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Multiwavelength Observations of Pulsar Wind
Nebulae

Patrick Slane

Abstract The extended nebulae formed as pulsar winds expand into their surround-
ings provide information about the composition of the winds, the injection history
from the host pulsar, and the material into which the nebulaeare expanding. Obser-
vations from across the electromagnetic spectrum provide constraints on the evo-
lution of the nebulae, the density and composition of the surrounding ejecta, the
geometry of the central engines, and the long-term fate of the energetic particles
produced in these systems. Such observations reveal the presence of jets and wind
termination shocks, time-varying compact emission structures, shocked supernova
ejecta, and newly formed dust. Here I provide a broad overview of the structure of
pulsar wind nebulae, with specific examples from observations extending from the
radio band to very-high-energyγ-rays that demonstrate our ability to constrain the
history and ultimate fate of the energy released in the spin-down of young pulsars.

1 Introduction

The basic structure of a pulsar wind nebula is determined by the spin-down energy
injected by the central pulsar and the interaction of the nebula with the interior re-
gions of the supernova remnant (SNR) in which it evolves. Losses from synchrotron
radiation in the nebular magnetic field, whose strength depends both on the nature
of the injected wind and on the evolving size of the PWN, inverse-Compton (IC)
scattering of ambient photons by the energetic electron population within the neb-
ula, and adiabatic expansion as the nebula sweeps up the surrounding supernova
ejecta, all combine to determine the emission structure andlong-term evolution of
the nebula. (See [18] for a review.) Multiwavelength observations of PWNe provide
crucial information on the underlying particle spectrum and strongly constrain both
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the magnetic field strength and the stage of evolution. Of particular interest is the
spectrum of low-energy particles contained in the PWN. These retain the history of
early energy losses as well as possible signatures of features in the pulsar injection
spectrum.

Complex structure in PWN spectra can originate in a number ofways that are as-
sociated with the long-term evolution as well [32, 19]. In particular, when the reverse
shock compresses the PWN, the resulting increase in the magnetic field initiates a
new epoch of fast synchrotron cooling that adds to the population of low energy
particles. Models which do not account for the reverse shockinteraction will thus
underestimate this population and its associated radiation. In addition, recent studies
of the spectrum immediately downstream of the wind termination shock show that
the injection spectrum itself can deviate significantly from a simple power law [38],
and particle-in-cell simulations of the acceleration process produce a Maxwellian
population with a power law tail [40]. Any such structure in the injected particle
spectrum imprints itself on the broadband emission of the entire nebula. The re-
sulting breaks or regions of curvature in the PWN spectrum, and the frequencies at
which they are observed, depend upon the energy at which features appear in the
electron spectrum as well as the means by which the photons are produced (e.g.
synchrotron radiation or IC emission). To fully understandthe nature of the particle
injection, as well as the long-term evolution of PWNe, it is thus crucial to study the
emission structure over the entire electromagnetic spectrum.

2 Dynamical Evolution of PWNe

The evolution of a PWN within the confines of its host SNR is determined by both
the rate at which energy is injected by the pulsar and by the density structure of
the ejecta material into which the nebula expands. The location of the pulsar itself,
relative to the SNR center, depends upon any motion given to the pulsar in the form
of a kick velocity during the explosion, as well as on the density distribution of the
ambient medium into which the SNR expands. At the earliest times, the SNR blast
wave expands freely at a speed of∼ (5−10)×103 km s−1, much higher than typical
pulsar velocities of∼ 400−500 km s−1. As a result, for young systems the pulsar
will always be located near the SNR center.

The energetic pulsar wind is injected into the SNR interior,forming a high-
pressure bubble that expands supersonically into the surrounding ejecta, forming
a shock. The input luminosity is generally assumed to have the form (e.g. [30])

Ė = Ė0

(

1+
t

τ0

)− (n+1)
(n−1)

(1)

where

τ0 ≡
P0

(n−1)Ṗ0
(2)
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Fig. 1 Composite image of Crab Nebula. X-ray emission fromChandra is concentrated in a
central jet/torus structure (shown in blue), while opticalemission fromHST (shown in yellow and
red), and the infrared emission fromSpitzer (shown in purple) dominates the exterior regions where
the nebula sweeps up ejecta material.

