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Abstract

We consider a diffeomorphism invariant theory of a gauge field valued in a Lie
algebra that breaks spontaneously to the direct sum of the spacetime Lorentz algebra,
a Yang-Mills algebra, and their complement. Beginning with a fully gauge invariant
action – an extension of the Plebanski action for general relativity – we recover the
action for gravity, Yang-Mills, and Higgs fields. The low-energy coupling constants,
obtained after symmetry breaking, are all functions of the single parameter present in
the initial action and the vacuum expectation value of the Higgs.

1 Introduction

While general relativity was originally formulated by Einstein as the dynamics of a met-
ric, gµν , it has been known since the work of Plebanski, Ashtekar and others [1, 2, 3]
that, at a deeper level, the true configuration variable of general relativity is a connec-
tion – corresponding to the gauging of the local Lorentz group, SO(1, 3), the spin group,
Spin(1, 3), or a chiral subgroup. The metric is relegated to an auxiliary role, analogous
to that of the Higgs field. In this more natural, geometric formulation, the fundamental
mathematical structure describing spacetime is not a pseudo-Riemannian manifold, but
a principal bundle with connection over a four dimensional base manifold. The primacy
of the connection is further evidenced by the simplified form of the gravitational action
and equations of motion, which are polynomial in the connection formulation but non-
polynomial in the original metric formulation. Thus, the idea that forces are described
by a gauge connection is common to both Yang-Mills theory and general relativity. This
suggests an approach to the unification of gravity with the other forces in which the fun-
damental variable is a connection, H , valued in a Lie algebra, g, that includes a subalgebra
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h ≡ gspacetime ⊕ gYM – the direct sum of the Lorentz algebra (or a chiral subalgebra of it)
and a Yang-Mills gauge algebra. In this work we propose a fully g-invariant gauge theory
that breaks spontaneously to h and yields gravity coupled to Yang-Mills theory.

It is well known, from the no-go theorem of Coleman and Mandula [4], that when
global symmetries of the S-matrix are concerned, such a unification cannot be accomplished
without supersymmetry. However, this result does not contradict our unification pro-
gram because a spacetime geometry that could be used to define the S-matrix only exists
after the g symmetry has broken down to the direct sum, h. Before symmetry breaking,
there is no metric and thus no S-matrix – a loophole allowing the unification of gravity
and gauge fields [5].

In previous work we have taken steps towards such a formulation. In [6] one of us
proposed a unification of this type, based on an extension of a formulation of general rel-
ativity described originally by MacDowell and Mansouri [7]. In particular, the unification
includes the frame-Higgs field for the breaking of g in an elegant way, arising naturally as
the non-h components of the connection, H . The group there considered is E8, but sev-
eral of the results concerning the bosonic sector hold also for more general choices of g,
as long as h is contained. A weakness of this previous work was that the action in [6] was
not fully g gauge invariant, but only invariant under h.

Subsequently [8], one of us proposed the formulation of a fully g-invariant theory via
an extension of the covariant Plebanski action [3, 9, 10].1 In this formulation there is a
natural symmetry breaking mechanism that leads to a classical solution with unbroken
gauge symmetry, h, and is characterized by a de Sitter background spacetime and approx-
imate Yang-Mills dynamics. As anticipated in that paper, the complete spectrum of the
theory also contains Higgs bosons.

In this paper, we show explicitly that this type of extended action can lead to gravity,
Yang-Mills dynamics, and include the Higgs. As in [6], a frame-Higgs field for breaking
g naturally arises as the off-diagonal components of the connection in the solutions to
the equations of motion. These off-diagonal components of the connection are one-forms
transforming as a vector under gspacetime (identified as the gravitational frame field) and in
some representation space of gYM (identified with a Higgs multiplet). When gYM is also
a spin group, these off-diagonal components factor into the gravitational frame times a
zero-form valued in the vector representation space of gYM – the Higgs field. The reader
familiar with the Plebanski formalism might recognize this mechanism as a version of the
simplicity constraints extracting the frame field from a two-form.

