
Computer Physics Communications 182 (2011) 1693–1707

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

QCWAVE – A Mathematica quantum computer simulation update ✩

Frank Tabakin a, Bruno Juliá-Díaz b,c,∗
a Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, United States
b Departament de Estructura i Constituents de la Materia, Universitat de Barcelona, 08028 Barcelona, Spain
c ICFO-Institut de Ciències Fotòniques, Parc Mediterrani de la Tecnologia, 08860 Barcelona, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 January 2011
Received in revised form 27 February 2011
Accepted 12 April 2011
Available online 15 April 2011

Keywords:
Quantum computation
Mathematica
Quantum simulation
Quantum algorithms

This Mathematica 7.0/8.0 package upgrades and extends the quantum computer simulation code called
QDENSITY. Use of the density matrix was emphasized in QDENSITY, although that code was also
applicable to a quantum state description. In the present version, the quantum state version is stressed
and made amenable to future extensions to parallel computer simulations. The add-on QCWAVE extends
QDENSITY in several ways. The first way is to describe the action of one, two and three-qubit quantum
gates as a set of small (2 × 2, 4 × 4 or 8 × 8) matrices acting on the 2nq amplitudes for a system of nq

qubits. This procedure was described in our parallel computer simulation QCMPI and is reviewed here.
The advantage is that smaller storage demands are made, without loss of speed, and that the procedure
can take advantage of message passing interface (MPI) techniques, which will hopefully be generally
available in future Mathematica versions.
Another extension of QDENSITY provided here is a multiverse approach, as described in our QCMPI
paper. This multiverse approach involves using the present slave–master parallel processing capabilities
of Mathematica 7.0/8.0 to simulate errors and error correction. The basic idea is that parallel versions
of QCWAVE run simultaneously with random errors introduced on some of the processors, with an
ensemble average used to represent the real world situation. Within this approach, error correction steps
can be simulated and their efficacy tested. This capability allows one to examine the detrimental effects
of errors and the benefits of error correction on particular quantum algorithms.
Other upgrades provided in this version include circuit-diagram drawing commands, better Dirac form
and amplitude display features. These are included in the add-ons QCWave.m and Circuits.m, and are
illustrated in tutorial notebooks.
In separate notebooks, QCWAVE is applied to sample algorithms in which the parallel multiverse setup is
illustrated and error correction is simulated. These extensions and upgrades will hopefully help in both
instruction and in application to QC dynamics and error correction studies.

Program summary

Program title: QCWAVE
Catalogue identifier: ADXH_v3_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADXH_v3_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 94 159
No. of bytes in distributed program, including test data, etc.: 734 158
Distribution format: tar.gz
Programming language: Mathematica 7.0 and 8.0.
Computer: Any supporting Mathematica.
Operating system: Any operating system that supports Mathematica; tested under Microsoft Windows XP,
Macintosh OSX, and Linux FC4.
Has the code been vectorised or parallelized?: Utilises Mathematica’s (7.0 and 8.0) parallel computing
features.
Classification: 4.15.

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).

* Corresponding author.
E-mail address: bjulia@gmail.com (B. Juliá-Díaz).

0010-4655/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2011.04.010

http://dx.doi.org/10.1016/j.cpc.2011.04.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/ADXH_v3_0.html
http://cpc.cs.qub.ac.uk/licence/licence.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:bjulia@gmail.com
http://dx.doi.org/10.1016/j.cpc.2011.04.010

1694 F. Tabakin, B. Juliá-Díaz / Computer Physics Communications 182 (2011) 1693–1707
Catalogue identifier of previous version: ADXH_v2_0
Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 474.
Does the new version supersede the previous version?: Yes. This version supersedes all prior versions of
QDENSITY.
Nature of problem: Simulation of quantum circuits, quantum algorithms, noise and quantum error
correction.
Solution method: A Mathematica package containing commands to create and analyze quantum circuits is
upgraded and extended, with emphasis on state amplitudes. Several Mathematica notebooks containing
relevant examples are explained in detail. The parallel computing feature of Mathematica is used to
develop a multiverse approach for including noise and forming suitable ensemble averaged density matrix
evolution. Error correction is simulated.
Reasons for new version: The new version updates QDENSITY to run on Mathematica 7.0 and 8.0 and
makes it compatible with our extension QCWAVE. QCWAVE emphasizes wavefunctions with efficient gate
operations and also extends the code to use the parallel computing features of Mathematica 7.0–8.0.
Circuit diagram and amplitude display are new features. Dirac display of states is also provided.
Summary of revisions: The revisions include working with state vectors and the implementation of
efficient Op1, Op2 and Op3, one, two, three gate operators. Parallel processing is used to form a
multiverse approach for simulating noise effects and error corrections in quantum operations. Drawing
circuit diagrams and displaying amplitude evolution has been added. A simple Dirac display feature
DForm has also been provided.
Running time: The notebooks provided in the distribution package take only a matter of minutes to
execute.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, QDENSITY [1] (a Mathematica [2] package that
provides a flexible simulation of a quantum computer) is extended
and upgraded by an add-on called QCWAVE.1 The earlier flexibil-
ity in QDENSITY is enhanced by adopting a simple state vector
approach to initializations, operators, gates, and measurements. Al-
though the present version stresses a state vector approach the
density matrix can always be constructed and examined. Indeed,
a parallel universe (or multiverse) approach is also included, using
the present Mathematica 7.0/8.0 slave–master feature. This mul-
tiverse approach, which was published [5] in our QCMPI paper,2

allows separate dynamical evolutions on several processors with
some evolutions subject to random errors. Then an ensemble aver-
age is performed over the various processors to produce a density
matrix that describes a QC system with realistic errors. Error cor-
rection methods can also be invoked on the set of processors to
test the efficacy of such methods on selected QC algorithms.

In Section 2, we introduce qubit state vectors and associated
amplitudes for one-, two- and multi-qubit states. In Section 3,
a method for handling one-, two- and three-qubit operators act-
ing on state vectors with commands from QCWAVE are presented.

In Section 4, illustrations of how to apply gates to states are
shown. In Section 5, the multiverse approach is described and the
parallel method for introduction of errors and error correction is
given. The ensemble averaged density matrix is then constructed.

Additional upgrades, such as Dirac and amplitude displays and
circuit drawing are presented in Section 6. Suggested applications
are presented in the conclusion Section 7.

1.1. Comparison to other simulators

This paper describes an environment for quantum simulation
using the symbolic package Mathematica. In this subsection, we
briefly describe the capabilities of our package in contrast to others
on the market. A deeper comparison to other quantum simulators

1 Other authors have also developed Mathematica/Maxima QDENSITY based
quantum computing simulations [3,4]. Hopefully, they will incorporate the ideas we
provide herein in their future efforts.