is the initial spin-down time scale of the pulsar. HereĖ0 is the initial spin-down
power,P0 andṖ0 are the initial spin period and its time derivative, andn is the so-
called “braking index” of the pulsar (n = 3 for magnetic dipole spin-down). The
pulsar has roughly constant energy output until a timeτ0, beyond which the output
declines fairly rapidly with time. In the spherically symmetric case, the radius of the
PWN evolves as

RPWN ≈ 1.5Ė1/5
0 E3/10

SN M−1/2
e j t6/5 (3)

whereESN is the energy released in the explosion andMe j is the mass of the ejecta
[10]. Thus, at least at early times when the pulsar input is high, the PWN expan-
sion velocity increases with time. The sound speed in the relativistic fluid within
the PWN is sufficiently high (cs = c/

√
3) that any pressure variations experienced

during the expansion are quickly balanced within the bubble; at early stages, we
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thus expect the pulsar to be located at the center of the PWN. The pressure bal-
ance within the PWN results in a termination shock where the energetic pulsar wind
meets the more slowly-expanding PWN. Studies of this regionof the PWN provide
the most direct information available on particles that arebeing freshly injected into
the nebula.

The geometry of the pulsar system results in an axisymmetricwind [25], form-
ing a torus-like structure in the equatorial plane, along with collimated jets along
the rotation axis. The higher magnetization at low latitudes confines the expansion
here to a higher degree, resulting in an elongated shape along the pulsar spin axis
for the large-scale nebula [4, 44]. This structure is evident in Figure 1, where X-
ray and optical observations of the Crab Nebula clearly reveal the jet/torus structure
surrounded by the elongated wind nebula bounded by filamentsof swept-up ejecta.
A thorough review of the MHD-driven jet/torus structure is presented by N. Buc-
ciantini in these Proceedings.

Beyond the PWN, the outer blast wave of the SNR drives a shock into the sur-
rounding interstellar/circumstellar medium (ISM/CSM), forming a shell of hot gas
and compressed magnetic field. As the shell sweeps up additional mass, and decel-
erates, a reverse shock (RS) propagates back into the expanding ejecta. When the
SNR has swept up an amount of mass that is roughly equal to the mass of the ejecta,
the evolution approaches the Sedov phase in which the radiusis described by

RSNR ≈ 6.2×104
(

ESN

n0

)1/5

t2/5 (4)

wheren0 is the density of the ambient medium. This is illustrated in Figure 2 where
dashed lines showRPWN andRSNR as a function of time using Equations 3 and 4.
Here we have assumedMe j = 5M⊙ and ESN = 1051 erg, and have used a range
of values forĖ0 andn0. As indicated, eventually the PWN would overtake the SNR
boundary under such conditions. However, because the initial expansion of the SNR
occurs more rapidly than in the Sedov phase, and the injection rate from the pulsar is
highest at the earliest times, the actual behavior differs from that shown. In addition,
as the reverse shock of the SNR propagates inward, it eventually reaches the PWN
boundary and begins crushing the nebula. This is indicated in the solid curves in
Figure 2, where the early-phase behavior as well as the reverse shock propagation
is taken into account (see [19]). Ideally the PWN radius decreases until the nebula
pressure is sufficiently high for the system to rebound.

The crushing of the PWN results in an increase in the magneticfield. This causes
a rapid burn-off of the most energetic particles in the nebula. The PWN/RS inter-
face is Rayleigh-Taylor (R-T) unstable, and is subject to the formation of filamentary
structure where the dense ejecta material is mixed into the relativistic fluid [6]. The
nebula subsequently re-forms as the pulsar injects fresh particles into its surround-
ings, but a significant relic nebula of mixed ejecta and relativistic gas will persist.

In cases where the pulsar and its PWN have moved considerablyfrom the center
of the PWN, or in which the SNR has evolved in a medium of nonuniform den-
sity, the reverse shock will interact with the PWN asymmetrically, encountering one
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Fig. 2 Time evolution of the SNR and PWN radii for a range of values for the ambient density and
initial spin-down power of the pulsar. The solid curves correspond to models from Gelfand et al.
(2009) [19] usingĖ0 = 1040 erg s−1, Me j = 8M⊙, n0 = 0.1 cm−3, andE51= 1. See text description
for details. (From [39]. Reproduced by permission of the AAS.)

portion of the nebula well before another. This results in a complex interaction that
leaves a highly distorted relic nebula that may be highly displaced from the pulsar
position [6].

