е

e MAGNETIC MOMENT ANOMALY

$\mu_e/\mu_B - 1 = (g-2)/2$

I

The CODATA value assumes the g/2 values for e^+ and e^- are equal, as required by CPT.

VALUE (units 10 ⁻⁶)	DOCUMENT ID		TECN	CHG	COMMENT
$1159.6521859 \pm 0.0000038$	MOHR	04	RVUE		2002 CODATA value
• • • We do not use the following	; data for averag	çes,	fits, limit	s, etc.	• • •
1159.6521869 ± 0.0000041	MOHR	99	RVUE		1998 CODATA value
1159.652193 ± 0.000010	COHEN	87	RVUE		1986 CODATA value
$1159.6521884 \pm 0.0000043$	VANDYCK	87	MRS	-	Single electron
1159.6521879 ± 0.0000043	VANDYCK	87	MRS	+	Single positron

$(g_{e^+} - g_{e^-}) / g_{average}$

A test of CPT invariance

VALUE (units 10 ⁻¹²)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
-0.5 ± 2.1		¹⁰ VANDYCK	87	MRS	Penning trap
• • • We do not u	se the followin	g data for average	s, fit:	s, limits,	etc. • • •
< 12	95	¹¹ VASSERMAN	87	CNTR	Assumes $m_{e^+} = m_{e^-}$
22 ± 64		SCHWINBERG	G 81	MRS	Penning trap
¹⁰ VANDYCK 87 r	neasured (g_/	$(g_{\pm}) = 1$ and we co	onver	ted it.	
¹¹ VASSERMAN 8	7 measured ($(g_+ - g)/(g2)$. w	e multip	lied by $(g-2)/g = 1.2 \times$
10-3					

e ELECTRIC DIPOLE MOMENT

A nonzero value is forbidden by both T invariance and P invariance.

VALUE (10 ⁻²⁶ ecm)	CL %	DOCUMENT ID		TEC N	COMMENT
0.069± 0.0	74	REGAN	02	MRS	²⁰⁵ TI beams
• • • We do not us	e the following	data for averages,	fits,	limits, e	etc. • • •
$0.18~\pm~0.1$	2 ± 0.10	¹² COMMINS	94	MRS	²⁰⁵ TI beams
$-$ 0.27 \pm 0.8	3	¹² ABDULLAH	90	MRS	²⁰⁵ TI beams
-14 ± 24		СНО	89	NMR	TIF molecules
-1.5 ± 5.5	± 1.5	MURTHY	89		Cesium, no B field
-50 ± 110		LAMOREAUX	87	NMR	¹⁹⁹ Hg
190 ± 340	90	SANDARS	75	MRS	Thallium
70 ±220	90	PLAYER	70	MRS	Xenon
< 300	90	WEISSKOPF	68	MRS	Cesium
¹² ABDULLAH 90,	COMMINS 9	4, and REGAN 02	use t	he relat	ivistic enhancement of

valence electron's electric dipole moment in a high-Z atom.

e- MEAN LIFE / BRANCHING FRACTION

A test of charge conservation. See the "Note on Testing Charge Conservation and the Pauli Exclusion Principle" following this section in our 1992 edition (Physical Review **D45,** 1 June, Part II (1992), p. VI.10).

Most of these experiments are one of three kinds: Attempts to observe Most of these experiments are one of three kinds: Attempts to observe (a) the 25.5 keV gamma ray produced in $e^- \rightarrow v_e \gamma$, (b) the (K) shell x ray produced when an electron decays without additional energy deposit, e.g., $e^- \rightarrow v_e \overline{\nu}_e v_e$ ("disappearance" experiments), and (c) nuclear de-excitation gamma rays after the electron disappears from an atomic shell and the nucleus is left in an excited state. The last can include both weak boson and photon mediating processes. We use the best $e^ \rightarrow \nu_{a} \gamma$ limit for the Summary Tables.

Note that we use the mean life rather than the half life, which is often reported.

$e \rightarrow \nu_e \gamma$ and astrophysical limits

VALU	E (yr)	CL%	DOCUMENT ID		TECN	COMMENT
>4.6	×10 ²⁶	90	BACK	02	BORX	$e^- \rightarrow \nu \gamma$
•••	 vve do not 	use the t	ollowing data for av	erag	es, rits, i	imits, etc. • • •
>3.4	$\times 10^{26}$	68	BELLI	00B	DAMA	$e^- \rightarrow \nu \gamma$, liquid Xe
>3.7	$' \times 10^{25}$	68	AHARONOV	95 B	CNTR	$e^- \rightarrow \nu \gamma$
>2.3	15×10^{25}	68	BALYSH	93	CNTR	$e^- \rightarrow \nu \gamma$, ⁷⁶ Ge detector
>1.5	$\times 10^{25}$	68	AVIGNONE	86	CNTR	$e^- \rightarrow \nu \gamma$
> 1	$\times 10^{39}$		¹³ ORITO	85	ASTR	Astrophysical argument
>3	$\times 10^{23}$	68	BELLOTTI	83B	CNTR	$e^- \rightarrow \nu \gamma$
¹³ C t	RITO 85 ass hat the age o	umes that of our gal	t electromagnetic fo axy is 10 ¹⁰ years.	rces	extend o	ut to large enough distances and

Disappearance and nuclear-de-excitation experiments

VALUE (yr)	CL%	DOCUMENT ID	TEC	N COMMENT	
>6.4 × 10 ²⁴ • • • We do not	68 ¹ use the following	¹⁴ BELLI data for average	99B DA s, fits, lin	MA De-excitation of ¹²⁹ Xe nits, etc. • • •	
$>\!4.2\times10^{24}$	68	BELLI	99 DA	MA lodine L-shell disappear-	-
$>\!2.4\times10^{23}$	90 1	¹⁵ BELLI	99D DA	ance MA De-excitation of ¹²⁷ I (ii Nal)	n
$>4.3 \times 10^{23}$	68	AHARONOV	95 B C N	TR Ge K-shell disappearanc	e
$>2.7 \times 10^{23}$	68	REUSSER	91 CN	TR GeK-shell disappearanc	e
$>2 \times 10^{22}$	68	BELLOTTI	838 CN	TR GeK-shell disappearanc	e

e MASS (atomic mass units u)

LEPTONS

 $J = \frac{1}{2}$

The primary determination of an electron's mass comes from measuring the ratio of the mass to that of a nucleus, so that the result is obtained in u (atomic mass units). The conversion factor to MeV is more uncertain than the mass of the electron in u; indeed, the recent improvements in the mass determination are not evident when the result is given in MeV. In this datablock we give the result in u, and the following datablock in MeV.

VALUE (10-6 u)	DOCUMENT ID		TECN	COMMENT
548.5799094	5 ± 0.00000024	MOHR	04	RVUE	2002 CODATA value
• • • We do	not use the follo	wing data for average	es, fits	, limits,	etc. • • •
548.5799092	±0.000004	¹ BEIER	02	CNTR	Penning trap
548.5799110	±0.000012	MOHR	99	RVUE	1998 CODATA value
548.5799111	± 0.000012	² FARNHAM	95	CNTR	Penning trap
548.579903	±0.000013	COHEN	87	RVUE	1986 CODATA value
1					10 51

 1 BEIER 02 compares Larmor frequency of the electron bound in a $^{12}{\rm C}^{5+}$ ion with the cyclotron frequency of a single trapped $^{12}{\rm C}^{5+}$ ion. ²FARNHAM 95 compares cyclotron frequency of trapped electrons with that of a single

trapped ¹²C⁶⁺ ion.

e MASS

2002 CODATA gives the conversion factor from u (atomic mass units, see the above datablock) as 931.494 043 (80). Earlier values use the thencurrent conversion factor. The conversion error dominates the masses given below.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
0.510998918±0.000000044	MOHR	04	RVUE	2002 CODATA value
• • • We do not use the follo	wing data for avera	ges, f	its, limi	ts, etc. • • •
$0.510998901\pm 0.000000020$	^{3,4} BEIER	02	CNTR	Penning trap
$0.510998902\pm 0.000000021$	MOHR	99	RVUE	1998 CODATA value
0.510998903 ± 0.00000020	^{3,5} FARNHAM	95	CNTR	Penning trap
$0.510998895\pm 0.00000024$	³ COHEN	87	RVUE	1986 CODATA value
$0.5110034~\pm 0.0000014$	COHEN	73	RVUE	1973 CODATA value
³ Converted to MeV using	the 1998 CODA	ATA	value o	f the conversion constant.

931.494013 \pm 0.0000037 MeV/u.

 12 BEIER 02 compares Larmor frequency of the electron bound in a $^{12}{\rm C}^{5+}$ ion with the cyclotron frequency of a single trapped $^{12}{\rm C}^{5+}$ ion. ⁵ FARNHAM 95 compares cyclotron frequency of trapped electrons with that of a single

trapped 12C01 ion.	12c6+
--------------------	-------

$(m_{e^+} - m_{e^-}) / m_{average}$

A test of CPT invariance.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<8×10 ⁻⁹	90	⁶ FEE	93	CNTR	Positronium spec- troscopy
• • • We do not use the	following	data for average	s, fits	, limits,	etc. • • •
$< 4 \times 10^{-8}$	90	СНО	84	CNTR	Positronium spec- troscopy

⁶FEE 93 value is obtained under the assumption that the positronium Rydberg constant is exactly half the hydrogen one

$|q_{e^+} + q_{e^-}|/e$

A test of CPT invariance. See also similar tests involving the proton.

VALUE	DOCUMENT ID		TECN	COMMENT
<4×10 ⁻⁸	⁷ HUGHES	92	RVUE	
\bullet \bullet \bullet We do not use the follow	ing data for average	es, fits	s, limits,	etc. • • •
$< 2 \times 10^{-18}$	⁸ SCHAEFER	95	THEO	Vacuum polarization
$<1 \times 10^{-18}$	⁹ MUELLER	92	THEO	Vacuum polarization
⁷ HUGHES 92 uses recent me	easurements of Ryd	berg-e	energy a	nd cyclotron-frequency ra

⁸SCHAEFER 95 removes model dependency of MUELLER 92.

9 MUELLER 92 argues that an inequality of the charge magnitudes would, through higher-order vacuum polarization, contribute to the net charge of atoms.

e, μ

 μ

- 14 BELLI 998 limit on charge nonconserving e^- capture involving excitation of the 236.1 keV nuclear state of $^{129}\rm Xe;$ the 90% CL limit is 3.7 \times 10 24 yr. Less stringent limits for other states are also given.
- 15 BELLI 990 limit on charge nonconserving e^- capture involving excitation of the 57.6 keV nuclear state of 127 I. Less stringent limits for the other states and for the state of 23 Na are also given.

e REFERENCES

MOHR	04	RMP (to be publ.)	P.J. Mohr, B.N. Taylor	(NIST)
physics.nist	.gov/c	onstants		
BACK	02	PL B525 29	H.O. Back et al. (BOREXINO/SASSO Collab.)
BEIER	02	PRL 88 011603	T. Beier et al.	
REGAN	02	PRL 88 071805	B.C. Regan et al.	
BELLI	00B	PR D61 117301	P. Belli et al.	(DAMA_Collab.)
BELLI	99	PL B460 236	P. Belli et al.	DAMA Collab.
BELLI	99B	PL B465 315	P. Belli et al.	(DA MA Collab.)
BELLI	99D	PR C60 065501	P. Belli et al.	(DAMA_Collab.)
MOHR	99	JPCRD 28 1713	P.J. Mohr. B.N. Taylor	(NIST)
A Iso	00	RMP 72 351	P.J. Mohr, B.N. Taylor	NIST
A HAR ON OV	95B	PR D52 3785	Y. Aharonov et al.	(SCUC. PNL. ZÁRA+)
A Iso	95	PL B353 168	Y. Aharonov et al.	SCUC. PNL. ZARA+1
EARNHAM	95	PRL 75 3598	D.L. Farnham, R.S. van Dyck	P.B. Schwinberg (WASH)
SCHAEFER	95	PR A51 838	A. Schaefer, J. Reinhardt	FRAN
COMMINS	94	PR A50 2960	E.D. Commins et al.	
BALYSH	93	PL B298 278	A. Balysh et al.	(KIAE, MPIH, SASSO)
FEE	93	PR A48 192	M.S. Fee et al.	
HUGHES	92	PRL 69 578	R.J. Hughes, B.I. Deutch	(LANL, AARH)
MUELLER	92	PRL 69 3432	B. Muller, M.H. Thoma	DUKE)
PDG	92	PR D45, 1 June, Part II	K. Hikasa et al.	(KEK, LBL, BOST+)
REUSSER	91	PL B255 143	D. Reusser et al.	NEUC. CIT. PSI
ABDULLAH	90	PRL 65 2347	K. Abdullah et al.	LBL, UCB
CHO	89	PRL 63 2559	D. Cho, K. Sangster, E.A. Hi	nds (YALE)
MURTHY	89	PRL 63 965	S.A. Murthy et al.	(ÅMHT)
COHEN	87	RMP 59 1121	E.R. Cohen, B.N. Taylor	(RISC, NBS)
LA M OR EA UX	87	PRL 59 2275	S.K. Lamoreaux et al.	(WASH)
VANDYCK	87	PRL 59 26	R.S. van Dyck, P.B. Schwinbe	erg, H.G. Dehmelt (WASH)
VASSERMAN	87	PL B198 302	I.B. Vasserman et al.	(NOVO)
A Iso	87B	PL B187 172	I.B. Vasserman et al.	(NOVO)
AVIGNONE	86	PR D34 97	F.T. Avignone et al.	(PNL, SCUC)
ORITO	85	PRL 54 2457	S. Orito, M. Yoshimura	(TOKY, KEK)
CHU	84	PRL 52 1689	S. Chu, A.P. Mills, J.L. Hall	(BELL, NBS, COLO)
BELLOTTI	83B	PL 124B 435	E. Bellotti et al.	(MILA)
SCHWINBERG	81	PRL 47 1679	P.B. Schwinberg, R.S. van Dy	ck, H.G. Dehmelt (WASH)
SANDARS	75	PR A11 473	P.G.H. Sandars, D.M. Sternhe	imer (OXÈ, BNL)
COHEN	73	JPCRD 2 664	E.R. Cohen, B.N. Taylor	(RISC, NBS)
PLAYER	70	JPB 3 1620	M.A. Player, P.G.H. Sandars	(OXF)
WEISSKOPF	68	PRL 21 1645	M.C. Weisskopf et al.	(BRAN)

μ MASS (atomic mass units u)

 $J = \frac{1}{2}$

The primary determination of a muon's mass comes from measuring the ratio of the mass to that of a nucleus, so that the result is obtained in u (atomic mass units). The conversion factor to MeV is more uncertain than the mass of the muon in u. In this datablock we give the result in u, and in the following datablock in MeV.

VALUE (u)	DOCUMENT I	D	TECN	COMMENT	_
$0.1134289264 \pm 0.0000000030$	MOHR	04	RVUE	2002 CODATA value	
• • • We do not use the followin	g data for avera	ages, fits	, limits,	etc. • • •	_
$0.1134289168 \pm 0.0000000034$ $0.113428913 \pm 0.000000017$	¹ MOHR ² COHEN	99 87	RVUE RVUE	1998 CODATA value 1986 CODATA value	
¹ MOHR 99 make use of other	1998 CODATA	entries	below.		

²COHEN 87 make use of other 1986 CODATA entries below

μ MASS

2002 CODATA gives the conversion factor from u (atomic mass units, see the above datablock) as 931.494.043 (80). Earlier values use the thencurrent conversion factor. The conversion error dominates the masses given below.

VALUE (MeV)	DOCUMENT ID		TECN CHO	<u>COMMENT</u>			
$105.6583692 \pm 0.0000094$	MOHR	04	RVUE	2002 CODATA value			
• • • We do not use the follow	ing data for avera	ges,	fits, limits, el	tc. • • •			
$105.6583568 \pm 0.0000052$	MOHR	99	RVUE	1998 CODATA value			
105.658353 ± 0.000016	³ COHEN	87	RVUE	1986 CODATA value			
105.658386 ± 0.000044	⁴ MARIAM	82	CNTR +				
105.65836 ± 0.00026	⁵ CROWE	72	CNTR				
105.65865 ± 0.00044	⁶ CRANE	71	CNTR				
3 Converted to MeV using 931.494013 \pm 0.0000037 M	the 1998 CODA ⊵V∕u.	λTA	value of th	e conversion constant,			
4 MARIAM 82 give $m_{\mu}/m_{e} = 206.768259(62)$.							
⁵ CROWE 72 give $m_{\mu}/m_e =$	206.7682(5).						

⁶ CRANE 71 give $m_{\mu}^{r}/m_{e} = 206.76878(85)$.

μ MEAN LIFE τ

Measurements with an error $> 0.001 \times 10^{-6}$ s have been omitted.

VALUE (10-6 s)	DOCUMENT ID		TECN	CHG
2.19703 ±0.00004 OUR AVERAGE				
2.197078 ± 0.000073	BARDIN	84	CNTR	+
2.197025 ± 0.000155	BARDIN	84	CNTR	-
2.19695 ± 0.00006	GIOVANETTI	84	CNTR	+
2.19711 ±0.00008	BALANDIN	74	CNTR	+
2.1973 ±0.0003	DUCLOS	73	CNTR	+

$\tau_{\mu^+}/\tau_{\mu^-}$ MEAN LIFE RATIO

A test of CPT invariance.

VALUE		DOCUMENT ID		TECN	COMMENT
1.000024	4±0.000078	BARDIN	84	CNTR	
•••	Ve do not use the following	data for average	s, fits	, limits,	etc. • • •
1.0008	± 0.0010	BAILEY	79	CNTR	Storage ring
1.000	± 0.001	MEYER	63	CNTR	Mean life μ^+/μ^-

$(\tau_{\mu^+} - \tau_{\mu^-}) / \tau_{\text{average}}$

A test of CPT invariance. Calculated from the mean-life ratio, above.

VALUE	DOCUMENT	IE
$(2\pm8) \times 10^{-5}$ OUR EVALUATION		

μ/ρ MAGNETIC MOMENT RATIO

This ratio is used to obtain a precise value of the muon mass and to reduce experimental muon Larmor frequency measurements to the muon magnetic moment anomaly. Measurements with an error > 0.00001 have been omitted. By covention, the minus sign on this ratio is omitted. CODATA values were fitted using their selection of data, plus other data from multiparameter fits.

VALUE	DOCUMENT ID		TECN	CHG	COMMENT
$3.183345118 \pm 0.00000089$	MOHR	04	RVUE		2002 CODATA value
• • • We do not use the following	ng data for avera	ges,	fits, limit	s, etc.	• • •
$3.18334513\ \pm 0.0000039$	LIU	99	CNTR	+	HFS in muonium
3.18334539 ± 0.0000010	MOHR	99	RVUE		1998 CODATA value
3.18334547 ± 0.0000047	COHEN	87	RVUE		1986 CODATA value
3.1833441 ± 0.0000017	KLEMPT	82	CNTR	+	Precession strob
3.1833461 ± 0.0000011	MARIAM	82	CNTR	+	HFS splitting
3.1833448 ± 0.0000029	CAMANI	78	CNTR	+	See KLEMPT 82
3.1833403 ± 0.0000044	CASPERSON	77	CNTR	+	HFS splitting
3.1833402 ± 0.0000072	COHEN	73	RVUE		1973 CODATA value
3.1833467 ± 0.000082	CROWE	72	CNTR	+	Precession phase

μ MAGNETIC MOMENT ANOMALY

The parity-violating decay of muons in a storage ring is observed. The difference frequency ω_{a} between the muon spin precision and the orbital angular frequency $(e/m_{\mu}c)(B)$ is measured, as is the free proton NMR frequency ω_{p} , thus determining the ratio $R{=}\omega_{a}/\omega_{p}$. Given the magnetic moment ratio $\lambda{=}\mu_{\mu}/\mu_{p}$ (from hyperfine structure in muonium), $(g{=}2)/2$ = $R/(\lambda{-}R)$.

The new precision results from the Brookhaven MUG2 Collaboration have inspired reevaluation of the theoretical value. Most of the problem concerns the hadronic contributions. Examples of the present uncertainty in this changing field are two theoretical values presented by A. Nyffeler in his theory review at a March 2003 Moriond Conference: 11659167.4 \pm 7.5 (had) \pm 4.0 (light-by-light scattering) \pm 0.35 (QED + EW) using experimental input from e^+e^- around the ρ (CMD-2), and 11659192.6 \pm 5.9 \pm 4.0 \pm 0.35 from precision τ decay studies (ALEPH).

$\mu_{\mu}/(e\hbar/2m_{\mu}){-}1 = (g_{\mu}{-}2)/2$

VALUE (units 1)) - 10)	DOCUMENT ID		TECN	CHG	COMMENT	
$11659203 \pm$	7 OUR AVERA	ΞE					_
$11659204 \pm$	7 ± 5	BENNETT	02	MUG2	+	Storage ring	
$11659202 \pm$	14 ± 6	BROWN	01	MUG2	+	Storage ring	
$11659191\pm$	59	BROWN	00	MUG2	+		
•••We do	not use the follow	ing data for aver	ages	, fits, lin	nits, et	c. • • •	
$11659100\pm$	110	⁷ BAILEY	79	CNTR	+	Storage ring	
$11659360 \pm$	120	⁷ BAILEY	79	CNTR	-	Storage ring	
$11659230\pm$	85	BAILEY	79	CNTR	±	Storage ring	
11620000 ± 5	000	CHARPAK	62	CNTR	+		
⁷ BAILEY	79 values recalcul	ated by HUGHE	5 99	using t	he CO	HEN 87 μ/p magnetic	

'BAILEY 79 values recalculated by HUGHES 99 using the COHEN 87 µ/p magnetic moment. The improved MOHR 99 value does not change the result.

(g	_{µ+} - g _{µ-}) / g	avera	age						
A test of <i>CPT</i> invariance. <u>VALUE (units 10^{-8})</u> -2.6±1.6	<u>DOCUMENT ID</u> BAILEY	79							
μ ELECTRIC DIPOLE MOMENT									
A nonzero value is forbid	den by both $ au$ inv	arian	ce and P	invar	iance.				
VALUE (10 ⁻¹⁹ ecm)	DOCUMENT ID		TECN	снg	COMMENT				
3.7 ± 3.4	⁸ BAILEY	78	CNTR	±	Storage ring				
• • • We do not use the following	g data for average	s, fit	s, limits,	etc. •	••				
8.6 ± 4.5	BAILEY	78	CNTR	+	Storage rings				
0.8 ± 4.3	BAILEY	78	CNTR	-	Storage rings				
⁸ This is the combination of the	two BAILEY 78	result	s given b	e low.					
MUON-ELECTRON C	HARGE RATIC) A N	OMAL	(q _µ +	/q _{e-} + 1				
VALUE	DOCUMENT ID		TECN	CHG	COMMENT				
(1.1±2.1)×10 ⁻⁹	9 MEYER	00	CNTR	+	1s–2s muonium interval				
⁹ MEYER 00 measure the 1s-2s of muon-electron charge ratio	muonium interva q_{μ^+}/q_{e^-} .	il, an	d then inf	erpre'	the result in terms				

μ^- DECAY MODES

 μ^+ modes are charge conjugates of the modes below.

	Mode		Fraction (F _j	/Γ)	Confidence	le ve l
Γ ₁	$e^- \overline{\nu}_e \nu_\mu$		pprox 100%			
Γ2	$e^- \overline{\nu}_e \nu_\mu \gamma$	[a] (1.4±0.4) %		
Гз	$e^- \overline{\nu}_e \nu_\mu e^+ e^-$	[b] (3.4±0.4	$) \times 10^{-5}$		
	Lepton Family nu	mber (<i>LF</i>) violating	modes		
Γ ₄	$e^- \nu_e \overline{\nu}_\mu$	LF [C] < 1.2	%		90%
Γ5	$e^-\gamma$	LF	< 1.2	$ imes 10^{-11}$		90%
Γ ₆	e ⁻ e ⁺ e ⁻	LF	< 1.0	$\times 10^{-12}$		90%
Γ7	$e^- 2\gamma$	LF	< 7.2	$\times 10^{-11}$		90%

[a] This only includes events with the γ energy > 10 MeV. Since the $e^-\,\overline{\nu}_e\,\nu_\mu$ and $e^- \overline{\nu}_e \, \nu_\mu \, \gamma$ modes cannot be clearly separated, we regard the latter mode as a subset of the former.

[b] See the Particle Listings below for the energy limits used in this measurement.

[c] A test of additive vs. multiplicative lepton family number conservation.

μ[−] BRANCHING RATIOS

$\Gamma(e^- \overline{\nu}_e \nu_\mu \gamma) / \Gamma_{\text{tot}}$	tai					Г2/Г
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
0.014 ± 0.004		CRITTENDEN	61	CNTR	γ KE > 10 MeV	
• • • We do not use	the following	data for averages	, fits	s, limits,	etc. • • •	
	862	BOGART	67	CNTR	γ KE > 14.5 MeV	
0.0033 ± 0.0013		CRITTENDEN	61	CNTR	γ KE > 20 MeV	
	27	ASHKIN	59	CNTR		
$\Gamma(e^- \overline{\nu}_e \nu_\mu e^+ e^-)$	/F _{total}					Гз/Г

· · · · · · · ·	core.					
VALUE (units 10 ⁻⁵)	EVTS	DOCUMENT ID		TECN	СНG	COMMENT
$3.4 \pm 0.2 \pm 0.3$	7443	¹⁰ BERTL	85	SPEC	+	SINDRUM
• • • We do not use the	ne follo	ving data for averages	, fit	s, limits,	etc.	• • •
2.2 ± 1.5	7	¹¹ CRITTENDEN	61	HLBC	+	$E(e^+e^-)>10$
2	1	¹² GUREVICH	60	EMUL	+	NIC V
1.5 ± 1.0	3	¹³ LEE	59	HBC	+	
¹⁰ BERTL 85 has trai	ns ve rse	momentum cut p_T	>	17 MeV	/c.	Systematic error was

increased by us.

 $^{11}\,\rm CRIT\,ENDEN$ 61 count only those decays where total energy of either (e⁺, e⁻) combination is >10 MeV. $^{12}\,\rm GUREVICH$ 60 interpret their event as either virtual or real photon conversion. e⁺ and e energies not measured.

 e^- energies not measured. 13 in the three LEE 59 events, the sum of energies $E(e^+)+E(e^-)+E(e^+)$ was 51 MeV, 55 MeV, and 33 MeV.