2 QCMPI is a quantum computer (QC) simulation package written in Fortran 90
with parallel processing capabilities.

is beyond the scope of this work, and, if needed, is left to the
potential user.

An appreciable number of quantum simulators are already
available as can be seen in Refs. [5–7]. In addition to invoking var-
ious computer languages (most of them are use C/C++), the goals
of these simulators often vary. For example, some focus on simu-
lating particular algorithms, notably Shor’s and Grover’s; whereas,
others emphasize the scalability of their codes by, in some cases,
implementing parallel computing features, which no doubt will be
employed extensively in the near future. An example of a quite
versatile package coded in C++ is libquantum [8], which provides
a modular approach to simulate a broad range of quantum prob-
lems. That example, and other packages coded in high-performing
languages, are advantageous mostly for large scale simulators in
presently available computers.

There is, however, a rather limited number of simulators em-
ploying high level symbolic packages, such as Mathematica, Max-
ima or Maple. These languages, and especially Mathematica, pro-
vide a powerful framework where analytical calculations, drawing
capabilities, and good numerical tools are integrated. In this way,
quantum simulators using these programming languages can be
useful for a broad range of problems. For instance, our earlier
version QDENSITY contained pedagogical simulations of important
quantum algorithms, built from a number of macros and func-
tions that performed the basic quantum computing algorithms. In
this way, one was able to simulate a large number of user-defined
quantum algorithms. The emphasis in QDENSITY was on using the
density matrix as the primary tool to describe quantum systems.
A particularly interesting package using Mathematica, which ap-
peared soon after our QDENSITY, was the package “Quantum” [3],
which was aimed initially at improving the notational aspects, pro-
viding powerful Dirac notation features, and also circuit drawing
features. Other groups have invested some time in building simi-
lar tools in non-proprietary computer languages, as is the case of
Qinf [4], which is coded using Maxima.

In QCWAVE, we have substantially improved QDENSITY by in-
corporating computing tools that were not available in 2005. The
prime point is that we invoke a multiverse approach, using the
parallel slave–master capabilities, that are now available in cur-
rent Mathematica distributions. That allows simulation of noise
and of error correction, and as that capability develops will allow
for larger scale computation. Although current highly-performing
languages are faster in numerical computations than symbolic ori-

F. Tabakin, B. Juliá-Díaz / Computer Physics Communications 182 (2011) 1693–1707 1695

ented languages, there is an ongoing, important effort to improve
the numerical capabilities of symbolic oriented languages. Clearly,
integrating parallel computing tools is an important step forward
in that effort.

2. Multi-qubit states

2.1. One-qubit states

The basic idea of a quantum state, its representation in Hilbert
space and the concepts of quantum computing have been dis-
cussed in many texts [9–11]. A brief review was given in our
earlier papers in this series [1,5]. Here we proceed directly from
one-, two- and multi-qubit states and their amplitudes to how var-
ious operators alter those amplitudes.

To start, recall that when one focuses on just two states of a
quantum system, such as the spin part of a spin-1/2 particle, the
two states are represented as either |0〉 or |1〉. A one qubit state is
a superposition of the two states associated with the above 0 and
1 bits:

|Ψ1〉 = C0|0〉 + C1|1〉, (1)

where C0 ≡ 〈0|Ψ1〉 and C1 ≡ 〈1|Ψ1〉 are complex probability am-
plitudes for finding the qubit in the state |0〉 or |1〉, respectively.
The normalization of the state 〈Ψ1|Ψ1〉 = 1, yields |C0|2 +|C1|2 = 1.
Note that the spatial aspects of the wave function are being sup-
pressed; which corresponds to the particle being in a fixed loca-
tion. The kets |0〉 and |1〉 can be represented as |0〉 → (1

0

)
and

|1〉 → (0
1

)
. Hence a 2 × 1 matrix representation of this one-qubit

state is: |Ψ1〉 → (C0
C1

)
.

An essential point is that a quantum mechanical (QM) system
can exist in a superposition of these two bits; hence, the state is
called a quantum-bit or “qubit”. Although our discussion uses the
notation of a system with spin 1/2, it should be noted that the
same discussion applies to any two distinct quantum states that
can be associated with |0〉 and |1〉.

2.2. Two-qubit states

The single-qubit case can now be generalized to multiple
qubits. Consider the product space of two qubits both in the “up”
|0〉 state and denote that product state as |0 0〉 = |0〉|0〉, which
clearly generalizes to

|q1 q2〉 = |q1〉|q2〉, (2)

where q1, q2 in general take on the values 0 and 1. This product is
called a tensor product and is symbolized as

|q1 q2〉 = |q1〉 ⊗ |q2〉. (3)

In QDENSITY, the kets |0〉, |1〉 are invoked by the commands
Ket[0] and Ket[1], and the product state by for example |00〉 =
Ket[0] ⊗ Ket[0].

The kets |00〉, |01〉, |10〉, and |11〉 can be represented as 4 × 1
matrices

|00〉 →
⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ ; |01〉 →

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠ ;

|10〉 →
⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ ; |11〉 →

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠ . (4)

Hence, a 4 × 1 matrix representation of the two-qubit state

|Ψ2〉 = C0|00〉 + C1|01〉 + C2|10〉 + C3|11〉, (5)

is

|Ψ2〉 →
⎛
⎜⎝

C0
C1
C2
C3

⎞
⎟⎠ . (6)

Again C0 ≡ 〈00|Ψ2〉, C1 ≡ 〈01|Ψ2〉, C2 ≡ 〈10|Ψ2〉, and C3 ≡ 〈11|Ψ2〉,
are complex probability amplitudes for finding the two-qubit
system in the states |q1 q2〉. The normalization of the state
〈Ψ2|Ψ2〉 = 1, yields

|C0|2 + |C1|2 + |C2|2 + |C3|2 = 1. (7)

Note that we label the amplitudes using the decimal equivalent of
the bit product q1q2, so that for example a binary label on the
amplitude C10 is equivalent to the decimal label C2.

2.3. Multi-qubit states

For nq qubits the computational basis of states generalizes to:

|n〉nq ≡ |q1〉 · · · |qnq 〉 ≡ |q1 q2 · · · qnq 〉 ≡ |Q〉. (8)

We use the convention that the most significant qubit is labeled as
q1 and the least significant qubit by qnq . Note we use qi to indicate
the quantum number of the ith qubit. The values assumed by any
qubit is limited to either qi = 0 or 1. The state label Q denotes the
qubit array Q = (q1,q2, . . . ,qnq), which is a binary number label
for the state with equivalent decimal label n. This decimal multi-
qubit state label is related to the equivalent binary label by

n ≡ q1 · 2nq−1 + q2 · 2nq−2 + · · · + qnq · 20 =
nq∑

i=1

qi · 2nq−i . (9)

Note that the ith qubit contributes a value of qi · 2nq−i to the dec-
imal number n. Later we will consider “partner states” (|n0〉, |n1〉)
associated with a given n, where a particular qubit is has a value
of qis = 0,

n0 = n − qis · 2nq−is , (10)

or a value of qis = 1,

n1 = n − (qis − 1) · 2nq−is . (11)

These partner states are involved in the action of a single operator
acting on qubit is , as described in the next section.