In the later stages of evolution, the PWN can expand to a very large size, with
a correspondingly lower magnetic field strength. As described below, such PWNe
may be best identified through their high-energyγ-ray emission, with only weak
X-ray emission observed close to the pulsars.

3 Spectral Evolution of PWNe

As particles are injected from a pulsar into its PWN, the resulting emission is de-
termined by the evolved particle spectrum and magnetic field, as well as the energy
density of the ambient photon field.1 The injected spectrum is often characterized
as a power law:

Q(Ee, t) = Q0(t)(Ee/E0)
−a (5)

The integrated energy in the electron spectrum is then

1 In addition, emission from ejecta gas and dust swept up by theexpanding nebula can be significant
– and even dominant in some wavebands.
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Fig. 3 Synchrotron (left) and IC (right) emission (for scatteringoff of the CMB) from a PWN at
ages of 1000 (solid), 2000 (dotted), and 5000 (dashed) years. Here we have assumedE51= 1,Me j =
8M⊙, andn0 = 0.1 cm−3 for the SNR evolution, andn = 3, Ė0 = 1040 erg s−1, andτ0 = 500 yr for
the pulsar. For the wind, we assume that 99.9% of the energy isin the form of electrons/positrons
with a power law spectrum withγ = 1.6.

∫

Q(E, t)EdE =
1

(1+σ)
Ė(t) (6)

whereσ is the ratio of the spin-down power injected in the form of Poynting flux to
that in the form of particles. It is important to note one expects the postshock flow
of particles to be characterized by a Maxwellian distribution accompanied by a non-
thermal tail – a result confirmed by recent particle-in-cellsimulations of relativistic
shocks [40]. The development of the nonthermal tail dependson the shock condi-
tions, and the total residence time of the particles in the acceleration region, which
may vary at different locations in the inner nebula. Thus, itis reasonable to expect
that the injected spectrum may actually deviate considerably from a pure power law
form, a point that recent observations may be beginning to illustrate, as we discuss
below.

The resulting emission spectrum is found by integrating theelectron spectrum
over the emissivity function for synchrotron and IC radiation using, respectively,
the nebular magnetic field and spectral density of the ambient photon field. As il-
lustrated in Figure 3, the build-up of particles in the nebula results in an IC spec-
trum that increases with time. The synchrotron flux decreases with time due to the
steadily decreasing magnetic field strength associated with the adiabatic expansion
of the PWN. This behavior is reversed upon arrival of the SNR reverse shock (not
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shown in Figure), following which the nebula is compressed and the magnetic field
strength increases dramatically, inducing an episode of rapid synchrotron losses.
Upon re-expanding, however, IC emission again begins to increase relative to the
synchrotron emission. At the latest phases of evolution, when the nebula is very
large and the magnetic field is low, the IC emission can provide the most easily-
detected signature. As described below, such behavior is seen for a number of PWNe
that have been identified based on their emission at TeV energies, and for which only
faint synchrotron emission near the associated pulsars is seen in the X-ray band.

The broadband spectrum of a PWN, along with the associated dynamical infor-
mation provided by measurements of the pulsar spin properties, and the size of the
PWN and its SNR, place very strong constraints on its evolution and on the spectrum
of the particles injected from the pulsar. Combined with estimates of the swept-up
ejecta mass, this information can be used to probe the properties of the progenitor
star and to predict the long-term fate of the energetic particles in the nebula. Re-
cent multiwavelength studies of PWNe, combined with modeling efforts of their
evolution and spectra, have provided unique insights into several of these areas.

4 Case Studies

A complete summary of recent results on PWNe is well beyond the scope of this
paper. Below we discuss four distinct systems for which recent multiwavelength
observations have begun to probe both the detailed structure and the underlying
particle population in these nebulae.

4.1 3C 58

3C 58 is a flat-spectrum radio nebula (α ≈ 0.1, whereSν ∝ ν−α ) for which upper
limits based onIRAS observations indicate a spectral break between the radio and
infrared bands [21]. The PWN has often been associated with SN 1181 [41]; the low
break frequency would then suggest an extremely large magnetic field (> 2.5mG)
if interpreted as the result of synchrotron break. This has resulted in a number of
different interpretations, including the suggestion thatthe pulsar in 3C 58 under-
went a rapid decline in its output at some early epoch [21], the possibility that the
low-frequency break is inherent in the injection spectrum from the pulsar, and the
suggestion that 3C 58 is not actually associated with SN 1181, but is an older nebula
[11, 5].