Lepton Particle Listings

 μ

Γ(e⁻ ν_e ∇ μ)/Γ _{total} Forbidden by the a	dditive co	nservation law fo	^r lept	on famil	y numt	Γ4/Γ ber. A multiplicative
law predicts this b	ranching r	atio to be 1/2. F	or a	review se	ee NEN	METHY 81.
< 0.012	90	¹⁴ FREEDMAN	93	CNTR	<u>CHG</u> +	v oscillation
• • • We do not use th	e followin	t data for average	oc fit	c limite	etc.	search
< 0.019	00		01 r		. etc. •	•••
< 0.018	90	15 BERGSMA	916	CALO	+	$\overline{\mu} e \rightarrow \mu = \overline{\mu}$
< 0.09	90	JONKER	80	CALO		See BERGSMA 83
-0.001 ± 0.061		WILLIS	80	CNTR	+	
0.13 ±0.15		BLIETSCHAU	78	HLBC	±	Avg. of 4 values
< 0.25 14 EDEEDMAN 02 Um	90 + on <u>-</u> o	EICHTEN	73 Linto	HLBC	+	nit on lonton family
number violation. ¹⁵ BERGSMA 83 gives	a limit or	the inverse muc	n deo	ay cross	s-sectio	n ratio $\sigma(\overline{\nu}_{\mu} e^- \rightarrow$
$\mu^- \overline{ u}_e)/\sigma(u_\mu e^- ightarrow$ small values like that	$\mu^- \nu_e$), quoted.	which is essentia	ly eq	uivalent	to Γ(e	$-\nu_e \overline{\nu}_{\mu})/\Gamma_{\text{total}}$ for
$\Gamma(e^-\gamma)/\Gamma_{total}$						Г5/Г
Forbidden by lepto	n family r	number conservat	ion.			
VALUE (units 10 - 11)	<u>CL%</u>	DOCUMENT ID		TECN	CHG	COMMENT
< 1.2 • • • We do not use the	90 e followin	BROOKS a data for average	99 s. fit	SPEC s. limits	+ . etc. •	LAMPF
< 1.2	00		.3, 110	SDEC		MEGA
< 4.9	90	BOLTON	88	CBOX	+	LAMPE
<100	90	AZUELOS	83	CNTR	+	TRIUME
< 17	90	KINNISON	82	SPEC	+	LAMPF
<100	90	SCHAAF	80	ELEC	+	SIN
Γ (e⁻e⁺e⁻)/Γ_{total} Forbidden by lepto	n family r	umber conservat	ion.			Г ₆ /Г
<u>VALUE</u> (units 10 ⁻¹²)	CL%	DOCUMENT ID		TECN	CHG	COMMENT
< 1.0	90	¹⁶ BELLGARDT	88	SPEC	+	SINDRUM
• • • VVe do not use the	e following	g data for average	es, fit	s, limits,	etc. •	••
< 36	90	BARANOV	91	SPEC	+	ARES
< 24	90	16 BERTI	00 85	SPEC	+	SINDRUM
<160	90	16 BERTL	84	SPEC	+	SINDRUM
<130	90	¹⁶ BOLTON	84	CNTR		LAMPF
¹⁶ These experiments a	ssume a c	onstant matrix el	emen	t.		
Γ (e2γ)/Γ_{total} Forbidden by lepto	n family r	umber conservat	ion.			Γ ₇ /Γ
VALUE (units 10 - 11)	<u>CL%</u>	DOCUMENT ID		TECN	CHG	COMMENT
< 7.2	90	BOLTON	88	свох	+	LAMPF
• • • We do not use the	e following	g data for average	es, fit	s, limits,	etc. •	••
< 840 <5000	90 90	¹⁷ AZUELOS ¹⁸ BOWMAN	83 78	CNTR CNTR	+	TRIUMF DEPOMMIER 77
¹⁷ AZUELOS 83 uses tl ¹⁸ BOWMAN 78 assun mass.	he phase s nes an int	pace distribution eraction Lagrang	of B ian I	OWMAN ocal on	N 78. the sc:	data ale of the inverse μ
L	іміт о	$N \mu^- \rightarrow e^- C$	ON	VERSI	DN	
Forbidden by le	pton fami	ly number conser	vat ior	۱.		
$\sigma(\mu^{-32}S \rightarrow e^{-32}S)$) / σ(μ	$^{32}S \rightarrow \nu_{\mu}^{32}$	P*)			
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMN</u>	1ENT
<7 × 10 ⁻¹¹	90	BADERT	80	STRC	SIN	
• • • We do not use the	e following	g data for average	es, fit	s, limits,	etc. •	••
$< 4 \times 10^{-10}$	90	BADERT	77	STRC	SIN	

$\sigma(\mu^- Cu \rightarrow e^- Cu) / \sigma(\mu^- Cu \rightarrow capture)$

VALUE <u>CL%</u> DOCUMENT ID TECN • • • We do not use the following data for averages, fits, limits, etc. • • •

 ${<}1.6\,\times10^{-8}$ 90 BRYMAN 72 SPEC

$\sigma(\mu^- \text{Ti} \rightarrow e^- \text{Ti}) / \sigma(\mu^- \text{Ti} \rightarrow \text{capture})$

	,	ii v capearej			
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$<4.3 \times 10^{-12}$	90	¹⁹ DOHMEN	93	SPEC	SINDRUM II
• • • We do not	use the follow	ing data for averag	es, fits	, limits,	etc. • • •
$< 4.6 \times 10^{-12}$	90	AHMAD	88	ТРС	TRIUMF
$< 1.6 \times 10^{-11}$	90	BRYMAN	85	TPC	TRIUME
¹⁹ DOHMEN 93 process enhan	assumes μ^{-} - iced by coheren	→ e ⁻ conversion ce and expected to	le aves o d o m i	the nuo nate.	cleus in its ground state, a

$\sigma(\mu^- Pb \rightarrow e^- Pb) / \sigma(\mu^- Pb \rightarrow capture)$

W ²	77 W.					
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$<4.6 \times 10^{-11}$	90	HONECKER	96	SPEC	SINDRUM II	
• • • We do not us	se the following	data for average	s, fits	, limits,	etc. • • •	
$< 4.9 imes 10^{-10}$	90	AHMAD	88	трс	TRIUME	

409

I

⁴¹⁰ Lepton Particle Listings

 μ

LIMIT ON $\mu^- \rightarrow e^+$ CONVERSION

Forbidden by total lepton number conservation.

$\sigma(\mu^{-32}S \rightarrow e$	+ ⁺³² Si*)/σ(μ	$^{-32}S \rightarrow \nu_{}^{32}$	² P*)				
VALUE	CL%	DOCUMENT ID	• •	TECN	сомм	IENT	
$<9 \times 10^{-10}$	90	BADERT	80	STRC	SIN		
• • • We do not	use the following	data for average	s, fits	, limits,	etc. •	••	
$<\!1.5\times10^{-9}$	90	BADERT	78	STRC	SIN		
$\sigma(\mu^{-127} \rightarrow e$	e ⁺¹²⁷ Sb*)/σ	$(\mu^{-127}) \rightarrow ar$	iythi	ng)			
VALUE	<u>CL%</u>	DOCUMENT ID	-	TECN	<u>сом</u> м	1ENT	
$< 3 \times 10^{-10}$	90	²⁰ ABELA	80	CNTR	Radio	chemical tech.	
²⁰ ABELA 80 is Limit for tota communicatio	upper limit for μ^- I conversion rate n).	e ⁺ conversion le is higher by a fac	ading tor le	; to part ss than	icle-sta 4 (G. E	ble states of ¹² 3ackenstoss, pri	⁷ St ivat
$\sigma(\mu^- Cu \rightarrow e^-)$	+Co) / σ(μ ⁻ C	$u \rightarrow \nu_{\mu} Ni$)					
VALUE	CL%	DOCUMENT ID		TECN			
• • • We do not	use the following	data for average	s, fits	, limits,	etc. •	••	
$< 2.6 \times 10^{-8}$	90	BRYMAN	72	SPEC			
$<$ 2.2 \times 10 ^{-7}	90	CONFORTO	62	0 SPK			
$\sigma(\mu^- \operatorname{Ti} \rightarrow e^+$	⁻ Ca) / σ(μ Τ	i→ capture)					
VALUE	<u>CL% EVTS</u>	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT	
$< 3.6 \times 10^{-11}$	90 1 21,2	²² KAULARD	98	SPEC	-	SINDRUM II	
• • • We do not	use the following	data for average	s, fits	, limits,	etc. •	••	
$< 1.7 \times 10^{-12}$	90 1 22,2	²³ kaulard	98	SPEC	-	SINDRUM II	
$< 4.3 \times 10^{-12}$	90	²³ dohmen	93	SPEC		SINDRUM II	
$<$ 8.9 $ imes$ 10 $^{-11}$	90	²¹ dohmen	93	SPEC		SINDRUM II	
$< 1.7 \times 10^{-10}$	90	²⁴ ahmad	88	ТРС		TRIUMF	
²¹ This limit assu and width bot	umes a giant resor :h 20 Me∨).	ance excitation o	f the	daughte	r Ca nı	ucleus (mean en	ierg
22KALLARD 98	3 obtained these :	same limits using	the	unified o	Lassic a	I analysis of FE	ELD

 $^{\rm MAN}$ 98. $^{\rm 23}{\rm This}$ limit assumes the daughter Ca nucleus is left in the ground state. However, the

probability of this is unknown. ²⁴ Assuming a giant-resonance-excitation model.

LIMIT ON MUONIUM -> ANTIMUONIUM CONVERSION

Forbidden by lepton family number conservation.

$R_g = G_C / G_F$

The effective Lagrangian for the $\mu^+ e^-
ightarrow \mu^- e^+$ conversion is assumed to be

 $\mathcal{L} = 2^{-1/2} G_C \left[\bar{\psi}_{\mu} \gamma_{\lambda} (1 - \gamma_5) \psi_e \right] \left[\bar{\psi}_{\mu} \gamma_{\lambda} (1 - \gamma_5) \psi_e \right] + \text{h.c.}$ The experimental result is then an upper limit on G_C/G_F , where G_F is the Fermi

couping co	nstant.							
VALUE	CL%	EVTS		DOCUMENT ID		TECN	CHG	COMMENT
< 0.0030	90	1	25	WILLMANN	99	SPEC	+	μ^+ at 26 GeV/ c
• • • We do not	use the	follow	/ing o	lata for averages	, fits	, limits,	etc. •	••
< 0.14	90	1	26	GORDEEV	97	SPEC	+	JINR phasotron
< 0.018	90	0	27	ABELA	96	SPEC	+	μ^+ at 24 MeV
< 6.9	90			NI	93	CBOX		LAMPF
< 0.16	90			MATTHIAS	91	SPEC		LAMPF
< 0.29	90			HUBER	90B	CNTR		TRIUME
< 20	95			BEER	86	CNTR		TRIUMF
< 42	95			MARSHALL	82	CNTR		
²⁵ WILLMANN 9	99 quote	e both	prob	ability P _{M M} <	8.3 >	10-11	at 90	%CL in a 0.1 T field

and $R_g = G_C/G_F$.

²⁶ GORDEEV 97 quote limits on both $f=G_{MM}/GF$ and the probability $W_{MM} < 4.7 \times 10^{-7}$ (90%CL).

27 ABELA 96 quote both probability $P_{M\overline{M}}$ < 8 × 10⁻⁹ at 90% CL and $R_g = G_C/G_F$.

MUON DECAY PARAMETERS

Revised September 2001 by W. Fetscher and H.-J. Gerber (ETH Zürich).

Introduction: All measurements in direct muon decay, $\mu^- \rightarrow e^- + 2$ neutrals, and its inverse, $\nu_{\mu} + e^- \rightarrow \mu^- + \text{neutral}$, are successfully described by the "V-A interaction", which is a particular case of a local, derivative-free, lepton-numberconserving, four fermion interaction [1]. As shown below, within this framework, the Standard Model assumptions, such as the V-A form and the nature of the neutrals (ν_{μ} and $\bar{\nu}_e$), and hence the doublet assignments ($\nu_e \ e^-$)_L and ($\nu_{\mu} \ \mu^-$)_L, have been determined from experiments [2,3]. All considerations on muon decay are valid for the leptonic tau decays $\tau \to \ell + \nu_{\tau} + \bar{\nu}_{e}$ with the replacements $m_{\mu} \to m_{\tau}, m_{e} \to m_{\ell}$.

Parameters: The differential decay probability to obtain an e^{\pm} with (reduced) energy between x and x + dx, emitted in the direction \hat{x}_3 at an angle between ϑ and $\vartheta + d\vartheta$ with respect to the muon polarization vector \boldsymbol{P}_{μ} , and with its spin parallel to the arbitrary direction $\hat{\boldsymbol{\zeta}}$, neglecting radiative corrections, is given by

$$\begin{split} \frac{d^2\Gamma}{dx \ d\cos\vartheta} &= \frac{m_{\mu}}{4\pi^3} \ W_{e\mu}^4 \ G_F^2 \ \sqrt{x^2 - x_0^2} \\ &\times (F_{\rm IS}(x) \pm P_{\mu}\cos\vartheta \ F_{\rm AS}(x)) \\ &\times \left[1 + \widehat{\boldsymbol{\zeta}} \cdot \boldsymbol{P}_e(x,\vartheta) \right] \ . \end{split}$$

Here, $W_{e\mu} = \max(E_e) = (m_{\mu}^2 + m_e^2)/2m_{\mu}$ is the maximum e^{\pm} energy, $x = E_e/W_{e\mu}$ is the reduced energy, $x_0 = m_e/W_{e\mu} =$ 9.67×10^{-3} , and $P_{\mu} = |\mathbf{P}_{\mu}|$ is the degree of muon polarization. $\widehat{\boldsymbol{\zeta}}$ is the direction in which a perfect polarization-sensitive electron detector is most sensitive. The isotropic part of the spectrum, $F_{\rm IS}(x)$, the anisotropic part $F_{\rm AS}(x)$ and the electron polarization, $\mathbf{P}_e(x, \vartheta)$, may be parametrized by the Michel parameters [1,4] ρ , η , ξ , δ , etc. These are bilinear combinations of the coupling constants $g_{\varepsilon\mu}^{\gamma}$, which occur in the matrix element (given below).

If the masses of the neutrinos as well as x_0^2 are neglected, the energy and angular distribution of the electron in the rest frame of a muon (μ^{\pm}) measured by a polarization insensitive detector, is given by

$$\begin{aligned} \frac{d^2\Gamma}{dx\;d\cos\vartheta} &\sim x^2 \cdot \left\{ 3(1-x) + \frac{2\rho}{3}(4x-3) + 3\eta\;x_0(1-x)/x \\ &\pm P_\mu \cdot \xi \cdot \cos\vartheta \left[1 - x + \frac{2\delta}{3}(4x-3) \right] \right\} \;. \end{aligned}$$

Here, ϑ is the angle between the electron momentum and the muon spin, and $x \equiv 2E_e/m_\mu$. For the Standard Model coupling, we obtain $\rho = \xi \delta = 3/4$, $\xi = 1$, $\eta = 0$ and the differential decay rate is

$$\frac{d^2\Gamma}{dx \ d\cos\vartheta} \ = \ \frac{G_F^2 m_\mu^5}{192\pi^3} \ [3 - 2x \pm P_\mu \cos\vartheta(2x - 1)] \ x^2 \quad . \ \ (3)$$

The coefficient in front of the square bracket is the total decay rate.

If only the neutrino masses are neglected, and if the e^{\pm} polarization is detected, then the functions in Eq. (1) become

$$F_{\rm IS}(x) = x(1-x) + \frac{2}{9} \rho(4x^2 - 3x - x_0^2) + \eta \cdot x_0(1-x)$$

$$F_{\rm AS}(x) = \frac{1}{3} \xi \sqrt{x^2 - x_0^2}$$

$$\times \left[1 - x + \frac{2}{3} \delta \left(4x - 3 + \left(\sqrt{1 - x_0^2} - 1 \right) \right) \right]$$

$$\boldsymbol{P}_e(x, \vartheta) = P_{\rm T_1} \cdot \hat{\boldsymbol{x}}_1 + P_{\rm T_2} \cdot \hat{\boldsymbol{x}}_2 + P_L \cdot \hat{\boldsymbol{x}}_3 . \tag{4}$$

Here \widehat{x}_1 , \widehat{x}_2 , and \widehat{x}_3 are orthogonal unit vectors defined as follows:

 $\widehat{m{x}}_3$ is along the e momentum $m{p}_e$

$$\begin{array}{l} \displaystyle \frac{\boldsymbol{x}_3 \times \boldsymbol{P}_{\mu}}{|\widehat{\boldsymbol{x}}_2 \times \boldsymbol{P}_{\mu}|} = \widehat{\boldsymbol{x}}_2 & \text{is transverse to } \boldsymbol{p}_e \text{ and perpendicular} \\ & \text{to the "decay plane"} \\ \displaystyle \widehat{\boldsymbol{x}}_2 \times \widehat{\boldsymbol{x}}_3 = \widehat{\boldsymbol{x}}_1 & \text{is transverse to the } \boldsymbol{p}_e \text{ and in the} \\ & \text{"decay plane."} \end{array}$$

The components of \boldsymbol{P}_e then are given by

$$\begin{split} P_{\mathrm{T}_{1}}(x,\vartheta) &= P_{\mu}\sin\vartheta \cdot F_{\mathrm{T}_{1}}(x)/\left(F_{\mathrm{IS}}(x) \pm P_{\mu}\cos\vartheta \cdot F_{\mathrm{AS}}(x)\right) \\ P_{\mathrm{T}_{2}}(x,\vartheta) &= P_{\mu}\sin\vartheta \cdot F_{\mathrm{T}_{2}}(x)/\left(F_{\mathrm{IS}}(x) \pm P_{\mu}\cos\vartheta \cdot F_{\mathrm{AS}}(x)\right) \\ P_{L}(x,\vartheta) &= \left(\pm F_{\mathrm{IP}}(x) + P_{\mu}\cos\vartheta \\ &\times F_{\mathrm{AP}}(x)\right)/\left(F_{\mathrm{IS}}(x) \pm P_{\mu}\cos\vartheta \cdot F_{\mathrm{AS}}(x)\right) \ , \end{split}$$

where

$$\begin{split} F_{\mathrm{T}_{1}}(x) &= \frac{1}{12} \left\{ -2 \left[\xi'' + 12(\rho - \frac{3}{4}) \right] (1 - x) x_{0} \\ &- 3\eta (x^{2} - x_{0}^{2}) + \eta'' (-3x^{2} + 4x - x_{0}^{2}) \right\} \\ F_{\mathrm{T}_{2}}(x) &= \frac{1}{3} \sqrt{x^{2} - x_{0}^{2}} \left\{ 3 \frac{\alpha'}{A} (1 - x) + 2 \frac{\beta'}{A} \sqrt{1 - x_{0}^{2}} \right\} \\ F_{\mathrm{IP}}(x) &= \frac{1}{54} \sqrt{x^{2} - x_{0}^{2}} \left\{ 9 \xi' \left(-2x + 2 + \sqrt{1 - x_{0}^{2}} \right) \right. \\ &+ 4\xi (\delta - \frac{3}{4}) (4x - 4 + \sqrt{1 - x_{0}^{2}}) \right\} \\ F_{\mathrm{AP}}(x) &= \frac{1}{6} \left\{ \xi'' (2x^{2} - x - x_{0}^{2}) + 4(\rho - \frac{3}{4}) \left(4x^{2} - 3x - x_{0}^{2} \right) \right. \end{split}$$
(5)

For the experimental values of the parameters ρ , ξ , ξ' , ξ'' , δ , η , η'' , α/A , β/A , α'/A , β'/A , which are not all independent, see the Data Listings below. Experiments in the past have also been analyzed using the parameters a, b, c, a', b', c', α/A , β/A , α'/A , β'/A (and $\eta = (\alpha - 2\beta)/2A$), as defined by Kinoshita and Sirlin [5]. They serve as a model-independent summary of all possible measurements on the decay electron (see Listings below). The relations between the two sets of parameters are

$$\begin{split} \rho &- \frac{3}{4} \; = \; \frac{3}{4}(-a+2c)/A \;, \\ \eta &= (\alpha - 2\beta)/A \;, \\ \eta'' &= (3\alpha + 2\beta)/A \;, \\ \delta &- \frac{3}{4} \; = \; \frac{9}{4} \; \cdot \; \frac{(a'-2c')/A}{1-[a+3a'+4(b+b')+6c-14c']/A} \;, \\ 1 &- \xi \frac{\delta}{\rho} \; = \; 4 \; \frac{[(b+b')+2(c-c')]/A}{1-(a-2c)/A} \;, \\ 1 &- \xi' \; = \; [(a+a')+4(b+b')+6(c+c')]/A \;, \\ 1 &- \xi'' \; = \; (-2a+20c)/A \;, \end{split}$$

where

$$A = a + 4b + 6c . (6)$$

411 Lepton Particle Listings

 μ

The differential decay probability to obtain a *left-handed* ν_e with (reduced) energy between y and y + dy, neglecting radiative corrections as well as the masses of the electron and of the neutrinos, is given by [6]

$$\frac{d\Gamma}{dy} = \frac{m_{\mu}^5 \ G_F^2}{16\pi^3} \cdot Q_L^{\nu_e} \cdot y^2 \Big\{ (1-y) - \omega_L \cdot (y - \frac{3}{4}) \Big\} .$$
(7)

Here, $y = 2 E_{\nu_e}/m_{\mu}$. $Q_L^{\nu_e}$ and ω_L are parameters. ω_L is the neutrino analog of the spectral shape parameter ρ of Michel. Since in the Standard Model, $Q_L^{\nu_e} = 1$, $\omega_L = 0$, the measurement of $d\Gamma/dy$ has allowed a null-test of the Standard Model (see Listings below).

Matrix element: All results in direct muon decay (energy spectra of the electron and of the neutrinos, polarizations, and angular distributions) and in inverse muon decay (the reaction cross section) at energies well below $m_W c^2$ may be parametrized in terms of amplitudes $g_{\varepsilon\mu}^{\gamma}$ and the Fermi coupling constant G_F , using the matrix element

$$\frac{4G_F}{\sqrt{2}} \sum_{\substack{\gamma = S, V, T\\\varepsilon, \mu = R, L}} g_{\varepsilon\mu}^{\gamma} \langle \bar{e}_{\varepsilon} | \Gamma^{\gamma} | (\nu_{\varepsilon})_n \rangle \langle \bar{\nu}_{\mu} \rangle_m | \Gamma_{\gamma} | \mu_{\mu} \rangle.$$
(8)

We use the notation of Fetscher *et al.* [2], who in turn use the sign conventions and definitions of Scheck [7]. Here, $\gamma = S, V, T$ indicates a scalar, vector, or tensor interaction; and $\varepsilon, \mu = R, L$ indicate a right- or left-handed chirality of the electron or muon. The chiralities n and m of the ν_e and $\bar{\nu}_{\mu}$ are then determined by the values of γ, ε , and μ . The particles are represented by fields of definite chirality [8].

As shown by Langacker and London [9], explicit lepton-number nonconservation still leads to a matrix element equivalent to Eq. (8). They conclude that it is not possible, even in principle, to test lepton-number conservation in (leptonic) muon decay if the final neutrinos are massless and are not observed.

The ten complex amplitudes $g_{\ell\mu}^{\gamma}$ (g_{RR}^{T} and g_{LL}^{T} are identically zero) and G_{F} constitute 19 independent (real) parameters to be determined by experiment. The Standard Model interaction corresponds to one single amplitude g_{LL}^{V} being unity and all the others being zero.

The (direct) muon decay experiments are compatible with an arbitrary mix of the scalar and vector amplitudes g_{LL}^S and g_{LL}^V – in the extreme even with purely scalar $g_{LL}^S = 2$, $g_{LL}^V = 0$. The decision in favour of the Standard Model comes from the quantitative observation of inverse muon decay, which would be forbidden for pure g_{LL}^S [2].

Experimental determination of V-A: In order to determine the amplitudes $g_{\varepsilon\mu}^{\gamma}$ uniquely from experiment, the following set of equations, where the left-hand sides represent experimental results, has to be solved.

$$\begin{split} &a = 16(|g_{RL}^V|^2 + |g_{LR}^V|^2) + |g_{RL}^S + 6g_{RL}^T|^2 + |g_{LR}^S + 6g_{LR}^T|^2 \\ &a' = 16(|g_{RL}^V|^2 - |g_{LR}^V|^2) + |g_{RL}^S + 6g_{RL}^T|^2 - |g_{LR}^S + 6g_{LR}^T|^2 \\ &\alpha = 8\text{Re}\left\{g_{RL}^V(g_{LR}^{S*} + 6g_{LR}^T) + g_{LR}^V(g_{RL}^{S*} + 6g_{RL}^T)\right\} \end{split}$$

$$\begin{split} \alpha' &= 8 \mathrm{Im} \left\{ g_{LR}^V (g_{RL}^{S*} + 6g_{RL}^{T*}) - g_{RL}^V (g_{LR}^{S*} + 6g_{LR}^{T*}) \right\} \\ b &= 4 (|g_{RR}^V|^2 + |g_{LL}^V|^2) + |g_{RR}^S|^2 + |g_{LL}^S|^2 \\ b' &= 4 (|g_{RR}^V|^2 - |g_{LL}^V|^2) + |g_{RR}^S|^2 - |g_{LL}^S|^2 \\ \beta &= -4 \mathrm{Re} \left\{ g_{RR}^V g_{LL}^{S*} + g_{LL}^V g_{RR}^{S*} \right\} \\ \beta' &= 4 \mathrm{Im} \left\{ g_{RR}^V g_{LL}^{S*} - g_{LL}^V g_{RR}^{S*} \right\} \\ c &= \frac{1}{2} \left\{ |g_{RL}^S - 2g_{RL}^T|^2 + |g_{LR}^S - 2g_{LR}^T|^2 \right\} \\ c' &= \frac{1}{2} \left\{ |g_{RL}^S - 2g_{RL}^T|^2 - |g_{LR}^S - 2g_{LR}^T|^2 \right\} \\ \mathrm{and} \\ Q_L^{\nu_e} &= 1 - \left\{ \frac{1}{4} |g_{LR}^S|^2 + \frac{1}{4} |g_{LL}^S|^2 + |g_{RR}^V|^2 + |g_{RL}^V|^2 + 3|g_{LR}^T|^2 \right\} \\ \omega_L &= \frac{3}{4} \frac{\{|g_{RR}^S|^2 + 4|g_{RR}^V|^2 + 4|g_{LL}^V|^2 + 4|g_{LR}^V|^2 + 12|g_{RL}^T|^2 \} \\ . \end{split}$$

It has been noted earlier by C. Jarlskog [10], that certain experiments observing the decay electron are especially informative if they yield the V-A values. The complete solution is now found as follows. Fetscher *et al.* [2] introduced four probabilities $Q_{\varepsilon\mu}(\varepsilon, \mu = R, L)$ for the decay of a μ -handed muon into an ε -handed electron and showed that there exist upper bounds on Q_{RR} , Q_{LR} , and Q_{RL} , and a lower bound on Q_{LL} . These probabilities are given in terms of the $g_{\varepsilon\mu}^{2}$'s by

$$Q_{\varepsilon\mu} = \frac{1}{4} |g_{\varepsilon\mu}^S|^2 + |g_{\varepsilon\mu}^V|^2 + 3(1-\delta_{\varepsilon\mu})|g_{\varepsilon\mu}^T|^2 , \qquad (9)$$

where $\delta_{\varepsilon\mu} = 1$ for $\varepsilon = \mu$, and $\delta_{\varepsilon\mu} = 0$ for $\varepsilon \neq \mu$. They are related to the parameters a, b, c, a', b', and c' by

$$Q_{RR} = 2(b + b')/A ,$$

$$Q_{LR} = [(a - a') + 6(c - c')]/2A ,$$

$$Q_{RL} = [(a + a') + 6(c + c')]/2A ,$$

$$Q_{LL} = 2(b - b')/A ,$$
(10)

with A = 16. In the Standard Model, $Q_{LL} = 1$ and the others are zero.

Since the upper bounds on Q_{RR} , Q_{LR} , and Q_{RL} are found to be small, and since the helicity of the ν_{μ} in pion decay is known from experiment [11,12] to very high precision to be -1 [13], the cross section S of *inverse* muon decay, normalized to the V-A value, yields [2]

$$|g_{LL}^S|^2 \le 4(1-S) \tag{11}$$

 and

$$|g_{LL}^V|^2 = S . (12)$$

Thus the Standard Model assumption of a pure V-A leptonic charged weak interaction of e and μ is derived (within errors) from experiments at energies far below mass of the W^{\pm} : Eq. (12) gives a lower limit for V-A, and Eqs. (9) and (11) give upper limits for the other four-fermion interactions. The existence of such upper limits may also be seen from $Q_{RR}+Q_{RL}=(1-\xi')/2$ and $Q_{RR}+Q_{LR} = \frac{1}{2}(1+\xi/3-16\ \xi\delta/9)$. Table 1 gives the current experimental limits on the magnitudes of the $g_{\varepsilon\mu}^{\gamma}$'s.

Limits on the "charge retention" coordinates, as used in the older literature (e.g., Ref. 16), are given by Burkard et al. [17]. **Table 1.** Coupling constants $g_{\varepsilon\mu}^{\gamma}$. Ninety-percent confidence level experimental limits. The limits on $|g_{LL}^S|$ and $|g_{LL}^V|$ are from Ref. 14, and the others are from Ref. 15. The experimental uncertainty on the muon polarization in pion decay is included. Note that, by definition, $|g_{\varepsilon\mu}^S| \leq 2$, $|g_{\varepsilon\mu}^V| \leq 1$ and $|g_{\varepsilon\mu}^T| \leq 1/\sqrt{3}$.