A general state with nq qubits can be expanded in terms of the
above computational basis states as follows

|Ψ 〉nq =
∑

Q

CQ|Q〉 ≡
2nq −1∑
n=0

Cn|n〉, (12)

where the sum over Q is really a product of nq summations of the
form

∑
qi=0,1. The above Hilbert space expression maps over to an

array, or column vector, of length 2nq

|Ψ 〉nq ≡

⎛
⎜⎜⎜⎜⎜⎝

C0
C1
...
...

C2nq −1

⎞
⎟⎟⎟⎟⎟⎠ or with binary labels −→

⎛
⎜⎜⎜⎜⎜⎝

C0···00
C0···01

...

...

C1···11

⎞
⎟⎟⎟⎟⎟⎠ . (13)

The expansion coefficients Cn (or CQ) are complex numbers with
the physical meaning that Cn = 〈n|Ψ 〉nq is the probability ampli-
tude for finding the system in the computational basis state |n〉,

1696 F. Tabakin, B. Juliá-Díaz / Computer Physics Communications 182 (2011) 1693–1707

which corresponds to having the qubits pointing in the directions
specified by the binary array Q. Switching between decimal n and
equivalent binary Q labels is accomplished by the Mathematica
command IntegerDigits.

In general, the complex amplitudes Cn vary with time and are
changed by the action of operators or gates, as outlined next.

3. Multi-qubit operators

Operators that act in the multi-qubit space described above can
be generated from a set of separate Pauli operators,3 acting in each
qubit space. These separate Pauli operators refer to distinct quan-
tum systems and hence they commute. Note, Pauli operators acting
on the same qubit do not commute; indeed, they have the prop-
erty σiσ j − σ jσi = 2iεi jkσk . The Pauli operator σ0 is just the unit

2×2 matrix. We denote a Pauli operator acting on qubit is as σ
(is)

k ,
where k = (x, y, z) = (1,2,3) is the component of the Pauli oper-
ator. For example, the tensor product of two-qubit operators has
the following structure

〈a1|σi|b1〉〈a2|σ j|b2〉 = 〈a1a2|σ (1)
i σ

(2)
j |b1b2〉

= 〈a1a2|σ (1)
i ⊗ σ

(2)
j |b1b2〉, (14)

which defines what we mean by the tensor product of two qubit
operators σ

(1)
i ⊗ σ

(2)
j . The generalization to more qubits is imme-

diate

(
σ

(1)
i ⊗ σ

(2)
j

) ⊗ (
σ

(3)

k ⊗ σ
(4)

l

) · · · . (15)

3.1. One-qubit operators

One-qubit operators change the amplitude coefficients of the
quantum state. The NOT and Hadamard H are examples of one-

qubit operators of particular interest: NOT ≡ σx =
(

0 1
1 0

)
, H ≡

σx+σz√
2

= 1√
2

(
1 1
1 −1

)
. These have the following effect on the ba-

sis states NOT|0〉 = |1〉, NOT|1〉 = |0〉, and H|0〉 = |0〉+|1〉√
2

, and

H|1〉 = |0〉−|1〉√
2

.

General one-qubit operators can also be constructed from the
Pauli operators; we denote the general one-qubit operator acting
on qubit s as Ωs . Consider the action of such an operator on the
multi-qubit state |Ψ 〉nq :

Ωs|Ψ 〉nq =
∑

Q

CQΩs|Q〉 (16)

=
∑

q1=0,1

· · ·
∑

qs=0,1

· · ·
∑

qnq =0,1

CQ|q1〉 · · · (Ωs|qs〉
) · · · |qnq 〉.

(17)

Here Ωs is assumed to act only on the qubit is of value qs . The
(Ωs|qs〉) term can be expressed as

Ωs|qs〉 =
∑

q′
s=0,1

|q′
s〉〈q′

s|Ωs|qs〉, (18)

using the closure property of the one-qubit states. Thus Eq. (17)
becomes

3 The Pauli operators act in the qubit Hilbert space, and have the matrix repre-

sentation: σx =
(

0 1

1 0

)
; σy =

(
0 −I

I 0

)
; σz =

(
1 0

0 −1

)
. Here I ≡ √−1.

Ωs|Ψ 〉nq =
∑

Q

CQΩs|Q〉

=
∑

q1=0,1

· · ·
∑

qs=0,1

· · ·
∑

qnq =0,1

×
∑

q′
s=0,1

CQ〈q′
s|Ωs|qs〉|q1〉 · · · |q′

s〉 · · · |qnq 〉. (19)

Now we can interchange the labels qs ↔ q′
s , and use the label Q to

obtain the algebraic result for the action of a one-qubit operator
on a multi-qubit state

Ωs|Ψ 〉nq =
∑

Q

C̃Q|Q〉 =
2nq −1∑
n=0

C̃n |n〉, (20)

where

C̃Q = C̃n =
∑

q′
s=0,1

〈qs|Ωs|q′
s〉CQ′ , (21)

where Q = (q1,q2, . . . ,qnq), and Q′ = (q1, . . . ,q′
s, . . . ,qnq). That is Q

and Q′ are equal except for the qubit acted upon by the one-body
operator Ωs .

A better way to state the above result is to consider Eq. (21) for
the case that n has qs = 0 and thus n → n0 and to write out the
sum over q′

s to get

C̃n0 = 〈0|Ωs|0〉Cn0 + 〈0|Ωs|1〉Cn1 , (22)

where we introduced the partner to n0 namely n1. For the case
that n has qs = 1 and thus n → n1 Eq. (21), with expansion of the
sum over q′

s yields

C̃n1 = 〈1|Ωs|0〉Cn0 + 〈1|Ωs|1〉Cn1 (23)

or written as a matrix equation we have for each n0,n1 partner
pair(

C̃n0

C̃n1

)
=

(〈0|Ωs|0〉 〈0|Ωs|1〉
〈1|Ωs|0〉 〈1|Ωs|1〉

)(
Cn0

Cn1

)
. (24)

This is not an unexpected result.
Eq. (24) above shows how a 2 × 2 one-qubit operator Ωs acting

on qubit is changes the state amplitude for each value of n0. Here,
n0 denotes a decimal number for a computational basis state with
qubit is having the qs value zero and n1 denotes its partner dec-
imal number for a computational basis state with qubit is having
the qs value one. They are related by

n1 = n0 + 2nq−is . (25)