The X-ray emission from 3C 58 (Figure 4) is dominated by a power law compo-
nent, typical of synchrotron emission. However, a faint thermal component is clearly
detected in the outer regions of the PWN, and also contributes to the interior regions
[8, 37, 22]. The temperature is∼ 0.25 keV, and enhanced abundances of Ne and Mg
are observed, indicative of∼ 0.5M⊙ of ejecta that has been swept up by the PWN.
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Chandra

20 arcsec

IRAC 8 micron

Fig. 4 Top: Chandra image of 3C 58. The pulsar is at the center, and is surrounded by a elongated
compact nebula with a curved jet extending to the west. A softening of the spectrum with radius is
observed – an effect resulting from both synchrotron aging of the electrons and the presence of a
soft thermal shell. Bottom:Chandra image of the pulsar in 3C58, and its associated torus and jet
(left) and the IRAC 8µm image of the same region. The elliptical region indicates the torus, and
has the same center and size in each image.

This is much larger than the expected mass if the PWN is associated with SN 1181,
and suggests a larger age for the system [11].

To investigate the evolution of 3C 58, we have carried outSpitzer observations
using IRAC [38]. These observations reveal the PWN in both the 3.6 and 4.5µm
bands, representing the first detection of synchrotron emission from this important
young PWN anywhere in the five decades of frequency separating the radio and
X-ray bands. The morphology of the IR emission from 3C 58 is strikingly similar
to that seen in the radio and X-ray bands. The emission extends all the way to the
radio boundaries, indicating that no synchrotron loss breaks occur below the band,
and some regions of enhanced or diminished emission match well with those seen
in the other bands (notably the large cavity on the eastern side), suggesting that we
are observing primarily synchrotron radiation. Optical filaments in 3C 58 [37, 33],
which presumably originate from supernova ejecta overtaken by the expansion of
the PWN, do not show a good spatial correspondence with the radio or IR struc-
tures, suggesting that the IR emission is not dominated by dust contributions. This
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Fig. 5 The flux of all of 3C 58 (upper) and its torus (lower), plotted from the radio to the X-ray
band. While the torus is not detected in the radio band, the IRdata require a flattening of the X-
ray spectrum when extrapolated back to the longer wavelength band. (From [38]. Reproduced by
permission of the AAS.)

is similar to results fromSpitzerobservations of the Crab Nebula [42], where emis-
sion in the IRAC band is also identified primarily with synchrotron radiation.

The IRAC data also reveal emission from the torus surrounding the pulsar in
3C 58 [36] in all four bands (Figure 4).2 Optical emission from the torus is detected
as well [35]. These observations provide new constraints onthe evolution of the
particles as they flow from the termination shock in 3C 58. There is little question
that this emission is synchrotron in nature; there is insufficient dust in the environ-
ment of the pulsar termination shock to provide a shocked dust component to the
emission. The spectrum (Figure 5) requires a break of some sort between the IR and

2 We also show preliminary results from MIPS observations at 24 µm where we also detect the
torus.
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Fig. 6 ROSAT PSPC image of Vela SNR. The single contour represents the outer boundary of the
radio nebula Vela X. The point source at the northern extremeof Vela X is the Vela pulsar and the
box inside the PWN indicates the XMM MOS region of the cocoon shown in the inset.

X-ray bands, suggesting that the synchrotron loss break appears just above the IR
band. Most importantly, these results indicate that the spectrum of particles injected
into the PWN through the termination shock does not follow anunbroken power
law. As a result, structure in the PWN spectrum is, at least inpart, the imprint of
structure from the injection region.

From Figure 5, it is clear that additional observations of 3C58, and particularly
its torus, at longer wavelengths will be crucially important to understand the nature
of the injected particles and the subsequent long-term evolution of the PWN. Deep
observations of the central regions of other PWNe are clearly of importance as well.