The coupling constants of the low-energy theory after symmetry breaking are New-
ton’s constant, GN , the cosmological constant, Λ, the Yang-Mills coupling constant, gYM ,
and the parameters of the Higgs. These are all functions of the parameter present in the
initial action.

1This kind of extension had previously been studied in [11] for the self-dual Plebanski action, where
gspacetime = su(2) (see also [12, 13, 14]). Recently in [20], the same idea of grand unification put forward in
[8] and here developed, has been considered in the self-dual framework.
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2 The action

Our starting point for the unification of gravity and gauge fields is a polynomial action
similar to the one proposed in [8]. Here we focus on the bosonic sector, and discuss the
coupling with fermions briefly in Section 3.

We use gspacetime = spin(1, 3) for the gravitational gauge algebra and presume the
Yang-Mills gauge algebra to also be a spin algebra, gYM = spin(N), consistent with em-
bedding the standard model gauge group in the Spin(10) grand unified theory. Conse-
quently, we presume the full initial gauge algebra to be g = spin(1+N, 3). Following the
discussion in the introduction, the unified bosonic field is a spin(1+N, 3) valued connec-
tion one-form over a four dimensional base manifold – locally, H = dxµ 1

2
H IJ
µ γIJ . Here

the bivector generators γIJ of spin(1+N, 3) have indices running over all (4+N)× (4+N)
values,2 and can be understood as the product ofCl(1+N, 3) Clifford algebra basis vectors,
γIJ = γIγJ .

The action we consider is the g-invariant action,

S(H,B,Φ) = 1
g

∫

M

〈

=
B

=
F +

=
BΦ

=
B + 1

3 =
BΦΦΦ

=
B
〉

(1)

in which
=
F = dH+ 1

2
[H,H ] is the curvature,

=
B = 1

2 =
BIJγIJ is a spin(1+N, 3) valued 2-form

field, and Φ is a symmetric linear operator which takes bivectors to bivectors and 2-forms
to 2-forms. The wedge product is assumed between forms, which have underlines to
designate their grade, and the angle brackets are shorthand for the trace – equivalent to
taking the Clifford scalar part. In this action, the connection, H , is the ”physical” variable
describing the geometry of the principal bundle, while

=
B and Φ are auxiliary fields, with

parameter g. Written out with indices, the second term in the action is

〈

=
BΦ

=
B
〉

=
∼

d4x 1
32
ǫµνρσBµνIJΦ

φχIJ
ρσ KLB

KL
φχ

Varying H ,
=
B and Φ, the field equations are:

D
=
B = d

=
B +

[

H,
=
B
]

= 0 (2)

=
F = −2

(

Φ + 1
3
ΦΦΦ

)

=
B (3)

1
32
ǫµνρσBµνIJB

KL
φχ = − 1

512
ǫµνρσBµνIJΦ

ψωKL
φχ MNΦ

ικMN
ψω PQB

PQ
ικ (4)

The first equation (2) may be thought of as describing the dynamics, while (3) and (4)
determine

=
B and Φ. Note that (4) does not necessarily constrain

=
B, and is satisfied by Φ

provided

=
B = −ΦΦ

=
B (5)

The specified action (1) is a modification of the action presented in [8], with Φ gener-
alized to act on 2-forms as well as on Lie algebra generators. A specific ”Mexican hat”

2This will make 1

2
factors necessary in expressions involving redundant sums.
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potential for Φ in the action (1) has been chosen to allow symmetry breaking to a non-
trivial vacuum expectation value (vev). We choose this specific action because it leads to
a particularly simple analysis. However, more general actions, in which the Φ3 term is
replaced by an arbitrary potential, U(Φ), can also be used as candidates for unification,
and analyzed along similar lines as below.