At times, we shall call 2nq−is the “stride” of the is qubit; it is the
step in n needed to get to a partner. There are 2nq /2 values of n0
and hence 2nq /2 pairs n0, n1. Eq. (24) is applied to each of these
pairs. In QCWAVE that process is included in the command Op1.4

Note that we have replaced the full 2nq ×2nq one-qubit operator
by a series of 2nq /2 sparse matrices. Thus we do not have to store
the full 2nq × 2nq but simply provide a 2 × 2 matrix for repeated
use. Each application of the 2 × 2 matrix involves distinct ampli-
tude partners and therefore the set of 2 × 2 operations can occur
simultaneously and hence in parallel. That parallel advantage was
employed in our QCMPI Fortran version, using the MPI [12] proto-
col for inter-processor communication. The 7.0 and 8.0 versions of
Mathematica include only master–slave communication and there-
fore this advantage is not generally available. It is possible to use

4 Op1 yields result of a one-body operator Ω acting on qubit “is′” in state ψ0;
the result is the final state ψ f . Called as: ψ f = Op1[Ω, is,ψ0].

F. Tabakin, B. Juliá-Díaz / Computer Physics Communications 182 (2011) 1693–1707 1697

MPI with Mathematica [13], but only at considerable cost. Another
promising idea is to use the “CLOJURATICA” [14] package, but that
entails an additional language. So the full MPI advantage will have
to wait until MPI becomes available hopefully on future Mathe-
matica versions.

In the next section, this procedure is generalized to two- and
three-qubit operators, using the same concepts.

3.2. Two-qubit operators

The case of a two-qubit operator is a generalization of the steps
discussed for a one-qubit operator. Nevertheless, it is worthwhile
to present those details, as a guide to those who plan to use and
perhaps extend QCWAVE.

We now consider a general two-qubit operator that we as-
sume acts on qubits is1 and is2 , each of which ranges over the
full 1, . . . ,nq possible qubits. General two-qubit operators can be
constructed from tensor products of two Pauli operators; we de-
note the general two-qubit operator as V . Consider the action of
such an operator on the multi-qubit state |Ψ 〉nq :

V|Ψ 〉nq =
∑

Q

CQV|Q〉

=
1∑

q1=0

· · ·
1∑

qs1,qs2=0

· · ·
1∑

qnq =0

CQ|q1〉 · · · (V|qs1qs2〉
) · · · |qnq 〉.

(26)

Here V is assumed to act only on the two qs1, qs2 qubits. The
(V|qs1qs2〉) term can be expressed as

V|qs1qs2〉 =
1∑

q′
s1,q′

s2=0

|q′
s1q′

s2〉〈q′
s1q′

s2|V|qs1qs2〉 (27)

using the closure property of the two-qubit product states. Thus
Eq. (26) becomes

V|Ψ 〉nq =
∑

Q

CQV|Q〉

=
1∑

q1=0

· · ·
1∑

qs1=0

· · ·
1∑

qs2=0

· · ·
1∑

qnq =0

×
1∑

q′
s1,q′

s2=0

CQ〈q′
s1q′

s2|V|qs1qs1〉|q1〉 · · · |q′
s1q′

s2〉 · · · |qnq 〉.

(28)

Now we can interchange the labels qs1 ↔ q′
s1, qs2 ↔ q′

s2 and use
the label Q to obtain the algebraic result for the action of a two-
qubit operator on a multi-qubit state,

V|Ψ 〉nq =
∑

Q

C̃Q|Q〉 =
2nq −1∑
n=0

C̃n|n〉, (29)

where

C̃Q = C̃n =
1∑

q′
s1,q′

s2=0

〈qs1qs2|Ωs|q′
s1q′

s2〉C ′
Q, (30)

where Q = (q1,q2, . . . ,qnq), and Q′ = (q1, . . . ,q′
s1, . . . ,q′

s2, . . . ,qnq).
That is Q and Q′ are equal except for the qubits acted upon by the
two-body operator V .

Fig. 1. One Hadamard example. Here psi = |000〉.

A better way to state the above result is to consider Eq. (30) for
the following four choices

n00 → (q1, . . . ,qs1 = 0, . . . ,qs2 = 0, . . . ,qnq),

n01 → (q1, . . . ,qs1 = 0, . . . ,qs2 = 1, . . . ,qnq),

n10 → (q1, . . . ,qs1 = 1, . . . ,qs2 = 0, . . . ,qnq),

n11 → (q1, . . . ,qs1 = 1, . . . ,qs2 = 1, . . . ,qnq), (31)

where the computational basis state label nqs1,qs2 denotes the
four decimal numbers corresponding to Q = (q1, . . . ,qs1, . . . ,

qs2, . . . ,qnq).
Evaluating Eq. (30) for the four choices Eq. (31) and completing

the sums over q′
s1, q′

s2, the effect of a general two-qubit operator
on a multi-qubit state amplitudes is given by a 4 × 4 matrix⎛
⎜⎜⎝

C̃n00

C̃n01

C̃n10

C̃n11

⎞
⎟⎟⎠ =

⎛
⎜⎝

V00;00 V00;01 V00;10 V00;11
V01;00 V01;01 V01;10 V01;11
V10;00 V10;01 V10;10 V10;11

V11;00 V11;01 V11;10 V11;11

⎞
⎟⎠

⎛
⎜⎝

Cn00

Cn01

Cn10

Cn11

⎞
⎟⎠ , (32)

where Vi j;kl ≡ 〈i, j|V |k, l〉. Eq. (32) shows how a 4 × 4 two-qubit
operator V acting on qubits is1, is2 changes the state amplitude for
each value of n00. Here, n00 denotes a decimal number for a com-
putational basis state with qubits is1, is2 both having the values
zero and its three partner decimal numbers for a computational
basis state with qubits is1, is2 having the values (0,1), (1,0) and
(1,1), respectively. The four partners n00, n01, n10, n11, or “ampli-

1698 F. Tabakin, B. Juliá-Díaz / Computer Physics Communications 182 (2011) 1693–1707
Fig. 2. Hadamards on all three-qubits example. Here psi = |000〉.

Fig. 3. Hadamards on all three-qubits using the ΩALL command. Here psi = |000〉.
tude quartet”, coupled by the two-qubit operator are related by:

n01 = n00 + 2nq−is2 , n10 = n00 + 2nq−is1 ,

n11 = n00 + 2nq−is1 + 2nq−is2 , (33)

where is2, is2 label the quarks that are acted on by the two-qubit
operator.