4.2 Vela X

Located at a distance of only 280 pc, the Vela SNR houses a young pulsar that pow-
ers the extended nebula Vela X. This nebula lies within a limb-brightened shell of
thermal X-rays. The outer shell is cool, and the exceptionally low foreground ab-
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Fig. 7 XMM-Newton spectrum from the “cocoon” region in Vela X. The best-fit model, shown in
black, is composed of two components – a thermal plasma with enhanced, ejecta-like abundances
(light dashed curve) and a power law (dark dashed curve). (From [23]. Reproduced by permission
of the AAS.)

sorption (NH ∼ 1−5×1020 cm−2) allows us to see strong emission lines from O,
Ne, and Mg. In X-rays, the overall brightness asymmetry of Vela is evident (Fig-
ure 6). The SNR is much brighter in the northeastern hemisphere, toward the Galac-
tic plane. This is apparently the result of large-scale inhomogeneities in the ISM,
with n0 ≈ 0.06 cm−3 in the south [7], andn0 ≈ 1 cm−3 on the north side of the SNR
[13].

Radio observations of the PWN [28] reveal a morphology concentrated to the
south of the pulsar itself, suggesting that the nebula has been disrupted by the im-
pact of the reverse shock which propagated more rapidly fromthe northeast due to
the higher ambient density in this direction. Higher resolution radio images show a
network of filamentary structure in the PWN [15], possibly formed by R-T instabil-
ities in this interaction with the reverse shock.ROSAT observations of the Vela X
region [27] reveal a large emission structure – the so-called “cocoon” – extending
to the south of the pulsar. The region is characterized by a hard spectrum and ap-
pears to lie along a bright elongated radio structure.ASCA observations established
a two-component X-ray spectrum with the hard component adequately described by
either a power law or a hot thermal plasma [29]. The PWN is observed at energies
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Fig. 8 Broadband spectral model consisting of synchrotron emission in the radio and X-ray bands
accompanied by IC emission in the VHEγ-ray band. The upper panel shows a model with two
spectral breaks in the electron spectrum. Models with a single break (lower panel) either underpre-
dict the radio emission, or produce a radio flux whose spectral index does not agree with observa-
tions. (From [23]. Reproduced by permission of the AAS.)

up to∼ 200 keV withBeppoSAX [26], and observations withH.E.S.S. [2] reveal ex-
tended VHEγ-ray emission with the brightest emission concentrated directly along
the cocoon.

Our initial studies of a small region along the cocoon [23] reveal a bright X-ray
structure shown as an inset to Figure 6. The emission is concentrated into several
distinct regions, at least some of which appear to be filamentary structures. The
integrated emission from these regions is characterized bytwo distinct components
– a power law with a spectral index of∼ 2.2 and a thermal plasma with enhanced
abundances of O, Ne, and Mg, presumably associated with ejecta that has been
mixed into the PWN upon its interaction with the reverse shock (Figure 7).

It is of particular interest that our broadband modeling of the nonthermal emis-
sion from this central region of Vela X indicates a disconnect between the radio-
emitting particles and those that produce the X-ray and TeVγ-ray emission [23]. A
model with a single spectral break between the bands either underpredicts the radio
flux or produces an incorrect radio spectral index (Figure 8), while a model with
two breaks can satisfy the data. Treating the poorly-characterized low-energy elec-
tron component as a separate population of particles, de Jager, Slane, & LaMassa
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[12] showed that enhanced IC emission from this component could be expected
in the GeV band. This has now been confirmed with observationsby AGILE [31]
andFermi [1]. Interestingly, a similar excess is observed inFermi observations of
HESS J1640−465 [39], another evolved PWN that appears to have undergonea RS
interaction (see Section 4.4).

The nature of the low-energy particle spectrum in Vela X is poorly understood,
but theFermi studies in particular suggest a difference in the cocoon emission from
that of its surroundings; the LAT emission appears to be concentrated distinctly to
the west of the TeV emission. Whether or not this emission component is somehow
associated with the reverse shock interaction is not clear.An XMM Large Project
to map a significant portion of Vela X is underway to investigate the distribution of
nonthermal particles and thermal ejecta in the nebula.

4.3 G327.1−1.1

G327.1−1.1 is a composite SNR with a bright central PWN whose structure is com-
plex in both the radio and X-ray bands. As shown in Figure 9, the SNR is character-
ized by a faint radio shell accompanied by a bright radio PWN.The PWN is offset
from the SNR center, and a finger-like structure extends toward the west/northwest.
The morphology is suggestive of a PWN that has been disruptedby an asymmet-
ric reverse shock interaction that has arrived preferentially from the northwestern
direction.