$ g_{RR}^{S} < 0.066$	$ g_{RR}^{V} < 0.033$	$ g_{RR}^{T} \equiv 0$
$ g_{LR}^{S} < 0.125$	$ g_{LR}^{V} < 0.060$	$\left g_{LR}^{T}\right < 0.036$
$\left g_{RL}^{S}\right < 0.424$	$ g_{RL}^{V} < 0.110$	$\left \boldsymbol{g}_{RL}^T \right < 0.122$
$ g_{LL}^{S} < 0.550$	$ g_{LL}^V > 0.960$	$ g_{LL}^T \equiv 0$

References

- 1. L. Michel, Proc. Phys. Soc. A63, 514 (1950).
- W. Fetscher, H.-J. Gerber, and K.F. Johnson, Phys. Lett. B173, 102 (1986).
- 3. P. Langacker, Comm. Nucl. Part. Phys. 19, 1 (1989).
- 4. C. Bouchiat and L. Michel, Phys. Rev. 106, 170 (1957).
- 5. T. Kinoshita and A. Sirlin, Phys. Rev. 108, 844 (1957).
- 6. W. Fetscher, Phys. Rev. D49, 5945 (1994).
- F. Scheck, in *Electroweak and Strong Interactions* (Springer Verlag, 1996).
- 8. K. Mursula and F. Scheck, Nucl. Phys. B253, 189 (1985).
- 9. P. Langacker and D. London, Phys. Rev. D39, 266 (1989).
- 10. C. Jarlskog, Nucl. Phys. 75, 659 (1966).
- A. Jodidio *et al.*, Phys. Rev. **D34**, 1967 (1986);
 A. Jodidio *et al.*, Phys. Rev. **D37**, 237 (1988).
- 12. L.Ph. Roesch et al., Helv. Phys. Acta 55, 74 (1982).
- 13. W. Fetscher, Phys. Lett. 140B, 117 (1984).
- S.R. Mishra *et al.*, Phys. Lett. **B252**, 170 (1990);
 S.R. Mishra, private communication;
 See also P. Vilain *et al.*, Phys. Lett. **B364**, 121 (1995).
- 15. B. Balke et al., Phys. Rev. D37, 587 (1988).
- 16. S.E. Derenzo, Phys. Rev. 181, 1854 (1969).
- 17. H. Burkard et al., Phys. Lett. 160B, 343 (1985).

μ DECAY PARAMETERS

(V-A) theory	predicts $\rho =$	= 0.75.			
VALUE	EVIS	DOCUMENTID	TECN	CHG	COMMENT
0.7518 ± 0.0026		DERENZO (59 R.V.U	E	
• • • We do not use	the followi	ng data for averages,	fits, limi	ts, etc.	• • •
0.762 ± 0.008	170k	28 FRYBERGER	8 ASP	κ +	25−53 MeV e+
0.760 ± 0.009	280 k	28 SHERWOOD	7 ASP	κ +	25-53 MeV e+
0.7503 ± 0.0026	800 k	²⁸ PEOPLES	6 ASP	κ +	20—53 Me∨ e+
$\frac{28}{\eta}$ constrained = 0 DERENZO 69.). These v	alues incorporated int	o atwo	paramet	er fit to $ ho$ and η by
η PARAMETER (V-A) theory	predicts η =	= 0.			
VALUE	EVTS	DOCUMENT ID	TI	CN CF	HG COMMENT

- 0.007±0.013 OUR	AVERAGE	-			
$-\; 0.007 \pm 0.013$	5.3M	²⁹ BURKARD	85B FIT	+	9–53 MeV e+
$-\; 0.1\; 2 \;\; \pm 0.\; 21$	6346	DERENZO	69 HBC	+	1.6-6.8 MeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

$-~0.012\pm0.015\pm0.003$	5.3M	³⁰ BURKARD	85 B CNTR	+	953 MeV e+
$0.011 \pm 0.081 \pm 0.026$	5.3M	BURKARD	85 B CNTR	+	9-53 MeV e+
-0.7 ± 0.5	170k	³¹ FRYBERGER	68 ASPK	+	25-53 MeV e ⁺
-0.7 ± 0.6	280k	³¹ SHERWOOD	67 ASPK	+	25-53 MeV e+
0.05 ± 0.5	800k	³¹ PEOPLES	66 ASPK	+	20–53 MeV e ⁺
-2.0 ± 0.9	9213	³² PLANO	60 HBC	+	Whole spec- trum

²⁹Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B. ${}^{30}\alpha = \alpha' = 0$ assumed. ${}^{31}\rho$ constrained = 0.75.

31

 32 Two parameter fit to ρ and η ; PLANO 60 discounts value for η .

δ PARAMETER

predicts $\delta = 0.75$

	(v = A) theory predic		J.				
VALUE		EVTS	DOCUMENT ID		TECN	CHG	COMMENT
0.748	$5 \pm 0.0026 \pm 0.0028$		³³ BALKE	88	SPEC	+	Surface μ^+ 's
• • •	We do not use the	following da	ata for averages,	fits, I	imits, et	c. • •	•
			³⁴ VOSSLER	69			
0.752	± 0.009	490k	FRYBERGER	68	ASPK	+	25-53 MeV e+
0.782	± 0.031		KRUGER	61			
0.78	±0.05	8354	PLANO	60	HBC	+	Whole spec-

 33 BALKE 88 uses ho = 0.752 \pm 0.003.

³⁴VOSSLER 69 has measured the asymmetry below 10 MeV. See comments about radiative corrections in VOSSLER 69.

(*ξ* **PARAMETER**)×(*μ* LONGITUDINAL POLARIZATION)

	$(v - A)$ theory predicts $\xi = 1$, longitudinal polarization = 1.							
VALUE		EVTS	DOCUMENT ID		TECN	CHG	COMMENT	
1.0027	$7 \pm 0.0079 \pm 0.0030$		BELTRAMI	87	CNTR		SIN, π decay in flight	
• • •	We do not use the	following da	ta for averages, f	its, I	imits, et	C. • •	•	
1.0013	$3\pm0.0030\pm0.0053$	3	⁵ imazato	92	SPEC	+	$K^+ \rightarrow \mu^+ \nu_{\mu}$	
0.975	± 0.015		AKHMANOV	68	EMUL		140 kG	
0.975	±0.030	66k	GUREVICH	64	EMUL		See AKHMA- NOV 68	
0.903	± 0.027	3	⁶ ALI-ZADE	61	EMUL	+	27 kG	
0.93	± 0.06	8354	PLANO	60	HBC	+	8.8 kG	
0.97	±0.05	9k	BARDON	59	CNTR		Bromoform target	

³⁵ The corresponding 90% confidence limit from IMAZATO 92 is $|\xi P_{\mu}| > 0.990$. This measurement is of K^+ decay, not π^+ decay, so we do not include it in an average, nor do we yet set up a separate data block for K results ³⁶Depolarization by medium not known sufficiently well.

C. (... LONCITUDINAL DOLARIZATION) V. S. (...

$\zeta \times (\mu \text{ condition})$	INL FUL	ANIZATION	~ '	ΓΡ		
VALUE	CL%	DOCUMENT ID		TECN	CHG	COMMENT
>0.99682	90 3		86	SPEC	+	TRIUME
• • • We do not use the	following	data for averages	s, fits	, limits,	etc. •	••
> 0.9966	90 3	^B STOKER	85	SPEC	+	μ -spin rotation
> 0.995 9	90	CARR	83	SPEC	+	11 kG
37 JODIDIO 86 includes	data from	CARR 83 and S	ток	ER 85.	The va	alue here is from the

sector of the s theory, $(\delta / \rho) = 1.0$.

$\epsilon' = \text{LONGITUDINAL POLARIZATION OF } e^+$

(V-A) theory predicts the longitudinal polarization $= \pm 1$ for e^{\pm} , respectively. We have flipped the sign for e so our programs can average.

VALUE	EVIS	DOCUMENTID		TECN	CHG	COMMENT
1.00 ± 0.04	OUR AVERAGE					
0.998 ± 0.045	1 M	BURKARD	85	CNTR	+	Bhabha + annihil
0.89 ± 0.28	29k	SCH WART Z	67	0 SPK	-	Moller scattering
0.94 ± 0.38		BLOOM	64	CNTR	+	Brems. transmiss.
1.04 ± 0.18		DUCLOS	64	CNTR	+	Bhabha scattering
$1.05 \hspace{0.2cm} \pm \hspace{0.2cm} 0.30$		BUHLER	63	CNTR	+	Annihilation
ξ" PARAM	ETER					

VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
0.65 ± 0.36	326k	³⁹ BURKARD	85	CNTR	+	Bhabha + annihil
³⁹ BURKARD 85 mea	sure (ξ ¹¹ -	$\xi\xi')/\xi$ and ξ' and s	set ξ	= 1.		

TRANSVERSE e^+ POLARIZATION IN PLANE OF μ SPIN, e^+ MOMENтим

EVTS DOCUMENT ID TECN CHG COMMENT VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • 0.016±0.021±0.01 5.3M BURKARD 85B CNTR + Annihil 9–53 MeV

TRANSVERSE e^+ POLARIZATION NORMAL TO PLANE OF μ SPIN, e^+ MOMENTUM T invariance hold

VALUE	EVTS	DOCUMENT ID	TECN	CHG	COMMENT
$0.007 \pm 0.022 \pm 0.007$	5.3M	BURKARD	85B CNTR	+	Annihil 9–53 MeV

Lepton Particle Listings

μ

413

α/Α						
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID	TECN	CHG	COMMENT	
0.4± 4.3		⁴⁰ BURKARD	85B FIT			
\bullet \bullet \bullet We do not use t	he following	g data for averag	es, fits, limits	, etc. 🔹	•••	
$15 \hspace{0.2cm} \pm 5.0 \hspace{0.2cm} \pm 14$	5.3M	BURKARD	85 B CNTF	2 +	9-53 MeV e+	
⁴⁰ Global fit to all BURKARD 85B.	measured	parameters.	Correlation	coeffici	ents are given	i in
α'/A						
Ζero if Τ invariar	nce holds.					
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID	TECN	CHG	COMMENT	
-0.2 ± 4.3		⁴¹ BURKARD	85B FIT			
• • • We do not use t	he following	g data for averag	es, fits, limits	, etc. 🔹	••	

-47 ±50 ±14 5.3M ⁴² BURKARD 85B CNTR + 9-53 MeV e⁺ $^{41}\,\mathrm{Global}$ fit to all measured parameters. Correlation coefficients are given in BURKARD 85B

 42 BURKARD 85B measure e^+ polarizations P_{T_1} and P_{T_2} versus e^+ energy.

B/A

VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID	TECN	CHG	COMMENT

- 3.9 ± 6.2 43 BURKARD 858 FIT • • • We do not use the following data for averages, fits, limits, etc. • • •
- 2 ±17 ±6 5.3M BURKARD 85B CNTR + 9-53 MeV e⁺
- $^{43}\,\text{Global}$ fit to all measured parameters. Correlation coefficients are given in BURKARD 858.

β'/A

. Zero if T invariance holds.

VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID	TECN	CHG	COMMENT	
1.5 ± 6.3		44 BURKARD	85B FIT			

- • We do not use the following data for averages, fits, limits, etc. • •
- 17 \pm 17 \pm 6 5.3M ⁴⁵ BURKARD 85B CNTR + 9–53 MeV e⁺
- ⁴⁴ Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B
- 45 BURKARD 85B measure e^+ polarizations P $_{T_1}$ and P $_{T_2}$ versus e^+ energy.

a/A

- This comes from an alternative parameterization to that used in the Summary Table (see the "Note on Muon Decay Parameters" above).
- VALUE (units 10⁻³) CL% DOCUMENT ID TECN
- • We do not use the following data for averages, fits, limits, etc. • •
- 90 46 BURKARD 85B FIT <15.9
- ⁴⁶Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B

a'/A

This comes from an alternative parameterization to that used in the Summary Table (see the "Note on Muon Decay Parameters" above).

- VALUE (units 10⁻³) DOCUMENT ID TECN
- • We do not use the following data for averages, fits, limits, etc. • •

47 BURKARD 856 FIT 5.3 ± 4.1

⁴⁷Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B.

(b'+b)/A

This comes from an alternative parameterization to that used in the Summary Table (see the "Note on Muon Decay Parameters" above).

- VALUE (units 10⁻³) CL% DOCUMENT ID TECN • • • We do not use the following data for averages, fits, limits, etc. • •
- 90 ⁴⁸ BURKARD 85B FIT <1.04

 $^{48}\,{\rm Global}\,$ fit to all measured parameters. Correlation coefficients are given in BURKARD 858.

c/A

- This comes from an alternative parameterization to that used in the Summary Table (see the "Note on Muon Decay Parameters" above).
- VALUE (units 10⁻³) CL% DOCUMENT ID TECN
- • We do not use the following data for averages, fits, limits, etc. • •
- 90 ⁴⁹ BURKARD 85B FIT < 6.4
- ⁴⁹Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B.

c'/A

- This comes from an alternative parameterization to that used in the Summary Table (see the "Note on Muon Decay Parameters" above).
- VALUE (units 10⁻³) DOCUMENT ID TECN
- • We do not use the following data for averages, fits, limits, etc. •
- ⁵⁰ BURKARD 858 FIT 3.5 ± 2.0
- ⁵⁰Global fit to all measured parameters. Correlation coefficients are given in BURKARD 85B.

 μ , au

		_	_	_	
77 PARAMETER					
$(V-A)$ theory predicts $\overline{\eta} = 0$. η affects spectru	um d	of radiat	ive mu	ion decay.
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
0.02 ± 0.08 OUR AVERAGE					
-0.014 ± 0.090	EICHENBER	84	ELEC	+	ρ free
$+0.09 \pm 0.14$	BOGART	67	CNTR	+	
\bullet \bullet \bullet We do not use the following	data for averages,	fits	, limits,	etc. •	••
$-\; 0.035 \pm 0.098$	EICHENBER	84	ELEC	+	$ ho\!=\!0.75$ assumed
	μ REFERENCE	ES			

MOHR physics nist	04 aou /c	RMP (to be publ.)	P.J. Mohr, B.N. Taylor	(NIST)
AHMED	02	PR D65 112002	M. Ahmed et al.	(MEGA Collab.)
BENNETT	02	PRL 89 101804	G.W. Bennett et al.	(Muon(g-2) Collab.)
BROWN	01	PRE 86 2227 PR D62 091101R	H.N. Brown et al. H.N. Brown et al.	(Muon(g-2) Collab.) (BNI/G-2 Collab.)
MEYER	00	PRL 84 1136	V. Meyer et al.	(612) 6 2 (6116.)
BROOKS	99	PRL 83 1521	M.L. Brooks et al.	(MEGA/LAMPF Collab.)
HUGHES	99	RMP /1 5133 PRI 82 711	W. Liu et al.	(LAMPE Collab.)
MOHR	99	JPCRD 28 1713	P.J. Mohr, B.N. Taylor	(NIST)
A Iso	00	RMP 72 351	P.J. Mohr, B.N. Taylor	(NIST)
VVILLMANN EFLDMAN	99	PKL 82 49 PR D57 3873	G Feldman R D Cousins	
KAULARD	98	PL B422 334	J. Kaulard et al.	(SINDRUM-II Collab.)
GORDEEV	97	PAN 60 1164	V.A. Gordeev et al.	(PN PI)
ABELA	96	PRL 77 1950	R. Abela et al.	(PSI, ZURI, HEIDH, TBIL+)
HONECKER	96	PRL 76 200	W. Honecker et al.	(SINDRUM II Collab.)
DOHMEN	93	PL B317 631	C. Dohmen et al.	(PSI SINDRUM-II Collab.)
NI	93	PR D48 1976	B. Ni et al.	(LAMPF Crystal Box Collab.)
IMA ZAT O	92	PRL 69 877	J. Imazato et al.	(KEK, INUS, TOKY+)
BARANOV	91	SJNP 53 802 Translated from YAE 53	V.A. Baranov et al. 1302	(JINR)
KRAKAUER	91B	PL B263 534	D.A. Krakauer et al.	(UMD, UCI, LANL)
MATTHIAS	91	PRL 66 2716	B.E. Matthias et al.	(YALE, HEIDP, WILL+)
HUBER	90B	PRE 67 952 enatum PR D41 2709	T M Huber et al.	(WYOM VICT ARIZ+)
AHMAD	88	PR D38 2102	S. Ahmad et al.	(TRIÙ, VICT, VPI, BRCO+)
Also	87	PRL 59 970 DR D27 507	S. Ahmad et al. B. Balko et al.	(TRIU, VPI, VICT, BRCO+)
BELLGARDT	88	NP B299 1	U. Bellgardt et al.	(SINDRUM Collab.)
BOLTON	88	PR D38 2077	R.D. Bolton et al.	(LANL, STAN, CHIC+)
A Iso	86	PRL 56 2461	R.D. Bolton et al. D. Crosnick et al.	(LANL, STAN, CHIC+)
BEITRAMI	87	PL B194 326	L Beltrami et al.	(ETH SIN MANZ)
COHEN	87	RMP 59 1121	E.R. Cohen, B.N. Taylor	(RISC, NBS)
BEER	86	PRL 57 671 DR D24 1067	G.A. Beer et al.	(VICT, TRIU, WYOM)
Also	88	PR D37 237 erratum	A. Jodidio et al.	(LBL, NWES, TRIO)
BERTL	85	NP B260 1	W. Bertl et al.	(SINDRUM Collab.)
BRYMAN	85	PRL 55 465	D.A. Bryman et al. H. Burkhardt et al.	(TRIU, CNRC, BRCO+)
BURKARD	85B	PL 160B 343	H. Burkhardt et al.	(ETH, SIN, MANZ)
A Iso	81B	PR D24 2004	F. Corriveau et al.	(ETH, SIN, MANZ)
Also	83B	PL 129B 260	F. Corriveau et al. D.B. Stokor et al.	(ETH, SIN, MANZ)
BARDIN	84	PL 137B 135	G. Bardin et al.	(SACL. CERN. BGNA. FIRZ)
BERTL	84	PL 140B 299	W. Bertl et al.	(SINDRUM Collab.)
BOLTON	84	PRL 53 1415	R.D. Bolton et al. W. Eichenberger, P. Engler	(LANL, CHIC, STAN+)
GIOVANETTI	84	PR D29 343	K.L. Giovanetti et al.	(WILL)
A ZUEL OS	83	PRL 51 164	G. Azuelos et al.	(MONT, TRIU, BRCO)
Also	77	PRL 39 1113 PL 122B 465	P. Depommier et al. E. Berrisma, et al.	(MONT, BRCO, TRIU+) (CHARM, Collab.)
CARR	83	PRL 51 627	J. Carr et al.	(LBL, NWES, TRIU)
KINNISON	82	PR D25 2846	W.W. Kinnison et al.	(EFI, STAN, LANL)
A ISO KI EMPT	79	PRL 42 556 PR D25 652	J.D. Bowman et al. F. Klempt et al.	(LASL, EFI, STAN) (MANZ ETH)
MARIAM	82	PRL 4 9 993	F.G. Mariam et al.	(YALE, HEIDH, BERN)
MARSHALL	82	PR D25 1174	G.M. Marshall et al. B. Nomothy, VW, Hugher	(IRI VALE)
ABELA	80	PL 95B 318	R. Abela et al.	(BASL, KARLK, KARLE)
BADERT	80	LNC 28 401	A. Badertscher et al.	(BERN)
	82	NP A377 406 DI 03B 203	A. Badertscher et al. M. Jonker et al.	(CHARM Callab.)
SCHAAF	80	NP A340 249	A. van der Schaaf et al.	(ZURI, ETH+)
A Iso	77	PL 72B 183	H.P. Povel et al.	(ZURI, ETH, SIN)
WILLIS Also	80 80 R	PRL 44 522 PRL 45 1370	S.E. Willis et al. S.F. Willis et al.	YALE, LBL, LASL+)
BAILEY	79	NP B150 1	J.M. Bailey	(CERN, DARE, MANZ)
BADERT	78	PL 79B 371	A. Badertscher et al.	(BERN)
BAIL EY A Iso	78 79	JPG 4 345 NP B150 1	J.M. Bailey (DARE, B I M. Bailey	ERN, SHEF, MANZ, RMCS+) (CERN DARE MANZ)
BLIETSCHAU	78	NP B133 205	J. Blietschau et al.	(Gargamelle Collab.)
BOWMAN	78	PRL 41 442	J.D. Bowman et al.	(LASE, IAS, CMU+)
BADERT	78 77	PL 77B 326 PRL 39 1385	A. Badertscher et al.	(ETH, MANZ) (BERN)
CASPERSON	77	PRL 38 956	D.E. Casperson et al.	(BERN, HEIDH, LASL+)
DEPOMMIER	77	PRL 39 1113	P. Depommier et al.	(MONT, BRCO, TRIU+)
BALANDIN	74	Translated from ZETF 6	M.P. Balandin <i>et al.</i> 7 1631.	(1000)
COHEN	73	JPCRD 2 664	E.R. Cohen, B.N. Taylor	(RISC, NBS)
EICHTEN	73	PL 47B 491 PL 46B 281	T. Eichten <i>et al.</i>	(Gargamelle Collab.)
BRYMAN	72	PRL 28 1469	D.A. Bryman et al.	(VPI)
CROWE	72	PR D5 2145 PRI 27 474	K.M. Crowe et al.	(LBL, WASH)
DERENZO	69	PR 181 1854	S.E. Derenzo	(FALE) (EFI)
VOSSLER	69	NC 63A 423	C. Vossler	(EFI)
AKHMANOV	68	SJNP 6 230 Translated from YAF 6 3	v.v. Akhmanov et al. 116.	(KIAE)
FRYBERGER	68	PR 166 1379	D. Fryberger	(EFI)
B OGART SCHWAPT 7	67 67	PK 156 1405 PR 162 1306	E. Bogart et al. D.M. Schwartz	(COLU)
SHERWOOD	67	PR 156 1475	B.A. Sherwood	EFI
PEOPLES	66	Nevis 147 unpub.	J. Peoples	(CÒLU)
BLOOM	64 64	PL 8 87 PL 9 62	5. Bloom et al. I. Duclos et al.	(CERN)
GUREVICH	64	PL 11 185	I.I. Gurevich et al.	(KIAE)
BUHLER	63	PL 7 368	A. Buhler Broglin et al.	(CERN)
CHARPAK	оз 62	PR 132 2693 PL 1 16	S.L. Meyer et al. G. Charpak et al	(COLU) (CERN)
CONFORTO	62	NC 26 261	G. Conforto et al.	(INFN, ROMA, CERN)
ALFZADE	61	JEIP 13 313 Translated from ZETF 40	з.н. нн∠аое, I.I. Gurevich,) 452.	D.A. NIKOISKY

CRITTENDEN KRUGER GUREVICH PLANO ASHKIN BARDON LEE	61 60 60 59 59 59	PR 121 1823 UCRL 9322 unpub. JETP 10 225 Translated from ZETF PR 119 1400 NC 14 1266 PRL 2 56 PRL 3 55	R.R. Grittenden, W.D. Walker, J. Ballam H. Kruger Ll. Garevich, B.A. Nikolsky, L.V. Sarkova 37 318. R.J. Plano J. Ashkin <i>et al.</i> M. Bardon, D. Berley, L.M. Lederman J. Lee, N.P. Samios	(WISC+) (LRL) (IT EP) (COLU) (CERN) (COLU) (COLU)
au			$J = \frac{1}{2}$	

 τ discovery paper was PERL 75. $e^+e^- \rightarrow \tau^+\tau^-$ cross-section threshold behavior and magnitude are consistent with pointlike spin-1/2 Dirac particle. BRANDELIK 78 ruled out pointlike spin-0 or spin-1 particle. FELDMAN 78 ruled out J = 3/2. KIRKBY 79 also ruled out J=integer, J = 3/2.

au MASS									
VALUE (MeV)	E	VTS	DOCUMENT ID		TECN	COMMENT			
1776.99 ^{+0.29} -0.26	OUR AVEF	RAGE							
1775.1 ± 1.6 1778.2 ± 0.8	±1.0 1: ±1.2	3.3k	^I ABBIENDI ANASTASSOV	00A 97	OPAL CLEO	1990–1995 LEP runs <i>E^{ee}</i> = 10.6 GeV			
$1776.96 \substack{+\ 0.18 \\ -\ 0.21}$	+ 0.25 - 0.17	65	² BAI	96	BES	E ^{ee} _{CM} = 3.54-3.57 GeV			
1776.3 ± 2.4 :	±1.4	11 k	³ ALBRECHT	92M	ARG	E ^{ee} _{CM} = 9.4-10.6 GeV			
1783 + 3 - 4		692 '	⁴ BACINO	78B	DLCO	E ^{ee} _{cm} = 3.1-7.4 GeV			
• • • We do n	ot use the	following	data for averages	, fits	, limits,	etc. • • •			
1777.8 ±0.7 :	±1.7	35 k .	BALEST	93	CLEO	Repl. by ANAS- TASSOV 97			
1776.9 + 0.4 - 0.5	± 0.2	14	⁶ BAI	92	BES	Repl. by BAI96			
¹ ABBIENDI $\tau \rightarrow \pi^{\pm}\pi^{-2}$ ² BAI 96 fit of ³ ALBRECH ⁻¹ assumes m	- 0.5 ¹ ABBIENDI 00A fit τ pseudomass spectrum in $\tau \to \pi^{\pm} \leq 2\pi^{0}\nu_{\tau}$ and $\tau \to \pi^{\pm}\pi^{+}\pi^{-} \leq 1\pi^{0}\nu_{\tau}$ decays. Result assumes $m_{\nu_{\tau}}=0$. ² BAI 96 fit $\sigma(e^{+}e^{-} \to \tau^{+}\tau^{-})$ at different energies near threshold. ³ ALBRECHT 92M fit τ pseudomass spectrum in $\tau^{-} \to 2\pi^{-}\pi^{+}\nu_{\tau}$ decays. Result assumes $m_{\nu_{\tau}}=0$.								
⁴ BACINO 78 ⁱ value comes from $e^{\pm} X^{\mp}$ threshold. Published mass 1782 MeV increased by 1 MeV using the high precision $\psi(25)$ mass measurement of ZHOLENTZ 80 to eliminate the absolute SPEAR energy calibration uncertainty. ⁵ BALEST 93 fit spectra of minimum kinematically allowed τ mass in events of the type $e^+e^- \rightarrow \tau^+\tau^- \rightarrow (\pi^+n\pi^0\nu_{\tau})(\pi^-m\pi^0\nu_{\tau}) n \le 2, m \le 2, 1 \le n+m \le 3$. If $m_{\nu_{\tau}} \neq 0$, result increase by $(m_{\nu_{\tau}}^2/100 \text{ MeV})$. ⁶ BAI 92 fit $\sigma(e^+e^- \rightarrow \tau^+\tau^-)$ near threshold using e_{μ} events.									

(m ₇ +	$+ - m_{\tau^-})/m_{\text{aver}}$	age
-------------------	-----------------------------------	-----

A test of CPT invariance.

VALUE	_				<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
< 3.0	×	10-	3		90	ABBIENDI	00	A OPAL	1990-1995 LEP runs
						au MEAN LI	FE		
VALUE	E (1)	₀ — 15	s)		EVTS	DOCUMENT ID		TECN	COMMENT
290.6	±	1.1	0	UR AV	/ERAGE				
293.2	±	2.0) ±	1.5		ACCIARRI	00B	L 3	1991-1995 LEP runs
290.1	±	1.5	±	1.1		BARATE	97R	ALEP	1989-1994 LEP runs
291.4	±	3.0)			ABREU	96B	DLPH	1991-1993 LEP runs
289.2	±	1.7	Έ	1.2		ALEXANDER	96E	OPAL	1990-1994 LEP runs
289.0	±	2.8	$3\pm$	4.0	57.4k	BALEST	96	CLEO	E ^{ee} _{cm} = 10.6 GeV
•••	• •	ve do	o no	ot use	the followin	g data for averag	es, fi	its, limits	, etc. • • •
291.2	±	2.0) ±	1.2		BARATE	971	ALEP	Repl. by BARATE 97R
290.1	±	4.0)		34 k	ACCIARRI	96K	L 3	Repl. by ACCIARRI 00B
297	±	9	\pm	5	1671	ABE	95 Y	SLD	1992-1993 SLC runs
304	±	14	\pm	7	4100	BATTLE	92	CLEO	$E_{cm}^{ee} = 10.6 \text{ GeV}$
301	±	29			3780	KLEINWORT	89	JADE	$E_{cm}^{ee} = 35-46 \text{ GeV}$
288	±	16	± 3	17	807	AMIDEI	88	MRK2	E ^{ee} _{cm} = 29 GeV
306	±	20	± 3	14	695	BRAUNSCH	88C	TASS	$E_{\rm cm}^{ee} = 36 {\rm GeV}$
299	±	15	± 3	10	1311	ABACHI	87C	HRS	$E_{\rm cm}^{ee} = 29 {\rm GeV}$
295	±	14	± 3	11	5696	ALBRECHT	87P	ARG	E ^{ee} _{cm} = 9.3-10.6 GeV
309	±	17	\pm	7	3788	BAND	87B	MAC	E ^{ee} _{cm} = 29 GeV
3 25	±	14	± 3	18	8470	BEBEK	87C	CLEO	$E_{\rm CM}^{ee} = 10.5 {\rm GeV}$
460	± 1	190			102	FELDMAN	82	MRK2	$E_{\rm cm}^{ee} = 29 {\rm GeV}$

τ MAGNETIC MOMENT ANOMALY

The q^2 dependence is expected to be small providing no thresholds are ne arby.