There are 2nq /4 values of n00 and hence 2nq /4 amplitude quar-
tets n00, n01, n10, n11. Eq. (32) is applied to each of these quartets

F. Tabakin, B. Juliá-Díaz / Computer Physics Communications 182 (2011) 1693–1707 1699
Fig. 4. Application of Hadamards in Dirac form. Here psi = |000〉.

Fig. 5. The Op1 command as stipulated in QCWave.m.
for a given pair of struck qubits. In QCWAVE that process is in-
cluded in the command Op2.5

In this treatment, we are essentially replacing a large sparse
matrix, by a set of 2nq /4 4 × 4 matrix actions, thereby saving the
storage of that large matrix.

5 Op2 yields result of a two-body operator Ω acting on qubits “is” and “is2” in
state ψ0; the result is the final state ψ f . Called as: ψ f = Op2[Ω, is1, is2,ψ0].

3.3. Three-qubit operators

The above procedure can be extended to the case of three-qubit
operators. Instead of pairs or quartets of states that are modi-
fied, we now have an octet of states modified by the three-qubit
operator and 2nq /8 repeats to cover the full change induced in
the amplitude coefficients. For brevity we omit the derivation. In

1700 F. Tabakin, B. Juliá-Díaz / Computer Physics Communications 182 (2011) 1693–1707

QCWAVE that process has been implemented by the command
Op3.6

4. Implementation of gates on states

We now present some sample cases in which the above gates
are applied to state vectors.

4.1. One-qubit operators

Consider a state vector for nq = 3 qubits defined by |Ψ 〉3 =
|000〉, which in vector form is

|Ψ3〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C0
C1
C2
C3
C4
C5
C6
C7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

Now have a Hadamard act on qubit 1 by use of the command
Op1[H,1,Ψ3]. The result is displayed in vector form and then in
Dirac form by use of the DForm command in Fig. 1.

One can act with Hadamards on every qubit, by either repeated
use of Op1 Fig. 2, or by the command ΩALL[H,psi], which is illus-
trated in Fig. 3. A Dirac type notation is also available as illustrated
in Fig. 4.

In QCWave.m the command Op1 is given as a Module see
Fig. 5, which makes use of the command Pick1, Pick1 selects the
pairs of decimal labels which differ only in the “is” qubits value of
1 and 0. Then all such pairs are swept through. Examples of Pick1
are presented in the Tutorial.

4.2. Two-qubit operators

The typical two-qubit operators are the CNOT, and controlled
phase operators. General two-qubit operators can be constructed
from tensor products of two Pauli operators, as discussed earlier.
An example from QCWave of application of a CNOT gate is pre-
sented in Fig. 6.

A Dirac type notation is also available as illustrated in Fig. 7.
In QCWave.m the command Op2 is given as a Module see

Fig. 8, which makes use of the command Pick2, Pick2 selects the
quartet of decimal labels which differ only in the “is1” and “is2”
qubit’s values of 1 and 0. Then all such quartets are swept through.
Examples of Pick2 are presented in the Tutorial.

4.3. Three-qubit operators

The Op3 command is also provided in QCWave.m as a Module,
which makes use of the command Pick3, Pick3 selects the octet
of decimal labels which differ only in the “is1,” “is2,” and “is3”
qubit’s values of 1 and 0. Then all such octets are swept through.
Application to the Tofolli gate is provided in the Tutorial.

5. The multiverse approach

5.1. General remarks

Mathematica 7.0 & 8.0 provide a master–slave parallel process-
ing facility. This is not a full implementation of a parallel process-

6 Op3 yields result of a three-body operator Ω acting on qubits “is1”, “is2”
and “is3” in state ψ0; the result is the final state ψ f . Called as: ψ f =
Op3[Ω, is1, is2, is3,ψ0].

Fig. 6. Use of Op2 to apply CNOT gates.

Fig. 7. Application of CNOT gates in Dirac form.

ing setup that allows communication between the “slave” proces-
sors, such as used by the MPI [12] protocol. If MPI were readily
available in Mathematica then one could invoke the full capabili-
ties discussed in QCMPI. That capability allows for the state vector
to be distributed over several processors which increases the num-
ber of qubits that could be simulated. It is indeed possible to have
Mathematica upgraded to include MPI slave to slave communica-
tion; as is available in the “POOCH” [13] package. However, since
that is an expensive route and most Mathematica users do not
have access to MPI, although one can hope for such a capability in
the future, we have not invoked the full state distribution aspect.

Nevertheless, the master–slave Mathematica 7.0 capability does
provide for concurrent versions of a QCWave based algorithm to
be run with different random error scenarios. Then an ensemble
averaged density matrix can be formed which describes a real er-
ror prone QC setup. That opens the possibility of examining the
role of errors and the efficacy of error correction methods using
Mathematica.

Therefore, we provide a sample of a parallel setup using some
simple basic algorithms, where the parallel setup is described and

F. Tabakin, B. Juliá-Díaz / Computer Physics Communications 182 (2011) 1693–1707 1701
Fig. 8. The Op2 command as stipulated in QCWave.m.
Fig. 9. The multiverse approach. Each curve represents a possible evolution of a
quantum system of nq qubits. The solid curve represents the main evolution path,
with probability p. The dotted curves represent the nth evolution path, with prob-
ability ε

np
. The initial density matrix is ρ0 and the final ρF . The unitary noise

operators Ω(i) act on each path i. Here Ω̃(i) denote subsequent noise operators. The
operators ΩA and Ω̃A denote the nq algorithm operators which act on all paths.

explained in detail. The following steps are needed: (1) set up your
Mathematica code to access several processors, see Appendix A
for some help; (2) identify the processor number; (3) introduce
random errors depending on the processor number; (4) assign a
probability distribution for the various processors; (5) form an en-
semble average over the processors and store that information as a
density matrix on the master processor; (6) repeat these steps in-
cluding, the algorithm, noise and finally error correction (EC) steps
on all processors; (7) examine the resultant density matrix and its
evolution to test the EC efficacy. This is an important program that
we start by providing simple examples.

A quantum system can evolve in many ways. Different dynam-
ical evolutions are called paths [15] or histories [16]. We refer to
these alternate evolutions as separate “universes” and a collection
of such possibilities as a multiverse or ensemble of paths. Paral-
lel processing provides a convenient method for describing such
alternate paths.