DetailedChandra observations [43] appear to confirm this scenario in detail.3 A
compact X-ray source resides at the tip of the radio finger, and a trail of nonthermal
X-ray emission extends from the source back into the radio nebula. The compact
X-ray source itself is resolved, with possible evidence of ajet or torus structure, and
the source is embedded in a cometary nebula whose structure is suggestive of a bow
shock. A pair of prong-like structures originate from the vicinity of the compact core
and extend out to the west/northwest. Their axes are not aligned with the compact
core, and they do not appear to be jets from the pulsar. The most unusual feature
in G327.1-1.1 is a large bubble-like structure that extendsout from the prongs. The
bubble is very faint, but it is apparent in images taken with bothChandra andXMM.

The spectral index in the tail of X-ray emission that extendsinto the brighter radio
PWN appears to vary from∼ 1.8 to ∼ 2.1, although significantly better statistics
are needed to map this fully. Faint loop-like structures, possibly associated with
Rayleigh-Taylor filaments or magnetic loops, are evident inthe southern part of the
tail and they appear to extend from radio structures inside the relic PWN. Deeper
X-ray observations are required to better characterize these and, more importantly,
to study the detailed properties of the complex structures seen in the immediate
vicinity of the pulsar, and to investigate the apparent upstream diffusion of particles
that form the bubble-like structure.

3 See also the contribution by T. Temim in these Proceedings.
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Fig. 9 Composite radio (red and orange) and X-ray (blue) image of G327.1−1.1. The outer radio
shell defines the SNR boundary, while the bright central nebula is the PWN. The compact source
to the northwest of the nebula is the neutron star. It is embedded in a cometary-shaped structure
accompanied by a tail of X-ray emission extending into the radio nebula, as well as prong-like
structures (seen in inset) that appear to inflate a faint bubble in the northwest.

The overall X-ray morphology of the PWN in G327.1-1.1 presents several chal-
lenges. It appears clear from the displacement of the radio nebula that the PWN has
undergone an interaction with the SNR reverse shock, and that this shock arrived
earlier from the northwest, possibly as a result of pulsar motion in this direction.
In such a scenario, we expect the ongoing pulsar wind production to begin forming
a new PWN around the pulsar, shaped by the surrounding pressure conditions. Ra-
dio emission from the displaced relic nebula will persist, but the compression from
the reverse shock will temporarily increase the magnetic field in the nebula, causing
rapid synchrotron losses for the more energetic particles.The X-ray emission is thus
expected to be concentrated closer to the pulsar, as observed. Spectral steeping of the
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X-ray spectrum in the direction of the relic nebula is expected if the synchrotron loss
timescale is shorter than the particle flow timescale; mapping this spectral evolution
along the extended X-ray tail thus constrains the conditions in the relic nebula. In
the direction from which the reverse shock propagated, the structure of the medium
is complicated. The density in the immediate post-shock region is enhanced, but
declines downstream due to adiabatic expansion of the SNR. At least qualitatively,
this could provide the environment in which freshly-injected wind from the pulsar
inflates the observed bubble.

The cometary feature surrounding the putative pulsar complicates the above pic-
ture. The morphology is suggestive of a bow shock that forms when the pulsar mo-
tion exceeds the sound speed in the the ambient medium, yielding a structure quite
different from that of a static PWN. The wind termination shock in such systems
is compressed in the direction of motion, and extended in thebackward direction.
X-ray emission is then observed between the termination shock and the contact dis-
continuity, and forms three distinct structures: the “head” that surrounds the pulsar;
an enhanced region behind the pulsar, associated with the termination shock; and
an elongated tail where the swept-back wind is concentrated[17, 9]. For G327.1-
1.1, such a geometry would require a significant pulsar velocity component per-
pendicular to the plane of the sky, but the overall velocity that would be required
(770 km s−1) is not unreasonable.

Given the similarity between G327.1−1.1 and Vela, in the context of both being
systems in which an interaction between the PWN and the SNR reverse shock has
occurred, it is of considerable interest to determine whether or not G327.1−1.1,
like Vela X, producesγ-rays. Preliminary investigation ofFermi-LAT data indicates
faint emission that is positionally coincident with G327.1−1.1, but further analysis
is required to assess this in detail.