2.1 Symmetry breaking

The action (1) and equations of motion are symmetric under g. We now exhibit a classical
solution of the theory which distinguishes a spin(1, 3) subalgebra. A similar action and
symmetry breaking mechanism has already been shown to lead to spin(N) Yang-Mills
theory on de Sitter space [8]. Here we show a spontaneous symmetry breaking of our
new action that produces the dynamics of gravity and a Higgs field as well as Yang-Mills.

The field Φ takes 2-forms to 2-forms and bivectors to bivectors. This leads us to con-
sider the relation of Φ to a Hodge duality operator, ∗, which takes 2-forms to 2-forms over
a four dimensional manifold, and the Lie algebra duality operator, ⋆, for spin(1, 3), that
takes bivectors to bivectors. The Lie algebra dual of a spin(1, 3) bivector, B = 1

2
Babγab, is

⋆B = 1
2
Bab(⋆γab) =

1
2
Bab(1

2
ǫ cd
ab γcd) =

1
2
B⋆cdγcd

with ǫabcd the permutation symbol and B⋆cd = 1
2
Babǫ cd

ab . We use lower case letters early
in the alphabet, a, b, ... ∈ {1, 2, 3, 4}, to sum over a subset of I, J, ... ∈ {1, 2, ..., 4+N}
and thereby choose a spin(1, 3) subalgebra of spin(1+N, 3). We will use later letters,
m,n, ... ∈ {5, 6, ..., 4+N}, to sum over the rest. To build the Hodge star operator on 2-forms
we must presume the existence of a nondegenerate gravitational frame, ea = dxµ(eµ)

a,

with a set of orthonormal basis vectors from its inverse,
⇀

ea = (ea)
µ

⇀

∂µ. Using this frame,
the Hodge dual of any 2-form,

=
B = 1

2
eaebBab, is

∗
=
B = 1

2
(∗eaeb)Bab =

1
2
(1
2
ǫabcde

ced)Bab =
1
2
ecedB∗cd

with B∗cd =
1
2
Babǫ

ab
cd. If we define the frame as a Clifford vector valued 1-form, e = eaγa,

we can define the gravitational area field,

=
Σ = ee = eaebγab = dxµdxν(eµ)

a(eν)
bγab

a spin(1, 3) valued 2-form, with its Hodge dual the same as its spin(1, 3) dual,

∗
=
Σ = ⋆

=
Σ (6)

Applying the Hodge dual or the spin(1, 3) dual twice gives the negative identity, ∗∗ =
⋆⋆ = −1.

Using these two duality operators, which are symmetric linear operators taking bivec-
tors to bivectors and 2-forms to 2-forms, we make a symmetry breaking ansatz for Φ:

Φ = a + b ∗+ c ⋆+ d ∗ ⋆ (7)
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in which {a, b, c, d} are parameters to be determined by the equations of motion. Using
indices, the spacetime components of this Φ are

Φ ρσab
µν cd = a δρσµνδ

ab
cd + b (eµ)

e(eν)
fǫ

gh
ef (eg)

ρ(eh)
σδabcd + c δρσµνǫ

ab
cd + d ǫ ρσ

µν ǫabcd

We next consider the validity of this ansatz for Φ, and its implications for
=
B and H , fol-

lowing from the equations of motion.
From our ansatz (7), we have

ΦΦ = (a2 − b2 − c2 + d2) + 2(ab− cd) ∗+2(ac− bd) ⋆+2(ad+ bc) ∗ ⋆

Considering our equation of motion (4), which is implied by (5), we see two possible
classes of solutions. In the first class of solutions, in which

a = 0 b = 1 c = 0 d = 0

we have ΦΦ = −1, and this equation of motion is satisfied for any
=
B, without restriction.