5.2. The ideal and the noisy channels

In our application, we assume that the main path follows an
ideal algorithm exactly and the alternate paths incorporate the al-
gorithm with possible noise. That noise is described by random

one-qubit operators acting once, or with less likelihood twice.
To describe this idea, which is realized in the notebooks MV1-
Noise.nb, MV2-Noise.nb and MVn-Noise.nb, consider an initial
density matrix ρ0. For a pure state, ρ0 = |ψ0〉〈ψ0|, but it can be a
general initial density matrix subject only to the conditions ρ† = ρ
and Tr[ρ] = 1. The density matrix has 22nq − 1 parameters and 2nq

real eigenvalues λn � 1 with
∑

n λn = 1. The simplest one-qubit
case has the form ρ = 1

2 (1 + �P · �σ), where the real polarization

vector �P = Tr[�σρ], is within the “Bloch sphere”, (�P · �P) � 1.7

5.2.1. Storage case
Consider a simple case where the ideal algorithm is simply

leaving the state, as described by ρ0, alone. This is a memory stor-
age case. Ideally, ρ remains fixed in time. Assume however that
this ideal case occurs with a probability p � 1 and that alternate
evolutions occur with a probability ε = 1−p. For example, we take
p= 0.8 and ε = 0.2, corresponding to an 80% perfect storage and
20% possibility of noise. We also assume for more than one-qubit
cases that 95% of the 20% noise (0.2 × 0.95 → 19%) involves a sin-
gle one-qubit hit, while 5% of the 20% noise (0.2 × 0.05 → 1%)
involves two one-qubit hits.

The ensemble average over all paths then yields a density ma-
trix

ρ f = pρ0 + ε

np

(
Ω(1)ρoΩ

(1)†

+ Ω(2)ρoΩ
(2)† · · ·Ω(np)ρoΩ

(np)†), (35)

where the operators Ω(1),Ω(2), . . . ,Ω(np) act in each of the np

paths with a probability ε
np

. Each of these np terms is evaluated

on a separate processor, so that np equals the total number of pro-
cessors invoked. The above ensemble average preserves the trace:

Tr[ρ f] = pTr[ρ0] + ε

np

n=np∑
n=1

Tr
[
Ω(n)ρoΩ

(n)†]

= p+ ε

np
np = 1. (36)

7 The two-qubit case is of the form ρ = 1
4 (1 + �P1 · (�σ ⊗ 1) + �P2 · (1 ⊗ �σ) + ←→C ·

(
←−σ ⊗ −→σ)), where �P1 = Tr[(�σ ⊗ 1) · ρ] and �P2 = Tr[(1 ⊗ �σ) · ρ] are the polarization

vectors for qubits 1 and 2 and
←→C = Tr[(←−σ ⊗ −→σ) · ρ] is the 3 × 3 spin correlation

tensor. Note the number of polarization plus correlations are 22nq − 1 = 3 (for one
qubit) and 15 (for two qubits).

1702 F. Tabakin, B. Juliá-Díaz / Computer Physics Communications 182 (2011) 1693–1707
Fig. 10. Here denE[0[] is the initial density matrix ρ0 and denE[nv] denotes the ensemble averaged density matrix after nv steps. The algorithm operators “OPA[nv]” are setup
within the code, and the noise operators OP[i, nv] act on the ith processor at the nvth step. These noise operators are held fixed after they are randomly generated.

Fig. 11. The fidelity (left column), purity (central column) and entropy (right column) evolution is displayed for one qubit initially in a state |ψ0〉 = |0〉, that is subject to a
Hadamard at step 1 and another Hadamard at step 3, for various noise scenarios. The top plot is for X , Y and Z noise, the next plot down has Y and Z noise, and the next
Z -noise only. The bottom plot is the noiseless channel, for which the fidelity returns to one, after dropping to 1/

√
2, clearly reflects the action of 2 sequential Hadamards.
Here we assume that each Ω(n)†Ω(n) = 1, and hence that
Tr[Ω(n)ρoΩ

(n)†] = Tr[ρo] = 1. In addition, ρ
†
f = ρ f .

This multiuniverse approach is illustrated in Fig. 9. For the pure
storage case the algorithm operators ΩA, Ω̃A, . . . are all set equal
to unit operators. See later for a simple non-trivial case.

5.2.2. Multiverse and POVM
The above representation can also be cast in the POVM (Positive

Operator Valued Measure) and Kraus operator form. The evolution
can be expressed as

ρ f =
n=np∑
n=0

Ω̃nρ0Ω̃
n†, (37)

where we define Ω̃0 = √
p 1, and Ω̃n>0 =

√
ε

np
Ωn . This is the form

known as POVM, which can be deduced [17] from embedding a
quantum system in an environment, which is then projected out.
This evolution form can also be used to deduce the Lindblad [18]
equation for the evolution of a density matrix subject to environ-
mental interactions. Here we arrive at these forms from a simple
multiuniverse approach.

5.2.3. Multiverse and classical limit
Our task is to set up this multiuniverse approach using the par-

allel, multi-processor features of Mathematica. Eq. (35) describes

the evolution of a density matrix after one set of operators act in
the various possible paths. A subsequent set of operators is de-
scribed by

ρF = pρ f + ε

np

n=np∑
n=1

(
Ω(n)ρ f Ω

(n)†). (38)

As this evolution process continues to be subject to additional
noise operators, the density matrix evolves into a diagonal or clas-
sical form. In this way the noise yields a final classical density ma-
trix with zero off-diagonal terms; this is the decoherence caused
by a quantum system interacting with an environment. If the qubit
states are not degenerate and the noise is of thermal distribution,
the density matrix in the classical limit will evolve towards the
thermodynamic form exp(− H

kT). At every stage, one can track the
von Neumann entropy (S(ρ) = −Tr[ρ ln[ρ]]), the Purity (Tr[ρ ·ρ]),
and the Fidelity (F [ρ,ρ0] = Tr[√√

ρ0 · ρ · √ρ0]),8 of the system.
In addition, the eigenvalues of the system can be monitored where
in the classical limit the eigenvalues all approach 1

2nq , and the en-
tropy goes to S[ρ] → nq . Subsystem entropy and eigenvalues can
also be examined.

8 To evaluate this complicated expression, we find the eigenvalues of ρ . ρ0 and

then form the sum
∑

n

√
|λ̃i |, to obtain a good approximate value.

F. Tabakin, B. Juliá-Díaz / Computer Physics Communications 182 (2011) 1693–1707 1703
Fig. 12. The fidelity (left column), purity (central column) and entropy (right column) evolution is displayed for two qubits initially in a state |ψ0〉 = |00〉, that is subject to a
CNOT12 H1 and later an H1CNOT12, for various noise scenarios. The top plot is for X , Y and Z noise, the next plot down has Y and Z noise, and the next Z -noise only. The
bottom plot is the noiseless channel, for which the fidelity returns to one, after dropping to 1/

√
2, which clearly reflects the action of the 2 sequential operators.

