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Quantum graphity is a background-independent model for emergent macroscopic

locality, spatial geometry and matter. The states of the system correspond to dy-

namical graphs on N vertices. At high energy, the graph describing the system is

highly connected and the physics is invariant under the full symmetric group acting

on the vertices. We present evidence that the model also has a low-energy phase in

which the graph describing the system breaks permutation symmetry and appears

to be ordered, low-dimensional and local. Consideration of the free energy associ-

ated with the dominant terms in the dynamics shows that this low-energy state is

thermodynamically stable under local perturbations. The model can also give rise to

an emergent U(1) gauge theory in the ground state by the string-net condensation

mechanism of Levin and Wen. We also reformulate the model in graph-theoretic

terms and compare its dynamics to some common graph processes.

I. INTRODUCTION

It is possible that the successful quantum theory of gravity will require a modification of
general relativity or quantum theory and that at least one of the two is not fundamental
but rather only an effective, emergent theory. Almost all approaches to quantum gravity
leave quantum theory intact and the suspicion is largely on general relativity being the
effective theory. Establishing this is, however, a major challenge. General relativity describes
gravitation as the curvature of spacetime by energy and matter, which means that, if it is
only an effective theory, then spacetime must be just an effective description of something
more fundamental. The trouble with this is that most of known physics is formulated in
terms of a spacetime geometry.

In approaches where general relativity is considered fundamental enough to hope to obtain
a quantum theory of gravity by its quantization (such as causal dynamical triangulations
[1], loop quantum gravity [2], spin foam models [3] and group field theory [4]), one needs
a mechanism to generate a nearly-flat, classical geometry in the low-energy limit, complete
with local observables, to compare theory with experiment. While progress has been made
in such approaches, there are still open questions. In approaches with extra dimensions, one
would like an explanation for why some dimensions are large and others small [5]. In the
realm of emergent gravity approaches, we encounter theories that are formulated in terms of
quantum fields on a given geometry (this includes condensed-matter and analog approaches
[6, 7, 8, 9], matrix models [10, 11] and certain formulations of string theory [12, 13]). The
evidence for emergent gravity is, for example, in the form of a spin-2 field, an effective
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metric, or the anti-de Sitter/conformal field theory (AdS/CFT) duality [12]. Inspecting
these approaches, however, we find that it is unclear to what extent the geometry used in
the initial formulation and its symmetries enter the results. Is the initial fixed geometry an
auxiliary structure or does it have a physical meaning?

A related issue is the notion of locality in a quantum theory of gravity. Locality is a
universal property of known physics so it is natural that we have also been looking for a
local quantum theory of gravity. However, there are a number of indications that this may
not be correct (a thorough investigation of this question can be found in [14]). In addition,
some of the main obstacles we encounter in approaches to quantum gravity can be traced
to the problem of constructing local observables that quantum gravity inherits from general
relativity: there are no local diffeomorphism-invariant observables for pure gravity [14]. This
problem has become more prominent in recent years because its resolution is necessary to
compare theory to experiment. We believe the question of locality should be addressed by
emergent gravity approaches. One may be justified to expect that, if gravity and geometry
are emergent, so must be locality.

A condensed-matter approach to the problem of emergent geometry has recently been
proposed through a model called quantum graphity [15]. In that model, states of the system
are supported on the complete graph KN on N ≫ 1 vertices in which every two vertices are
connected by an edge. Quantum degrees of freedom are associated with edges of the graph:
there is a state for each edge which signifies that the edge is turned off and other states
which indicate that the edge is on. Thus, the states of the complete system include every
possible graph on N vertices. The model describes a dynamical graph as the answer to the
question of whether two vertices in the graph are adjacent or not can vary in time.

At high energy, there is no notion of geometry, dimension or topology in the system.
At low energy, however, the system is expected to become ordered in such a way that the
subgraph of KN consisting of the “on” edges can be described in terms of a low-dimensional
spacetime manifold. Near this ground state, the model is closely related to the string-net
model of Levin and Wen [16] which has emergent U(1) gauge degrees of freedom coupled
to massive charge particles. The transition process from high to low temperature, called
geometrogenesis, establishes an emergent notion of locality in the low-energy regime. It
is worth emphasizing that the model is not “nonlocal” in the sense of adding nonlocal
corrections to a local theory.

In this paper we present a slightly modified and simplified version of the quantum graphity
model. Compared to the original model, the version in this paper has a reduced state space
associated with each edge. This allows us to better concentrate on the structural properties
of the graph at low energies. The dynamics of the model is also somewhat different from
the original so that there is more natural accommodation of features of the graph such as
counting of closed paths. For a certain set of parameters, we present evidence that a graph
with hexagonal symmetry is at least a local free-energy minimum for the model. The very
interesting question of whether the system can generate a three-dimensional lattice in some
region of its parameter space is left for future work.

It is useful to relate quantum graphity to existing approaches to quantum gravity. It
is certainly the case that several of the so-called background-independent approaches to
quantum gravity are graph-based: Loop Quantum Gravity[2], Causal Sets[17], Algebraic
Loop Quantum Gravity[18], and Quantum Causal Histories[19], among others. This is not
surprising, since network-based states have a strong relational character, a feature considered
desirable in a background-independent context. Quantum graphity also shares with these
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theories a common central question, the search for the semiclassical, or low-energy, states
in the theory. However, there are also basic differences. The dynamics of quantum graphity
with matter is essentially an extension of the string-net Hamiltonian of Levin and Wen
and not a quantization of the Einstein equations (string-nets are tensor product categories,
just like spin networks, making the introduction of Levin-Wen-type dynamics technically
straightforward). Additionally, the data on the network do not correspond to SU(2) labels
found on spin network states in Loop Quantum Gravity. In quantum graphity, geometry is
identified at the low-energy phase from properties of the network itself.

The outline of the article is as follows. In Sec. II, we define the model by putting states
|0〉, |1〉 on the edges of the complete graph KN . A |0〉 state means the edge is “off,” or
missing, and a |1〉 state means the edge is on. In Sec. IIC, we give the Hamiltonian of
our model. In Sec. III, we study the model when the number of vertices N is large and
find that the hexagonal lattice is a good candidate for the ground state for an appropriate
choice of parameters. We consider perturbations over the ground state and find that the
hexagonal lattice is thermodynamically stable under local perturbations. In Sec. IV, we
introduce a degeneracy of the on edges: the |1〉 state is split into |1, 0〉, |1,−1〉, |1,+1〉. This
allows us to introduce the string-net condensation mechanism of Levin and Wen [16] into
our dynamics, bringing the model closer to the original quantum graphity system [15]. In
Sec. V, we initiate a reformulation of our model in graph-theoretic terms, and provide some
first observations on the transition from the high- to the low-energy phase. In particular,
we compare the transition with processes generating random graphs.

Our model introduces a novel mechanism for emergent space and locality and this comes
with a new set of questions that need to be investigated in future work. These include the
role of time, temperature, the actual transition between the two phases, and its remnants.
We discuss these in the concluding Sec. VI.