$\mu_{\tau}/(e\hbar/2m_{\tau})-1 = (g_{\tau}-2)/2$

For a theoreti	cal calculation	$n [(g_{\tau} - 2)/2 = 117]$	$73(3) \times 10^{-1}$	'], see SAMUEL 91B.
VALUE	CL%	DOCUMENT ID	TECN	COMMENT
> -0.052 and $< 0.$	058 (CL = 95	%) OUR LIMIT		
> - 0.052 and $<$ 0.	058 95	ACCIARRI	98E L3	1991-1995 LEP runs
• • • We do not u	se the followir	ng data for averages	, fits, limits,	etc. • • •
> -0.007 and $< 0.$	005 95	⁷ GON ZALE Z-S.	.00 RVUE	$e^+e^- ightarrow \tau^+ au^-$ and $W ightarrow au au_ au$
> -0.068 and $< 0.$	065 95	⁸ ACKERSTAFF	98N OPAL	1990-1995 LEP runs
> -0.004 and $< 0.$	006 95	⁹ ESCRIBANO	97 RVUE	$Z \rightarrow \tau^+ \tau^-$ at LEP
< 0.01	95	¹⁰ ESCRIBANO	93 RVUE	$Z \rightarrow \tau^+ \tau^-$ at LEP
< 0.12	90	GRIFOLS	91 RVUE	$Z \rightarrow \tau \tau \gamma$ at LEP
< 0.023	95	¹¹ SILVERMAN	83 RVUE	$e^+e^- \rightarrow \tau^+\tau^-$ at PETRA
7				

⁷GONZALEZ-SPRINBERG 00 use data on tau lepton production at LEP1, SLC, and LEP2, and data from colliders and LEP2 to determine limits. Assume imaginary component is zero

nent is zero. 8 ACKERSTAFF 98N use $Z \rightarrow \tau^+ \tau^- \gamma$ events. The limit applies to an average of the form factor for off-shell τ 's having ρ^2 ranging from m_τ^2 to $(M_Z - m_\tau)^2$.

⁹ESCRIBANO 97 use preliminary experimental results. ESCREARING 71 use preliminary experimentar results. If ESCREARING 93 limit derived from $\Gamma(Z \to \tau^+ \tau^-)$, and is on the absolute value of the magnetic moment anomaly.

magnetic moment anomaly. ¹¹ SILVERMAN 83 limit is derived from $e^+e^- \rightarrow \tau^+\tau^-$ total cross-section measurements for q^2 up to (37 GeV)².

τ ELECTRIC DIPOLE MOMENT (d_{τ})

A nonzero value is forbidden by both au invariance and heta invariance.

The q^2 dependence is expected to be small providing no thresholds are ne arby.

$\operatorname{Re}(d_{\tau})$

VALUE (10-16 ecm)	CL%		DOCUMENT ID		TECN	COMMENT
-0.22 to 0.45	95	12	INAMI	03	BELL	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$
 • • We do not use the follow 	ing data	for	averages, fits, I	imits	, etc. •	••
< 4.6	95	13	ALBRECHT	00	ARG	$E_{\rm Cm}^{ee} = 10.4 {\rm GeV}$
>-3.1 and <3.1	95		ACCIARRI	98E	L 3	1991-1995 LEP
>-3.8 and <3.6	95	14	ACK ER STAFF	98 N	OPAL	1990–1995 LEP
< 0.11	95 15	,16	ESCRIBANO	97	RVUE	$Z \rightarrow \tau^+ \tau^-$ at
< 0.5	95	17	ESCRIBANO	93	RVUE	$Z \rightarrow \tau^+ \tau^-$ at
< 7	90		GRIFOLS	91	RVUE	$Z \rightarrow \tau \tau \gamma$ at
< 1.6	90		DELAGUILA	90	RVUE	$e^+ e^- \rightarrow e^+ e^- \rightarrow e^+ e^-$
						$E_{\rm Cm}^{ee} = 35 {\rm GeV}$

¹²INAMI 03 use $e^+e^- \rightarrow \tau^+\tau^-$ events. ¹³ALBRECHT 00 use $e^+e^- \rightarrow \tau^+\tau^-$ events. Limit is on the absolute value of $\operatorname{Re}(d_{\tau})$. ¹⁴ACKERSTAFF 98N use $Z \rightarrow \tau^+\tau^-\gamma$ events. The limit applies to an average of the form factor for off-shell τ 's having ρ^2 ranging from m_{τ}^2 to $(M_Z - m_{\tau})^2$.

¹⁵ ESCRIBANO 97 derive the relationship $|d_{\tau}| = \cot \theta_W |d_{\tau}^W|$ using effective Lagrangian methods, and use a conference result $|d_{\tau}^W| < 5.8 \times 10^{-18} e \text{ cm}$ at 95% CL (L. Silvestris, ICHEP96) to obtain this result.

¹⁶ESCRIBANO 97 use preliminary experimental results.

 17 ESCRIBANO 93 limit derived from $\Gamma(Z \rightarrow \tau^+ \tau^-)$, and is on the absolute value of the electric dipole moment.

Im(*d*₇)

VALUE [10 ⁻¹⁰ ecm]	CL%	DOCUMENTID		TECN	COMMENT	
-0.25 to 0.008	95	¹⁸ INAMI	03	BELL	E ^{ee} _{cm} = 10.6 GeV	L
• • • We do not use the	e followi	ng data for average	s, fits	s, limits,	etc. • • •	
< 1.8	95	¹⁹ ALBRECHT	00	ARG	E ^{ee} _{cm} = 10.4 GeV	
18 INAMI 03 use e^+e^- 19 ALBRECHT 00 use e^-	$e^+e^-\tau^+$	τ^- events. $\tau^+ \tau^-$ events. L	imit	is on the	: absolute value of ${ m Im}(d_{ au}).$	I

τ WEAK DIPOLE MOMENT (d_{τ}^{W})

A nonzero value is forbidden by CP invariance.

The q^2 dependence is expected to be small providing no thresholds are ne arby.

Re(d^w_T)

VALUE (10-17 ecm)	CL%	DOCUMENT ID		TECN	COMMENT	
< 0.50	95	20 HEISTER	03F	ALEP	1990-1995 LEP runs	

Lepton Particle Listings

τ

415

••• We do not u	ise the followin	ng d	ata for averages	, fit:	s, limits,	etc. •	••
< 3.0	90	20	ACCIARRI	98C	L 3	1991-	-1995 LEP runs
< 0.5 6	95		ACKERSTAFF	97L	OPAL	1991-	-1995 LEP runs
< 0.78	95	21	AKERS	95 F	OPAL	Repi.	by ACKER-
<1.5	95	21	BUSKULIC	95 C	ALEP	Repl.	by HEISTER 03F
<7.0	95	21	ACTON	92F	OPAL	Z →	$\tau^+ \tau^-$ at LEP
<3.7	95	21	BUSKULIC	92J	ALEP	Repl.	by BUSKULIC 95 (
²⁰ Limit is on the	absolute value	of	the real part of	the	weak dip	ole me	oment.
²¹ Limit is on the	absolute value	e of	the real part of	the	weak di	pole n	noment, and applies
for $q^2 = m_{Z}^2$.							

lm(d^w₊)

VALUE (10 ⁻¹⁷ ecm)	CL%	DOCUMENT ID	TECN	COMMENT	
<1.1	95	22 HEISTER	03F ALEP	1990-1995 LEP runs	
• • • We do not use	the follow	ing data for averages,	fits, limits,	etc. • • •	
<1.5	95	ACKERSTAFF	97L OPAL	1991-1995 LEP runs	
<4.5	95	²³ AKERS	95 FOPAL	Repl. by ACKER-	
				STAFE 97L	

 $^{22}\mathrm{HEISTER}$ 03F limit is on the absolute value of the imaginary part of the weak dipole ²³Limit is on the absolute value of the imaginary part of the weak dipole moment, and

applies for $q^2 = m_Z^2$.

τ WEAK ANOMALOUS MAGNETIC DIPOLE MOMENT (α_{τ}^{W})

Electroweak radiative corrections are expected to contribute at the 10^{-6} level. See BERNABEU 95.

The q^2 dependence is expected to be small providing no thresholds are ne arby

$\operatorname{Re}(\alpha_{\tau}^{W})$

VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
<1.1 × 10 ⁻³	95	²⁴ HEISTER	03F ALEP	1990-1995 LEP runs	
• • • We do not use the	following (data for averages, i	iits, limits, etc		
> -0.0024 and < 0.0025	95	²⁵ GONZALEZ-S	00 RVUE	$e^+ e^- \rightarrow \tau^+ \tau^-$ and $W \rightarrow \tau \nu$	
$<4.5 \times 10^{-3}$	90	²⁴ ACCIARRI	98C L3	1991-1995 LEP runs	
 ²⁴ Limit is on the absolut moment. ²⁵ GONZALEZ-SPRINBE LEP2, and data from conent is zero. 	e value o RG 00 us olliders an	fthe real part of t e data on tau lep d LEP2 to determ	he weak anor nton productio ine limits. Ass	nalous magnetic dipole on at LEP1, SLC, and sume imaginary compo-	
lm(α _τ [₩])					
	CL 07	DOCUVENT ID	TCCN CI		

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<2.7 × 10 ⁻³	95	²⁶ HEISTER	03F	ALEP	1990-1995 LEP runs
• • • We do not use the	followin	g data for averages	, fits	, limits,	etc. • • •
$<$ 9.9 $ imes$ 10 $^{-3}$	90	²⁶ ACCIARRI	98C	L 3	1991-1995 LEP runs
26					

²⁶Limit is on the absolute value of the imaginary part of the weak anomalous magnetic dipole moment.

τ^- DECAY MODES

 τ^+ modes are charge conjugates of the modes below. " \hbar^\pm " stands for π^\pm or K^\pm . " ℓ " stands for e or μ . "Neutrals" stands for γ 's and/or π^0 's.

	Mode	F	Fraction (Γ_i/Γ)	Confidence level
	Modes with one o	harg	ed particle	
Γ1	particle ⁻ \geq 0 neutrals \geq 0 $K^0 \nu_{\tau}$ ("1-prong")	-	(85.35 ± 0.07) %	S=1.1
Γ2	particle ⁻ \geq 0 neutrals \geq 0 $K_L^0 u_ au$		(84.72 ± 0.07) %	S=1.1
Гз	$\mu^- \overline{\nu}_\mu \nu_\tau$	[<i>a</i>]	(17.36 ± 0.06) %	
Γ ₄	$\mu^{-} \overline{\nu}_{\mu} \nu_{\tau} \gamma$	[b]	($3.6~\pm 0.4$) $\times 10^{\circ}$	- 3
Γ5	$e^- \overline{\nu}_e \nu_\tau$	[<i>a</i>]	(17.84 ± 0.06) %	
Γ ₆	$e^- \overline{\nu}_e \nu_\tau \gamma$	[b]	(1.75 ± 0.18) %	
Γ7	$h^- \ge 0 K_L^0 \nu_{\tau}$		(12.30 ± 0.11) %	S=1.4
Г8	$h^- \nu_{\tau}$		(11.75 ± 0.11) %	S=1.4
Γ9	$\pi^- \nu_{\tau}$	[a]	(11.06 ± 0.11) %	S=1.4
Γ ₁₀	$K^- \nu_{\tau}$	[a]	$(-6.86\pm0.23)\times10^{\circ}$	- 3
Γ ₁₁	$h^- \geq 1$ neutrals $ u_{ au}$		(36.92 ± 0.14) %	S=1.1
Γ ₁₂	$h^- \pi^0 \nu_{\tau}$		(25.87 ± 0.13) %	S=1.1
Γ ₁₃	$\pi^- \pi^0 \nu_{\tau}$	[a]	(25.42 ± 0.14) %	S=1.1
Γ ₁₄	$\pi^- \pi^0$ non- $ ho(770) u_{ au}$		($3.0~\pm 3.2$) $\times 10^{\circ}$	- 3
Γ ₁₅	$K^- \pi^0 \nu_{\tau}$	[a]	$(4.50 \pm 0.30) \times 10^{-10}$	- 3
Γ ₁₆	$h^- \ge 2\pi^0 \nu_\tau$		(10.77 ± 0.15) %	S=1.1
Γ_{17}	$h^- 2\pi^0 \nu_{\tau}$		$(9.39 \pm 0.14) \ \%$	S=1.1