Fig. 13. This is an option to use a general rotation as the noise operator as an alternative to the Pauli operators. The s[4] location can be used to include this option.
5.3. Multiverse algorithms and errors

The evolution of the density matrix, with noise included via
the multiverse approach on the available processors, can also be
implemented when an algorithm is included. The procedure is to
act with the algorithm gate operators after each ensemble aver-
aged density matrix is formed. The explicit expression is given in
Eq. (35) which for the nth step is

ρn+1 = ΩA

[
ρn + ε

np

k=np∑
k=1

∑
s=1,2

psΩksρnΩ
†
ks

]
Ω

†
A, (39)

where ΩA are the gates for the specific algorithm and Ωks are the
noise operators on the kth processor for two cases, s = 1 denotes a
one-qubit noise operator hitting one-qubit and s = 2 denotes one
qubit operators hitting two separate qubits. The factors pk are as-
sumed to be p1 = 0.95 and p2 = 0.05, so that the one-qubit hits

have a net probability (ε ∗ pk) of 19% and the double hit case a
net probability of 1%. The algorithm operators ΩA are applied to
all processors, but implemented by evaluation on the master pro-
cessor.

In QCWAVE, the above steps are implemented in the notebooks
MV1-Noise, MV2-Noise and MVn-Noise, for systems consisting of
1, 2 or n qubits. The key step is shown in Fig. 10, where denE[n]
denotes the ensemble averaged density matrix at stage n, and the
parallel part of the command distributes the evaluation of the
noise over the “nprocs” processors, which is doubled to account
for the “s” label in Eq. (39).

A simple algorithm is illustrated in MV1-Noise; namely, one
starts with the state |0〉 which is then hit by a Hadamard H, and
after an interlude of noise, another Hadamard hits, followed by a
long sequence of noise. Without noise this process correspond to
a rotation to the x-axis and then a rotation back to the z-axis. One
also sees the polarization vector rotated, rotated back and then, af-

1704 F. Tabakin, B. Juliá-Díaz / Computer Physics Communications 182 (2011) 1693–1707
Fig. 14. Amplitudes command displays amplitudes as magnitude and phase bar graphs – see QCWave.m.

Fig. 15. MeterGraph displays amplitudes as argand plots – see QCWave.m.
ter a sequence of noise hits, decay to zero and density matrix then
evolves into a diagonal form, with both eigenvalues equal to 1/2.
How is this simple process affected by noise during these steps?
To answer that question the entropy, purity and fidelity evolution
are tracked. The results from MV1-Noise are illustrated in Fig. 11.

Another simple algorithm is illustrated in MV2-Noise; namely,
one starts with the state |00〉, qubit one is then hit by a
Hadamard H, and after an interlude of noise, a CNOT gate acts
on both qubits. This is the algorithm for producing a Bell state

CNOT1,2 H1|00〉 = 1
2 (|00〉 + |11〉). This is followed by an inverse

Bell operator H1CNOT1,2, and then a long sequence of noise. The
density matrix then evolves into a diagonal form, with all 4 eigen-
values equal to 1/4. The two polarizations, and the spin correla-
tions are displayed along with the evolution of the eigenvalues,
the entropy, purity and fidelity. The results from MV2-Noise are
illustrated in Fig. 12.

Clearly, more sophisticated algorithms can be invoked. We next
consider how to monitor and correct for the noise.

F. Tabakin, B. Juliá-Díaz / Computer Physics Communications 182 (2011) 1693–1707 1705
Fig. 16. A sample circuit diagram as produced in notebook TeleportationW is shown here. The initialKetsA sets the initial array sequence as: |q1〉, |q2〉, |03〉, . . . , |06〉.
5.4. Multiverse and error correction

5.4.1. Simulation of error correction
Error correction (EC) typically involves encoding the qubits us-

ing extra qubits, then entangling those encoded qubits with aux-
iliary qubits. Measurements are made on the auxiliary qubits, so
as not to disturb the original encoded qubits. Those measurements
provide information as to whether an error has occurred, its nature
and where it acted. Hence a remedial gate can be applied to undo
the error. If desired, the encoded qubits can then be decoded and
the original error-free qubit restored. That process is illustrated for
simple X and Y errors on one-qubit EC and for Shor’s nine-qubit
EC code in notebooks EC3x, EC3z and Shor9Tutorial. More sophis-
ticated EC codes are available in the literature, along with a general
theoretical framework [19]. This kind of EC has to be constantly
invoked as an algorithm evolves, which is a rather awkward and
qubit-costly process. Error in the gates themselves is an additional
concern, usually one assumes perfect gates, with errors (noise) oc-
curring only in-between application of the gates.

For our purpose, instead of applying the procedures outlined in
the above EC notebooks, we simulate EC by a rather simple pro-
cedure. In the notebooks, the operators ss[i] are set equal to the
Pauli operators s[i] to generate noise. By replacing ss[1] by s[0]
(the 2 × 2 unit operator), all X-noise is turned off “by hand.” Then
a rerun is generated which has the same structure as with the
noise, except the X-noise has been removed. Similar steps can be
used to remove the Y - and the Z -noise operators. In that way a
set of results can be generated ranging from a full noise, to partial
noise to no noise cases. Examples from MV1-noise and MV2-noise
are presented in Figs. 11 and 12.

If the user wishes to invoke other noise operators, that can be
accommodated as well. For example, a general unitary random ro-

tation can be used as a noise operator by invoking the form shown
in Fig. 13. Thus “ss[4] = UE1” is used to turn on such rotations. Re-
placing s[4] by s[0] again provides a way to turn this operator off
to remove that noise element.

With this simple scheme, one can study many more noise
and EC scenarios. For example, in the notebook MVn-Noise
the case of an algorithm for five-qubits is presented. The algo-
rithm consists of a Hadamard followed by a CNOT chain, i.e.
CNOT15CNOT14CNOT13CNOT12 H1|00〉, including noise in-between
and after the 9th step. Detailed examination of the entropy, fi-
delity, purity and eigenvalues and noise is presented within that
notebook. Of particular interest is the EC simulation results when
the noise operators are turned of sequentially.

6. Additional features

6.1. Amplitude displays

The amplitude coefficients Cn can be displayed in various ways
using the commands Amplitudes and MeterGraph as illustrated in
Figs. 14 and 15.

6.2. Dirac form

The command DForm has already been demonstrated in Figs. 1–
4 and 6. Another Dirac form has be invoked in QCWAVE as shown
in Fig. 4. A more extensive Dirac notation scheme has been pro-
vided by José Luis Gómez-Muñoz et al. in Ref. [3].

6.3. Circuit diagrams

Illustrations of circuit drawing are included throughout the
notebooks, with the CircuitTutorial notebook providing an over-

1706 F. Tabakin, B. Juliá-Díaz / Computer Physics Communications 182 (2011) 1693–1707

view. The commands are all defined in Circuits.m. One example is
given in Fig. 16.