II. GRAPH MODELS

Graph-based, instead of metric-based, theories are attractive implementations of the re-
lational content of diffeomorphism invariance. The interpretation is that it is the struc-
ture of the graph, i.e. the relations between the constituents, that is important to describe
physics. As such, graphs are probably the most common objects that appear in background-
independent theories of quantum gravity [1, 2, 3, 17, 20]. Furthermore, it has been previously
argued in the literature that at the discrete level, spacetime diffeomorphisms should appear
as permutation invariance of these fundamental constituents [21]. We shall implement this
by starting with the complete graph KN on N vertices, an object that is permutation invari-
ant. The dynamics on the complete graph will be chosen so that it respects the permutation
invariance of KN and depends on natural graph features: vertices, closed paths and open
paths.

We first review some useful graph-theoretic properties and techniques. Next, we introduce
the necessary quantum mechanical notation and then finally define the Hamiltonian models
on graphs that we will consider in this paper.
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A. Graph theory preliminaries

The complete undirected graph on N vertices is denoted by KN . It is a graph in which
every two vertices are connected by an edge. If the vertices are labeled by 1, 2, . . . , N, then
KN has an edge eab connecting any two a and b.

Any graph G on N vertices can be regarded as a subgraph of the complete graph KN ;
specifically, it can be obtained by deleting edges from KN . A convenient way to represent
G is via its set of edges E(G) or via its N ×N adjacency matrix

Aab(G) =

{
1 if eab ∈ E(G)
0 otherwise.

(1)

By definition, the adjacency matrix is symmetric and it has zero diagonal.
Information about a graph can be obtained from its adjacency matrix with the use of

linear algebra. In particular, powers of the adjacency matrix, defined as follows:

A
(2)
ab =

∑

c

AacAcb,

A
(3)
ab =

∑

c

∑

d

AacAcdAdb, etc.,
(2)

contain information about open and closed paths in the graph. As an example, the ab
component of the nth power of A denotes the number of ways one can move from vertex a to
vertex b by jumping only along the edges of the graph in a fixed, n, number of steps. When

a = b and the element considered is on the diagonal, then A
(n)
aa denotes the number of paths

in the graph of length n that start and end on the same vertex a.
When using the powers of the adjacency matrix to enumerate closed and open paths, it

is essential to understand that the numbers computed include paths which traverse certain
edges more than once. For example, in a graph with vertices labeled by 1, 2, ..., N and edges
labeled by pairs {{1, 2}, {1, 3}, {2, 3}, ...}, a sequence such as {{1, 2}, {2, 1}, {1, 2}, {2, 3}}
would be counted as a path of length four from vertex 1 to vertex 3, irrespective of the fact
that the edge {1, 2} is used 3 times in the sequence or that there exist a shorter sequence of
edges, namely {{1, 2}, {2, 3}}, that connects the same two vertices.

For future use, it is also useful to define the notion of nonretracing paths. We define a
nonretracing path to be an alternating sequence of vertices and edges, in which any particular
edge appears exactly once. It is useful to specify that nonretracing paths can be open or
closed and that a nonretracing path is not necessarily a geodesic between two vertices. A
closed nonretracing path is also said to be a cycle. The number of cycles can be computed
algorithmically but not with the straight forward use of powers of the adjacency matrix.
Some questions regarding counting the number of cycles of a given length can be very
difficult (see, e.g., [22]).

B. Quantum mechanics preliminaries

We would now like to set up a framework which would allow us to encode the complete
graph KN and its subgraphs as states in a quantum mechanical Hilbert space. To do this,
we define a large Hilbert space Htotal made up of smaller spaces associated with components
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of the complete graph KN . In general, it is possible to associate a Hilbert space Hedge to
each edge eab and a Hilbert space Hvertex to each vertex. The total Hilbert space of the
system would then be the tensor product

Htotal =

N(N−1)/2⊗
Hedge

N⊗
Hvertex. (3)

In the following, we specialize to models in which all the degrees of freedom are on the edges
of the graph as opposed to both the edges and vertices.

The basic Hilbert space associated with an edge is chosen to be that of a fermionic
oscillator. That is, Hedge will be

Hedge = span{| 0〉, | 1〉}; (4)

the state | 0〉 is called the empty state and the state | 1〉 is said to contain one particle. (One
can alternatively think of | 0〉 and | 1〉 as being states in the computational basis of a qubit.)

A general state in the total space of edges H
⊗N(N−1)/2
edge is

|ψ〉 =
∑

{n}

c{n} |n12〉 ⊗ |n13〉 ⊗ |n23〉 ⊗ · · · , (5)

i.e., a superposition of all possible states which are themselves tensor products of states
|nab〉 associated with single edges; nab = 0, 1 are occupation numbers and c{n} are complex
coefficients.

In the graph model, a given edge of the graph is interpreted as being on or off depending
on whether the corresponding state has a particle or not. The collection of on states define
a subgraph of the complete graph KN . Thus, the total Hilbert space of edges can be
decomposed as (recall that we ignore degrees of freedom on the vertices)

Htotal =
⊕

G

HG (6)

with the tensor sum being over all subgraphs G of KN . Each term in (5) corresponds to a
state in one of the blocks HG. Since we treat the vertices as distinguishable, there may be
many blocks in the sum that correspond to isomorphic graphs.

Acting on the Hilbert space of each edge are the usual creation and annihilation operators
a† and a. They act in the usual way,

a| 0〉 = 0, a| 1〉 = |0〉, (7)

and obey the anticommutation relation

{a, a†} = aa† + a†a = 1. (8)

The other anticommutators are zero, {a, a} = {a†, a†} = 0. There is a Hermitian operator
a†a, whose action on a state |n〉 with n = 0, 1 is

a†a|n〉 = n |n〉. (9)

This operator is commonly called the number operator because it reveals the number of
particles present in a state.
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It is now possible to define operators (9) that act on each of the copies of Hedge. These
will be denoted by subscripts and defined in the intuitive way, e.g.

N13 (|n12〉 ⊗ |n13〉 ⊗ · · · )

= (1 ⊗ a†a⊗ · · · ) (|n12〉 ⊗ |n13〉 ⊗ · · · )

= n13 (|n12〉 ⊗ |n13〉 ⊗ · · · ) .

(10)

From the definition of the operators on the middle line, one can see that number operators
acting on different edges commute. Also, since the graphs we are considering are undirected
(that is, the edges are unordered pairs of vertices), we identify Nab = Nba.