In the second class of solutions, for any other nontrivial values of a, b, c, and d, this equa-
tion of motion implies a set of restrictions on

=
B. Although this second class of solutions

is interesting to consider, we focus from here forward on the first class of solutions, in
which we have

Φ = ∗ (8)

with the Hodge constructed using some gravitational frame, e. To further demonstrate
the viability of our ansatz, we need to show that the other field equations can also be
satisfied, and relate our use of the gravitational frame in the Hodge star in Φ to degrees
of freedom in our physical variable, H .

Our ansatz (8) for Φ ensures the field equation (4) is satisfied for all
=
B. This ansatz also

allows us to invert field equation (3) and solve it for
=
B in terms of the curvature,

=
B = 3

4
∗

=
F (9)

Using this in (2), we now have only one field equation, the Yang-Mills equation in curved
spacetime,

0 = D ∗
=
F = d ∗

=
F +

[

H, ∗
=
F
]

(10)

Applying the Hodge star (now operating on 3-forms to give 1-forms), this equation is

0 =
⇀

D
=
F =

⇀

δ
=
F +

[ ⇀

H,
=
F
]

(11)

in which the codifferential operator, lowering the grade of a form by 1, is defined to be
⇀

δ = ∗d∗ and we also define the vector operator,
⇀

H , as
⇀

H
=
F = ∗H∗

=
F = Hdη

ad⇀eae
bec 1

2
Fbc = Hdη

adδ[ba e
c]Fbc = HaFace

c

For the Yang-Mills field equation, it is usual to consider solutions approximated by small
perturbations around H = 0. However, there is a different sector of solutions, in which H
has a nonzero vacuum expectation value related to the gravitational frame, e, in the ∗ of
Φ.
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2.1.1 Symmetry breaking to gravity

Since our ansatz for Φ distinguishes a spin(1, 3) subalgebra of g = spin(1+N, 3), we are
free to label the separate parts of our connection accordingly,

H = 1
2
ω + 1

4
E + A (12)

with the gravitational spin connection, ω = 1
2
ωabγab, valued in spin(1, 3), the gauge field,

A = 1
2
Amnγmn, valued in spin(N), and the frame-Higgs, E = Eamγam, valued in the ”off

diagonal” complement, 4N , of h = spin(1, 3) + spin(N) in g. To see how the e in ∗ relates
to the E part of H , we first make an ansatz for E. We consider that E may be a simple
bivector,

E = e′φ = dxµ(e′µ)
aφmγam (13)

the Clifford product of a 1-form frame, e′ = dxµ(e′µ)
aγa, transforming as a vector under

spin(1, 3), and a scalar Higgs multiplet, φ = φmγm, a vector under spin(N). At this point,
we have defined two frames, the e in ∗ and the e′ inH , which are related through the field
equation.

With our labeling (12) for the parts of the connection, and including our ansatz (13)
for E, the curvature of H is

=
F = dH +HH = 1

2

(

=
R− 1

8 =
Σ′φ2

)

+ 1
4

(

=
Tφ− e′Dφ

)

+
=
FA (14)

in which
=
R = dω + 1

2
ωω is the Riemann curvature 2-form,

=
Σ′ = e′e′ is an area field,

φ2 = φ · φ = φmφm is the squared magnitude of the Higgs,
=
T = de′ + 1

2
[ω, e′] is torsion,

Dφ = dφ + [A, φ] is the covariant derivative of the Higgs, and
=
FA = dA + AA is the

curvature of the gauge field. Using this curvature in our field equation (11), the resulting
equations of motion separate into spin(1, 3), 4N , and spin(N) parts:

0 = 1
2

⇀

δ
(

=
R− 1

8 =
Σ′φ2

)

+ 1
4

[

⇀

ω,
=
R
]

− 1
32

[

⇀

ω,
=
Σ′
]

φ2 − 1
16

[
⇀

e′,
=
T
]

φ2 + 1
16

[

e′,
⇀

e′
]

φ ·Dφ (15)

0 = 1
4

⇀

δ
(

=
Tφ−e′Dφ

)