6.4. Upgraded applications

Upgraded versions of Grover [20], Teleportation [21] and
Shor [22] algorithms are included in the present version.

7. Conclusion and future applications

This package will hopefully be instructive and useful for appli-
cations to error correction studies. Hopefully users will contribute
to improvements and extensions and for that purpose we are de-
veloping an interactive web page. When MPI becomes available
on Mathematica, there will be another opportunity to upgrade
QCWAVE to a full research tool.

Application to explicit quantum computing problems, such as
study of non-degenerate states and the associated phase factors,
errors in gates themselves (where the gates are produced by ex-
plicit pulses), and the direct application of EC schemes are among
the possible future applications. Novel EC schemes, such as stabi-

lizing pulses or EC stable spaces could be additional fruitful appli-
cations.

Acknowledgements

This project was supported earlier in part by the U.S. National
Science Foundation and in part under Grants PHY070002P and
PHY070018N from the Pittsburgh Supercomputing Center, which
is supported by several federal agencies, the Commonwealth of
Pennsylvania and private industry. B.J.-D. is supported by a CPAN
CSD 2007-0042 contract. This work is also supported by Grants
No. FIS2008-01661 (Spain), and No. 2009SGR1289 from Generali-
tat de Catalunya.

Appendix A. Setting up processors with Mathematica

In order to use parallel processing with Mathematica, one needs
to first gain access to several processors. There are other ways to
do this, but, the commands we used are given in Fig. A.1. Note
that the user needs to be sure that the ssh (secure shell) access
is working and accesses the Mathematica command on the other
machines (which could be Macs or PCs or a combination of them).

Fig. A.1. The preferences setup to access other processors – use “Evaluation/Parallel Kernel Configuration/Remote Kernels” to get to this page. You also need to set the Local
Kernels entry. The user also needs to establish an ssh link to the other machines and be sure it properly accesses the Mathematica installed on all processors.

F. Tabakin, B. Juliá-Díaz / Computer Physics Communications 182 (2011) 1693–1707 1707

Fig. A.2. The commands needed to invoke the packages on parallel processors.
QCWave.m and Circuits.m are add-ons to the original QDensity.m package.

In addition, one needs to setup the basic programs and requi-
site packages on all the processors used. For that the initializations
shown in Fig. A.2 are needed.

References

[1] Bruno Juliá-Díaz, Joseph M. Burdis, Frank Tabakin, QDENSITY — A Mathemat-
ica quantum computer simulation, Comput. Phys. Comm. 174 (2006) 914–
934; also see: Comput. Phys. Comm. 1 (80) (2009) 474, http://www.pitt.
edu/~tabakin/QW/, and for our QCWAVE webpage.

[2] See http://www.wolfram.com/mathematica/.
[3] José Luis Gómez-Muñoz, A free Mathematica add-on for Dirac Bra–Ket Nota-

tion, Quantum Algebra and Quantum Computing, http://homepage.cem.itesm.
mx/lgomez/index.htm.

[4] J. Lapeyre, Qinf quantum information and entanglement package for the Max-
ima computer algebra system, http://www.johnlapeyre.com/qinf/index.html.

[5] Frank Tabakin, Bruno Juliá-Díaz, QCMPI: A parallel environment for quantum
computing, Comput. Phys. Comm. 180 (2009) 948–964.

[6] A list of current quantum computer simulators is kept at http://www.quantiki.
org/wiki/List_of_QC_simulators.

[7] H. De Raedt, K. Michielsen, Computational Methods for Simulating Quan-
tum Computers, Handbook of Theoretical and Computational Nanotechnology,
American Scientific Publishers, 2006.

[8] Liquantum, http://www.libquantum.de.
[9] P.A.M. Dirac, The Principles of Quantum Mechanics, 4th ed., Oxford University

Press, USA, ISBN 0198520115, 1958.
[10] Albert Messiah, Quantum Mechanics, Dover Publications, ISBN 0486409244,

1999.
[11] Michael A. Nielsen, Isaac I. Chuang, Quantum Computation and Quantum In-

formation, Cambridge University Press, 2000.
[12] See: http://www.open-mpi.org/.
[13] A Mathematica MPI code is available at http://daugerresearch.com/index.shtml.
[14] CLOJURATICA is available at http://clojuratica.weebly.com/index.html. It com-

bines the advantages of Mathematica with the Clojure language and “includes
a concurrency framework that lets multiple Clojure threads execute Mathemat-
ica expressions without blocking others. . .”.

[15] R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals, McGraw–Hill,
New York, 1965.

[16] R.B. Griffiths, Consistent Quantum Theory, Cambridge University Press, 2003.
[17] John Preskill, Lecture Notes on Quantum Information and Computation,

available at http://www.theory.caltech.edu/people/preskill/ph229/, see: Chap-
ters 3.2–3.5.

[18] G. Lindblad, Comm. Math. Phys. 4 (1976) 119.
[19] D. Gottesman, A theory of fault-tolerant quantum computation, Phys. Rev. A 57

(1998) 127–137, quant-ph/9702029.
[20] L.K. Grover, Phys. Rev. Lett. 79 (1997) 325–328.
[21] C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys.

Rev. Lett. 70 (1993) 1895–1899.
[22] Peter W. Shor, SIAM J. Comput. 26 (5) (1997) 1484.

http://www.pitt.edu/~tabakin/QW/
http://www.pitt.edu/~tabakin/QW/
http://www.wolfram.com/mathematica/
http://homepage.cem.itesm.mx/lgomez/index.htm
http://homepage.cem.itesm.mx/lgomez/index.htm
http://www.johnlapeyre.com/qinf/index.html
http://www.quantiki.org/wiki/List_of_QC_simulators
http://www.quantiki.org/wiki/List_of_QC_simulators
http://www.libquantum.de
http://www.open-mpi.org/
http://daugerresearch.com/index.shtml
http://clojuratica.weebly.com/index.html
http://www.theory.caltech.edu/people/preskill/ph229/

	QCWAVE - A Mathematica quantum computer simulation update
	Introduction
	Comparison to other simulators

	Multi-qubit states
	One-qubit states
	Two-qubit states
	Multi-qubit states

	Multi-qubit operators
	One-qubit operators
	Two-qubit operators
	Three-qubit operators

	Implementation of gates on states
	One-qubit operators
	Two-qubit operators
	Three-qubit operators

	The multiverse approach
	General remarks
	The ideal and the noisy channels
	Storage case
	Multiverse and POVM
	Multiverse and classical limit

	Multiverse algorithms and errors
	Multiverse and error correction
	Simulation of error correction

	Additional features
	Amplitude displays
	Dirac form
	Circuit diagrams
	Upgraded applications

	Conclusion and future applications
	Acknowledgements
	Setting up processors with Mathematica
	References