Note that the set of operators Nab can be understood as analogous to elements of an
adjacency matrix Aab. That is, the operator Nab gives zero when the state of edge eab is off
and gives 1 when that edge is in an on state. In the previous section it was shown that it
is very useful to define powers of the adjacency matrix as in (2). It is also reasonable to
introduce powers of these number operators. For example, we define

N
(2)
ab =

∑

c

NacNcb,

N
(3)
ab =

∑

c

∑

d

NacNcdNdb, etc.
(11)

When the elements of these matrices N
(L)
ab act on a state, they return a nonzero answer if

the state contained a path between two vertices of a certain length L passing through edges
whose n values is different from zero. Thus these operators are quantum mechanical analogs

of A
(L)
ab that count the number of closed and open paths that pass through a vertex; here

these operators count closed and open paths in the on graph only.
There are some differences, however, due to the fact that the creation and annihilation

operators aab and a†ab acting on the same edge do not commute. Terms which contain at
least two creation operators and two annihilation operators can in principle be ordered in
several inequivalent ways. In setups involving the harmonic oscillators, there is a standard
convention for ordering operators called normal ordering denoted by putting colons around
an operator. In this convention, all annihilation operators aab are set to the right of the cre-
ation operators a†ab. For example, the terms in the normal-ordered number operator squared
are of the form

: NbcNcd : =: a†bcabca
†
cdacd : = a†bca

†
cdabcacd. (12)

When b = d, the same two annihilation operators appear on the right. Since (for n = 0, 1)

aa|n〉 = 0, (13)

which follows from the anticommutation relations, one finds that

: NbcNcb : = 0. (14)

Consequently, whenever a term of : N
(L)
ab : with L ≥ 2 acts on the same edge more than

once, that term does not contribute. Therefore, the eigenvalues of operators : N
(L)
ab : for

each a, b return the number of nonoverlapping paths between vertices a and b. We will make
use of the normal ordering convention and this property, in particular, when defining and
analyzing the quantum Hamiltonian for the graph model.
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C. Hamiltonian

We would now like to define a condensed matter like model in which the configuration
space is the space of all possible graphs on a fixed number of vertices.

For this purpose we consider Hamiltonian function (operator) H acting on states in the
Hilbert space Htotal defined in (3). A Hamiltonian operator is usually used to associate an
energy E(G) with a state |ψG〉. We do this here using the normal-ordering prescription
described above,

E(G) = 〈ψG| : H : |ψG〉. (15)

This notation for the energy should not be confused with the set of edges of a graph; the
meaning of the symbol E(G) should be clear from the context.

We would like the Hamiltonian to preserve the permutation invariance symmetry of KN .
In a general manner, therefore, we can ask what Hamiltonian can be written down for a graph
model using the adjacency matrix operators defined in the previous section. It turns out
that there are many terms that can be written down that fit the requirement of permutation
symmetry. The trace

∑
a Naa or the sum of the off-diagonal elements

∑
a,b6=aNab are simple

examples. Tracing or summing over all elements can also be done using powers of Nab, which
can be defined as in (11). Other possibilities include first defining an object Na =

∑
bNab,

taking powers of this object as in N
(p)
a = (Na)

(p) for some p, and then summing
∑

a N
(p)
a . In

the following we choose terms that appear natural from the graph-theoretic perspective.

1. Valence term

A basic property of a graph is its distribution of vertex degrees - the number of edges
adjoining each vertex. Indeed, in graph theory one often studies the class of d-regular graphs
in which all vertices have a specified and fixed degree (also called valence). We would like
to introduce a term in the Hamiltonian that will set a preferred vertex valence and thus
effectively restrict the configuration space of the graph model from the space of all possible
graphs to the space of d-regular graphs.

The general form of this valence Hamiltonian should depend only on the number of on
edges attached to a given vertex,

HV = gV

∑

a

fa

(
∑

b

Nab, v0

)
. (16)

Here gV is a positive coupling constant and v0 is a free real parameter. The function fa should
be chosen such that its minimum occurs when vertex a has exactly v0 on-links attached to
it. The outer sum over vertices a indicates that all vertices in the graph should have the
same valence v0 to minimize the total energy.

A specific choice of HV is

HV = gV

∑

a

ep (v0−
P

b
Nab)

2

(17)

where p is another real constant. The exponential is defined by its series expansion in p: for
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example, for the a = 1 term,

ep (v0−
P

b
N1b)

2

=1+p (v0 −N12 −N13 −· · ·)2

+
p2

2
(v0 −N12 −N13 −· · ·)4 +O(p3)

(18)

The ellipses within the parentheses stand instead of the summation over the other N1b.
Qualitatively, the effect of the valence Hamiltonian HV is to set the preferred valence for

a graph to v0 and assign an energy penalty for each vertex whose valence is v 6= v0. It will
be important later that this penalty, for each vertex, scales roughly with the exponential of
the valence difference squared,

δEV ∼ ep (v−v0)2 . (19)

The details of this scaling are unfortunately somewhat complicated due to the normal-
ordering convention. Since the energy of a state is calculated using the normal-ordering
convention (15) and this convention implies relations such as (14), one has to be careful
when considering contributions from terms in which number operators are raised to various
powers: contributions such as N12N12 in the expansion (18) give zero regardless of whether
the edge N12 is on or off, and other terms also disappear in this way. Despite these issues,
it is possible to check explicitly that once the energy is computed up to sufficient order in
p, the minimum of (18) is indeed at v0 and that the exponential scaling relation (19) holds.
The remaining parts of this paper only rely on the qualitative behavior of the valence term.

2. Closed Paths

The next terms that we consider involve powers of the matrix Nab and depend on the
number of closed paths present in a graph.

At this stage we do not wish to introduce a bias for any particular power, say L = 3 or
4 or 6, corresponding to a cycle length. Therefore, we would like to write a term for every
L in the range 1 < L < ∞. However, since we do want to keep the dynamics of the model
quasilocal, we would like to be able to arrange, by adjusting some parameters or couplings,
for very high powers of Nab to be relatively unimportant.

There is more than one way to achieve this but we chose a particular form which can be
written down compactly as

HB =
∑

a

HBa
(20)

where HBa
is rooted at a vertex a and is given by

HBa
= −gB

∑

b

δab e
rNab. (21)

Here gB is a positive coupling and r is a real parameter. The exponential is defined in terms
of a series expansion,

erNab =
∞∑

L=0

rL

L!
N

(L)
ab . (22)

Recall from (11) that the operators of N
(L)
ab return the number of paths of length L in the

‘on’ graph that connect vertices a and b. When these powers of the number operator are
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normal-ordered, paths that overlap become unimportant and only nonoverlapping paths
contribute. The sum over b and the delta function δab in (21) together ensure that only
closed paths are counted.

By (15) then, this Hamiltonian assigns to the graph an energy

EB(G)= −
∑

a

∞∑

L=0

gB(L)P (a, L) (23)

that depends on the number of closed paths P (a, L) at each vertex a of length L. The
“effective” coupling for each cycle length is given by

gB(L) =
rL

L!
gB. (24)

In practice, terms with L = 0 are uninteresting constants, terms with L = 1 vanish because
there are no closed paths of that length, and all terms with L = 2 vanish because those
closed paths are necessarily overlapping. Hence the Hamiltonian HB starts contributing at
L = 3.

A number of comments about this Hamiltonian are in order. First, (21) and (23) both
have an overall negative sign. This indicates that a graph has lower energy the more cycles it
has. Since the system is finite, the Hamiltonian is bounded from below and this negative sign
does not create any problems. Also, the energy associated per node is finite and constant
for a regular graph even when the number of vertices goes to infinity; this is related to the
second comment below.

Second, it is important to understand which of the various terms contributing to EB(G)
are most important. In graphs with a large number of vertices, the number of long cycles
at a vertex a is often larger than the number of short cycles, P (a, L ≫ 1) > P (a, L ∼ 1).
For certain classes of graphs, it is possible to estimate the growth of P (a, L) with L: for
example, all v-regular graphs have P (a, L) bounded from above by a polynomial of order
vL−1. However, the effective coupling gB(L) multiplying P (a, L) in (23) falls faster than
any power for large L. Hence it is guaranteed that extremely long cycles do not contribute
significantly to the energy of a graph. In this sense HBa

is a quasilocal operator that
contributes only a finite amount to the energy of a vertex.