+ 1
8

[

⇀

ω,
=
T
]

φ− 1
8

[

⇀

ω,e′
]

Dφ+ 1
8

[
⇀

e′,
=
R
]

φ− 3
32
e′φ3− 1

4

[ ⇀

A,φ
]

=
T− 1

4
e′
[ ⇀

A,Dφ
]

(16)

0 =
⇀

δ
=
FA +

[ ⇀

A,
=
FA

]

+ 1
4

[

φ,Dφ
]

(17)

These equations of motion, which followed from our symmetry breaking ansatz (8), allow
a wide range of solutions. These solutions include not only the dynamics of the gauge
fields, A, but a subset describing the dynamics of gravity. This subset of solutions can be
described by the ansatz that the gravitational frame in the Hodge star, e, is equal to the e′

part of the connection,
e′ = e (18)

This ansatz, restricting to a subset of solutions, results in a significant simplification of the
equations of motion. Also, if we ignore fermionic matter, there is no source for torsion,
which we can then take to vanish,

0 =
=
T = de+ 1

2
[ω, e] (19)
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determining ω from e, and further simplifying the equations of motion. With these sim-
plifications, the field equations are

0 =
⇀

δ
=
R + 1

2

[

⇀

ω,
=
R
]

+ 1
8

[

e,
⇀

e
]

φ ·Dφ (20)

0 = 1
2
Rφ− 3

8
eφ3 − e

⇀

δDφ− e
[ ⇀

A,Dφ
]

(21)

0 =
⇀

δ
=
FA +

[ ⇀

A,
=
FA

]

+ 1
4

[

φ,Dφ
]

(22)

in whichR = [
⇀

e,
=
R] is the Ricci curvature, aCl(1, 3) vector valued 1-form. These equations

of motion produce dynamics for gravity provided φ 6= 0. Operating on (21) with
⇀

e, we get

0 = 1
2
Rφ− 3

2
φ3 − 4

⇀

DDφ

in which R =
⇀

e ·R is the scalar curvature. Plugging this back in to the equation of motion
(21) and factoring out a φ, we obtain Einstein’s equation for our gravitational dynamics,

G = R− 1
2
eR = −3

4
eφ2 − 3eφ−

⇀

DDφ (23)

Note that, since we must also satisfy (20), governing the propagation of gravitational
waves, and since the right hand side of (23) is not quadratic in

=
FA, we are dealing with a

modified form of gravity.
The implication from these considerations is straight forward. Our complete symme-

try breaking ansatz is that the E part of the connection (12) is a simple bivector, eφ, with
components E am

µ = (eµ)
aφm, which acquires a nonzero vacuum expectation value; and Φ

is equal to ∗, with this Hodge star built using the same frame, e. The dynamics of gravity,
Yang-Mills, and Higgs then comes directly as the subset of solutions consistent with this
ansatz in our equations of motion, or in the action.

2.2 Gravitational, Yang-Mills and Higgs action

With our ansatz (8) for Φ, the action (1) becomes

S(H, e, B) = 1
g

∫

〈

=
B

=
F + 2

3 =
B ∗

=
B
〉

(24)

Solving the equation of motion (3) for
=
B in terms of

=
F gives (9), and using this in the

action gives the Yang-Mills action,

S(H, e) = 3
8g

∫

〈

=
F ∗

=
F
〉

(25)

With our ansatz (12) for the connection, including (13) for E, the curvature of H is given
by (14). Using this decomposition of the curvature, the action is

S(H, e) = 3
8g

∫

〈

−φ2

16 =
R∗

=
Σ′+ φ4

256 =
Σ′∗

=
Σ′+ 1

4 =
R∗

=
R+ 1

16

(

=
Tφ−e′Dφ

)

∗
(

=
Tφ−e′Dφ

)

+
=
FA∗=FA

〉

(26)
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Restricting to the gravitational sector, in which e′ = e, and presuming vanishing torsion,
this action is