4.4 HESS J1640−465

HESS J1640−465 (see Figure 10) is an extended source of very-high-energy γ-ray
emission discovered with the High Energy Stereoscopic System (H.E.S.S.) during a
survey of the Galactic plane [3]. Centered within the radio SNR G338.3−0.0 [34],
the deconvolved TeV image of the source has an RMS width of 2.7±0.5 arcmin
[16]. HI measurements show absorption against G338.3−0.0 out to velocities cor-
responding to the tangent point, indicating a distance of atleast 8 kpc [24], and
thus implying a rather large size for the PWN (RPWN > 6.4d10 pc, whered10 is the
distance in units of 10 kpc). X-ray observations withXMM [16] andChandra [24]
establish the presence of an accompanying X-ray nebula and an X-ray point source
that appears to be the associated neutron star. The point source is offset from the
center of the PWN, and both are offset from the center of the SNR, suggesting that
an asymmetric interaction with the SNR reverse shock has occurred.

We have investigatedFermi-LAT data acquired from the region surrounding
HESS J1640−465 and detect the source with high significance [39]. The spectrum
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Fig. 10 Fermi-LAT image of HESS J1640−465. The solid (cyan) circle indicates the uncertainty
in the centroid of theFermi-LAT source, the magenta dashed circle indicates the 95% encircled flux
distribution of the H.E.S.S. image, and the white dashed circle indicates that for 3EG J1639−4702.
The white contours outline radio emission from G338.3−0.0 while the black contours at the cen-
ter outline extended X-ray emission observed withXMM. A compact X-ray source detected with
Chandra resides within the X-ray contours. (From [39]. Reproduced by permission of the AAS.)

is well-described by a power law withΓ = 2.30± 0.09 and aF(> 100 MeV) =
2.8× 10−7 photons cm−2 s−1. We have modeled the emission assuming a 1-zone
model in which particles are injected into the nebula with a simple power law dis-
tribution. We use a radius ofRSNR ∼ 11.6d10 pc for G338.3−0.0, based on radio
observations. The observed extent of HESS J1640−465 constrains the radius of the
PWN toRPWN > 6.4d10 pc. As indicated in Figure 2, where a horizontal line indi-
cates the radius of G338.3−0.0, reasonable values for the SNR and PWN parameters
indicate that the SNR reverse shock has almost certainly begun to impact the PWN.

The broadband emission model results are shown in Figure 11 where we plot
theFermi and H.E.S.S spectra along with the radio upper limit from GMRT obser-
vations [20] and spectral confidence bands derived fromChandra [24]. The black
curves represent the model prediction for the synchrotron (left) and IC (right) emis-
sion that best describes the X-ray and TeVγ-ray spectra, similar to results from [24];
the parameters for the model are summarized in the caption. As seen in Figure 11,
this model significantly underpredicts the observedFermi-LAT emission. Our spec-
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Fig. 11 Electron spectrum (upper) and broadband emission model (lower) for HESS J1640−465
assuming the evolutionary history described in the text. The black curves represent a PWN with
an ageT = 10 kyr, andB(T ) = 5µG, assumingĖ0 = 4×1036 erg s−1 and an injection spectrum
with σ = 10−3, γ = 2.5, andEmin = 115 GeV. The light curves represent the scenario with a low-
energy Maxwellian electron component replacing the low-energy portion of the electron power-
law spectrum. The mean temperature for the IR and optical photon fields are 15 K and 5000 K,
respectively, and the energy densities relative to the CMB are 4 and 1.15. The dashed curve in the
upper panel represents the truncated portion of the power law that was replaced by a Maxwellian.
The dashed curve in the lower panel represents a model for which all of theγ-ray emission results
from pion decay. (From [39]. Reproduced by permission of theAAS.)

tral fits can formally accommodate up to about∼ 20% of the observed flux in a
pulsar-like component characterized by a power law with an exponential cutoff en-
ergy between 1 and 8 GeV, and there are several known radio pulsars located within
the error circle of HESS J1640−465 that could potentially produce observableγ-ray
emission. Even in this case, however, theFermi-LAT emission still greatly exceeds
the predicted flux from HESS J1640−465.
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As described in Section 4.2, simple power-law models for theparticles in Vela
X, another evolved PWN, fail to reproduce the observed broadband spectrum. The
presence of an excess population of low-energy electrons isinferred, and models
for the IC scattering of photons from this population predict an excess ofγ-rays in
the GeV range. Motivated by these results from Vela X, we modified the evolved
power law spectrum from our model for HESS J1640−465 by truncating the lower
end of the power law and adding a distinct low-energy component. Based on results
from simulations of shock acceleration [40], we chose a Maxwellian distribution
for this population. Our resulting (ad hoc) particle spectrum is shown in the upper
panel in Figure 11, and the resulting broadband emission is shown in the lighter
(magenta) curves in the lower panel. Here we have adjusted the normalization of
the Maxwellian to reproduce the emission in theFermi-LAT band, which is pro-
duced primarily by upscattered infrared (IR) photons from local dust. We find a
mean value ofγ ≈ 2× 105 for the electrons in the Maxwellian component, and
roughly 5% of the total electron energy in the power law tail,consistent with results
from particle-in-cell simulations. Recent work by Fang & Zhang (2010) [14] uses
a similar input distribution to successfully model the emission for several PWNe
including HESS J1640−465. However, their results for HESS J1640−465 under-
predict the observed GeV emission from this source, apparently due to use of a
slightly lower bulk Lorentz factor and a larger fraction of the total energy in the
power law tail than we have used in this analysis.