For intermediate values of L, the situation is more subtle. The effective coupling is
maximized at a length L∗ for which

gB(L∗) > gB(L), ∀L 6= L∗. (25)

This scale depends solely on the parameter r. Another characteristic length is L∗∗
a defined

for each vertex by

gB(L∗∗
a )P (a, L∗∗

a ) > gB(L)P (a, L), ∀L 6= L∗∗
a . (26)

This second length is graph dependent. The lengths that are relevant for determining the
total energy assigned to a vertex or a graph range from zero to some multiple of L∗∗.

Third and last, note that the parameter r is raised to various powers in (24). If this
parameter is positive, so is the effective coupling gB(L). If this parameter is negative,
however, the effective coupling gB(L) has a different sign for cycles of even and odd lengths.
In the latter case, even cycles can lower the energy of a graph while odd cycles incur it a
positive energy penalty.
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(a) (b)

FIG. 1: Interaction moves on graphs. (a) Exchange moves preserve the valence of each vertex. For

convenience the move between the center and the left is called type I and the move between the

center and the right is called type II. (b) Other moves can add or subtract edges, changing the

valence of some nodes. This move is called type III.

3. Interaction Terms

The previous terms HV and HB can be thought of as being terms in a “free” graph
model - they are eigenoperators of graph states and do not change the linking structure
between vertices. A general graph model Hamiltonian might also have some “interaction
terms” which change the graph diagram of a graph state. As a matter of principle, in fact,
interaction terms are necessary in a graph model because they define how a graph state can
evolve from one configuration to another.

One might think of many possible interactions for graphs. However, we would like to
impose a restriction of locality on the interactions so that they affect only small local neigh-
borhoods of vertices. Some examples of such possible interactions are shown in Fig. 1.

In terms of operators, the exchange interaction of Fig. 1(a) can be formulated as

H(exch) = g(exch)

∑

abcd

′
Nab

(
a†ad a

†
bc abd aac

)
. (27)

The prime on the summation indicates that the vertices abcd are assumed to be all different.
The presence of the number operator Nab in the interaction term ensures that the exchange
operation between vertices abcd takes place if and only if the link between vertices a and b
is on. Moves of type I and type II distinguished in Fig. 1(a) are subcases of this formula.

The addition and subtraction move of Fig. 1(b) can be written as

H(add) = g(add)

∑

abc

′
NabNac

(
abc + a†bc

)
. (28)

Again, the sum over abc is assumed to be such that the considered vertices are all different.
The creation and annihilation operators in the parentheses add or subtract an edge at bc if
and only if there are already edges connecting ab and ac.

It is possible to generalize these terms such that they exchange or add links between
vertices that are more separated from each other.

The couplings gexch and gadd determine how likely the interactions are to happen. In
the next section, we mainly study static or equilibrium configurations of links and therefore
ignore the interactions. The exchange moves will only play a role in the discussion of
perturbations.
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III. LARGE GRAPH EXAMPLE

Consider a system in which the number of vertices is very large, for example N ∼ 10100

or N ∼ 101000. The number N , however large, is always thought to be finite. Technicalities
and physical interpretation of the limit N → ∞ are not considered.

We begin by noting that regular lattices can be thought of as special regular graphs
in which some of the cycles correspond to plaquettes. For example, the two-dimensional
honeycomb lattice has the same number of cycles supported by each pair of edges at each
vertex. In this section we thus study a graph model as defined in Sec. IIA and ask whether
a lattice with hexagonal plaquettes can correspond to the graph state that minimizes the
energy assignment E(G).

Since the hexagonal lattice is 3-regular, a reasonable guess for a Hamiltonian that might
produce it is

H = HV +HB (29)

with the preferred valence set to
v0 = 3 (30)

and the couplings set to
gV ≫ gB, gB = 1. (31)

The coupling gV has to be large to enforce the 3-regularity condition, while the normalization
of gB is arbitrary. Since the honeycomb has plaquettes of length 6, we consider values of r
so that L∗ and L∗∗ are close to 6.

A. Finding the ground state

The ground state in this section is defined as the graph G0 for which E(G0) is smaller
than E(G) for any other G. A discussion of when G0 can be expected to be the optimal
configuration also from the point of view of statistical mechanics is postponed until Sec.
IIIC.

Using the condition (31) and the fact that the energy penalty for a vertex to have valence
different from v0 grows very rapidly, we focus attention on the class of 3-regular graphs and
study primarily the effect of the cycle term HB. Since the honeycomb lattice has plaquettes
of length 6, a first attempt at choosing the parameter r could be such to make L∗∗ = 6,
i.e. so that terms proportional to paths with L = 6 contribute the most to E(G). This can
be quickly realized to be unsuccessful as there are several 3-regular graphs that have more
closed paths of length 6 than the hexagonal arrangement; some of these are shown in Fig.
2.

In the graphs of Fig. 2(b) and Fig. 2(c), many of the 6-cycles have more than one edge
in common. This property causes these graphs to be effectively lower dimensional than the
hexagonal lattice: Fig. 2(b), for example, can be seen as one-dimensional on the large scale.
A related consequence of this property is that the numbers of long cycles in graphs in Fig.
2(b) and Fig. 2(c) are lower than in the case of Fig. 2(a).

It is impractical to count cycles of all possible lengths for each of the candidate graphs.
We know from the behavior of the loop term, however, that this is not necessary as very
long cycles do not contribute much to the energy EB(G). Thus it is reasonable to cut-off
the sum over length in the definition of EB(G) at some finite value of L. Figure 3 shows
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(a) (b) (c)

FIG. 2: Sample 3-regular graphs: (a) hexagonal lattice, (b) braided line, and (c) braided tree.
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Hept
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Hex

FIG. 3: The value of the loop energy per vertex, in units of gB , for some sample graphs including

the flat hexagonal lattice as a function of cutoff length L. The parameter r is set to 7.3.

the energy per vertex in each of the candidate graphs, plus a regular lattice made up of
heptagons, as a function of the cutoff length L.

The figure illustrates a number of interesting features. When the cutoff length is taken
to be small, the energy per vertex for the braided graphs is lower than that of the hexagonal
lattice. It is only when cycles of lengths up to around 20 are considered that the hexagonal
lattice becomes the preferred configurations out of the four candidates. The fact that all
four lines tend to level off at high cut-off lengths demonstrates that longer cycles become
increasingly less important.

Other interesting facts that can be seen from the figure relate how much cycles of each
length contribute to the whole loop energy for each graph. For the case of the hexagonal
lattice with |r| ∼ 6, 7 such that L∗ ∼ 6, 7, one finds that the cycles of length 10 contribute
the most (the jump in height between L < 10 and L = 10 is greatest than the other ones)
but also that cycles of length 14 are more important than cycles of length 6, 12, or other
lengths L > 14. For the same values of r, the most important cycles in the braided line
[Fig. 2(b)] have lengths 10, 6, 14 - the relative importance of cycles of length 6 and 14
are switched compared to the hexagonal lattice. In the overall picture, these nuances do
not seem very important but they do indicate that the dependence of E(G) on the graph
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structure is nontrivial.
Figure 3 shows that the hexagonal lattice is preferred over the other graphs once cycles

of all lengths are considered, when the parameter r is r = +7.3. In fact, the same empirical
conclusion, when comparing the four lines in the plot, can be reached for other values of r,

|r| & 7.1. (32)

For r close to the lower bound (32), lengths up to L = 20 allow one to compute E(G) up to
1% for the hexagonal and better for the other lattices, and the energy differences between
the hexagonal and the braided line and braided tree, are 3% and 16%, respectively. The
energy difference between the hexagonal lattice and the heptagonal lattice is much larger as
seen in the figure.