S(e, φ, A) = 3
8g

∫

∼

d4x|e|
(

− 1
16
φ2R+ 3

32
φ4+ 1

16
R cd
ab Rab

cd−
1
2
Daφ

mDaφm−
1
4
F mn
ab F ab

mn

)

(27)

The first term is the Einstein-Hilbert action for gravity, with Newton’s constant equal to
GN = 128g

3v2
, where v2 =<φ2

0> is defined to be the magnitude of the square of the vacuum
expectation value of the Higgs field. The second term is the cosmological constant, Λ =
3
4
v2, consistent with (23). The third term – a modification to standard gravitation – is a

Stephenson-Kilmister-Yang (SKY) term [19], related to a Gauss-Bonnet topological action.
The fourth term is the kinetic action for the Higgs field. And the fifth term is the standard
action for Yang-Mills gauge fields, with coupling constant g2YM = 2g

3
.

The nontrivial vacuum solution to this action is de Sitter spacetime with a non-vanishing
Higgs vacuum expectation value, φ0. Specifically, the standard Higgs potential in (26) has
an extrema at φ2

0 =
1
3
R0 corresponding to a de Sitter spacetime background solution,3

=
R0 =

v2

8 =
Σ0 R0 =

3v2

4
e0 R0 = 3v2 = 4Λ (28)

which implies vanishing g curvature,
=
F 0 =

1
2 =
R0 −

1
16 =
Σ0φ

2
0 = 0, solving the field equations

(11) and strictly minimizing the action (25). Physically, from the geometry of a principal
bundle with connection over a four dimensional base manifold, the symmetry breaks and
the frame-Higgs part of the connection acquires a nonzero vev,

H0 =
1
4
e0φ0

corresponding to a de Sitter spacetime and Higgs background – endowing spacetime with
geometry and particles with mass. Local dynamics then exist as fluctuations with respect
to this cosmological background.

All physical constants – including Newton’s constant, the cosmological constant, the
Yang-Mills coupling and Higgs parameters – derive solely from g and the Higgs vev.
The relations obtained are clearly far from observed values, which might suggest that the
model considered here is too simple to have phenomenological applications. However,
before drawing such a pessimistic conclusion, we should note that these are bare pa-
rameters, so g2YM refers to the single coupling constant of the unified gauge group at the
Planck scale, and similarly for the cosmological constant. It is then not impossible that
these equalities hold in the neighborhood of a fixed point that governs the asymptotic
high energy behavior of the unified theory. The fact that the gravitational and Yang-Mills
couplings are explicitly related is a sign that we are dealing with a genuine unification of
gravity and Yang-Mills theory.

3A particularly nice explicit expression for a de Sitter frame is

e0 = dtγ4 + da1α cosh( t
α
)γ1 + da2α cosh( t

α
) sin(a1)γ2 + da3α cosh( t

α
) sin(a1) sin(a2)γ3

with α = 2

v
.
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3 Fermions and unification

Before closing, we make some comments on the coupling to fermions and the prospect of
incorporating a grand unified theory extending the standard model of particle physics.

The coupling of the unified bosonic connection to fermions occurs in the covariant
Dirac derivative,

Dψ = (d+H)ψ = (d+ 1
4
ωabγab +

1
4
eaφmγam + 1

2
Amnγmn)ψ (29)

in which ψ lives in a spinorial representation space of Spin(1+N, 3). After symmetry
breaking, when ω is the gravitational spin connection, e is the gravitational frame, φ is a
Higgs multiplet, and A is a Yang-Mills field, this covariant Dirac derivative gives the cor-
rect interactions between these fields and a multiplet of Dirac fermions in curved space-
time. Since the spin connection appears explicitly in this covariant derivative, we expect
fermions to act as a source of torsion.