au

Γ1 ο	$h^{-} 2\pi^{0} \nu_{\pi} (\text{ex}, K^{0})$	$(9.23 \pm 0.14)\%$	S=1.1
Γ.ο	$\pi^{-} 2\pi^{0} \nu$ (ex K^{0})	$[a] (917\pm014)\%$	S-11
- 19 E	$\pi^{-2}\pi^{-0}\mu$ (ex K^{0})	[0] ()	CI _059/
20	$\pi 2\pi \nu_{\tau} (ex. K),$	< 9 × 10 -	CL=95%
Γ_{21}	$\pi^{-2\pi^{0}} \nu_{\tau}$ (ex. \mathcal{K}^{0}),	$<$ 7 $\times 10^{-3}$	CL=95%
Eaa	$K^{-}2\pi^{0}\nu$ (ex K^{0})	[a] (5.8 + 2.3) × 10 ⁻⁴	
F 22	$h = \sqrt{2} - 0$	[a] (3.0 ±2.3) × 10	C 11
23	$n \geq 3\pi \nu_{\tau}$	(1.37 ± 0.11) %	5=1.1
24	$h^{-} 3\pi^{0} \nu_{\tau}$	(1.21 ± 0.10) %	
Γ ₂₅	$\pi^{-} 3\pi^{0} \nu_{\tau} (ex. K^{0})$	[a] (1.08±0.10)%	
г	$K = 3\pi^{0} \mu (e \times K^{0} m)$	$[a] (2 + 2.2) \times 10^{-4}$	
26	$K = 5\pi \nu_{\tau} (e_{X}, K, \eta)$	$\begin{bmatrix} a \end{bmatrix} \begin{bmatrix} 3.0 \\ -2.0 \end{bmatrix} \times \begin{bmatrix} 10 \end{bmatrix}$	
F27	$h^{-} 4 \pi^{0} \nu_{\tau} (ex. K^{0})$	$(1.6 \pm 0.6) \times 10^{-3}$	
г. Г	h = A 0 (a) (b)	(1) (10) ± 0.6 (10) -3	
28	$\pi 4\pi^{-}\nu_{\tau} (ex.K^{-},\eta)$	$[a] (1.0 - 0.5) \times 10^{-5}$	
F29	$K^{-} > 0\pi^{0} > 0K^{0} > 0\gamma \nu_{\tau}$	$(1.56 \pm 0.04)\%$	
F20	$K^{-} > 1 (\pi^{0} \text{ or } K^{0} \text{ or } \gamma) \nu_{-}$	$(8.74\pm0.35)\times10^{-3}$	
50	= (()	
	Modes wit	th K ⁰ 's	
Eas	$K_{\rm c}^0({\rm narticles})^- \nu$	$(92 \pm 04) \times 10^{-3}$	5-11
- 31 - 51	$h = \overline{K} 0$	(1.05 + 0.04) 0/	6 1 1
32	$\frac{1}{\sqrt{2}}$	(1.05±0.04) %	5=1.1
33	$\pi K^{\circ} \nu_{\tau}$	[a] (8.9 ±0.4)×10 ⁻³	5=1.1
Γ ₃₄	$\pi^{-} K^{0} (n \text{ on-} K^{*} (892)^{-}) \nu_{\tau}$	$< 1.7 \times 10^{-3}$	CL=95%
F35	$K^- K^0 \nu_{\tau}$	[a] $(1.54 \pm 0.16) \times 10^{-3}$	
Exc	$K^{-}K^{0} > 0\pi^{0}\nu$	$(3.09\pm0.24)\times10^{-3}$	
- 30 F	$h = \overline{K}_0 = \overline{0}_1$	(50 ± 0.4.) + 10=3	
37	$n = \frac{\pi}{10} \frac{1}{10} \frac{1}{1$	(5.2 ±0.4) × 10 -	
38	$\frac{\pi}{2}$ $K^{\circ}\pi^{\circ}\nu_{\tau}$	$[a] (3.7 \pm 0.4) \times 10^{-3}$	
Γ39	$K^0 \rho^- \nu_{\tau}$	$(2.2 \pm 0.5) \times 10^{-3}$	
Γ_{40}	$K^{-} K^{0} \pi^{0} \nu_{\tau}$	[a] (1.55±0.20)×10 ⁻³	
Ean	$\pi^{-} \overline{K}^{0} > 1 \pi^{0} \nu_{\tau}$	$(3.2 \pm 1.0) \times 10^{-3}$	
Г.,	$\pi - \overline{K}^0 \pi^0 \pi^0 \mu$	$(26 \pm 24) \times 10^{-4}$	
-42	$\kappa = \kappa 0 0 0 \cdots$	(2.0 ±2.4)×10	CI 054/
43	$\kappa \kappa^{-}\pi^{-}\pi^{-}\nu_{\tau}$	< 1.6 × 10	CL=95%
44	$\pi K^{\circ}K^{\circ}\nu_{\tau}$	$(1.59 \pm 0.29) \times 10^{-3}$	S=1.1
Γ45	$\pi^- K^0_S K^0_S \nu_\tau$	[a] (2.4 ±0.5)×10 ⁻⁴	
E 46	$\pi^{-}K_{c}^{0}K_{c}^{0}\nu_{-}$	[a] $(1.10\pm0.28)\times10^{-3}$	S=1.1
ц.	$- K_0 \frac{3}{K_0} - b_{11}$	(21 + 22) × 10-4	
4/	$\pi K K \pi \nu_{\tau}$	(3.1 ±2.3) × 10	<i>c</i> ,
48	$\pi \kappa_{\tilde{s}} \kappa_{\tilde{s}} \pi^{\circ} \nu_{\tau}$	$< 2.0 \times 10^{-4}$	CL=95%
Γ49	$\pi^{-}K_{S}^{0}K_{I}^{0}\pi^{0}\nu_{\tau}$	$(3.1 \pm 1.2) \times 10^{-4}$	
Γ	$K^0 h^+ h^- h^- > 0$ neutrals u	< 1.7 × 10-3	CL = 95%
1 5 0		< 1.7 × 10	
- 5 0 Гел	$K^0 h^+ h^- h^- \mu$	$(23 \pm 20) \times 10^{-4}$	/ •
Γ ₅₁	$K^0 h^+ h^- h^- \nu_\tau$	$(2.3 \pm 2.0) \times 10^{-4}$	//
Γ ₅₁	$K^0 h^+ h^- h^- \nu_\tau$ Modes with three	$(2.3 \pm 2.0) \times 10^{-4}$	
Г ₅₁	$K^{n} h^{n} h^{n} = \sum_{\tau} 0 \text{ neutrals } \nu_{\tau}$ $K^{0} h^{+} h^{-} h^{-} \nu_{\tau}$ Modes with three of $h^{-} h^{-} h^{+} \ge 0$ point rate $\ge 0K^{0}$ in	$(2.3 \pm 2.0) \times 10^{-4}$	6 11
Γ ₅₁ Γ ₅₂	$K^{0}h^{+}h^{-}h^{-}\nu_{\tau}$ Modes with three of $h^{-}h^{-}h^{+} \ge 0$ neutrals $\ge 0K_{L}^{0}\nu_{\tau}$	$(2.3 \pm 2.0) \times 10^{-4}$ charged particles (15.19 ± 0.07) %	S=1.1
Γ ₅₁ Γ ₅₂ Γ ₅₃	$\begin{array}{c} K^{0}h^{+}h^{-}h^{-}\nu_{\tau}\\ \hline K^{0}h^{+}h^{-}h^{-}\nu_{\tau}\\ \hline Modes \text{ with three } o\\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \geq 0K_{L}^{0}\nu_{\tau}\\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \nu_{\tau} \end{array}$	$< 1.7 \times 10^{-4}$ (2.3 ±2.0)×10 ⁻⁴ charged particles (15.19±0.07) % (14.57±0.07) %	S=1.1 S=1.1
Γ ₅₁ Γ ₅₂ Γ ₅₃	$\begin{array}{c} K & h & h & h & h & -h & -\nu_{T} \\ \hline K^{0} & h^{+} h^{-} & h^{-} & \nu_{T} \\ \hline Modes \text{ with three } c \\ h^{-} h^{-} h^{+} \geq 0 \text{ neutrals } \geq 0K_{L}^{0}\nu_{T} \\ h^{-} h^{-} h^{+} \geq 0 \text{ neutrals } \nu_{T} \\ (\text{ex. } K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \end{array}$	$(2.3 \pm 2.0) \times 10^{-4}$ (2.3 $\pm 2.0) \times 10^{-4}$ (15.19 $\pm 0.07)$ % (14.57 $\pm 0.07)$ %	S=1.1 S=1.1
Γ ₅₁ Γ ₅₂ Γ ₅₃	$\begin{array}{l} K & h & h & h & - p \\ K^0 & h^+ & h^- & \nu_{\tau} \\ \hline \mathbf{Modes \ with \ three \ t} \\ h^- & h^- & h^+ \geq 0 \ neutrals \ \geq 0 K_L^0 \nu_{\tau} \\ h^- & h^- & h^+ \geq 0 \ neutrals \ \nu_{\tau} \\ (ex. \ K_S^0 \to \pi^+ \pi^-) \\ (``3-prong") \end{array}$	$(2.3 \pm 2.0) \times 10^{-4}$ (2.3 ±2.0) × 10 ⁻⁴ (15.19 ±0.07) % (14.57 ±0.07) %	S=1.1 S=1.1
Γ ₅₁ Γ ₅₂ Γ ₅₃	$\begin{array}{c} K^{n}h^{n}h^{n} \geq 0 \text{ neutrals } \nu_{\tau} \\ K^{0}h^{n}h^{n}h^{-}\nu_{\tau} \\ \hline Modes \text{ with three } \alpha \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \geq 0K_{L}^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ ("3 \text{ prong"}) \\ h^{-}h^{-}h^{+}\nu \end{array}$	$(2.3 \pm 2.0) \times 10^{-4}$ (2.3 \pm 2.0) $\times 10^{-4}$ (15.19 \pm 0.07) % (14.57 \pm 0.07) %	S=1.1 S=1.1
Γ ₅₀ Γ ₅₁ Γ ₅₂ Γ ₅₃ Γ ₅₄	$\begin{array}{c} K & h & h & h & h & - \frac{1}{2} \\ K^0 & h & h & h & - \frac{1}{2} \\ & \mathbf{Modes with three } \alpha \\ h^- & h^- & h^- \geq 0 \text{ neutrals } \geq 0 K_L^0 \nu_\tau \\ h^- & h^- h^- \geq 0 \text{ neutrals } \nu_\tau \\ (\text{ex. } K_S^0 \to \pi^+ \pi^-) \\ (\text{"3-prong"}) \\ h^- & h^- h^- \nu_\tau \\ h^- & h^+ \nu_\tau \\ (\pi \times K_L^0) \end{array}$	$(2.3 \pm 2.0) \times 10^{-4}$ (2.3 $\pm 2.0) \times 10^{-4}$ charged particles (15.19 $\pm 0.07)$ % (14.57 $\pm 0.07)$ %	S=1.1 S=1.1
Γ ₅₀ Γ ₅₁ Γ ₅₂ Γ ₅₃ Γ ₅₄ Γ ₅₅	$\begin{array}{c} K^{n}h^{n}h^{n} \geq 0 \text{ neutrals } \nu_{\tau} \\ K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline \\ \mathbf{Modes with three } c \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \geq 0K_{L}^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ (ex^{-}Sprong^{n}) \\ h^{-}h^{-}h^{+}h^{-}\nu_{\tau} \\ (ex. K_{0}^{0}) \\ h^{-}h^{-}h^{+}h^{-}\nu_{\tau} (ex. K_{0}^{0}) \\ h^{-}h^{-}h^{-}h^{+}\nu_{\tau} (ex. K_{0}^{0}) \end{array}$	$(2.3 \pm 2.0) \times 10^{-4}$ (2.3 $\pm 2.0) \times 10^{-4}$ (15.19 ± 0.07) % (14.57 ± 0.07) % (10.01 ± 0.09) % (9.65 ± 0.09) %	S=1.1 S=1.1 S=1.2 S=1.2 S=1.2
Γ ₅₀ Γ ₅₁ Γ ₅₂ Γ ₅₃ Γ ₅₄ Γ ₅₅ Γ ₅₆	$\begin{array}{c} K^{n}h^{n}h^{n} \to \varepsilon^{n} \\ K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline \\ \mathbf{Modes with three } \alpha \\ h^{-}h^{-}h^{+} \ge 0 \text{ neutrals } \ge 0K_{L}^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+} \ge 0 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \to \pi^{+}\pi^{-}) \\ ("3 \text{ prong"}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}, \omega) \end{array}$	$(10.1) \times 10^{-4}$ (2.3 ±2.0) × 10 ⁻⁴ (15.19±0.07) % (14.57±0.07) % (10.01±0.09) % (9.65±0.09) %	S=1.1 S=1.1 S=1.2 S=1.2 S=1.2 S=1.2
Γ ₅₀ Γ ₅₁ Γ ₅₂ Γ ₅₃ Γ ₅₄ Γ ₅₅ Γ ₅₆ Γ ₅₇	$\begin{array}{c} K n + h - h^{-} \nu_{\tau} \\ \hline \textbf{Modes with three } \sigma \\ \textbf{Modes with three } \sigma \\ h^{-} h^{-} h^{+} \geq 0 \text{ neutrals } \geq 0 K_{L}^{0} \nu_{\tau} \\ h^{-} h^{-} h^{+} \geq 0 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+} \pi^{-}) \\ ("3 \text{ prong"}) \\ h^{-} h^{-} h^{+} \nu_{\tau} \\ h^{-} h^{-} h^{+} \nu_{\tau} (ex. K^{0}) \\ h^{-} h^{-} h^{+} \nu_{\tau} (ex. K^{0}, \omega) \\ \pi^{-} \pi^{+} \pi^{-} \nu_{\tau} \end{array}$	$(1.7 \times 10^{-4})^{-10} (2.3 \pm 2.0) \times 10^{-4}$ charged particles $(15.19 \pm 0.07) \% (14.57 \pm 0.07) \%$ $(10.01 \pm 0.09) \% (9.65 \pm 0.09) \% (9.60 \pm 0.09) \% (9.47 \pm 0.10) \%$	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2
Γ ₅₀ Γ ₅₁ Γ ₅₂ Γ ₅₃ Γ ₅₄ Γ ₅₅ Γ ₅₆ Γ ₅₇ Γ ₅₈	$\begin{array}{c} K^{n}h^{n}h^{n} \to \varphi & \text{or identials } \nu_{\tau} \\ K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ & \textbf{Modes with three } \alpha \\ h^{-}h^{-}h^{+} \ge 0 \text{ neutrals } \ge 0K_{L}^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+} \ge 0 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \to \pi^{+}\pi^{-}) \\ ("3-\text{prong"}) \\ h^{-}h^{-}h^{+}\nu_{\tau} \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0},\omega) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex.K^{0}) \end{array}$	$(1.7 \times 10^{-4}) \times 10^{-4}$ (2.3 ±2.0) × 10 ⁻⁴ (15.19±0.07) % (14.57±0.07) % (9.65±0.09) % (9.65±0.09) % (9.47±0.10) % (9.16±0.10) %	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2
Γ ₅₀ Γ ₅₁ Γ ₅₂ Γ ₅₃ Γ ₅₄ Γ ₅₅ Γ ₅₆ Γ ₅₇ Γ ₅₈ Γ ₅₈	$\begin{array}{c} K^{n}h^{n}h^{n} - h^{-}\nu_{\tau} \\ \hline Modes \text{ with three } \alpha \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \geq 0K_{L}^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ ("3 \text{ prong"}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}, \omega) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ \end{array}$	$(1.7 \times 10^{-4}) \times 10^{-4}$ (2.3 ±2.0) × 10 ⁻⁴ (15.19±0.07) % (14.57±0.07) % (9.65±0.09) % (9.60±0.09) % (9.47±0.10) % (9.16±0.10) % < 2.4 %	S=1.1 S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95%
Γ ₅₀ Γ ₅₁ Γ ₅₂ Γ ₅₃ Γ ₅₄ Γ ₅₅ Γ ₅₆ Γ ₅₇ Γ ₅₈ Γ ₅₉	$\begin{array}{c} K^{n}h^{n}h^{n}-h^{-}\nu_{\tau} \\ \hline \textbf{Modes with three } \alpha \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \geq 0K_{L}^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ (``3 \text{ prong''}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ n^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ n^{-}n^{-}h^{-}\nu_{\tau} (ex. K^{0}) \\ n^{-}n^{-}h^{-}\nu_{\tau} (ex. K^{0}) \\ n^{-}n^{-}n^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ n^{-}n^{-}n^{+}n^{-}\nu_{\tau} (ex. K^{0}) \\ n^{-}n^{-}n^{-}n^{-}\mu^{-}(ex. K^{0}) \\ n^{-}n^{-}n^{-}n^{-}n^{-}\mu^{-}(ex. K^{0}) \\ n^{-}n^{-}n^{-}n^{-}n^{-}n^{-}n^{-}n^{-}$	$(1.7 \times 10^{-4})^{-10} (2.3 \pm 2.0) \times 10^{-4}$ tharged particles $(15.19 \pm 0.07) \% (14.57 \pm 0.07) \% (9.65 \pm 0.09) \% (9.65 \pm 0.09) \% (9.60 \pm 0.09) \% (9.47 \pm 0.10) \% (9.16 \pm 0.10) \% (9.16 \pm 0.10) \% < 2.4 \%$	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95%
Γ ₅₀ Γ ₅₁ Γ ₅₂ Γ ₅₃ Γ ₅₄ Γ ₅₅ Γ ₅₆ Γ ₅₇ Γ ₅₈ Γ ₅₉ Γ ₆₀	$\begin{array}{c} K^{n}h^{n}h^{n}-h^{-}\nu_{\tau}\\ \hline K^{0}h^{+}h^{-}h^{-}\nu_{\tau}\\ \hline \textbf{Modes with three } c\\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \geq 0K_{L}^{0}\nu_{\tau}\\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \nu_{\tau}\\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-})\\ (``3-prong'')\\ h^{-}h^{-}h^{+}\nu_{\tau}\\ h^{-}h^{-}h^{+}\nu_{\tau}(ex.K^{0})\\ h^{-}h^{-}h^{+}\nu_{\tau}(ex.K^{0},\omega)\\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(ex.K^{0},\omega)\\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(ex.K^{0}),\\ n^{-}n^{-}axial vector\\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(ex.K^{0},\omega)\\ \end{array}$	$ (2.3 \pm 2.0) \times 10^{-4} $ (2.3 \pm 2.0) \times 10^{-4} (15.19 \pm 0.07) % (14.57 \pm 0.07) % (19.65 \pm 0.09) % (9.65 \pm 0.09) % (9.47 \pm 0.10) % < 2.4 % [a] (9.12 \pm 0.10) %	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2
Γ_{50} Γ_{51} Γ_{52} Γ_{53} Γ_{54} Γ_{55} Γ_{56} Γ_{57} Γ_{58} Γ_{59} Γ_{60}	$\begin{array}{c} K^{n}h^{n}h^{n}-h^{-}\nu_{\tau} \\ \hline K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \geq 0K_{L}^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ ("3 \text{ prong"}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}, \omega) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}, \omega) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}), \\ n^{-}n^{-}h^{+} \rightarrow \nu_{\tau} (ex. K^{0}, \omega) \\ n^{-}n^{-}h^{+} \rightarrow \nu_{\tau} (ex. K^{0}, \omega) \\ h^{-}h^{-}h^{+} \geq 1 \text{ neutrals } \nu_{\tau} \end{array}$	$(1.7 \times 10^{-4}) (2.3 \pm 2.0) \times 10^{-4}$ (15.19 \pm 0.07) % (15.19 \pm 0.07) % (10.01 \pm 0.09) % (9.65 \pm 0.09) % (9.60 \pm 0.09) % (9.47 \pm 0.10) % (9.16 \pm 0.10) % (9.16 \pm 0.10) % (5.19 \pm 0.10) %	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 CL=95%
Γ_{50} Γ_{51} Γ_{52} Γ_{53} Γ_{54} Γ_{55} Γ_{57} Γ_{58} Γ_{59} Γ_{60} Γ_{61}	$K^{n} h^{n} h^{n} - h^{-} v_{\tau}$ Modes with three of $h^{-} h^{-} h^{+} \ge 0 \text{ neutrals } \ge 0K_{L}^{0} v_{\tau}$ $h^{-} h^{-} h^{+} \ge 0 \text{ neutrals } v_{\tau}$ $(ex. K_{S}^{0} \rightarrow \pi^{+} \pi^{-})$ $("3 \text{ prong"})$ $h^{-} h^{-} h^{+} v_{\tau}$ $h^{-} h^{-} h^{+} v_{\tau} (ex. K^{0})$ $h^{-} h^{-} h^{+} v_{\tau} (ex. K^{0})$ $\pi^{-} \pi^{+} \pi^{-} v_{\tau} (ex. K^{0})$ $\pi^{-} \pi^{+} \pi^{-} v_{\tau} (ex. K^{0}),$ non-axial vector $\pi^{-} \pi^{+} \pi^{-} v_{\tau} (ex. K^{0}, \omega)$ $h^{-} h^{-} h^{+} \ge 1 \text{ neutrals } v_{\tau}$	$(1.7 \times 10^{-4}) \times 10^{-4}$ (2.3 ±2.0) × 10 ⁻⁴ (15.19±0.07) % (14.57±0.07) % (10.01±0.09) % (9.65±0.09) % (9.65±0.09) % (9.47±0.10) % (9.16±0.10) % (9.16±0.10) % (5.19±0.10) % (5.19±0.10) %	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.2 S=1.2 S=1.2 S=1.3 S=1.3
Γ_{50} Γ_{52} Γ_{53} Γ_{54} Γ_{55} Γ_{56} Γ_{57} Γ_{58} Γ_{59} Γ_{60} Γ_{61} Γ_{62}	$\begin{array}{c} K^{n}h^{n}h^{n} \geq 0 \text{ fictures } \nu_{\tau} \\ K^{0}h^{n}h^{n}h^{-}\nu_{\tau} \\ \textbf{Modes with three } c \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \geq 0K_{L}^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \nu_{\tau} \\ (ex. K_{0}^{0} \rightarrow \pi^{+}\pi^{-}) \\ ("3-\text{prong"}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex.K^{0}), \\ n\text{ non-axial vector } \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex.K^{0},\omega) \\ h^{-}h^{-}h^{+} \geq 1 \text{ neutrals } \nu_{\tau} \\ h^{-}h^{-}h^{-}h^{+} \geq 1 \text{ neutrals } \nu_{\tau} \\ \end{array}$	$ \langle 2.3 \pm 2.0 \rangle \times 10^{-4} $ (2.3 ±2.0) × 10 ⁻⁴ (15.19 ±0.07) % (14.57 ±0.07) % (19.65 ±0.09) % (9.65 ±0.09) % (9.47 ±0.10) % (9.47 ±0.10) % (9.12 ±0.10) % (5.19 ±0.10) % (5.19 ±0.10) % (4.92 ±0.09) %	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3
Γ ₅₀ Γ ₅₁ Γ ₅₂ Γ ₅₃ Γ ₅₅ Γ ₅₆ Γ ₅₇ Γ ₅₈ Γ ₅₉ Γ ₆₀ Γ ₆₁ Γ ₆₂	$\begin{array}{c} K^{n}h^{n}h^{n}h^{n} \geq 0 \text{ inditials } \nu_{\tau} \\ K^{0}h^{n}h^{n}h^{-}\nu_{\tau} \\ \hline \textbf{Modes with three } \alpha \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \geq 0K_{L}^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ ("3 \text{ prong"}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ n^{-}n^{-}h^{+} \geq 1 \text{ neutrals } \nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 1 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \end{array}$	$(1.7 \times 10) (2.3 \pm 2.0) \times 10^{-4}$ (2.3 ± 2.0) × 10^{-4} (15.19 ± 0.07) % (14.57 ± 0.07) % (9.65 ± 0.09) % (9.60 ± 0.09) % (9.47 ± 0.10) % (9.16 ± 0.10) % (9.16 ± 0.10) % (5.19 ± 0.10) % (4.92 ± 0.09) %	S=1.1 S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3
F_{50} F_{51} F_{52} F_{53} F_{54} F_{55} F_{56} F_{57} F_{58} F_{59} F_{60} F_{61} F_{62} F_{63}	$\begin{array}{c} K^{n}h^{n}h^{n} \geq 0 \text{ indicting } \nu_{\tau} \\ K^{0}h^{h}h^{n}h^{-}\nu_{\tau} \\ \hline \textbf{Modes with three } c \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \geq 0K_{L}^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ (``3-prong") \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex.K^{0}) \\ non-axil vector \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex.K^{0},\omega) \\ h^{-}h^{-}h^{+} \geq 1 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} \end{array}$	$(1.7 \times 10) (2.3 \pm 2.0) \times 10^{-4}$ (2.3 \pm 2.0) \times 10^{-4} (15.19 \pm 0.07) % (14.57 \pm 0.07) % (10.01 \pm 0.09) % (9.65 \pm 0.09) % (9.65 \pm 0.09) % (9.65 \pm 0.09) % (9.16 \pm 0.10) % (9.16 \pm 0.10) % (9.16 \pm 0.10) % (5.19 \pm 0.10) % (4.52 \pm 0.09) % (4.53 \pm 0.09) %	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3
F_{50} F_{51} F_{52} F_{53} F_{54} F_{55} F_{56} F_{57} F_{58} F_{59} F_{60} F_{61} F_{62} F_{63} F_{64}	$\begin{array}{c} K^{n}h^{n}h^{n} \geq 0 \text{ fictures } \nu_{\tau} \\ K^{0}h^{n}h^{n}h^{-}\nu_{\tau} \\ \hline \textbf{Modes with three } c \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \geq 0K_{L}^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ ("3 \text{ prong"}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ n^{-}n^{-}h^{+}h^{-} \geq 1 \text{ neutrals } \nu_{\tau} \\ h^{-}h^{-}h^{+}h^{-} \geq 1 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex. K^{0}) \end{array}$	$ \left\{ \begin{array}{c} 1.7 \\ (2.3 \pm 2.0) \times 10^{-4} \end{array} \right. \\ \left\{ \begin{array}{c} 2.3 \pm 2.0 \\ (2.3 \pm 2.0) \times 10^{-4} \end{array} \right. \\ \left\{ \begin{array}{c} 15.19 \pm 0.07 \\ (14.57 \pm 0.07) \\ (9.65 \pm 0.09) \\ (9.65 \pm 0.09) \\ (9.60 \pm 0.09) \\ (9.60 \pm 0.09) \\ (9.47 \pm 0.10) \\ (9.12 \pm 0.10) \\ (5.19 \pm 0.10) \\ (5.19 \pm 0.10) \\ (4.52 \pm 0.09) \\ (4.53 \pm 0.09) \\ (4.35 \pm 0.09) \\ (4.35 \pm 0.09) \\ \end{array} \right. $	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3
F_{50} F_{51} F_{52} F_{53} F_{54} F_{55} F_{56} F_{57} F_{58} F_{59} F_{60} F_{61} F_{62} F_{63} F_{64} F_{64} F_{65}	$\begin{array}{c} K^{n}h^{n}h^{n}b^{n} \\ K^{0}h^{n}h^{n}h^{n} \\ K^{0}h^{n}h^{n}h^{n} \\ \mu^{n} \\ K^{0}h^{n}h^{n}h^{n}b^{n} \\ \mu^{n}h^{n}h^{n}h^{n}h^{n}b^{n}h^{n}h^{n}h^{n}h^{n}h^{n}h^{n}h^{n}h$	$(1.7 \times 10) (2.3 \pm 2.0) \times 10^{-4}$ (2.3 ± 2.0) × 10^{-4} (15.19 ± 0.07) % (14.57 ± 0.07) % (9.65 ± 0.09) % (9.60 ± 0.09) % (9.47 ± 0.10) % (9.16 ± 0.10) % (9.16 ± 0.10) % (5.19 ± 0.10) % (5.19 ± 0.10) % (4.52 ± 0.09) % (4.53 ± 0.09) % (2.67 ± 0.09) %	S=1.1 S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.3 S=1.3 S=1.3 S=1.3 S=1.3
F_{50} F_{51} F_{52} F_{53} F_{54} F_{55} F_{56} F_{57} F_{58} F_{59} F_{60} F_{61} F_{62} F_{64} F_{65} F_{64} F_{65} F_{65} F_{64} F_{65} F_{7	$\begin{array}{c} K^{n}h^{n}h^{n} \geq 0 \text{ indicitials } \nu_{\tau} \\ K^{0}h^{n}h^{n}h^{-}\nu_{\tau} \\ \textbf{Modes with three } c \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \geq 0K_{L}^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ (``3-prong'') \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex.K^{0}) \\ n^{-}h^{-}h^{+} \geq 1 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex.K^{0}) \\ \mu^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex.K^{0}) \\ \mu^{-}h^{-}h^{-}h^{-}h^{-}h^{-}h^{-}h^{-}h$	(1.7×10^{-4}) (2.3 ±2.0) × 10 ⁻⁴ (2.3 ±2.0) × 10 ⁻⁴ (1.519±0.07) % (14.57±0.07) % (14.57±0.07) % (9.65±0.09) % (9.65±0.09) % (9.65±0.09) % (9.16±0.10) % (9.16±0.10) % (5.19±0.10) % (5.19±0.10) % (4.52±0.09) % (4.55±0.09) % (2.62±0.09) % (4.55±0.09) %	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2 S=1.2
Γ_{50} Γ_{51} Γ_{52} Γ_{53} Γ_{54} Γ_{55} Γ_{56} Γ_{57} Γ_{58} Γ_{59} Γ_{60} Γ_{61} Γ_{62} Γ_{63} Γ_{64} Γ_{65} Γ_{66}	$\begin{array}{c} K^{n}h^{n}h^{n} = b^{n} c^{n} dtars v_{\tau} \\ K^{0}h^{n}h^{n}h^{-} v_{\tau} \\ \hline Modes with three of \\ h^{-}h^{-}h^{+} \geq 0 neutrals \geq 0K_{L}^{0}v_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 neutrals v_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ ("3 prong") \\ h^{-}h^{-}h^{+}v_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}v_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}v_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}v_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}v_{\tau} (ex. K^{0}) \\ non-axial vector \\ \pi^{-}\pi^{+}\pi^{-}v_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+} \geq 1 neutrals v_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}v_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}h^{-}h^{0}v_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{-}h^{-}h^{-}h^{0}v_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{-}h^{-}h^{-}h^{0}v_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{-}h^{-}h^{0}v_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{-}h^{-}h^{-}h^{0}v_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{-}h^{-}h^{-}h^{-}h^{-}h^{-}$	$(1.7 \times 10) (2.3 \pm 2.0) \times 10^{-4}$ (2.3 \pm 2.0) $\times 10^{-4}$ (15.19 \pm 0.07) % (14.57 \pm 0.07) % (9.65 \pm 0.09) % (9.60 \pm 0.09) % (9.47 \pm 0.10) % (9.16 \pm 0.10) % (5.19 \pm 0.10) % (4.52 \pm 0.09) % (4.53 \pm 0.09) % (4.53 \pm 0.09) % (4.35 \pm 0.09) % (4.37 \pm 0.09) %	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2 S=1.2 S=1.2 S=1.2
$\begin{array}{c} F_{50} \\ F_{51} \\ F_{52} \\ F_{53} \\ F_{54} \\ F_{55} \\ F_{57} \\ F_{58} \\ F_{59} \\ F_{60} \\ F_{61} \\ F_{62} \\ F_{63} \\ F_{64} \\ F_{65} \\ F_{66} \\ F_{67} \end{array}$	$\begin{array}{c} K^{n}h^{n}h^{n}b^{n} b^{n} \\ K^{0}h^{n}h^{n}h^{n}b^{n} \\ K^{0}h^{n}h^{n}h^{n}b^{n} \\ \hline \end{array} \\ \hline \begin{array}{c} \textbf{Modes with three } c \\ \textbf{Modes with three } c \\ h^{n}h^{n}h^{n}h^{n}b^{n} \\ e \\ h^{n}h^{n}h^{n}h^{n}b^{n} \\ e \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{n}h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n} \\ h^{n} \\ h^{n}h^{n}h^{n} \\ e \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{n}h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n} \\ h^{n}h^{n} \\ h^{n}h^{n}h^{n} \\ h^{n}h^{n} \\ h^{n}h^{n}h^{n} \\ h^{n}h^{n} \\ h^{n} \\ h^{n} \\ h^{n} \\ h^{n} \\ h$	$(1.7 \times 10) \\ (2.3 \pm 2.0) \times 10^{-4}$ (15.19 ± 0.07) % (14.57 ± 0.07) % (14.57 ± 0.07) % (9.65 ± 0.09) % (9.60 ± 0.09) % (9.47 ± 0.10) % (9.16 ± 0.10) % (9.16 ± 0.10) % (9.12 ± 0.10) % (4.52 ± 0.09) % (4.53 ± 0.09) % (4.53 ± 0.09) % (4.35 ± 0.09) % (4.25 ± 0.09) %	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3
F_{50} F_{51} F_{52} F_{53} F_{54} F_{55} F_{56} F_{57} F_{58} F_{59} F_{60} F_{61} F_{63} F_{64} F_{65} F_{66} F_{67} F_{66} F_{67} F_{68} F_{67} F_{68} F_{67} F_{68} F_{67} F_{68} F_{67} F_{68} F_{67} F_{68} F_{67} F_{68} F_{67} F_{68} F_{67} F_{68} F_{67} F_{68} F_{67} F_{68} F_{67} F_{68} F_{67} F_{68} F_{67} F_{68} F_{67} F_{68} F_{6	$\begin{array}{c} K^{n}h^{n}h^{n} = b^{n} \nabla_{\tau} \\ \hline K^{0}h^{n}h^{n}h^{n} = b^{n} \nabla_{\tau} \\ \hline \textbf{Modes with three } other \\ \hline \textbf{Modes with three } (h^{n}h^{n}h^{n}h^{n}h^{n} = h^{n} \geq 0$ neutrals $\nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ (ex. K^{0} \rightarrow \pi^{+}\pi^{-}\nu_{\tau} \\ (ex. K^{0}) \\ h^{n}h^{n}h^{n}h^{n}\nu_{\tau} \\ (ex. K^{0}) \\ \pi^{n}\pi^{+}\pi^{-}\nu_{\tau} \\ (ex. K^{0}) \\ \pi^{n}\pi^{+}\pi^{-}\nu_{\tau} \\ (ex. K^{0}) \\ h^{n}h^{n}h^{+} \geq 1$ neutrals $\nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{n}h^{n}h^{+}h^{n} \\ h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n} \\ \mu^{n}(ex. K^{0}) \\ h^{n}h^{n}h^{n}h^{n} \\ \mu^{n}(ex. K^{0}) \\ h^{n}h^{n}h^{n}h^{n} \\ \mu^{n}(ex. K^{0}) \\ h^{n}h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n} \\ \mu^{n}(ex. K^{0}) \\ h^{n}h^{n}h^{n}h^{n} \\ \mu^{n}(ex. K^{0}) \\ h^{n}h^{n}h^{n}h^{n} \\ \mu^{n}(ex. K^{0}) \\ h^{n}h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n} \\ \mu^{n}(ex. K^{0}) \\ h^{n}h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n}h^{n}h^{n}h^{n}h^{n} \\ h^{n}h^{n}h^{n}h^{n}h^{n}h^{n}h^{n}h^{n}$	$ \left\{ \begin{array}{c} 1.7 \\ (2.3 \pm 2.0) \right\} \times 10^{-4} \\ (2.3 \pm 2.0) \times 10^{-4} \\ \text{(barged particles)} \\ (15.19 \pm 0.07) \\ (14.57 \pm 0.07) \\ (9.65 \pm 0.09) \\ (9.65 \pm 0.09) \\ (9.65 \pm 0.09) \\ (9.65 \pm 0.09) \\ (9.16 \pm 0.10) \\ (9.16 \pm 0.10) \\ (9.16 \pm 0.10) \\ (9.16 \pm 0.10) \\ (4.52 \pm 0.09) \\ (4.52 \pm 0.09) \\ (4.35 \pm 0.09) \\ (4.35 \pm 0.09) \\ (4.37 \pm 0.09) \\ (4.55 \pm 0.09) \\ (4.55 \pm 0.09) \\ (5.15 \pm 0.09) \\ $	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2 S=1.3 S=1.2 S=1.2
F_{50} F_{51} F_{52} F_{53} F_{54} F_{55} F_{56} F_{57} F_{58} F_{59} F_{61} F_{63} F_{64} F_{65} F_{66} F_{67} F_{67} F_{68} F_{69}	$\begin{array}{c} K^{n}h^{n}h^{n}\nu_{\tau} \geq 0 \text{ inductas } \nu_{\tau} \\ K^{0}h^{n}h^{n}h^{-}\nu_{\tau} \\ \hline \textbf{Modes with three } c \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \geq 0K_{L}^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ ("3 \text{ prong"}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ n^{-}h^{-}h^{+} \geq 1 \text{ neutrals } \nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 1 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex. K^{0}) \\ n^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} (ex. K^{0}) \\ h^{-}\rho\pi^{0}\nu_{\tau} \end{array}$	$ \left(\begin{array}{c} 1.7 \\ (2.3 \pm 2.0 \end{array} \right) \times 10^{-4} \\ (2.3 \pm 2.0 \end{array} \right) \times 10^{-4} \\ \mbox{tharged particles} \\ (15.19 \pm 0.07) \% \\ (14.57 \pm 0.07) \% \\ (9.65 \pm 0.09) \% \\ (9.66 \pm 0.09) \% \\ (9.60 \pm 0.09) \% \\ (9.61 \pm 0.10) \% \\ (9.16 \pm 0.10) \% \\ (9.12 \pm 0.10) \% \\ (5.19 \pm 0.10) \% \\ (4.53 \pm 0.09) \% \\ (4.53 \pm 0.09) \% \\ (4.35 \pm 0.09) \% \\ (4.35 \pm 0.09) \% \\ (4.25 \pm 0.09) \% \\ (a.25 \pm 0.09) \% \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2
Γ_{50} Γ_{51} Γ_{52} Γ_{53} Γ_{54} Γ_{55} Γ_{56} Γ_{57} Γ_{58} Γ_{58} Γ_{61} Γ_{62} Γ_{63} Γ_{64} Γ_{65} Γ_{66} Γ_{67} Γ_{68} Γ_{69} Γ_{70}	$\begin{array}{c} K^{n}h^{n}h^{n}b^{n}z^{n}\\ K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \end{array} \\ \hline \textbf{Modes with three } other constraints } \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \geq 0K_{L}^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ ("3 \text{ prong"}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+} \geq 1 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} (ex.K^{0}) \\ h^{-}\rho^{-}h^{-}\nu_{\tau} \end{array}$	(1.7×10) $(2.3 \pm 2.0) \times 10^{-4}$ (15.19 ± 0.07) % $(14.57 \pm 0.07) %$ $(14.57 \pm 0.07) %$ $(9.65 \pm 0.09) %$ $(9.60 \pm 0.09) %$ $(9.47 \pm 0.10) %$ $(9.16 \pm 0.10) %$ $(9.16 \pm 0.10) %$ $(5.19 \pm 0.10) %$ $(4.52 \pm 0.09) %$ $(4.53 \pm 0.09) %$ $(4.53 \pm 0.09) %$ $(2.62 \pm 0.09) %$ $(4.25 \pm 0.09) %$ $(4.25 \pm 0.09) %$ $(2.51 \pm 0.09) %$	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2 S=1.2
F_{50} F_{51} F_{52} F_{53} F_{54} F_{55} F_{57} F_{57} F_{57} F_{57} F_{57} F_{60} F_{61} F_{66} F_{66} F_{66} F_{66} F_{66} F_{66} F_{66} F_{66} F_{67} F_{70} F_{77} F_{77}	$\begin{array}{c} K^{n}h^{n}h^{n} = b^{n} e^{-b} r^{n} \\ K^{0}h^{n}h^{n}h^{n} = b^{n} \\ \hline Modes with three of \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } \geq 0K_{L}^{0} v_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 \text{ neutrals } v_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ ("3-prong") \\ h^{-}h^{-}h^{+}v_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}v_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}v_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}v_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}v_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}v_{\tau} (ex.K^{0}) \\ n^{-}h^{-}h^{+} \geq 1 \text{ neutrals } v_{\tau} \\ h^{-}h^{-}h^{+}\pi^{0} v_{\tau} (ex.K^{0}) \\ n^{-}\pi^{+}\pi^{-}\pi^{0} v_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\pi^{0} v_{\tau} (ex.K^{0}) \\ h^{-}\rho^{-}h^{+}v_{\tau} \\ h^{-}\rho^{-}h^{+}v_{\tau} \\ h^{-}\rho^{-}h^{+}v_{\tau} \end{array}$	$ \left(\begin{array}{c} 1.7 \\ 2.3 \\ \pm 2.0 \end{array} \right) \times 10^{-4} \\ (2.3 \\ \pm 2.0 \\) \times 10^{-4} \\ (15.19 \\ \pm 0.07) \\ (14.57 \\ \pm 0.07) \\ (14.57 \\ \pm 0.07) \\ (9.65 \\ \pm 0.09) \\ (9.16 \\ \pm 0.10) \\ (9.16 \\ \pm 0.10) \\ (9.12 \\ \pm 0.10) \\ (1.51 \\ \pm 0.10) \\ (1.51 \\ \pm 0.09) \\ (1.51 $	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2 S=1.3 S=1.2
Γ_{50} Γ_{51} Γ_{52} Γ_{53} Γ_{54} Γ_{55} Γ_{57} Γ_{58} Γ_{57} Γ_{58} Γ_{57} Γ_{58} Γ_{56} Γ_{57} Γ_{58} Γ_{56} Γ_{57} Γ_{58} Γ_{56} Γ_{57} Γ_{58} Γ_{56} Γ_{57} Γ_{58} Γ_{56} Γ_{57} Γ_{58} Γ_{56} Γ_{57} Γ_{58} Γ_{56} Γ_{57} Γ_{58} Γ_{56} Γ_{57} Γ_{58} Γ_{56} Γ_{57} Γ_{58} Γ_{58} Γ_{56} Γ_{57} Γ_{58} Γ_{58} Γ_{56} Γ_{57} Γ_{58} Γ_{57} Γ_{58} Γ_{57} Γ_{58} Γ_{57} Γ_{58} Γ_{57} Γ_{58} Γ_{57} Γ_{58} Γ_{57} Γ_{58} Γ_{57} Γ_{58} Γ_{57} Γ_{58} Γ_{57} Γ_{58} Γ_{57} Γ_{58} Γ_{57} Γ_{58} Γ_{57} Γ_{57} Γ_{58} Γ_{57} Γ_{5	$\begin{array}{c} K^{n}h^{n}h^{n} = k^{n} \\ K^{0}h^{n}h^{n}h^{n} = k^{n} \\ \hline Modes with three of \\ \hline Modes with three of \\ h^{n}h^{n}h^{n} \geq 0$ neutrals $\geq 0K_{L}^{0}v_{T}$ $h^{n}h^{n}h^{n} \geq 0$ neutrals v_{T} $(ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-})$ ("3 prong") $h^{n}h^{n}h^{+}v_{T}$ $h^{n}h^{n}h^{+}v_{T}$ (ex. K^{0}) $h^{n}h^{n}h^{+}v_{T}$ (ex. K^{0}) $\pi^{n}\pi^{n}\pi^{n}\tau^{n}v_{T}$ (ex. K^{0}) $\pi^{n}\pi^{n}\pi^{n}\tau^{n}v_{T}$ (ex. K^{0})) $n^{n}h^{n}h^{n}h^{+} \geq 1$ neutrals v_{T} $h^{n}h^{n}h^{+} \geq 1$ neutrals v_{T} $h^{n}h^{n}h^{+}\pi^{0}v_{T}$ $(ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-})$ $h^{n}h^{-}h^{+}\pi^{0}v_{T}$ (ex. K^{0}) $h^{n}h^{-}h^{+}\pi^{0}v_{T}$ (ex. K^{0}), ω) $\pi^{n}\pi^{n}\pi^{n}\pi^{n}\sigma^{0}v_{T}$ (ex. K^{0}), ω) $\pi^{n}\pi^{n}\pi^{n}\pi^{n}\sigma^{0}v_{T}$ (ex. K^{0}), ω) $h^{n}\rho^{n}h^{n}v_{T}$ $h^{n}\rho^{n}h^{n}v_{T}$ $h^{n}\rho^{n}h^{n}v_{T}$	$(1.7 \times 10) (2.3 \pm 2.0) \times 10^{-4}$ (2.3 ± 2.0) × 10^{-4} (15.19 ± 0.07) % (14.57 ± 0.07) % (9.65 ± 0.09) % (9.60 ± 0.09) % (9.47 ± 0.10) % (9.16 ± 0.10) % (5.19 ± 0.10) % (4.53 ± 0.09) % (4.53 ± 0.09) % (4.35 ± 0.09) % (4.35 ± 0.09) % (4.35 ± 0.09) % (4.25 ± 0.09) % (5.5 ± 0.4) × 10^{-3}	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2 S=1.3 S=1.2
Γ_{50} Γ_{51} Γ_{52} Γ_{53} Γ_{54} Γ_{55} Γ_{56} Γ_{57} Γ_{58} Γ_{57} Γ_{58} Γ_{57} Γ_{58} Γ_{57} Γ_{58} Γ_{56} Γ_{57} Γ_{56} Γ_{57} Γ_{56} Γ_{57} Γ_{56} Γ_{57} Γ_{58} Γ_{59} Γ_{61} Γ_{63} Γ_{66} Γ_{67} Γ_{68} Γ_{69} Γ_{71} Γ_{72} Γ_{7	$\begin{array}{c} K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of Models by the form of the translation form of transla$	(1.7×10^{-4}) $(2.3 \pm 2.0) \times 10^{-4}$ (15.19 ± 0.07) % $(14.57 \pm 0.07) %$ $(10.01 \pm 0.09) %$ $(9.65 \pm 0.09) %$ $(9.66 \pm 0.09) %$ $(9.60 \pm 0.09) %$ $(9.47 \pm 0.10) %$ $(9.16 \pm 0.10) %$ $(9.16 \pm 0.10) %$ $(4.52 \pm 0.09) %$ $(4.53 \pm 0.09) %$ $(4.55 \pm 0.09) %$ $(4.25 \pm 0.09) %$ $(5.5 \pm 0.4) \times 10^{-3}$ $(5.5 \pm 0.4) \times 10^{-3}$	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2 S=1.2 S=1.2
$ \begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	$\begin{array}{c} K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of Models by the form of the form of$	$ \left\{ \begin{array}{c} 1.7 \\ (2.3 \pm 2.0) \times 10^{-4} \\ (2.3 \pm 2.0) \times 10^{-4} \\ \end{array} \right. $	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2
$ \begin{matrix} r_{50} \\ r_{51} \\ r_{52} \\ r_{53} \\ r_{54} \\ r_{55} \\ r_{57} \\ r_{58} \\ r_{57} \\ r_{58} \\ r_{57} \\ r_{58} \\ r_{61} \\ r_{62} \\ r_{61} \\ r_{63} \\ r_{64} \\ r_{67} \\ r_{68} \\ r_{67} \\ r_{70} \\ r_{71} \\ r_{72} \\ r_{73} \\ r_{74} \end{matrix} $	$\begin{array}{c} K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of the trans \nu_{\tau} \\ K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of the trans \nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 neutrals \geq 0K_{L}^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 neutrals \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ ("3 \text{ prong"}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ n^{-}n^{-}h^{+} \geq 1 neutrals \nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 1 neutrals \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex. K^{0}) \\ n^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} (ex. K^{0}) \\ n^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} (ex. K^{0}) \\ n^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\mu^{-}\mu^{-}h^{-}h^{-}\mu^{-}h^{-}h^{-}\mu^{-}h^{-}h^{-}h^{-}h^{-}h^{-}h^{-}h^{-}h$	$ \left(\begin{array}{c} 1.7 \\ (2.3 \\ \pm 2.0 \end{array} \right) \times 10^{-4} \\ (2.3 \\ \pm 2.0 \end{array} \right) \times 10^{-4} \\ (15.19 \pm 0.07) \\ (14.57 \pm 0.07) \\ (14.57 \pm 0.07) \\ (14.57 \pm 0.07) \\ (9.65 \pm 0.09) \\ (9.66 \pm 0.09) \\ (9.16 \pm 0.10) \\ (9.16 \pm 0.10) \\ (9.16 \pm 0.10) \\ (9.12 \pm 0.10) \\ (1.12 \pm 0.09) \\ (4.35 \pm 0.09) \\ (4.52 \pm 0.09) \\ (4.52 \pm 0.09) \\ (5.5 \pm 0.4) \times 10^{-3} \\ (5.4 \pm 0.4) \times 10^{-3} \\ [a] \\ (1.1 \pm 0.4) \times 10^{-3} \\ \end{array} $	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2 S=1.2 S=1.2
$ \begin{bmatrix} 1 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 &$	$\begin{array}{c} K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of hoderand ν_{τ} \\ \hline K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of hoderand ν_{τ} \\ \hline h^{-}h^{-}h^{+} \ge 0 \text{ neutrals } \nu_{\tau}$ \\ \hline (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ \hline h^{-}h^{-}h^{+}\nu_{\tau}$ (ex. K^{0}) \\ \hline h^{-}h^{-}h^{+}\nu_{\tau}$ (ex. K^{0}) \\ \hline n^{-}\pi^{+}\pi^{-}\nu_{\tau}$ (ex. K^{0}) \\ \hline \pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$ (ex. K^{0}) \\ \hline \pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$ (ex. K^{0}) \\ \hline n^{-}h^{-}h^{+} \ge 1 \text{ neutrals } \nu_{\tau}$ \\ \hline (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0}) \\ \hline h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0}) \\ \hline h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0}) \\ \hline n^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}$ (ex. K^{0}) \\ \hline \pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}$ (ex. K^{0}) \\ \hline h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau}$ (ex. K^{0}) \\ \hline h^{-}h^{-}h^{+}3\pi^{0}\nu_{\tau}$ (ex. K^{0}) \\ \hline h^{-}h^{-}h^{+}\pi^{0}\pi^{0}\nu_{\tau}$ (ex. K^{0}) \\ \hline h^{-}h^{-}h^{+}\pi^{0}\mu^{0}\nu_{\tau}$ (ex. K^{0}) \\ \hline h^{-}h^{-}h^{-}h^{-}\pi^{0}\mu^{0}\mu^{0} \\ \hline h^{-}h^{-}h^{-}h^{-}\mu^{0}\mu^{0}$	$ \left(\begin{array}{c} 1.7 \\ 2.3 \\ \pm 2.0 \end{array} \right) \times 10^{-4} $ tharged particles $ \left(15.19 \pm 0.07 \right) \% \\ \left(14.57 \pm 0.07 \right) \% \\ \left(14.57 \pm 0.07 \right) \% \\ \left(\begin{array}{c} 9.65 \pm 0.09 \right) \% \\ \left(9.65 \pm 0.09 \right) \% \\ \left(9.65 \pm 0.09 \right) \% \\ \left(9.16 \pm 0.10 \right) \% \\ \left(9.16 \pm 0.10 \right) \% \\ \left(9.16 \pm 0.10 \right) \% \\ \left(5.19 \pm 0.10 \right) \% \\ \left(5.19 \pm 0.10 \right) \% \\ \left(4.52 \pm 0.09 \right) \% \\ \left(4.53 \pm 0.09 \right) \% \\ \left(4.35 \pm 0.09 \right) \% \\ \left(4.35 \pm 0.09 \right) \% \\ \left(4.35 \pm 0.09 \right) \% \\ \left(4.25 \pm 0.09 \right) \% \\ \left(2.51 \pm 0.09 \right) \% \\ \left(2.51 \pm 0.09 \right) \% \\ \left(2.51 \pm 0.09 \right) \% \\ \left(3.7 \pm 0.09 \right) \% \\ \left(2.51 \pm 0.09 \right) \% \\ \left(3.7 \pm 0.09 \right) \% $	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2 S=1.3 S=1.2 S=1.2
$ \begin{matrix} F_{50} \\ F_{51} \\ F_{52} \\ F_{53} \\ F_{54} \\ F_{55} \\ F_{56} \\ F_{57} \\ F_{58} \\ F_{58} \\ F_{58} \\ F_{61} \\ F_{67} \\ F_{68} \\ F_{66} \\ F_{67} \\ F_{70} \\ F_{72} \\ F_{73} \\ F_{74} \\ F_{76} \end{matrix} $	$\begin{array}{c} K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of the trans \nu_{\tau} \\ K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of the trans \nu_{\tau} \\ ex. K_{0}^{0} \rightarrow \pi^{+}\pi^{-}) \\ (ex. K_{0}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0} \\ (ex. K_{0}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0} \\ (ex. K_{0}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0} \\ \mu_{\tau} \\ (ex. K_{0}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{-}h^{0} \\ h^{-}h^{-}h^{+}\pi^{0} \\ h^{-}h^{-}h^{+}h^{-}h^{-}h^{-}h^{-}h^{-}h^{-}h^{-}h^{-$	$ \left(\begin{array}{c} 1.7 \\ 2.3 \\ \pm 2.0 \end{array} \right) \times 10^{-4} \\ (2.3 \\ \pm 2.0 \end{array} \right) \times 10^{-4} \\ (15.19 \pm 0.07) \\ (14.57 \pm 0.07) \\ (14.57 \pm 0.07) \\ (14.57 \pm 0.07) \\ (9.65 \pm 0.09) \\ (9.47 \pm 0.10) \\ (9.16 \pm 0.10) \\ (9.16 \pm 0.10) \\ (9.12 \pm 0.10) \\ (1.51 \pm 0.01) \\ (1.51 \pm 0.01) \\ (1.51 \pm 0.09) \\ (1.55 \\ \pm 0.4) \\ (1.55 \\ \pm 0.4) \\ (2.51 \pm 0.09) \\ (1.55 \\ \pm 0.4) \\ (1.55 \\ \pm 0$	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2 S=1.5 S=1.3
$\begin{array}{c} r_{50}\\ r_{51}\\ r_{52}\\ r_{53}\\ r_{54}\\ r_{55}\\ r_{56}\\ r_{57}\\ r_{58}\\ r_{59}\\ r_{56}\\ r_{66}\\ r_{67}\\ r_{68}\\ r_{66}\\ r_{67}\\ r_{68}\\ r_{70}\\ r_{71}\\ r_{74}\\ r_{75}\\ r_{76}\\ r_{77}\\ r_{76}\\ r_{76}\\ r_{77}\\ r_{76}\\ r_{76}\\ r_{77}\\ r_{76}\\ r_{77}\\ r_{76}\\ r_{76}\\ r_{76}\\ r_{77}\\ r_{76}\\ r_{76}\\ r_{76}\\ r_{76}\\ r_{76}\\ r_{77}\\ r_{76}\\ r_{76}\\$	$\begin{array}{c} K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of \\ K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of \\ h^{-}h^{-}h^{+} \geq 0 \mbox{ neutrals } \geq 0K_{L}^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+} \geq 0 \mbox{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ ("3 \mbox{ prong"}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex.K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex.K^{0}) \\ n^{-}n^{-}h^{+}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+} \geq 1 \mbox{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex.K^{0}) \\ n^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} (ex.K^{0}) \\ n^{-}n^{+}h^{+}\nu_{\tau} \\ h^{-}h^{-}h^{+}2n^{0}\nu_{\tau} (ex.K^{0}) \\ h^{-}h^{-}h^{+}n^{-}\nu^{-}(ex.K^{0}) \\ h^{-}h^{-}h^{+}n^{-}\nu^{-}(ex.K^{0}) \\ h^{-}h^{-}h^{+}n^{-}\nu^{-}(ex.K^{0}) \\ h^{-}h^{-}h^{+}n^{-}\nu^{-}(ex.K^{0}) \\ h^{-}h^{-}h^{+}n^{-}\nu^{-}(ex.K^{0}) \\ h^{-}h^{-}h^{-}h^{-}n^{-}\mu^{-}n^{-}(ex.K^{0}) \\ h^{-}h^{-}h^{-}h^{-}n^{-}\mu^{-}n^{-}(ex.K^{0}) \\ h^{-}h^{-}h^{-}h^{-}n^{-}(ex.K^{0}) \\ h^{-}h^{-}h^{-}h^{-}n^{-}h^{-}n^{-}h^{-}n^{-}(ex.K^{0}) \\ h^{-}h^{-}h^{-}h^{-}h^{-}n^{-}(ex.K^{0}) \\ h^{-}h^{-}h^{-}h^{-}h^{-}n^{-}(ex.K^{0}) \\ h^{-}h^{-}h^{-}h^{-}h^{-}n^{-}h^{-}n^{-}h^{-}n^{-}n^{-}n^{-}n^{-}n^{-}n^{-}n^{-}n$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2 S=1.5 S=1.5 S=1.5 S=1.5
$ \begin{matrix} F_{50} \\ F_{51} \\ F_{52} \\ F_{53} \\ F_{54} \\ F_{55} \\ F_{56} \\ F_{57} \\ F_{59} \\ F_{61} \\ F_{62} \\ F_{66} \\ F_{66} \\ F_{66} \\ F_{66} \\ F_{70} \\ F_{72} \\ F_{73} \\ F_{74} \\ F_{75} \\ F_{76} \\ F_{77} \\ \mathsf$	$\begin{array}{c} K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of hoderands \nu_{\tau} \\ K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of hoderands \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ (ex. K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau} (ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ n^{-}\pi^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{-}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} (ex. K^{0}) \\ n^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} (ex. K^{0}) \\ n^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} \\ (ex. K_{0}^{0}) \\ h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} \\ (ex. K_{0}^{0}) \\ h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} \\ h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} \\ K^{-}h^{+}h^{-} \geq 0 \text{ neutrals } \nu_{\tau} \\ K^{-}h^{+}\pi^{-}\pi^{0}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{-}\pi^{0}\nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{-}\nu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu$	$ \left(\begin{array}{c} 1.7 \\ \times 10 \\ (2.3 \pm 2.0) \right) \times 10^{-4} \\ \text{tharged particles} \\ (15.19 \pm 0.07) \\ (14.57 \pm 0.07) \\ (14.57 \pm 0.07) \\ (9.65 \pm 0.09) \\ (9.16 \pm 0.10) \\ (9.16 \pm 0.10) \\ (9.16 \pm 0.10) \\ (9.16 \pm 0.10) \\ (4.52 \pm 0.09) \\ (4.52 \pm 0.09) \\ (4.53 \pm 0.09) \\ (4.35 \pm 0.09) \\ (2.62 \pm 0.09) \\ (4.35 \pm 0.09) \\ (2.62 \pm 0.09) \\ (2.52 \pm 0.09) \\ (2.52 \pm 0.09) \\ (2.52 \pm 0.09) \\ (2.51 \pm 0.09) \\ (3) \\ (2.51 \pm 0.09) \\ (3) \\ (2.51 \pm 0.09) \\ (4.35 \pm 0.09) \\ (4.35 \pm 0.09) \\ (4.35 \pm 0.09) \\ (2.51 \pm 0.09) \\ (2.51 \pm 0.09) \\ (2.51 \pm 0.09) \\ (3) \\ (2.51 \pm 0.09) \\ (4.35 \pm 0.09) \\$	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2 S=1.3 S=1.2 S=1.5 S=1.5
	$\begin{array}{c} K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of the trans \nu_{\tau} \\ K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of the trans \nu_{\tau} \\ (ex. K_{0}^{0} \rightarrow \pi^{+}\pi^{-}) \\ (ex. K_{0}^{0} \rightarrow \pi^{+}\pi^{-}\nu_{\tau} \\ (ex. K_{0}^{0} \rightarrow \pi^{+}\pi^{-}) \\ (ex. K_{0}^{0} \rightarrow \pi^{+}\pi^{-}) \\ (ex. K_{0}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+} \geq 1 neutrals \\ \nu_{\tau} \\ (ex. K_{0}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0} \\ \nu_{\tau} \\ (ex. K_{0}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0} \\ \mu_{\tau} (ex. K^{0}) \\ n^{-}\pi^{+}\pi^{-}\pi^{0} \\ \nu_{\tau} (ex. K^{0}) \\ n^{-}\pi^{+}\pi^{-}\pi^{0} \\ \nu_{\tau} (ex. K^{0}) \\ n^{-}h^{-}h^{+}2\pi^{0} \\ \nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}2\pi^{0} \\ \mu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{-}\pi^{0} \\ \nu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{-}n^{0} \\ \mu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{-}n^{0} \\ \mu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{-}n^{0} \\ \mu_{\tau} (ex. K^{0}) \\ h^{-}h^{-}h^{-}h^{-}n^{0} \\ h^{-}h^{-}h^{-}n^{0} \\ h^{-}h^{-}h^{-}h^{0} \\ h^{-}h^{-}h^{-}h^{0} \\ h^{-}h^{-}h^{-}h^{0} \\ h^{-}h^{-}h^{-}h^{0} \\ h^{-}h^{-}h^{-}h^{-}h^{0} \\ h^{-}h^{-}h^{-}h^{0} \\ h^{-}h^{-}h^{-}h^{0} \\ $	$ \left(\begin{array}{c} 1.7 \\ \times 10 \\ (2.3 \pm 2.0) \right) \times 10^{-4} \\ \text{(barge particles)} \\ (15.19 \pm 0.07) \\ (14.57 \pm 0.07) \\ (14.57 \pm 0.07) \\ (9.65 \pm 0.09) \\ (9.65 \pm 0.09) \\ (9.60 \pm 0.09) \\ (9.60 \pm 0.09) \\ (9.60 \pm 0.09) \\ (9.47 \pm 0.10) \\ (9.16 \pm 0.10) \\ (9.16 \pm 0.10) \\ (9.12 \pm 0.10) \\ (9.12 \pm 0.10) \\ (4.32 \pm 0.09) \\ (4.33 \pm 0.09) \\ (4.33 \pm 0.09) \\ (4.33 \pm 0.09) \\ (4.33 \pm 0.09) \\ (4.35 \pm 0.09) \\ (4.35 \pm 0.09) \\ (4.35 \pm 0.09) \\ (2.62 \pm 0.09) \\ (4.37 \pm 0.09) \\ (4.55 \pm 0.09) \\ (2.51 \pm 0.09) \\ (6.55 \pm 0.4) \times 10^{-3} \\ (5.4 \pm 0.4) \times 10^{-3} \\ (5.4 \pm 0.4) \times 10^{-3} \\ (6.9 \pm 0.4) \times 10^{-3} \\ (1.07 \pm 0.22) \times 10^{-3} \\ (1.07 \pm 0.22) \times 10^{-3} \\ (5.6 \pm 0.4) \times 10^{-3} \\ (1.07 \pm 0.22) \times 10^{-3} \\ (5.6 \pm 0.4) \times 10^{-3} \\ (1.07 \pm 0.22) \times 10^{-3} \\ (5.6 \pm 0.4) \times 10^{-3} \\ (5.6 \pm 0.4) \times 10^{-3} \\ (5.6 \pm 0.4) \times 10^{-3} \\ (1.07 \pm 0.22) \times 10^{-3} \\ (5.6 \pm 0.4) \times 10^{-3} \\ (1.07 \pm 0.22) \times 10^{-3} \\ (5.6 \pm 0.4) \times 10^{-3$	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2 S=1.3 S=1.2 S=1.5 S=1.3 S=1.5
$ \begin{array}{c} r_{50} \\ r_{51} \\ r_{52} \\ r_{53} \\ r_{55} \\ r_{56} \\ r_{57} \\ r_{56} \\ r_{77} \\ r_{74} \\ r_{75} \\ r_{76} \\ r_{77} \\ r_{78} \\ r_{77} \\ r_{78} \\ r_{79} \end{array} $	$\begin{array}{c} K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of hoderand ν_{τ} \\ \hline K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of hoderand ν_{τ} \\ \hline h^{-}h^{-}h^{+} \ge 0 \text{ neutrals } \nu_{\tau}$ \\ \hline (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{+}\nu_{\tau}(ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{+} \ge 1 \text{ neutrals } \nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau}(ex. K^{0}) \\ n^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}(ex. K^{0}) \\ \pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}(ex. K^{0}) \\ \pi^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{-}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{-}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{-}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{-}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{-}\nu^{-}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{-}\nu^{-}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{-}\nu^{-}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{+}\pi^{-}\nu^{-}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{-}\pi^{-}\nu^{-}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{-}\pi^{-}\nu^{-}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{-}\pi^{-}\nu^{-}\nu^{-}\nu_{\tau}(ex. K^{0}) \\ h^{-}h^{-}h^{-}\mu^{-}\nu^{-}\nu^{-}\nu^{-}\nu^{-}\nu^{-}\nu^{-}\nu^{-}\nu$	$ \left(\begin{array}{c} 1.7 \\ (2.3 \pm 2.0 \end{array} \right) \times 10^{-4} \\ (2.3 \pm 2.0 \end{array} \right) \times 10^{-4} \\ (15.19 \pm 0.07) \% \\ (14.57 \pm 0.07) \% \\ (14.57 \pm 0.07) \% \\ (9.65 \pm 0.09) \% \\ (9.65 \pm 0.09) \% \\ (9.60 \pm 0.09) \% \\ (9.47 \pm 0.10) \% \\ (9.47 \pm 0.10) \% \\ (9.16 \pm 0.10) \% \\ (9.16 \pm 0.10) \% \\ (9.12 \pm 0.10) \% \\ (4.52 \pm 0.09) \% \\ (4.53 \pm 0.09) \% \\ (4.55 \pm 0.09) \% \\ (4.55 \pm 0.09) \% \\ (4.25 \pm 0.09) \% \\ (1.1 \pm 0.4) \times 10^{-3} \\ [a] (1.1 \pm 0.4) \times 10^{-3} \\ (1.1 \pm 0.4) \times 10^{-3} \\ (1.07 \pm 0.22) \times 10^{-3} \\ (5.0 \pm 0.4) \times 10^{-3$	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2 S=1.3 S=1.2 S=1.5 S=1.5 S=1.5 S=1.3
$ \begin{matrix} F_{50} \\ F_{51} \\ F_{52} \\ F_{53} \\ F_{55} \\ F_{56} \\ F_{57} \\ F_{58} \\ F_{59} \\ F_{60} \\ F_{61} \\ F_{62} \\ F_{66} \\ F_{67} \\ F_{66} \\ F_{67} \\ F_{70} \\ F_{77} \\ F_{73} \\ F_{77} \\ F_{78} \\ F_{79} \\ F_{80} \end{matrix} $	$\begin{array}{c} K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of the trans \nu_{\tau} \\ K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of the trans \nu_{\tau} \\ ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ (ex. K^{0} \rightarrow \pi^{+}\pi^{-}\nu_{\tau} \\ (ex. K^{0} \rightarrow \pi^{+}\pi^{-}\nu_{\tau} \\ (ex. K^{0} \rightarrow \pi^{+}\pi^{-}\nu_{\tau} \\ (ex. K^{0} \rightarrow \pi^{+}\pi^{-}) \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} \\ (ex. K_{S}^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} \\ (ex. K^{0} \rightarrow \nu_{\tau} \\ (ex. K^{0} \rightarrow \pi^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} \\ (ex. K^{0} \rightarrow \mu^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau} \\ (ex. K^{0} \rightarrow \mu^{+}\pi^{-}) \\ h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau} \\ (ex. K^{0} \rightarrow \mu^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} \\ (ex. K^{0} \rightarrow \mu^{-}\pi^{-}\pi^{-}\pi^{0}\nu_{\tau} \\ (ex. K^{0} \rightarrow \mu^{-}\pi^{-}\pi^{-}\pi^{0}\nu_{\tau} \\ (ex. K^{0} \rightarrow \mu^{-}\pi^{-}\pi^{-}\pi^{0}\nu_{\tau} \\ (ex. K^{0} \rightarrow \mu^{-}\pi^{-}\pi^{-}\mu^{-}\nu_{\tau} \\ (ex. K^{0} \rightarrow \mu^{-}\pi^{-}\pi^{-}\mu^{-}\nu_{\tau} \\ (ex. K^{0} \rightarrow \mu^{-}\pi^{-}\pi^{-}\pi^{-}\mu^{-}\nu_{\tau} \\ (ex. K^{0} \rightarrow \mu^{-}\pi^{-}\mu^{-}\mu^{-}\nu^{-}\nu^{-}\mu^{-}\mu^{-}\mu^{-}\nu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu$	$ \left(\begin{array}{c} 1.7 \\ \times 10 \\ (2.3 \pm 2.0 \end{array} \right) \times 10^{-4} \\ \text{tharged particles} \\ (15.19\pm0.07) \\ (14.57\pm0.07) \\ (14.57\pm0.07) \\ (9.65\pm0.09) \\ (9.16\pm0.10) \\ (9.16\pm0.10) \\ (9.12\pm0.10) \\ (9.12\pm0.10) \\ (1.9\pm0.10) \\ (4.52\pm0.09) \\ (4.53\pm0.09) \\ (4.55\pm0.09) \\ (4.55\pm0.09) \\ (4.55\pm0.09) \\ (2.62\pm0.09) \\ (4.55\pm0.09) \\ (4.55$	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2 S=1.3 S=1.2 S=1.3 S=1.2 S=1.3 S=1.2 S=1.5 S=1.3 S=1.5 S=1.3 S=1.3
$ \begin{matrix} F_{50} \\ F_{51} \\ F_{52} \\ F_{53} \\ F_{55} \\ F_{56} \\ F_{57} \\ F_{57} \\ F_{59} \\ F_{60} \\ F_{67} \\ F_{66} \\ F_{67} \\ F_{66} \\ F_{67} \\ F_{70} \\ F_{72} \\ F_{77} \\ F_{77} \\ F_{77} \\ F_{78} \\ F_{80} \\ F_{81} \end{matrix} $	$\begin{array}{c} K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of the trans \nu_{\tau} \\ K^{0}h^{+}h^{-}h^{-}\nu_{\tau} \\ \hline Modes with three of the trans \nu_{\tau} \\ ex. K_{0}^{0} \rightarrow \pi^{+}\pi^{-}) \\ (ex. K_{0}^{0} \rightarrow \pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} \\ (ex. K_{0}^{0} \rightarrow \pi^{-}\pi^{+}\pi^{-}\pi^{-}\nu_{\tau} \\ (ex. K_{0}^{0} \rightarrow \pi^{-}\pi^{-}\pi^{-}\pi^{-}\nu_{\tau} \\ (ex. K_{0}^{0} \rightarrow \pi^{-}\pi^{-}\pi^{-}\pi^{-}\nu_{\tau} \\ (ex. K_{0}^{0} \rightarrow \pi^{-}\pi^{-}\pi^{-}\pi^{-}\nu^{-}\mu^{-}\pi^{-}\nu^{-}\mu^{-}\mu^{-}\nu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu^{-}\mu$	$ \left(\begin{array}{c} 1.7 \\ (2.3 \\ \pm 2.0 \end{array} \right) \times 10^{-4} \\ (2.3 \\ \pm 2.0 \end{array} \right) \times 10^{-4} \\ (15.19 \\ \pm 0.07 \bigr) \\ (14.57 \\ \pm 0.07 \bigr) \\ (14.57 \\ \pm 0.07 \bigr) \\ (9.65 \\ \pm 0.09 \bigr) \\ (9.65 \\ \pm 0.09 \bigr) \\ (9.65 \\ \pm 0.09 \bigr) \\ (9.60 \\ \pm 0.09 \bigr) \\ (9.61 \\ \pm 0.10 \bigr) \\ (9.62 \\ \pm 0.09 \bigr) \\ (4.33 \\ \pm 0.09 \bigr) \\ (4.33 \\ \pm 0.09 \bigr) \\ (4.35 \\ \pm 0.09 \bigg) \\ (4.35 \\ \pm $	S=1.1 S=1.2 S=1.2 S=1.2 S=1.2 S=1.2 CL=95% S=1.2 S=1.3 S=1.3 S=1.3 S=1.3 S=1.3 S=1.2 S=1.5 S=1.3 S=1.5 S=1.3 S=1.5 S=1.3 S=1.5 S=1.3 S=1.5 S=1.3 S=1.5 S=1.3 S=1.5S=1.3 S=1.5