The data used to plot the “hex” line in Fig. 3 is obtained by counting cycles in the two-
dimensional flat hexagonal lattice. If an arrangement of hexagons as in Fig. 2 is wrapped
in a tube or torus, then the energy per node can be set up to be lower than that shown in
the plot even by a factor of 2 if the circumference of the tube is about 8 edges. This large
discrepancy is due to cycles that wind around the tube and lower the energy relative to the
flat configuration. In any case, it seems that among the various examples considered, it is a
locally hexagonal tube that corresponds to the lowest energy state of the system. We stress
again that the contribution coming from a wide range of path lengths must be considered
in order to arrive at these observations.

A general proof of the statement that a locally hexagonal lattice is the true ground state
of the model is at this moment beyond reach and so we can only phrase it as a conjecture.
Because the number of 3-regular graphs with N vertices is very large, a brute force search for
the ground state would be a very computationally intensive task. In general, any approach
to finding the true ground state would be complicated by the necessity to consider very
long paths in the analysis. In the above discussion, we focused attention on some candidates
which have a large number of cycles of lengths close to 6 as these could have been considered
as possible counterexamples to the conjecture, and showed that they actually have higher
energy.

Further evidence that the hexagonal lattice is at least a local minimum in the model’s
energy landscape is presented in the next section.

B. Graphs Above the Ground State

Based on the evidence above, one can try to proceed by assuming that the hexagonal
lattice is indeed the minimal energy configuration for a given set of couplings. This lattice
configuration will be hereafter called the reference lattice. (For simplicity we consider the
flat hexagonal lattice, not the tube, as the reference lattice.) It is interesting to consider
graph states that are close to this reference configuration and to check, in a perturbation
theory manner, that the reference lattice is at least a local minimum in the state space.
Given that the local minimum property is confirmed, this procedure should also provide
information about the spectrum of low-energy graph excitations.

A possible type of perturbation around the reference state can be done by applying one
of the exchange moves shown in Fig. 1. After one such move at an arbitrary location in
the reference graph, one obtains a new state as shown in Fig. 4(a). This state is still 3-
regular and therefore its associated energy with respect to the valence termHV is unchanged.
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FIG. 4: (a) The hexagonal lattice with a defect of type I. (b) The plot shows the energy differences

at points in the hexagonal lattice relative to the reference lattice. The vertical axis is in units of

gB .

The cycle structure changes since some of the closed paths of length 6 near the defect get
replaced by closed paths of lengths 5 and 7. The distribution of longer paths is also affected.
These structural changes alter the energy assignment to many vertices, also ones that are
not immediately close to the defect. The total change in energy (relative to the reference
lattice) due to the defect can then be defined as the sum of the energy changes of all the
vertices.

With r = 7.1, a parameter consistent with the earlier arguments for the reference hexag-
onal lattice being the minimal energy state, the total energy difference turns out slightly
positive for this deformation. This is despite some vertices actually experiencing a local
energy decrease. For r = −7.1, the total energy difference is decisively positive as can be
readily understood by noting that the defect decreases the cycle count at even lengths and
increases the cycle count at odd lengths, both of which correspond to inflicting an energy
penalty. A plot of the energy difference at each vertex, using r = 7.1, is shown in Fig. 4(b).
In the plots, half of the points shown on the square grid correspond to the actual energy
differences computed at the vertices of the hexagonal lattice while half are evaluated from
the former by linear interpolation.

A different perturbation can be obtained by applying an interaction of type II from Fig. 1
to the reference graph. This gives a new configuration shown in Fig. 5(a). The corresponding
energy difference plot is shown in Fig. 5(b). It is again computed using r = −7.1. The
shape of the plot in Fig. 5(b) is slightly different from the previous case, but still shows
unambiguously that the overall energy difference due to defect is positive. In the case of this
defect, the choice of negative r is necessary because a positive value of r actually decreases
the total energy.

From these perturbations, we learn that the reference lattice is stable under deformations
when the parameter r is negative. With negative r, therefore, the reference lattice is a local
minimum in the energy landscape and thereby a sensible candidate for the ground state
of the system. The fact that r must be negative implies that even and odd cycles in the
model have an effective coupling gB(L) of different sign and thus have quite distinct physical
effects.

The two deformed lattices considered have energies that are on the order of 106gB higher
than the reference lattice and represent two distinct excited states of geometry. They are



15

(a)

5

10

15

20

5

10

15

20

0
2000

4000

6000

8000

5

10

15

20

(b)

FIG. 5: (a) The hexagonal lattice with a defect of type II. (b) The corresponding energy difference

plot. The vertical axis is in units of gB .

probably not the two lowest-lying states, but they are ones that come about by disturbing
the reference lattice with minimal local moves. Perturbations from the type III move of Fig.
1 can be studied in a similar manner.

While a full description of the spectrum of excitations is still missing, it is already possible
to say a few things about the spectrum. At energies much higher than those corresponding
to the two lattices with defects but still smaller than the coupling gV , excited states can be
expected to be graphs in which all vertices have 3 edges but in which the cycle structure
is much different from the reference lattice. At energies beyond gV , excited states can
also appear in which some vertices have higher (or lower) than the preferred valence. The
physical consequences of such perturbations on Ising systems have already been studied [26].
In the context of our model, characterizing these states is again difficult because the new
edges corresponding to higher valence create many new cycles which contribute through the
loop term. In any case, at sufficiently high energy the states of the system become highly
irregular and cannot be expected to be interpreted as lattices with defects. These states
characterize the disordered phase described in the Introduction.

C. Statistical Mechanics

In this section, we continue discussing the stability of the reference lattice state. We
consider the thermodynamic definition of the free-energy F = E − TS as the relation
between the energy E and the entropy S at a given temperature T . To check that the
reference lattice is a stable configuration, we consider the variation

δF = δE − TδS (33)

after small and large local perturbations. In this context, we take locality to refer to the
emergent locality of the reference lattice.

To start, consider a local subgraph of the reference lattice consisting of 1 ≪ n ≪ N
vertices. Then, consider single perturbations of the type shown in Fig. 1(a) and discussed
in Sec. III B. The corresponding energy shifts δE were computed and displayed in Fig. 4(b)
and Fig. 5(b). For the present purpose, it is sufficient to note that these single perturbations
contribute δE ∼ const. Since the perturbation move can be applied to any one of O(n) links
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in the subgraph, the entropy change associated with a perturbation is δS ∼ lnn. Putting
these elements together,

δF ∼ constant− T lnn. (34)

At finite temperature, T 6= 0 and large n, the change in free-energy δF can be negative. This
means that small defects are likely to be present in the system at nonzero temperatures.
This is not a negative result and may possibly lead to specific signature of the model that
can be compared with experiment. The number density of such defects depends on the scale
of δE and the temperature T .