Looking ahead to the details of a unification incorporating the standard model, we
note that the standard model gauge algebra is a subalgebra of the Pati-Salam GUT alge-
bra, which is a subalgebra of the spin(10) GUT algebra,

su(2)L ⊕ u(1)Y ⊕ su(3) ⊂ su(2)L ⊕ su(2)R ⊕ su(4) = spin(4)⊕ spin(6) ⊂ spin(10) (30)

When this is used in the context of our unified description, H is in spin(11, 3), one gener-
ation of standard model Dirac fermions live in a 32C (or 64R) positive chiral spinor rep,
the su(2)L acts correctly on the left-chiral fermions in this rep, and the Higgs multiplet
can acquire a vev, such as φ0 = vγ5, giving Dirac masses to these fermions.

For alternative ideas on the coupling to fermions in this type of grand unification
scheme, see [3, 5, 6, 8, 18]. Also, instead of attempting unification through an extended
Plebanski formulation, it is possible to study the case where the connection is valued in a
Lie algebra, g, that includes a subalgebra h ≡ su(2)⊕ gYM in which su(2) is a subalgebra
of the local Lorentz algebra – as investigated in [20]. This kind of reduced extended
Plebanski theory is known to be simpler than that considered here, as the gravitational
sector has only the usual spin two degrees of freedom.

4 Discussion and conclusions

We have seen that a fully g invariant action (1) for a unified bosonic connection (12) can
produce symmetry breaking leading to gravitational, Yang-Mills, and Higgs actions for
the different parts of H . The form of the action – a perturbation to a topological BF action
– is almost as simple as possible; it consists of cubic and quintic terms, with only a single
derivative appearing in just a single term. By examining the dynamics of our action (1)
within the sector of solutions in which E = eφ and Φ = ∗ using the same e, we find the
dynamics of gravity coupled to Yang-Mills and Higgs fields, described via field equations
(20,21,22) and via an action (27). To recapitulate, our argument is:

9



1. We begin with a g invariant action (1).

2. We make two ansatze related to a symmetry breaking: (8) for Φ and (13) for part of
H .

3. The resulting field equations are (15-17), which admit infinite solutions, and corre-
spond to the action (26).

4. Among these solutions, we choose to look at those in which the frames are matched
(18) and torsion vanishes (19). These two conditions do not necessarily follow from
the symmetry breaking, but are consistent.

5. Within the subsector defined by (18) and (19), the action is (27), and it admits the so-
lution (28). In other words, (28) is a solution of (15-17), thus the ansatze (8,13,18,19)
are consistent.

6. Finally, if one looks at the physics around the solution (28) with the conditions
(8,13,18,19) still satisfied, we claim that it is described by the action (27) and thus
match Yang-Mills, modified gravity, and Higgs.

The succinct, polynomial form of the action (1) before symmetry breaking stands in con-
trast to the usual form of the coupled Einstein-Yang-Mills-Higgs action, which requires
the inverse and determinant of a metric. To relate the two actions, the metric has become
a symmetry breaking field that emerges only for a subset of solutions of the theory. In
unifying the gauge group, gspacetime, of spacetime with the gauge group, gYM , of Yang-
Mills fields, we find a unified gauge and spacetime connection which, as a consequence
of unification, also includes a metric and Higgs field. The notion that a unification of
forces yields a unification of the Higgs field and the metric, with both playing a role in
symmetry breaking, is not new [5], but it is cleanly realized here.

Much remains to be done to investigate this theory. The gravitational sector needs to
be better understood [16, 17]. Since the action and equations of motion are low order poly-
nomials, we believe that progress can be made on the quantization of the unified theory,
but this remains to be investigated. In addition, one can consider more general versions
of an extended Plebanski action in which Φ3, in (1), is replaced by a scalar function, U(Φ),
as in [11]. While much remains to be done, it is now clear that the line of thought that
began with the work of Plebanski and Ashtekar yields a natural and simple proposal for
the unification of all known interactions.
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