Газ	$K^- \rho^0 \nu_{\tau} \rightarrow$		(1.6 ± 0.6	$) \times 10^{-3}$	
05	$K^{-}\pi^{+}\pi^{-}\mu$				<i>'</i>	
F	$\nu_{-} + - 0$,			
84	$\kappa \pi^{+}\pi^{-}\nu_{\tau}$		(1.18 ± 0.25	$) \times 10^{-5}$	
Γ ₈₅	$K^{-} \pi^{+} \pi^{-} \pi^{0} \nu_{\tau}$ (ex. K^{0})		($6.5 \pm 2.4 $	$) \times 10^{-4}$	
Γ.86	$K^{-} \pi^{+} \pi^{-} \pi^{0} \nu_{\tau} (\text{ex.} K^{0}, \eta)$	[a]	(5.9 ± 2.4	$) \times 10^{-4}$	
Γ	$K^{-}\pi^{+}K^{-} > 0$ neut ν		Ń	9	× 10 ^{−4}	CI - 95 %
- 87 F	$K = K^{\pm} = \sum_{i=1}^{n} 0$ mouth v_{τ}			,	× 10	CL
188	$\kappa \kappa \pi \ge 0$ neut. ν_{τ}		(1.97 ± 0.18	s) × 10 °	5=1.1
Γ89	$K^- K^+ \pi^- \nu_{\tau}$	[a]	(1.55 ± 0.07	$') \times 10^{-3}$	
Γan	$K^{-} K^{+} \pi^{-} \pi^{0} \nu_{\tau}$	[a]	($4.2 \hspace{0.2cm} \pm 1.6$	$) \times 10^{-4}$	S=1.1
Б	$K = K + K = \sum 0$ not K		È	2.1	Ú. 10-3	C1 - 05 9/
91	K = K + K =		<	2.1	× 10	CL _ 95 %
92	κκκν _τ		<	3.7	× 10 ⁻⁵	CL=90%
Γ93	$\pi^- K^+ \pi^- \ge 0$ neut. ν_{τ}		<	2.5	$\times 10^{-3}$	CL=95%
Гол	$e^-e^-e^+\overline{\nu}_e\nu_r$		(2.8 ± 1.5	$) \times 10^{-5}$	
Г 74	$u = a = a + \overline{u}$			2.6	U 10-5	CL - 0.09/
95	$\mu e e \nu_{\mu} \nu_{\tau}$		<	3.6	× 10 -	CL=90%
	Modes with five s	hane	had	norticles		
-		1016	jeu	particles	2	
96	$3h^{-}2h^{+} \ge 0$ neutrals ν_{τ}		(1.00 ± 0.06	$5) \times 10^{-3}$	
	$(ex. K_c^0 \rightarrow \pi^- \pi^+)$					
	("5-prong")					
-	(5 prong)				. 4	
97	$3h 2h^{\prime} \nu_{\tau} (ex.K^{\circ})$	a	(8.2 ± 0.6) × 10 ⁻⁴	
E 98	$3h^{-} 2h^{+} \pi^{0} \nu_{\tau}$ (ex. K^{0})	[a]	(1.81 ± 0.27	$() \times 10^{-4}$	
Γ	$3h^{-}2h^{+}2\pi^{0}u$		È	1.1	× 10−4	CI - 90%
1 99	$3\Pi \Sigma \Pi \Sigma \pi \nu_T$			1.1	~ 10	CL= 70 /6
	Miscellaneous othe	r all	owe	ad moder		
F		1 411	UW			
100	$(5\pi) \nu_{\tau}$		(8.0 ± 0.7) × 10 ⁻³	
F ₁₀₁	$4h^- 3h^+ > 0$ neutrals ν_{τ}		<	2.4	$\times 10^{-6}$	CL=90%
101	("7-prong")					
F			,			
102	$X (S=-1)\nu_{\tau}$		(2.91 ± 0.08	3)%	S=1.1
F ₁₀₃	K*(892) > 0 neutrals >		(1.42 ± 0.18	3)%	S=1.4
100	$0K^{0}\nu$				·	
-	(**(000)-					
104	$K^{*}(892)^{-}\nu_{\tau}$		(1.29 ± 0.05)%	
L105	$K^{*}(892)^{0}K^{-} > 0$ neutrals ν_{τ}		(3.2 ± 1.4	$) \times 10^{-3}$	
Г	K*(892)0 K-1		ì	21 ± 0.4	ý v 10−3	
106	\overline{W}		(2.1 ± 0.4) ^ 10	
107	$K^*(892)^{\circ}\pi^- \ge 0$ neutrals ν_{τ}		(3.8 ± 1.7	$) \times 10^{-5}$	
E108	$\overline{K}^{*}(892)^{0}\pi^{-}\nu_{\tau}$		(2.2 ± 0.5	$) \times 10^{-3}$	
Г	$(\overline{K}*(892)_{\pi})^{-} u' \rightarrow$		ì	10 +04	ý v 10−3	
109	$\left(\left(\frac{052}{\pi} \right)^{n} \right)^{n} \nu_{\tau} \rightarrow$		(1.0 ± 0.4) ^ 10	
	$\pi K^{0} \pi^{0} \nu_{\tau}$					
Γ ₁₁₀	$K_1(1270)^- \nu_{\tau}$		($4.7 \pm 1.1 $	$) \times 10^{-3}$	
Γ	$K_{1}(1400) = \nu$		ì	17 + 26	3×10^{-3}	S-1 7
• 111	11(1100) 17		(,	0-111
F ₁₁₂	$K^{*}(1410)^{-} \nu_{\tau}$		(1.5 + 1.4	$) \times 10^{-3}$	
	((*(1,100)-			- 1.0	· 	
113	$K_0^{\tau}(1430) \nu_{\tau}$		<	5	$\times 10^{-4}$	CL=95%
E114	$K_{2}^{*}(1430)^{-} \nu_{\tau}$		<	3	$\times 10^{-3}$	CL=95%
г ¹¹⁴	2(000) = 20 nontrols to					
115	$a_0(900) \ge 0$ neutrals ν_{τ}					
Γ ₁₁₆	$\eta \pi^- \nu_\tau$		<	1.4	$\times 10^{-4}$	CL=95%
F117	$\eta \pi^- \pi^0 \nu_{\tau}$	[a]	(1.74 ± 0.24	$() \times 10^{-3}$	
Г	$n \pi - \pi^0 \pi^0 \mu$		ì	15 + 05	$y = 10^{-4}$	
118			ļ	1.5 ± 0.5) ~ 10	
119	$\eta \kappa \nu_{\tau}$	a	(2.7 ± 0.6)×10-4	
F ₁₂₀	$\eta K^{*}(892)^{-} \nu_{\tau}$		($2.9\ \pm 0.9$	$) \times 10^{-4}$	
E101	$n K^{-} \pi^{0} \nu_{-}$		i	18 + 09	$) \times 10^{-4}$	
г 121 Г	$m \overline{K} 0 = -1$			2.0 1.0.7)10-4	
122	$\eta \wedge \pi \nu_{\tau}$		l	2.2 ± 0.7) × 10	
123	$\eta \pi$ ' π π \geq U neutrals $ u_{ au}$		<	3	$\times 10^{-3}$	CL=90%
Γ ₁₂₄	$\eta \pi^- \pi^+ \pi^- \nu_{\tau}$		($2.3\ \pm 0.5$	$) \times 10^{-4}$	
E tor	$na_1(1260)^- \mu \rightarrow n\pi^- a^0 \mu$		È	3.9	× 10 ⁻⁴	CI - 90%
- 125 E	$\eta \sigma_1(1200) \nu_T \rightarrow \eta \pi \rho \nu_T$. 10-1	CL 05070
126	$\eta \eta \wedge \nu_{\tau}$		<	1.1	× 10 -	CL=95%
Γ ₁₂₇	$\eta \eta \pi^- \pi^0 \nu_\tau$		<	2.0	$\times 10^{-4}$	CL=95%
100	$n'(958)\pi^{-}\nu_{\pi}$		<	7.4	$\times 10^{-5}$	CL=90%
· 128	n'(058) = -0		2			CL. 000/
129	$\eta (330)\pi \pi^{-} \nu_{\tau}$		<	ö.U	× 10 °	CL=90%
130	$\phi \pi^- \nu_\tau$		<	2.0	$\times 10^{-4}$	CL=90%
Γ131	$\phi K^- \nu_{\tau}$		<	6.7	$\times 10^{-5}$	CL=90%
E ac	$f_{1}(1285)\pi^{-}\nu$			58 1 2 2	1×10^{-4}	
132	(1005) =		(J.0 ± 2.3) × 10 ·	
133	$t_1(1285)\pi^- \nu_{\tau} \rightarrow$		($1.3\ \pm 0.4$	$) \times 10^{-4}$	
	$\eta \pi^- \pi^+ \pi^- \nu_{\tau}$					
E.c.	$\pi(1300)^- \mu \rightarrow (a\pi)^- \mu$		~	1.0	$\times 10^{-4}$	CI - 90%
134	$(1000) \nu_{\tau} \rightarrow (p_{\pi}) \nu_{\tau} \rightarrow$		-	1.0	~ 10	CL- 70%
	$(3\pi) \nu_{\tau}$					
Γ135	$\pi(1300)^- \nu_{\tau} \rightarrow$		<	1.9	$\times 10^{-4}$	CL=90%
100	$((\pi \pi)c^{\prime} \pi)^{-1}$					
	$((\pi \pi)^{3} - wave \pi) \nu \tau$					
	$(3\pi)^- \nu_{\tau}$					
Г136	$(3\pi)^{-} \nu_{\tau}$ $h^{-} \omega > 0$ neutrals ν_{τ}		(2.38±0.08	3) %	
Г ₁₃₆ Гто-	$(3\pi)^{-}\nu_{\tau}$ $h^{-}\omega \ge 0$ neutrals ν_{τ} $h^{-}\omega\nu$	[2]	(2.38 ± 0.08	3) % 7) %	
Γ ₁₃₆ Γ ₁₃₇	$((\pi,\pi) = w_{ave}(\pi)^{-} \nu_{\tau}^{-}$ $(3\pi)^{-} \nu_{\tau}^{-}$ $h^{-} \omega \geq 0$ neutrals ν_{τ} $h^{-} \omega \nu_{\tau}^{-}$	[a]	(2.38 ± 0.08 1.94 ± 0.07	3) % 7) %	
Г ₁₃₆ Г ₁₃₇ Г ₁₃₈	$ \begin{array}{l} (3\pi)^{-} \omega_{\tau} \\ h^{-} \omega_{\tau} \\ h^{-} \omega_{\tau} \\ \end{array} $	[a] [a]	(($\begin{array}{c} 2.38 \pm 0.08 \\ 1.94 \pm 0.07 \\ 4.4 \ \pm 0.5 \end{array}$	3) % 7) %) × 10 ⁻³	
Г ₁₃₆ Г ₁₃₇ Г ₁₃₈ Г ₁₃₉	$\begin{array}{l} (3\pi)^{-}\nu_{\tau} \\ h^{-}\omega \geq 0 \text{ neutrals } \nu_{\tau} \\ h^{-}\omega \nu_{\tau} \\ h^{-}\omega \omega^{0}\nu_{\tau} \\ h^{-}\omega 2\pi^{0}\nu_{\tau} \end{array}$	[a] [a]	((($\begin{array}{c} 2.38 \pm 0.08 \\ 1.94 \pm 0.07 \\ 4.4 \ \pm 0.5 \\ 1.4 \ \pm 0.5 \end{array}$	3) % 7) % $) \times 10^{-3}$ $) \times 10^{-4}$	
Γ ₁₃₆ Γ ₁₃₇ Γ ₁₃₈ Γ ₁₃₉ Γιας	$\begin{array}{l} (3\pi)^{-}\nu_{\tau} \\ h^{-}\omega \geq 0 \text{ neutrals } \nu_{\tau} \\ h^{-}\omega \nu_{\tau} \\ h^{-}\omega 2\pi^{0}\nu_{\tau} \\ h^{-}\omega 2\pi^{0}\nu_{\tau} \\ 2b^{-}h^{+}\omega \nu_{\tau} \end{array}$	[a] [a]	() () () () () () () () () () () () () ($\begin{array}{c} 2.38 \pm 0.08 \\ 1.94 \pm 0.07 \\ 4.4 \pm 0.5 \\ 1.4 \pm 0.5 \\ 1.20 \pm 0.22 \end{array}$	3) % 7) % $) \times 10^{-3}$ $) \times 10^{-4}$ $2) \times 10^{-4}$	