Next, consider changing the graph by applying several exchange moves to a region of the
graph composed of m vertices that are close together, with m < n. The change in entropy
δS associated with this change is still proportional to lnn. The energy shift is more difficult
to estimate as a function of m because it very much depends on what the perturbation is.
However, since it is assumed that the perturbation affects m vertices, it is reasonable to take
δE to be at least of order m, δE ∼ Ω(m). Thus the change in free energy

δF ∼ Ω(m) − T lnn (35)

is positive for sufficiently large m. This indicates that the reference lattice is stable against
large local perturbations even at finite temperature: the reference lattice describes a stable
thermodynamic phase.

Finally, consider a similar setup to the one just discussed, but instead of applying several
exchange moves, consider changing the valence of a region of m < n vertices in the reference
lattice from 3 to v. Vertices with valence v 6= 3 will incur an energy penalty due to the
valence term HV . However, since the subgraph with higher valence contains a larger number
of cycles than the reference lattice, the loop term HB will decrease the energy somewhat.
For a v− regular graph, the number of cycles of each length is bounded by

P (a, L) < cvL−1 (36)

where c is some constant. This can be used to pose a bound on the effect of the loop term
as ∑

L

gB(L)P (a, L) < gB

∑

L

rL

L!
cvL−1 ∼ gB

erv

v
. (37)

The overall energy difference, for each affected vertex, scales thus as

δEa = gV e
p (v−v0)2 − gB

erv

v
. (38)

As long as this quantity is positive, the higher valence droplet has higher energy per vertex
than the reference lattice. From here, using similar reasoning as in the case of the other
type of perturbation, we can conclude that

δF ∼ Ω(m) − T lnn (39)

just like in (35). The reference lattice is thus also stable against changes in the valence.
This analysis can be compared to similar heuristic arguments that are used to show how

dimensionality, range of interactions, and type of interactions determine whether a system
of spins on a fixed lattice can exhibit order-disorder phase transitions [24]. For the simple
spin systems on a lattice, such arguments can be made precise [25]. Whether a similar level
of rigor can be achieved for the graph model system is still unknown.
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IV. EXTENSIONS WITH MORE DEGREES OF FREEDOM

Whereas the model of Sec. II had a minimal Hilbert space on each of the edges, one
may also be interested in models that contain more degrees of freedom. In this section we
describe how this could be done and explain how such more complex models can connect to
quantum field theories, including quantum gravity.

Again, the goal in this section is to define more complex models by altering the Hilbert
space Hedge associated to each edge in the complete graph. We still require that the new
Hedge contain a state |0〉 that can be interpreted as the physical link between two vertices
being off. But now, instead of creating an on state by acting with a creation operator a†,
we introduce a set of such operators as

† labeled by an index s chosen from a set of integers.
We also introduce corresponding annihilation operators as. As before, these operators are
set to obey fermionic anticommutation relations

{as, a
†
s′} = δss′. (40)

All other anticommutators at each edge vanish.
For concreteness, we here focus on s = {1, 2, 3}. The Hilbert space of the new edge is the

span of all possible states that can be constructed by acting with the a†s. It is

Hedge = span{| 0〉, | 11〉, | 12〉, | 13〉}, (41)

and the states
| 1s〉 = a†s| 0〉 (42)

are all interpreted as on states. It follows from the anticommutating nature of the a†s that
states with multiple particles cannot exist.

The difference between the edge Hilbert space (41) and the old one (4) is that there are
now multiple on states that can be distinguished by an internal label s. The total Hilbert
space for this extended model is defined as in (3) and can still be decomposed according
to (6). However, the spaces HG in the tensor sum decomposition are here no longer zero-
dimensional but reflect the internal degrees of freedom of the on links. Thus, the spaces HG

have now room for interesting physics. In what follows, operators that rotate between these
internal states are used in a Hamiltonian to describe matter degrees of freedom propagating
on a dynamically selected background graph.

In order to connect with the original quantum graphity model [15], consider relabeling
the states of (41) so that

Hedge = span {| 0, 0〉, | 1,−1〉, | 1, 0〉, | 1, +1〉}

= span {| j, m〉}
(43)

so that the off state has j = 0 and m = 0, and the on states have j = 1 and m = 0,±1.
There is a clear analogy between this space and the Hilbert space of a spin-1 particle and
hence it is natural to introduce an operator M which has the states |j, m〉 as eigenstates,

M | j, m〉 = m | j, m〉, (44)

and operators M± that change the internal m labels,

M+ |j, m〉 =
√

(j −m)(j +m+ 1) | j, m+ 1〉

M− |j, m〉 =
√

(j +m)(j −m+ 1) | j, m− 1〉.
(45)
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These are the familiar operators of angular momentum (although the M and M± operators
are sometimes called Jz and J± instead). These three operators form a closed algebra among
themselves

[M+, M−] = M, [M, M±] = ±M± (46)

and annihilate the | 0, 0〉 state,

M | 0, 0〉 = M± | 0, 0〉 = 0. (47)

The formulation of M and M± in terms of the creation and annihilation operators a†s and as

is not needed in what follows. Similarly as operators Nab of the original model, the operators
Mab and M±

ab that act on each edge can also be organized and understood as being attached
to an adjacency matrix. Their powers also contain information about the closed and open
paths of a graph state.

A Hamiltonian for a model with this edge structure can be written, for example, as (graph
interaction terms are not shown)

H = HV +HB +HC +HD +H± (48)

where HV and HB are the same as in Sec. II and the other terms are

HC = gC

∑

a

(
∑

b

Mab

)2

, (49)

HD = gD

∑

ab

M2
ab, (50)

H± = −
∑

cycles

g± (L)
L∏

i=1

M±
i . (51)

Here gC , gD, and g± are additional positive couplings. In the H± term, referred to as the
loop term below, the product is taken around a cycle of length L (i.e., consisting of L edges)
and with alternating raising and lowering operators:

L∏

i=1

M±
i = M+

abM
−
bc ...M

+
yzM

−
za. (52)

Since this product contains an equal number of raising and lowering operators, the loop
operator is naturally restricted to act on cycles of even length. The coupling g±(L) is

g±(L) =
rL

L!
g±. (53)

Note the similarity of this coupling function to that of (24) in the loop term HB. Actually,
the original quantum graphity was written only with the H± term, without the HB term.
Both are included here because this makes it easier to separate the graph-forming role of
HB from the matter propagation role of H±.

By the arguments of Sec. II, we assume that the ground state of the system at very
low temperatures is a 3−regular graph with hexagonal symmetry. Since the new terms
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of the Hamiltonian contain only M and M± operators and not as and a†s operators by
themselves, they do not change the linking configuration. At low temperatures, therefore,
we can consider the base graph to be frozen in a hexagonal configuration and discuss the
action of HCD and H± on this background. Then, the terms of (49), (50) and (51) reduce
to a model of string nets [16]. We briefly describe the expected physics.

