framed trivalent network, we can always combine adjacent nodes to create composite
tetravalent nodes. Likewise, the tetravalent nodes of the ribbon networks obtained by the splitting process
described above can be decomposed into pairs of trivalent nodes. This allows us to switch between braids
in the framed trivalent and tetravalent cases.

Suppose we begin with a trivalent framed braid. We are alwaysable to reduce this braid to its pure
twist form, as noted above. Once in this form, in which all crossings have been removed, it is always
possible to rotate the node at the top of the braid in such a manner that all the twisting on one strand (say,
the rightmost strand) is removed, and extra twists and crossings are induced on the other two strands.
We thereby arrive at a braid on three strands in which a singlestrand does not carry any twisting or
crossing. The node at the bottom of this strand may then be freely combined with the node at the top of
the braid to form a single tetravalent node. Likewise the nodes at the bottom of the two twisted strands
may be combined to form a single tetravalent node. This process is illustrated in Fig. 28. By this process
we obtain a braid located between two tetravalent nodes, just as occur in the framed tetravalent case
(section 3.1). The braid obtained is, of course, embedded ina ribbon network, but it can always be used
to reconstruct a tube-and-sphere framed tetravalent BRN.

Figure 28: Forming composite nodes allows us to convert between trivalent and tetravalent style braids.

The significance of this construction is that it allows us to associate framed tetravalent networks with
structures occurring in the Helon Model (and hence with SM fermions), and allows the structures in the
Helon Model to interact via the results on framed tetravalent networks [6]. We thereby obtain a model
which allows us to reproduce both kinematic and dynamical aspects of the Standard Model.

5 Conclusions

While the idea of matter emerging from spacetime as topological substructures is an old one, it is only
recently that our understanding of the subatomic structureof matter has made models of such emergent
matter viable. In this review article we have discussed two parallel approaches, the trivalent and tetrava-
lent scheme, which grew out of the suggestion that the most basic level of substructure within matter may
be modelled by braided ribbons. The tetravalent scheme has proven to embody a rich dynamical theory
of braid interactions and propagation ruled by topologicalconservation laws, but has until now not been
able to construct a direct mapping to the particle states of the SM, instead producing a seemingly infi-
nite range of equivalence classes of braid states that fall into two types respectively analogous to bosons
and fermions. The trivalent scheme has been unable to model interactions, but has been quite success-
ful at taming the profusion of braid states present by constructing equivalence classes of braids, each
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equivalence class being mapped to a single type of particle.The unification of trivalent and tetravalent
approaches we suggest here promises to allow the development of a fully dynamical theory of interacting
particles, to restrict the range of particle states existing within the theory, and to provide a Rosetta stone
that allows trivalent braids, tetravalent braids, and the particles of the SM to be equated in a satisfying
manner. If successful, this will be a compelling theory of quantum spacetime and emergent matter.
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