417 Lepton Particle Listings

au

CONSTRAINED FIT INFORMATION

An overall fit to 65 branching ratios uses 128 measurements and one constraint to determine 31 parameters. The overall fit has a χ^2 = 62.5 for 98 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> 5	3									
X9	- 5	- 5								
x_{10}	0	0	- 20							
x ₁₃	-13	-13	- 25	1						
x_{15}	0	0	1	- 3	- 22					
x_{19}	-13	- 14	- 25	0	- 36	4				
x ₂₂	0	0	1	- 2	5	- 21	-16			
x ₂₅	- 8	- 8	-15	0	-18	5	-24	3		
x ₂₆	0	0	1	- 2	5	-19	3	-13	-22	
x ₂₈	- 4	- 4	-7	0	-10	0	-12	0	-7	0
x ₃₃	- 1	- 2	-13	0	- 3	1	-8	1	$^{-1}$	1
x ₃₅	0	0	- 4	-1	2	-12	-1	-8	2	-8
x ₃₈	- 2	- 2	- 2	0	- 5	3	-5	2	-9	2
x ₄₀	- 1	-1	0	-1	2	-16	1	-11	$^{-1}$	-10
x ₄₅	0	0	- 2	0	0	0	0	0	0	0
x ₄₆	- 2	- 2	- 2	0	- 4	1	-4	1	-2	1
x ₆₀	- 1	-1	- 2	0	- 4	0	-3	0	-2	0
x ₆₈	- 1	-1	- 3	0	- 3	0	-4	0	-2	0
x ₇₄	0	0	0	0	0	0	0	0	0	0
x ₇₅	0	0	0	0	0	0	0	0	0	0
x ₈₂	0	0	0	0	0	0	0	0	0	0
x ₈₆	0	0	0	0	0	0	0	0	0	0
x ₈₉	0	0	0	0	0	0	0	0	0	0
x ₉₀	0	0	0	0	0	0	0	0	0	0
x ₉₇	0	0	-1	0	-1	0	-1	0	0	0
x ₉₈	0	0	0	0	0	0	0	0	0	0
x ₁₁₇	-1	-1	-1	0	- 2	0	-2	0	-1	0
x ₁₁₉	0	0	0	0	0	-3	0	-2	-2	-2
x ₁₃₇	-1	-1	- 2	0	- 3	0	-3	0	-1	0
x ₁₃₈	-1	-1	-1	0	- 2	0	-2	0	-1	0
	<i>x</i> ₃	<i>x</i> 5	Xg	x ₁₀	x ₁₃	x ₁₅	<i>x</i> ₁₉	x ₂₂	x ₂₅	x ₂₆
X22	– 1									
	0	- 5								
	-1	-7	0							
30 X40	0	- 2	-15	-19						
40 X45	0	- 2	-1	- 2	0					
4J XA6	-1	-12	- 4	-10	- 3	-3				
X60	-1	-7	- 3	3	2	0	0			
X68	-1	4	2	- 5	- 2	0	0	-47		
X74	2	1	0	1	0	0	0	-8	-7	
X75	0	0	0	0	0	0	0	-3	-3	0
X82	0	-1	0	0	0	0	0	-31	-1	0
X ₈₆	0	0	0	0	0	0	0	2	-14	0
X89	0	0	0	0	0	0	0	-3	-1	0
x90	0	0	0	0	0	0	0	-6	$^{-1}$	-1
X97	0	0	0	0	0	0	0	-1	$^{-1}$	0
X98	0	0	0	0	0	0	0	0	0	0
x ₁₁₇	- 14	0	0	0	0	0	0	-1	$^{-1}$	-14
x ₁₁₉	0	0	-1	0	- 2	0	0	0	0	0
x ₁₃₇	-1	1	1	- 3	-1	0	0	-23	-29	-3
x ₁₃₈	1	1	0	1	0	0	0	-9	-10	_44
	Xae	X22	Xar	X20	X40	XAE	Xac	Xco	Xco	X 7 4

Lepton Family number (*LF*), Lepton number (*L*), or Baryon number (*B*) violating modes

L means lepton number violation (e.g. $\tau^- \to e^+\pi^-\pi^-)$. Following common usage, LF means lepton family violation and not lepton number violation (e.g. $\tau^- \to e^-\pi^+\pi^-)$. B means baryon number violation.

Γ_{141}	$e^-\gamma$	LF	<	2.7	$\times 10^{-6}$	CL=90%
Γ_{142}	$\mu^- \gamma$	LF	<	1.1	$\times 10^{-6}$	CL=90%
Γ_{143}	$e^{-\pi^{0}}$	LF	<	3.7	$\times 10^{-6}$	CL=90%
Γ ₁₄₄	$\mu^{-} \pi^{0}$	LF	<	4.0	$\times 10^{-6}$	CL=90%
Γ145	$e^- K_c^0$	LF	<	9.1	$\times 10^{-7}$	CL=90%
F146	$\mu^{-} K_{0}^{0}$	1 F	<	9.5	$\times 10^{-7}$	CL = 90%
E 47	e ⁻ n	I.F.	Ż	8.2	× 10 ⁻⁶	CI -90%
- 147 E	u ⁻ n	15	2	0.2	× 10 × 10 ⁻⁶	CL - 9.0%
Г	$p^{\mu} \eta^{\mu} q^{\mu}$	15	\sum	2.0	× 10 × 10 ⁻⁶	CL - 90%
-149 E	$u^{-} a^{0}$	15	\sum	6.2	× 10 × 10 ⁻⁶	CL0.0%
- 150 E	$\mu^{\mu} p^{\mu} = K^{*}(892)^{0}$	15	\sum	5.1	× 10 × 10 ⁻⁶	CL - 90%
- 151 E	$u = K^* (802)^0$	15	\sum	7 5	× 10 × 10 ⁻⁶	CL0.0%
-152 E	$\mu = \frac{\pi}{K^*} (802)^0$		2	7.0	× 10 10=6	CL 0.00/
153	$= \frac{1}{16} (0.02)$	LF	<	7.4	× 10 -	CL=90%
154	μ κ (092)*	LF	<	1.5	× 10 °	CL=90%
155	e o	LF	<	6.9	× 10 °	CL=90%
156	$\mu_{\phi_{\perp}}$	LF	<	7.0	× 10 ⁻⁰	CL=90%
157	e e'e	LF	<	2.9	× 10 ⁻⁰	CL=90%
158	$e \mu \mu$	LF	<	1.8	$\times 10^{-6}$	CL=90%
159	$e^+\mu^-\mu^-$	LF	<	1.5	× 10 ⁻⁶	CL=90%
160	$\mu^{-}e^{+}e^{-}$	LF	<	1.7	$\times 10^{-6}$	CL=90%
Γ_{161}	$\mu^{+} e^{-} e^{-}$	LF	<	1.5	$\times 10^{-6}$	CL=90%
Γ_{162}	$\mu^- \mu^+ \mu^-$	LF	<	1.9	$\times 10^{-6}$	CL=90%
Γ ₁₆₃	$e^{-}\pi^{+}\pi^{-}$	LF	<	2.2	$\times 10^{-6}$	CL=90%
Γ ₁₆₄	$e^{+}\pi^{-}\pi^{-}$	L	<	1.9	$\times 10^{-6}$	CL = 90%
Γ ₁₆₅	$\mu^{-} \pi^{+} \pi^{-}$	LF	<	8.2	$\times 10^{-6}$	CL = 90%
Γ ₁₆₆	$\mu^{+}\pi^{-}\pi^{-}$	L	<	3.4	$\times 10^{-6}$	CL = 90%
Γ ₁₆₇	$e^{-}\pi^{+}K^{-}$	LF	<	6.4	$\times 10^{-6}$	CL = 90%
Γ168	$e^{-}\pi^{-}K^{+}$	LF	<	3.8	$\times 10^{-6}$	CL=90%
Γ ₁₆₉	$e^{+}\pi^{-}K^{-}$	L	<	2.1	$\times 10^{-6}$	CL=90%
Γ_{170}	$e^{-}K_{S}^{0}K_{S}^{0}$	LF	<	2.2	$\times 10^{-6}$	CL=90%
F _{1.71}	$e^- K^+ K^-$	LF	<	6.0	$\times 10^{-6}$	CL=90%
F172	e ⁺ K ⁻ K ⁻	L	<	3.8	$\times 10^{-6}$	CL=90%
E172	$\mu^{-}\pi^{+}K^{-}$	LF	<	7.5	$\times 10^{-6}$	CL=90%
E174	$\mu^{-}\pi^{-}K^{+}$	LF	<	7.4	$\times 10^{-6}$	CL=90%
F1.75	$\mu^{+}\pi^{-}K^{-}$	1	è	7.0	$\times 10^{-6}$	CL = 90%
E176	$\mu^{-} K_{0}^{0} K_{0}^{0}$	I.F.	Ż	3.4	× 10 ⁻⁶	CI -90%
F	$\mu^{-} K^{+} K^{-}$		2	1.5	× 10 ⁻⁵	CL -90%
- 1 <i>11</i>	$\mu^{+} \kappa^{-} \kappa^{-}$	1	2	6.0	× 10 × 10 ⁻⁶	CL - 9.0%
F	$\mu = \pi^{0} \pi^{0}$	15	\sum	6.5	× 10 × 10 ⁻⁶	CL - 90%
179	0_0		2	0.0	× 10 10 ⁻⁵	CL 0.00/
180	μ η η 2 ⁻ η η		5	1.4	× 10 -5	CL 20%
181	e 1/1/ u= mm		2	3.5	× 10 10 ⁻⁵	CL 0.00/
182	$\mu \eta \eta$	LF	<	6.0	× 10 °	CL=90%
183	= -0	LF	<	2.4	× 10 °	CL=90%
184	$\underline{\mu} \pi^{\circ} \eta$	LF	<	2.2	× 10 5	CL=90%
1 85	$\frac{p\gamma}{p}$	L,B	<	3.5	× 10 °	CL=90%
186	$\frac{p\pi^2}{2}$	L,B	<	1.5	× 10 ⁻⁵	CL=90%
187	$p 2\pi^{\circ}$	L,B	<	3.3	× 10 ⁻⁵	CL=90%
188	$\frac{p\eta}{0}$	L,B	<	8.9	× 10 ⁻⁰	CL=90%
189	$p\pi$ ° η	L,B	<	2.7	× 10 ⁻⁵	CL=90%
190	e ⁻ light boson	LF	<	2.7	× 10 ⁻³	CL=95%
1 ₁₉₁	μ^- light boson	LF	<	5	$\times 10^{-3}$	CL=95%

[a] Basis mode for the τ .

 $\left[b\right]$ See the Particle Listings below for the energy limits used in this measurement.

⁴¹⁸ Lepton Particle Listings

τ BRANCHING FRACTIONS

Revised April 2004 by K.G. Hayes (Hillsdale College).

The constrained fit to τ branching fractions: The Lepton Summary Table and the List of τ -Decay Modes contain branching fractions for 109 conventional τ -decay modes and upper limits on the branching fractions for 27 other conventional τ -decay modes. Of the 109 modes with branching fractions, 79 are derived from a constrained fit to τ branching fraction data. The goal of the constrained fit is to make optimal use of the experimental data to determine τ branching fractions. For example, the branching fractions for the decay modes $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$ and $\tau^- \rightarrow \pi^- \pi^+ \pi^- \eta^0 \nu_{\tau}$ are determined mostly from experimental measurements of the branching fractions for $\tau^- \rightarrow h^- h^- h^+ \nu_{\tau}$ and $\tau^- \rightarrow h^- h^- h^+ \pi^0 \nu_{\tau}$ and recent measurements of exclusive branching fractions for 3-prong modes containing charged kaons and 0 or 1 π^0 's.

Branching fractions from the constrained fit are derived from a set of basis modes. The basis modes form an exclusive set whose branching fractions are constrained to sum exactly to one. The set of selected basis modes expands as branching fraction measurements for new τ -decay modes are published. The number of basis modes has expanded from 12 in the year 1994 fit to 31 in the 2002 and 2004 fits. The 31 basis modes selected for the 2004 fit are listed in Table 1. See the 1996 edition of this *Review* [1] for a complete description of our notation for naming τ -decay modes and the selection of the basis modes. For each edition since the 1996 edition, the changes in the selected basis modes from the previous edition are described in the τ Branching Fractions Review.

In selecting the basis modes, assumptions and choices must be made. For example, we assume the decays $\tau^- \to \pi^- K^+ \pi^- \ge 0\pi^0 \nu_\tau$ and $\tau^- \to \pi^+ K^- K^- \ge 0\pi^0 \nu \tau$ have negligible branching fractions. This is consistent with standard model predictions for τ decay, although the experimental limits for these branching fractions are not very stringent. The 95% confidence level upper limits for these branching fractions in the current Listings are $B(\tau^- \to \pi^- K^+ \pi^- \ge 0\pi^0 \nu_\tau) < 0.25\%$ and $B(\tau^- \to \pi^+ K^- K^- \ge 0\pi^0 \nu_\tau) < 0.09\%$, values not so different from measured branching fractions for allowed 3-prong modes containing charged kaons. Although our usual goal is to impose as few theoretical constraints as possible so that the world averages and fit results can be used to test the theoretical constraints (*i.e.*, we do not make use of the theoretical constraint

Table 1: Basis modes for the 2004 fit to τ branching fraction data

$e^-\overline{\nu}_e\nu_{\tau}$	$K^- K^0 \pi^0 u_{ au}$
$\mu^- \overline{\nu}_\mu \nu_\tau$	$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}$ (ex. K^{0},ω)
$\pi^- \nu_{\tau}$	$\pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}$ (ex. K^{0}, ω)
$\pi^-\pi^0\nu_{ au}$	$K^{-}\pi^{+}\pi^{-}\nu_{\tau}$ (ex. K^{0})
$\pi^{-}2\pi^{0}\nu_{\tau}$ (ex. K^{0})	$K^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}$ (ex. K^{0}, η)
$\pi^{-} 3 \pi^{0} \nu_{\tau}$ (ex. K^{0})	$K^-K^+\pi^-\nu_{\tau}$
$h^- 4\pi^0 \nu_{\tau} ~({\rm ex.}~K^0,\eta)$	$K^- K^+ \pi^- \pi^0 \nu_\tau$
$K^- \nu_{\tau}$	$h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau}~(\text{ex.}~K^{0},\omega,\eta)$
$K^- \pi^0 \nu_{\tau}$	$h^-h^-h^+3\pi^0 u_ au$
$K^{-}2\pi^{0}\nu_{\tau}$ (ex. K^{0})	$3h^-2h^+\nu_{\tau}$ (ex. K^0)
$K^{-} 3 \pi^{0} \nu_{\tau} \ (\text{ex.} K^{0}, \eta)$	$3h^-2h^+\pi^0\nu_{\tau}~({\rm ex.}~K^0)$
$\pi - \overline{K}^0 \nu_{\tau}$	$h^-\omega u_{ au}$
$\pi^-\overline{K}^0\pi^0\nu_\tau$	$h^- \omega \pi^0 u_{ au}$
$\pi^- K^0_S K^0_S \nu_{\tau}$	$\eta\pi^-\pi^0 u_ au$
$\pi^- K^0_S K^0_L \nu_{\tau}$	$\eta K^- u_{ au}$
$K^- K^0 \nu_{\tau}$	

from lepton universality on the ratio of the τ -leptonic branching fractions $B(\tau^- \rightarrow \mu^- \overline{\nu}_{\mu} \nu_{\tau})/B(\tau^- \rightarrow e^- \overline{\nu}_e \nu_{\tau}) = 0.9726)$, the experimental challenge to identify charged prongs in 3prong τ decays is sufficiently difficult that experimenters have been forced to make these assumptions when measuring the branching fractions of the allowed decays.

There are several recently measured modes with small but well-measured (> 2.5 sigma from zero) branching fractions [2] which cannot be expressed in terms of the selected basis modes and are therefore left out of the fit:

$$\begin{array}{l} {\rm B}(\tau^- \to \pi^- K_0^0 K_L^0 \pi^0 \nu_\tau) \ = (3.1 \pm 1.2) \times 10^{-4} \\ {\rm B}(\tau^- \to h^- \omega \pi^0 \pi^0 \nu_\tau) \ = (1.4 \pm 0.5) \times 10^{-4} \\ {\rm B}(\tau^- \to 2h^- h^+ \omega \nu_\tau) \ = (1.20 \pm 0.22) \times 10^{-4} \end{array}$$

plus the $\eta\to\gamma\gamma$ and $\eta\to\pi^+\pi^-\gamma$ components of the branching fractions

$$\begin{array}{l} {\rm B}(\tau^- \to \eta \pi^- \pi^+ \pi^- \nu_\tau) \ = (2.3 \pm 0.5) \times 10^{-4} \ , \\ {\rm B}(\tau^- \to \eta \pi^- \pi^0 \pi^0 \nu_\tau) \ = (1.5 \pm 0.5) \times 10^{-4} \ , \\ {\rm B}(\tau^- \to \eta \overline{K}^0 \pi^- \nu_\tau) \ = (2.2 \pm 0.7) \times 10^{-4} \ . \end{array}$$

The sum of these excluded branching fractions is $(0.08 \pm 0.01)\%$. This is near our goal of 0.1% for the internal consistency of the τ Listings for this edition, and thus for simplicity we do not include these small branching fraction decay modes in the basis set.