Since the loop Hamiltonian H± does not commute with HC or HD, the eigenstates of
the full Hamiltonian will generally be superpositions of states involving different m config-
urations. Nonetheless, an intuition for the model can be developed by first describing the
eigenstates of the HC + HD terms alone, and then considering the effect of the loop term.
The ground state of HC +HD consists of all links having m = 0. When gC ≫ gD, low-energy
excited states appear as closed chains of links on which the m variables have alternating
values m = +1 and m = −1. These excitations are called strings and their energy above
the ground state is proportional to the coupling gD times their length (number of edges.)
Thus gD can be thought of as a string tension. The coupling gC can instead be related to
the mass of pointlike particles [16].

Given a graph with all on edges labeled by m = 0, a loop operator (52) acts as to create
a closed string of alternating m = +1 and m = −1 edges (a loop operator cannot create
open strings.) These closed strings acquire tension through the gD term. However, since
the sign of the g± term is negative, the overall energy of the state may either increase or
decrease as a result of string creation and so there is the possibility of two distinct scenarios.
In one scenario, the tension in a string is greater than the contribution from the loop term,
so the overall effect of creating a string is to increase the energy of the system. If this is
the case, then the string represents an excited state over the vacuum in which all m values
are set to zero. The second scenario is the one that we will be mostly interested in. If the
tension is small compared to the contribution from H± so that creating a string decreases
the energy, then the creation of the string actually lowers the energy and indicates that the
original configuration cannot be the ground state. Instead, the true ground state consists
of a superposition of a large number of strings - a string condensate. We should note that
because the graph has a finite number of vertices and the m values on each edge only take
three possible values, the Hamiltonian is bounded from below. The characterization of the
string-condensed ground state is difficult but its excitations are expected to be that of a U(1)
gauge theory [16] since the Hamiltonian is close in form to the Kogut-Susskind formulation
of lattice gauge theory [23]. The two main differences between this model and the original
string-net condensation model proposed by Levin and Wen [16] are that in the present case
the background lattice is dynamical and has hexagonal rather than square plaquettes.

Another possibility for incorporating matter and indeed gravitational degrees of freedom
in the graph-based model that is worth mentioning is via the approach of algebraic quantum
gravity [18].

V. COMPARISON TO OTHER GRAPH DYNAMICS

In this section we describe the quantum graphity model of Sec. II in graph-theoretic
terms and compare its dynamics under the HV +HB Hamiltonian to some common graph
processes discussed in the literature. In particular we are interested in modeling the high-
temperature to low-temperature transition with a mechanism acting on the graph associated
to the system. A graph process can be defined by taking into account two ingredients: an
initial graph and a set of graph operations. The process consists of applying in sequence the
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graph operations from the set. In this way, the initial graph is gradually transformed into
other graphs, according to the operations used.

In our scenario, the initial graph can be any graph with a very high density of edges,
because this is what we expect to be the likeliest state of the system when the temperature
is very high. For simplicity, however, we can take this initial state to be KN . It is intuitive,
and somehow simplest, to consider a unique operation, which, in our case, is the deletion of
edges.

We denote by G = (V,E) a graph with set of vertices V (G) and set of edges E(G). A
graph G = (V,E) is d -regular if d(i) = d for all i ∈ V (G), where d(i) := |{j : {i, j} ∈ E(G)}|
is the degree of the vertex i. In what follows we will mainly focus on regular graphs with
small degree, and more specifically, 3-regular (also called cubic) graphs. By H ⊂ G, we
mean that H is a graph with V (H) ≡ V (G) and E(H) ⊂ E(G). One may interpret H as
obtained from G by deleting edges of G but keeping all of its vertices. We consider a family
of graphs {Gi}, such that G0 = KN and Gk ⊂ · · · ⊂ G1 ⊂ G0 = KN . The dynamics induced
by the Hamiltonian HV B requires the graph Gk to satisfy the following two conditions: that
Gk is v0-regular and that EB(Gk) < EB(Gi), for all i = 0, ..., k − 1, according to Eq. (23).
Note that these conditions are local at the level of the vertices, that is both conditions can
be verified by looking at the single vertices of the graph. The fact that Gk needs to be
v0-regular can be easily verified and enforced. The fact that EB(Gk) is small depends on
the cycle structure of Gk. Devising a graph process to control the number of cycles having
different lengths for each vertex does not appear to be an easy task.

We consider the dynamics towards the ground state of HV +HB as a process that trans-
forms Gi into Gi+1 by deleting edges of Gi. It is evident that EB(Gi) is small, when Gi has
a relatively large number of cycles of length between zero and some Lmax not much larger

than L∗.
The first natural idea is to consider random graphs (see, e.g., [27]). The best known

of such models are the Erdös-Renyi random graph and the uniform random graph. The
Erdös-Renyi random graph G(N ; p) on a set of N vertices is obtained by drawing an edge
between each pair of vertices, randomly and independently, with probability p. The featured
randomness in assigning edges does not insure to obtain a v0-regular graph. Therefore, these
models do not satisfy our first requirement.

In a random graph process, one starts with N vertices and inserts edges one at a time at
random. While this process does not guarantee to generate a d-regular graph either, this
model is more pertinent to our setting since adding edges starting from N vertices and no
edges at all is conceptually equivalent to deleting edges starting from the complete graph
KN . However, when d is relatively small the behavior of the latter model is not easy to
analyze given that it needs to run for a large number of steps. These are not the last words,
since there are well-defined models of random regular graphs [31]. Indeed, the so-called d-
process is similar to the random graph process, but the degrees of the vertices are bounded
above by a constant d. This process gives a d-regular graph with probability tending to 1 as
the number of vertices tends to infinity. Note that a d-process does not consider at all the
number of cycles for each vertex, our important second requirement. What can we say about
this point? Let us focus on the case v0 = 3. It is known that the probability Pr(t) that a
graph chosen at random from the set of all cubic graphs on N vertices contains exactly t
cycles of length L (where t is fixed) goes to

Pr(t) ∼
e−2L/2L

t!
(54)
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as N → ∞. Also, the expected number of cycles of length L in a random cubic graph on N
vertices goes to 2L/2L as N → ∞. In our model we must take into account the term HB

in the Hamiltonian that depends on the cycles. Because of this term, the graph associated
to the ground state of the Hamiltonian needs to have a relatively large number of short
cycles. The above observation about the cycle structure in d-processes does not reflect this
behavior. It follows that d-processes do not seem to be good candidates to implement the
dynamics suggested by our model. Another reason supporting this statement comes from
the diameter. For a d-regular graph G on N vertices,

diam(G) ≤ 1 +
⌈
logd−1((2 + ǫ)dN logN)

⌉
, (55)

with probability tending to 1 as N → ∞. Since N is very large in our context, we can
consider the above formula as a good approximation. Note that the behavior of diam(G)
exhibits an interesting cutoff phenomenon: diam(G) increases very slowly when d . 10 but
rises quickly for d & 10. Conjecturing that the graph associated to the ground state of our
model has a small Hausdorff dimension δ, the diameter should be proportional to N1/δ, and
this is much larger than the diameter of a d-regular random graph.

In addition to the above reasoning, we can still observe that random regular graphs can
play a role in our mode. By taking gB = 0, from a simple statistical mechanics argument
suggests that the probability of a vertex having degree v is

Pr(v 6= v0) ∝ exp(−βe(v−v0)2). (56)

When N is very large, this can be considered as a good approximation, despite the fact that
the probability cannot be taken independently for each vertex, given that increasing the
degree to one vertex implies increasing the degree of another one. Also, when gB = 0, the
cycles structure does not play a role in determining the ground state. So, in this extremal
case with gB = 0, we can expect that the graphity model gives rise to a d-regular random
graph.