An alternative scenario for theγ-ray emission is that it arises from the SNR
itself, and not the PWN. The dashed blue curve in Figure 11 represents a model
for the emission from the collision of protons accelerated in the SNR with ambient
material, leading toγ-rays from the production and subsequent decay of neutral
pions. Assuming a shock compression ratio of 4 and that 25% ofthe total supernova
energy appears in the form of relativistic protons, an ambient densityn0 ≈ 100 cm−3

is required to produce the model shown in the Figure. This is much higher than can
be accommodated for the observed size of the SNR and the lack of observed thermal
X-ray emission from the SNR. Such high densities are found indense molecular
clouds, suggesting that theγ-rays could be produced by particles that stream away
to interact with high-density material outside the SNR. However, only the most
energetic particles can escape the acceleration region, which is in conflict with the
proton spectrum we require to match the data. Moreover, the observed TeV emission
appears to originate from within the SNR boundaries, makingsuch an escaping-
particle scenario appear problematic. Based on this, alongwith the lack of a spectral
cutoff that might suggest emission from a central pulsar, weconclude that the GeV
γ-ray emission most likely arises from the PWN.

5 Summary

The broadband spectra of PWNe provide information about both the structure and
evolution of these objects. New multiwavelength observations have begun to probe
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PWNe from the sites of particle injection to the ejecta-laden outer boundaries, pro-
viding crucial input for modeling these systems. Observations in theγ-ray band have
uncovered previously unknown systems in the late phase of evolution, while X-ray
observations continue to provide detailed information about the geometry and the
composition of the pulsar winds. These observations continue to inform theoretical
models of relativistic shocks which, in turn, have broad importance across the realm
of high-energy astrophysics. At the same time, these recentresults have pointed the
way to new and deeper observations of PWNe across the electromagnetic spectrum.
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29. Markwardt &Ögelman 1997, ApJ, 480, L13



20 Patrick Slane

30. Pacini, F. & Salvati, M. 1973, ApJ, 186, 249
31. Pellizzoni, A., et al. 2010, Sci, 327, 663
32. Reynolds, S. P., & Chevalier, R. A. 1984, ApJ, 278, 630
33. Rudie, G. C., & Fesen, R. A. 2007, RMxAC, 30, 90
34. Shaver, P. A. & Goss, W. M. 1970, AuJPA, 14, 133
35. Shibanov, Y. A. 2008, A&A, 486 273
36. Slane, P., Helfand, D. J., & Murray, S. S. 2002, ApJ, 571, L45
37. Slane, P., Helfand, D. J., van der Swaluw, E., & Murray, S.S. 2004, ApJ, 616, 403
38. Slane, P., et al. 2008, ApJ, 676, L33
39. Slane, P., et al. 2010, ApJ, 720, 266
40. Spitkovsky, A. 2008, ApJ, 682, L5
41. Stephenson, F. R., & Green, D. A. 2005, Historical Supernovae and Their Remnants (Oxford

University Press, USA)
42. Temim, T. et al. 2006, AJ, 132, 1610
43. Temim, T., et al. 2009, ApJ, 691, 895
44. van der Swaluw, E. 2003, A&A, 404, 939


	Multiwavelength Observations of Pulsar Wind Nebulae
	Patrick Slane
	1 Introduction
	2 Dynamical Evolution of PWNe
	3 Spectral Evolution of PWNe
	4 Case Studies
	4.1 3C 58
	4.2 Vela X
	4.3 G327.1-1.1
	4.4 HESS J1640-465

	5 Summary
	References