Finally, it is worth commenting on scale-free graphs which have been widely discussed in
the literature, also in the context of quantum gravity [26, 28]. A scale-free graph is a graph
in which the degrees d(v) of vertices v exhibit the Yule-Simon distribution

Pr[d(v) = k] ∼ k−γ. (57)

The exponent γ is often in the range γ ∈ [1, 3]. This means that a scale-free graph has a
few vertices with very high degree and many vertices with very small degree. Because of the
valence term HV in our Hamiltonian which gives a high-energy penalty e(v−v0)2 to vertices
with different degree from v0, it is implausible to have vertices with very large degree at low
temperature in our model.

It thus appears that many known ways to generate graphs cannot reproduce the features
implemented through the Hamiltonian of our model. A graph process that would successfully
reproduce the dynamics of the Hamiltonian would necessarily have to involve a cost function
that would preferentially create d−regular graphs with a large number of cycles of prescribed
lengths. Defining such a cost function in a plausible way is difficult. The cost function in
principle should take into account a value associated to each edge. A candidate process
could be one that carries on by greedily deleting edges in agreement with the function. Each
edge has a cost and at each time-step the edge with the smallest cost is deleted. The cost of
each edge depends on the number of cycles of prescribed lengths that will be in the graph
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after the deletion of the edge. The cost function needs to be updated at each time-step, since
the deletion of a single edge implies a possibly large variation on the number of cycles in
which other edges are contained. This observation suggests that implementing the behavior
induced by the Hamiltonian, with the use of a cost function of pure combinatorial nature, is
highly expensive from the computational point of view, and it is possibly ill-defined. For this
reason, a mathematical description of a graph process mimicking our dynamics is elusive.

VI. DISCUSSION

Quantum graphity is an explicit model for geometrogenesis, with locality, translation
symmetry, etc., being properties of the ground state. In Table I, we have summarized the
properties of quantum graphity at high and low temperatures.

At high temperature, the graph representing the state of the system is highly connected
and has diameter close to 1. There is no notion of locality, as most of the Universe is
one-edge adjacent to any vertex. Said differently, there is no notion of a subsystem, in the
sense of a local neighborhood, since the neighborhood of any vertex is the entire KN . The
microscopic degrees of freedom are the j and m labels.

At low temperature, the graph has far fewer edges than KN . Permutation invariance
of the state breaks to translation invariance. Subsystems can be defined as subgraphs
of the ground state or, better, as the emergent matter excitations, and the dynamics of
the emergent matter is local by correspondence with lattice field theory [16, 23]. Once
subsystems are present, internal geometry can be defined. This is the relational geometry
that is the only physically meaningful notion of geometry, and hence time, for observers
inside a system. The significance of internal time and its relation to general relativity has
been discussed extensively, for example, in [2, 33].

High-T Low-T

• Permutation symmetry • Translation symmetry

• No locality • Local

• Relational • Relational

• Diameter ≃ 1 • Large diameter

• ∼ N−dimensional • Low-dimensional

• No subsystems • Lubsystems

• External time • External and internal time

• (j,m) • Matter + dynamical geometry

TABLE I: The two phases of quantum graphity. The couplings are gV ≫ gB , g± ≫ gC , and gD.

The parameters are v0, p, and r.
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On a more technical level, the model is written in terms of fermionic operators acting on
a large Hilbert space based on a complete graph. A term in the model Hamiltonian (HB)
that detects the cycle structure of a graph is crucially defined using powers of a quantum
adjacency matrix and the normal-ordering convention.

While our definition of HB has the properties that we would like to implement in a
graphity model, we find it interesting to point out, as a side remark, that other choices
could also be made. For example, there is some interest in the graph theory literature in a
relation counting loops (in our notation) of the form

Eζ(G) =

∞∑

L=1

rL

L
P̃ (L), (58)

where, in contrast to (23) of our model, the denominator on the right-hand side is L rather

L! and the object P̃ (L) denotes the number of prime geodesics in a graph G rather than
the number of nonoverlapping closed paths. This quantity Eζ(G) is related to the Ihara
zeta function of a graph; we refer to the literature for more details [32] and finish this side
remark by saying that we have not looked at the behavior of Eζ(G) in a graphity model.

Besides the definition of the Hamiltonian term HB that depends on quantum mechanical
features, our study of the model is limited to stationary states and is thus mostly classical.
We find evidence to support our conjecture that, for the given set of parameters, the hexago-
nal lattice, possibly wrapped into a tube or a torus, is a good candidate for the ground state
of the model: it has lower energy than other regular graphs with a large number of cycles of
length 6, and it corresponds to at least a local free-energy minimum as found by heuristic
arguments looking at small and large local perturbations. The last argument relies on the
notion of emergent locality and the restriction of the possible interactions in the graph to
moves that act on small subgraphs. These arguments could be extended to other ground
state lattices in different regions of the parameter space.

There are a number of important open questions. It would be useful to verify, perhaps
numerically, that a locally hexagonal lattice or a similar configuration is the state with
minimal energy as conjectured in Sec. III. At the same time, an extension of the model to
produce extended three-dimensional spatial lattices would also be worthwhile. This could
perhaps be done, as suggested in the original graphity model [15], by setting the preferred
valence to v0 = 4.

As the quantum graphity model is based on a Hamiltonian, it is more akin to condensed-
matter physics than to other algorithmic approaches to building a space or spacetime from
spins on graphs [29, 30]. However, the Hamiltonian approach raises an intriguing question
regarding the role of temperature. We model the geometrogenesis transition as a cooling
process that suggests the presence of a reservoir at a tunable temperature. This could be a
problem if the graph is to be interpreted as the entire Universe. The question is then whether
this external temperature is indeed a physical temperature or some other renormalization
parameter. We believe the model needs to be understood further before this and similar
questions can be properly addressed.

Another important next step is to study the transition from the high-energy to the low-
energy phases and look for possible observable remnants. The transition is a complicated
process and at this stage we only understand it in the limit where gV is the only nonzero
coupling. One possibility for progress in this direction is to generalize the random graph
process to the case where the graph cycles have structure. A necessary part of this project
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involves extending string-network condensation to irregular graphs, a question that is of
interest independently of this work.

Finally, an intriguing goal for the model is to understand the transition from the descrip-
tion of the system in terms of microscopic (j,m) variables to a more standard representation
in terms of matter and geometry. The way that we normally understand matter and gravity
is as two sets of degrees of freedom coupled by a nonlinear relation given by the Einstein
equations. Normally, we can study each part separately: in the no-gravity limit we have
quantum field theory on a fixed background and with no matter we have pure gravity. In
our model, the dynamics of the (j,m) variables serves both to organize the graph into a
local regular structure with symmetries and to give rise to the effective U(1) matter. There
is no fundamental split into gravity and matter. Since the effective matter and the geometry
are different low-energy aspects of the same microscopic degrees of freedom, matter and the
geometry can only be decoupled in a certain limit. It has been conjectured elsewhere that
such a relation can give rise to the Einstein equations [20, 33]. It will be interesting to
investigate this possibility in the context of our model.
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