Beginning with the 2002 edition, the fit algorithm has been improved to allow for correlations between branching fraction measurements used in the fit. In this edition, correlations between measurements contained in Refs. [3,4,5,6] have been included. In the τ Listings, the correlation coefficients are listed in the footnote for each measurement. Sometimes experimental papers contain correlation coefficients between measurements using only statistical errors without including systematic errors. We usually cannot make use of these correlation coefficients.

The constrained fit has a χ^2 of 62.5 for 99 degrees of freedom. Only one of the year 2004 basis mode branching fractions shifted by more than 1 sigma from its 2002 value: $B(\tau^- \to K^- \pi^+ \pi^- \nu_{\tau} (ex. K^0))$ changed from $(0.28 \pm 0.05)\%$ to $(0.33 \pm 0.04)\%$.

Overconsistency of Leptonic Branching Fraction Measurements: To minimize the effects of older experiments which often have larger systematic errors and sometimes make assumptions that have later been shown to be invalid, we exclude old measurements in decay modes which contain at least several newer data of much higher precision. As a rule, we exclude those experiments with large errors which together would contribute no more than 5% of the weight in the average. This procedure leaves six measurements for $B_e \equiv B(\tau^- \to e^- \overline{\nu}_e \nu_\tau)$ and five measurements for $B_{\mu} \equiv B(\tau^- \to \mu^- \overline{\nu}_{\mu} \nu_{\tau})$. For both B_e and B_{μ} , the six measurements are considerably more consistent with each other than should be expected from the quoted errors on the individual measurements. The χ^2 from the calculation of the average of the selected measurements is 0.49 for B_e and 0.09 for B_{μ} .

References

- R.M. Barnett et al. (Particle Data Group), Review of Par-1 ticle Physics, Phys. Rev. D54, 1 (1996).
- 2. See the τ Listings for references.
- 3. P. Abreu et al. (DELPHI Collaboration), Eur. Phys. J. C20, 617 (2001).
- 4. P. Achard et al. (L3 Collaboration), Phys. Lett. B519, 189 (2001).
- 5. A. Anastassov et al. (CLEO Collaboration), Phys. Rev. D55, 2559 (1997) and Phys. Rev. D58, 119903 (1998) (erratum)
- M. Acciarri et al. (L3 Collaboration), Phys. Lett. B507, 47 6 (2001).

τ^{-} BRANCHING RATIOS

$\Gamma(\text{particle}^{-} \ge 0 \text{ neutrals} \ge 0 K^{0} \nu_{\tau} ("1\text{-prong"})) / \Gamma_{\text{total}} \Gamma_{1} / \Gamma_{\Gamma_{1} + \Gamma_{5} + \Gamma_{9} + \Gamma_{10} + \Gamma_{13} + \Gamma_{15} + \Gamma_{19} + \Gamma_{22} + \Gamma_{25} + \Gamma_{28} + \Gamma_{33} + \Gamma_{35} + \Gamma_{38} +$ Γ_1/Γ $\Gamma_{40} + 2\Gamma_{45} + \Gamma_{46} + 0.708\Gamma_{117} + 0.715\Gamma_{119} + 0.09\Gamma_{137} + 0.09\Gamma_{138})/\Gamma_{118}$

The charged particle here can be $e,\ \mu,$ or hadron. In many analyses, the sum of the topological branching fractions (1, 3, and 5 prongs) is constrained to be unity. Since the 5-prong fraction is very small, the measured 1-prong and 3-prong fractions are highly correlated and cannot be treated as independent quantities in our overall fit. We arbitrarily choose to use the 3-prong fraction in our fit, and leave the 1-prong fraction out. We do, however, use these 1-prong measurements in our average below. The measurements used only for the average are marked "avg," whereas "f&a" marks a result used for the fit and the average

VALUE (%)			EVTS	DOCUMENT ID		TEC N	COMMENT	
85.35	±0.07	OUR FIT	Γ Erro	rinclude	es scale factor of 1.	1.			
85.26 below.	±0.13	OUR AV	ERAGE	Error	includes scale facto	or of	1.6. See	the ideogram	ı
85.316	± 0.093	± 0.049	avg	78k	²⁷ ABREU	01M	DLPH	1992-1995 L	EΡ
85.274	± 0.105	±0.073	avg		²⁸ A CHARD	01D	L 3	runs 1992-1995 L	EP
84.48	± 0.27	± 0.23	avg		ACTON	92H	OPAL	runs 1990–1991 L runs	EP
85.45	+ 0.69	± 0.65	f&a		DECAMP	92C	ALEP	1989-1990 L	EP

²⁷The correlation coefficients between this measurement and the ABREU 01M measurements of $B(\tau \rightarrow 3\text{-prong})$ and $B(\tau \rightarrow 5\text{-prong})$ are -0.98 and -0.08 respectively.

 28 The correlation coefficients between this measurement and the ACHARD 01D measure ments of B($\tau \rightarrow$ "3-prong") and B($\tau \rightarrow$ "5-prong") are - 0.978 and - 0.082 respectively.

Lepton Particle Listings

 Γ (particle⁻ ≥ 0 neutrals $\geq 0K_L^0 \nu_{\tau}$)/ Γ total

 $\begin{array}{c} \label{eq:rescaled_resc$

VALU	E (%)			EVTS		DOCUMENT ID		TECN	COMMENT
84.72	2±0.07	7 OUR	FIT	Error incl	ude	s scale factor of	1.1.		
85.1	± 0.4	OUR	AVER	AGE					
85.6	±0.6	±0.3	avg	3300	29	ADEVA	91F	L 3	E ^{ee} _{CM} = 88.3-94.3 GeV
84.9	±0.4	±0.3	avg			BEHREND	89B	CELL	E ^{ee} _{cm} = 14-47 GeV
84.7	±0.8	±0.6	avg		30	AIHARA	87B	трс	E ^{ee} _{cm} = 29 GeV
••	• We d	io not	use the	e followin	g di	ata for averages,	fits,	limits, e	etc. • • •
86.4	±0.3	±0.3				ABACHI	89B	HRS	E ^{ee} _{cm} = 29 GeV
87.1	± 1.0	±0.7			31	BURCHAT	87	MRK2	E ^{ee} _{cm} = 29 GeV
87.2	± 0.5	±0.8				SCHMIDKE	86	MRK2	E ^{ee} _{cm} = 29 GeV
84.7	± 1.1	$^{+1.6}_{-1.3}$		169	32	ALTHOFF	85	TASS	E ^{ee} _{cm} = 34.5 GeV
86.1	±0.5	±0.9				BARTEL	85F	JADE	E ^{ee} _{cm} = 34.6 GeV
87.8	± 1.3	± 3.9			33	BERGER	85	PLUT	E ^{ee} _{cm} = 34.6 GeV
86.7	±0.3	±0.6				FERNANDEZ	85	MAC	E ^{ee} _{cm} = 29 GeV
20						7 1			0

²⁹Not independent of ADEVA 91F F ($h^-h^-h^+ \ge 0$ neutrals $\ge 0K_I^0
u_{ au}$) /F total value. 30 Not independent of AIHARA 87B $\Gamma(\mu^- \overline{\nu}_{\mu} \nu_{\tau}) / \Gamma_{\text{total}}$, $\Gamma(e^- \overline{\nu}_e \nu_{\tau}) / \Gamma_{\text{total}}$ and $/ \Gamma_{\text{total}}$ values. ³¹ Not independent of SCHMIDKE 86 value (also not independent of BURCHAT 87 value

for $\Gamma(h^- h^- h^+ \ge 0$ neutrals $\ge 0 \kappa_L^0 \nu_{\tau}) / \Gamma_{\text{total}}$.

³² Not independent of ALTHOFF 85 $\overline{\Gamma}(\mu - \overline{\nu}_{\mu} \nu_{\tau}) / \Gamma_{\text{total}} \Gamma(e - \overline{\nu}_{e} \nu_{\tau}) / \Gamma_{\text{total}} / \Gamma_{\text{total}}$ and $\Gamma(h^-h^-h^+\geq 0$ neutrals $\geq 0 \kappa_L^0 v_{ au})/\Gamma_{ ext{total}}$ values.

³³ Not independent of $(1-\text{prong} + 0\pi^0)$ and $(1-\text{prong} + \ge 1\pi^0)$ values.

 $\Gamma(\mu^- \overline{\nu}_{\mu} \nu_{\tau})/\Gamma_{\text{total}}$ Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, Γ3/Γ and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average.

To minimize the effect of experiments with large systematic errors, we exclude experiments which together would contribute 5% of the weight in the average.

VALUE (%)	EVTS	DOCUMENTID		TECN	COMMENT
17.36 ± 0.06 OUR FIT					
17.33 ±0.06 OUR AVERA	GE				
$17.34 \pm 0.09 \pm 0.06$ f&a	31.4k	ABBIENDI	03	OPAL	1990-1995 LEP runs
$17.342 \pm 0.110 \pm 0.067$ f&a	21.5k ³⁴	ACCIARRI	01F	L3	1991-1995 LEP runs
$17.325\pm0.095\pm0.077~\text{f\&a}$	27.7k	ABREU	99X	DLPH	1991-1995 LEP runs
$17.37 \pm 0.08 \pm 0.18$ avg	35	ANASTASSOV	97	CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$
$17.31 \pm 0.11 \pm 0.05$ f&a	20.7k	BUSKULIC	96C	ALEP	1991-1993 LEP runs
• • • We do not use the fol	lowing data	for averages, fits	, limi	ts, etc.	• • •
$17.02\ \pm 0.19\ \pm 0.24$	6586	ABREU	95 T	DLPH	Repl. by
17.36 ± 0.27	7941	AKERS	951	OPAL	Repl. by ABBI-
$17.6 \ \pm 0.4 \ \pm 0.4$	2148	ADRIANI	93M	L3	Repl. by ACCIA-
$17.4 \pm 0.3 \pm 0.5$	36				00
	50	ALBRECHT	93G	ARG	$E_{\rm Cm}^{\rm ec} = 9.4 - 10.6$
$17.35 \pm 0.41 \pm 0.37$ f&a	50	ALBRECHT DECAMP	93G 92C	ARG ALEP	Ecm = 9.4-10.6 GeV 1989-1990 LEP runs
$\begin{array}{c} 17.35 \pm 0.41 \pm 0.37 \text{f\&a} \\ 17.7 \pm 0.8 \pm 0.4 \end{array}$	568	ALBRECHT DECAMP BEHREND	93G 92C 90	ARG ALEP CELL	$E_{Cm}^{cm} = 9.4-10.6$ GeV 1989-1990 LEP runs $E_{Cm}^{ee} = 35$ GeV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	568 2197	ALBRECHT DECAMP BEHREND ADEVA	93G 92C 90 88	ARG ALEP CELL MRKJ	$E_{Cm}^{ee} = 9.4-10.6$ GeV 1989-1990 LEP runs $E_{Cm}^{ee} = 35 \text{ GeV}$ $E_{Cm}^{ee} = 14-16 \text{ GeV}$

 τ

I

419

τ

18.3	±0.9	± 0.8			BURCHAT	87	MRK2	$E_{cm}^{ee} = 29 \text{ GeV}$
18.6	±0.8	±0.7	55	58 37	BARTEL	86D	JADE	E ^{ee} _{CM} = 34.6 GeV
12.9	± 1.7	$^{+0.7}_{-0.5}$			ALTHOFF	85	TASS	<i>E</i> ^{<i>ee</i>} _C m= 34.5 GeV
18.0	±0.9	± 0.5	4	73 37	ASH	85B	MAC	E ^{ee} cm= 29 GeV
18.0	± 1.0	±0.6		38	BALTRUSAIT	.85	MRK 3	E ^{ee} _{CM} = 3.77 GeV
19.4	± 1.6	± 1.7	15	53	BERGER	85	PLUT	E ^{ee} _{CM} = 34.6 GeV
17.6	± 2.6	± 2.1	4	47	BEHREND	83C	CELL	E ^{ee} _{CM} = 34 GeV
17.8	±2.0	± 1.8			BERGER	81B	PLUT	E ^{ee} _{cm} = 9-32 GeV
2.4								

³⁴The correlation coefficient between this measurement and the ACCIARRI 01F measurement of $B(\tau^- \rightarrow e^- \overline{\nu}_e \nu_{\tau})$ is 0.08.

³⁶ Not independent of ALBRECHT 92D $\Gamma(\mu^- \overline{\nu}_{\mu} \nu_{\tau})/\Gamma(e^- \overline{\nu}_e \nu_{\tau})$ and ALBRECHT 93G $\Gamma(\mu^{-} \overline{\nu}_{\mu} \nu_{\tau}) \times \Gamma(e^{-} \overline{\nu}_{e} \nu_{\tau}) / \Gamma_{\text{total}}^2 \text{ values.}$

 37 Modified using B($e^{-}\overline{\nu}_{e}\nu_{\tau}$)/B("1 prong") and B("1 prong") .= 0.855.

 $^{38}{\rm Error}$ correlated with BALTRUSAITIS 85 $e\,\nu\overline{\nu}$ value.

$\Gamma(\mu^- \overline{\nu}_\mu \nu_\tau \gamma) / \Gamma_{\text{total}}$

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
$0.361 \pm 0.016 \pm 0.035$		39 BERGFELD	00	CLEO	E ^{ee} _{cm} = 10.6 GeV
• • • We do not use the	e followin	ng data for averages	s, fits	, limits,	etc. • • •
$0.30\ \pm 0.04\ \pm 0.05$	116	⁴⁰ ALEXANDER	96s	0 PA L	1991-1994 LEP runs
$0.23\ \pm 0.10$	10	⁴¹ WU	90	MRK2	E ^{ee} _{cm} = 29 GeV

 39 BERGFELD 00 impose requirements on detected γ 's corresponding to a au-rest-frame energy cutoff $E_{\infty}^* > 10$ MeV. For $E_{\infty}^* > 20$ MeV, they quote $(3.04 \pm 0.14 \pm 0.30) \times 10^{-3}$. 40 ALEXANDER 96s impose requirements on detected γ 's corresponding to a au-rest-frame

energy cutoff E_{γ} >20 MeV. ⁴¹WU 90 reports $\Gamma(\mu^- \overline{\nu}_\mu \nu_\tau \gamma)/\Gamma(\mu^- \overline{\nu}_\mu \nu_\tau) = 0.013 \pm 0.006$, which is converted to

 $\Gamma(\mu^- \overline{\nu}_{\mu} \tau_{\gamma} \gamma) / \Gamma_{\text{total}} \sin \Gamma(\mu^- \overline{\nu}_{\mu} \tau_{\gamma} \gamma) / \Gamma_{\text{total}} = 17.35\%$. Requirements on detected γ 's correspond to a τ rest frame energy cutoff $E_{\gamma} > 37$ MeV.

$\Gamma(e^- \overline{\nu}_e \nu_{\tau}) / \Gamma_{\text{total}}$

 $\Gamma_{\rm S}/\Gamma$

Γ₄/Γ

To minimize the effect of experiments with large systematic errors, we exclude experiments which together would contribute 5% of the weight in the average.

VALUE	[%]		EVIS		DOCUMENTID		TECN	COMMENT
17.84	± 0.06	OUR FIT						
17.81	± 0.06	OUR AVER	RAGE					
17.806	5 ± 0.104	± 0.076	24.7k	42	ACCIARRI	01F	L3	1991-1995 LEP runs
17.81	±0.09	± 0.06	33.1k		ABBIENDI	99H	OPAL	1991-1995 LEP runs
17.877	2 ± 0.109	± 0.110	23.3k		ABREU	99X	DLPH	1991-1995 LEP runs
17.76	±0.06	± 0.17		43	ANASTASSOV	97	CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$
17.79	± 0.12	± 0.06	20.6k		BUSKULIC	96C	ALEP	1991-1993 LEP runs
18.09	±0.45	±0.45			DECAMP	92C	ALEP	1989-1990 LEP runs
• • •	We do	not use the	following	d at	a for averages, f	its,	limits, et	C. • • •
17.78	± 0.10	±0.09	25.3k		ALEXANDER	96D	OPAL	Repl. by ABBI- ENDI 99H
17.51	±0.23	± 0.31	5059		ABREU	95 T	DLPH	Repl. by ABREU 99X
17.9	± 0.4	± 0.4	2892		ADRIANI	93M	L3	Repl. by ACCIA- RRI 01F
17.5	± 0.3	± 0.5		44	ALBRECHT	93G	ARG	$E_{\rm Cm}^{ee} = 9.4 - 10.6 {\rm GeV}$
17.97	± 0.14	± 0.23	3970		AKERIB	92	CLEO	Repl. by ANAS- TASSOV 97
19.1	±0.4	± 0.6	2960	45	AMMAR	92	CLEO	$E_{\rm Cm}^{ee} = 10.5 - 10.9 {\rm GeV}$
17.0	± 0.5	±0.6	1.7k		ABACHI	90	HRS	$E_{cm}^{ee} = 29 \text{ GeV}$
18.4	± 0.8	± 0.4	644		BEHREND	90	CELL	E ^{ee} _{cm} = 35 GeV
16.3	± 0.3	\pm 3.2			JANSSEN	89	CBAL	E ^{ee} _{cm} = 9.4-10.6 GeV
18.4	± 1.2	± 1.0			AIHARA	87B	ТРС	E ^{ee} _{cm} = 29 GeV
19.1	± 0.8	± 1.1			BURCHAT	87	MRK2	$E_{cm}^{ee} = 29 \text{ GeV}$
16.8	±0.7	± 0.9	515	45	BARTEL	86D	JADE	<i>E</i> ^{<i>ee</i>} _{CM} = 34.6 GeV
20.4	± 3.0	$^{+1.4}_{-0.9}$			ALTHOFF	85	TASS	$E_{\rm Cm}^{\it ee}=$ 34.5 GeV
17.8	± 0.9	± 0.6	390	45	A SH	85 B	MAC	E ^{ee} _{cm} = 29 GeV
18.2	± 0.7	± 0.5		46	BALTRUSAIT	.85	MRK3	$E_{\rm Cm}^{ee} = 3.77 {\rm GeV}$
13.0	± 1.9	± 2.9			BERGER	85	PLUT	$E_{\rm Cm}^{ee} = 34.6 {\rm GeV}$
18.3	± 2.4	± 1.9	60		BEHREND	83C	CELL	$E_{\rm Cm}^{ee} = 34 {\rm GeV}$
16.0	± 1.3		45 9	47	BACINO	78B	DLCO	E ^{ee} _{cm} = 3.1-7.4 GeV

 42 The correlation coefficient between this measurement and the ACCIARRI 01F measurement of $B(\tau^- \rightarrow \mu^- \overline{\nu}_\mu \nu_\tau)$ is 0.08.

⁴³The correlation coefficients between this measurement and the ANASTASSOV 97 measurements of $B(\mu \overline{\nu}_{\mu} \nu_{\tau}), B(\mu \overline{\nu}_{\mu} \nu_{\tau})/B(e \overline{\nu}_{e} \nu_{\tau}), B(\hbar^{-} \nu_{\tau}), and B(\hbar^{-} \nu_{\tau})/B(e \overline{\nu}_{e} \nu_{\tau})$ are 0.50, -0.42, 0.48, and -0.39 respectively.

⁴⁴ Not independent of ALBRECHT 92D $\Gamma(\mu^- \overline{\nu}_\mu \nu_\tau)/\Gamma(e^- \overline{\nu}_e \nu_\tau)$ and ALBRECHT 93G $\Gamma(\mu^{-} \overline{\nu}_{\mu} \nu_{\tau}) \times \Gamma(e^{-} \overline{\nu}_{e} \nu_{\tau}) / \Gamma^{2}_{total}$ values.

 45 Modified using B(e^ $\overline{\nu}_e\,\nu_\tau\,)/{\rm B}("1~{\rm prong"})$ and B("1 prong") = 0.855.

⁴⁶Error correlated with BALTRUSAITIS 85 $\Gamma(\mu^- \overline{\nu}_{\mu} \nu_{\tau}) / \Gamma_{total}$

 47 BACINO 78B value comes from fit to events with $\dot{e^{\pm}}$ and one other nonelectron charged prong.

Г	e-	ve	ν_{τ}	γ))/Г	total	
VA	IUE	(%)					

VALUE (%)	DOCUMENT ID		TECN	COMMENT	
$1.75 \pm 0.06 \pm 0.17$	48 BERGFELD	00	CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$	

E-/E

 Γ_3/Γ_5

 Γ_7/Γ

 48 BERGFELD 00 impose requirements on detected γ 's corresponding to a au-rest-frame energy cutoff $E_{\gamma}^* > 10$ MeV.

$\begin{array}{l} \Gamma\left(\mu^{-}\overline{\nu}_{\mu}\nu_{\tau}\right)/\Gamma\left(e^{-}\overline{\nu}_{e}\nu_{\tau}\right) \\ \text{Standard Model prediction including mass effects is 0.9726.} \end{array}$

Data marked "avg" are highly correlated with data appearing elsewhere in the Listings,

and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average. DOCUMENTIO TECH COMMENT

VALUE				DOCUMENT ID		TEC N	COMMENT
0.974	± 0.004	OUR FI	Г				
0.978	± 0.011	OUR AN	ERAGE				
0.9777	± 0.0063	± 0.0087	f&a	⁴⁹ ANASTASSOV	97	CLEO	$E_{\rm C}^{ee}$ = 10.6 GeV
0.997	± 0.035	± 0.040	f&∠a	ALBRECHT	92D	ARG	E ^{ee} _{CM} = 9.4-10.6 GeV
49 m h.	e correlat	ion coeff	iciente he	tween this measurer	nont	and the	ANASTASSOV 97 mea

, we constant our overhead by environment and the ANASTASSOV 97 measurements of $B(\mu\overline{\nu}_{\mu}\nu_{\tau})$, $B(e\overline{\nu}_{e}\nu_{\tau})$, $B(h^{-}\nu_{\tau})$, and $B(h^{-}\nu_{\tau})/B(e\overline{\nu}_{e}\nu_{\tau})$ are 0.58, -0.42, 0.07, and 0.45 respectively. AK0 \/F

Г(h-	≥	0 <i>K</i>	· 14)/ī	total
				-		

 ${{\Gamma }_{7}}\left/ {\Gamma }=\overline{({{\Gamma }_{9}}+{{\Gamma }_{10}}+\frac{1}{2}{{\Gamma }_{33}}+\frac{1}{2}{{\Gamma }_{35}}+{{\Gamma }_{45}}\right) /{\Gamma }}$

Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average. TECH

VALUE [70]	EVIS	DOCUMENTID	I EC N	COMMENT
12.30±0.11 OUR FIT	Error includ	es scale factor of 1.4	4.	
12.44±0.14 OUR AV	ERAGE			
$12.44\pm0.11\pm0.11$	f&a 15k	⁵⁰ BUSKULIC	96 ALEP	1991-1993 LEP run
$12.47\pm0.26\pm0.43$	f&a 2967	⁵¹ ACCIARRI	95 L.3	1992 LEP run
$12.4 \pm 0.7 \pm 0.7$	f&a 283	⁵² ABREU	92N DLPH	1990 LEP run
$12.98\pm0.44\pm0.33$	f&a	⁵³ DECAMP	92C ALEP	1989-1990 LEP runs
$12.1 \pm 0.7 \pm 0.5$	f&a 309	ALEXANDER	91D OPAL	1990 LEP run
$11.3 \pm 0.5 \pm 0.8$	avg 798	⁵⁴ FORD	87 MAC	$E_{cm}^{ee} = 29 \text{ GeV}$
• • • We do not use	the following	data for averages, fit	s, limits, etc	•••
$11.7\ \pm 0.6\ \pm 0.8$		⁵⁵ ALBRECHT	92D ARG	$E_{\rm Cm}^{ee} = 9.4 - 10.6 {\rm GeV}$
$12.3 \pm 0.9 \pm 0.5$	1338	BEHREND	90 CELL	$E_{cm}^{ee} = 35 \text{ GeV}$
$11.1 \pm 1.1 \pm 1.4$		⁵⁶ BURCHAT	87 MRK2	$E_{\rm Cm}^{ee}$ = 29 GeV
$12.3 \pm 0.6 \pm 1.1$	328	⁵⁷ BARTEL	86D JADE	E ^{ee} _{CM} = 34.6 GeV
$13.0 \pm 2.0 \pm 4.0$		BERGER	85 PLUT	E ^{ee} _{CM} = 34.6 GeV
$11.2 \pm 1.7 \pm 1.2$	34	⁵⁸ BEHREND	83C CELL	$E_{\rm Cm}^{ee}$ = 34 GeV

 $^{50}\textsc{BUSKULIC}$ 96 quote 11.78 \pm 0.11 \pm 0.13 We add 0.66 to undo their correction for unseen κ^0_I and modify the systematic error accordingly.

⁵¹ACCIARRI 95 with 0.65% added to remove their correction for $\pi^- \kappa_I^0$ backgrounds.

⁵²ABREU 92N with 0.5% added to remove their correction for $K^*(892)^{-}$ backgrounds. ⁵³DECAMP 92C quote B($h^- \ge 0K_L^0 \ge 0$ ($K_S^0 \to \pi^+\pi^-$) ν_{τ}) = 13.32 ± 0.44 ± 0.33.

We subtract 0.35 to correct for their inclusion of the κ_{ξ}^{0} decays. 54 FORD 87 result for B($\pi^-\nu_{\tau}$) with 0.67% added to remove their K $^-$ correction and adjusted for 1992 B("1 prong").

⁵⁵ Not independent of ALBRECHT 92D $\Gamma(\mu^- \overline{\nu}_{\mu} \nu_{\tau})/\Gamma(e^- \overline{\nu}_e \nu_{\tau})$, $\Gamma(\mu^- \overline{\nu}_{\mu} \nu_{\tau}) \times$

 $\Gamma(e^- \overline{\nu}_e \nu_{\tau})$, and $\Gamma(h^- \ge 0 \kappa_I^0 \nu_{\tau}) / \Gamma(e^- \overline{\nu}_e \nu_{\tau})$ values. 56 BURCHAT 87 with 1.1% added to remove their correction for K^- and $K^*(892)^-$ back-

grounds. 5^7 BARTEL 86D result for B($\pi^- \nu_{\tau}$) with 0.59% added to remove their K^- correction and

⁵⁸BEHREND 83C quote $B(\pi - \nu_{\tau}) = 9.9 \pm 1.7 \pm 1.3$ after subtracting 1.3 ± 0.5 to correct for $B(K^- \nu_{\tau})$.

$\Gamma_8/\Gamma = (\Gamma_9 + \Gamma_{10})/\Gamma$

 $\Gamma \begin{pmatrix} h^- \nu_\tau \end{pmatrix} / \Gamma_{total} \\ \text{Data marked "avg" are highly correlated with data appearing elsewhere in the Li}$ and are therefore used for the average given below but not in the overall fits. "f&a' marks results used for the fit and the average.

VALUE (%)		DOCUMENT ID	TEC N	COMMENT
11.75 ± 0.11 OUR FIT	Error incl	udes scale factor of 1.4.		
11.65 ± 0.21 OUR AVE	RAGE Er	ror includes scale factor (of 1.9.	
$11.98 \pm 0.13 \pm 0.16$	f&⊿a	ACKERSTAFF 98M	OPAL	1991-1995 LEP runs
$11.52 \pm 0.05 \pm 0.12$	f&a	⁵⁹ ANASTASSOV 97	CLEO	$E_{\rm Cm}^{ee}$ = 10.6 GeV
⁵⁹ The correlation coe	ficients be	tween this measurement	and the	ANASTASSOV 97 mea-
surements of $B(\mu \overline{\nu}$	ν). B(e	ν.ν), B(μν ν)/B(ei	τ.ν.).a	nd $B(h^-\nu)/B(e\overline{\nu},\nu)$

 $\neg v = \mu = \tau_T$, $\neg v = v = \nu_T$, $\neg (\mu = \nu_\mu = \nu_T)/B(e \overline{\nu}_e = \nu_T)$, are 0.50, 0.48, 0.07, and 0.63 respectively. ν_{τ})/B($e\overline{\nu}_{e}\nu_{\tau}$) $\lceil_8/\lceil_5 = (\lceil_9 + \lceil_{10})/\lceil_5$

$\Gamma(h^-\nu_{\tau})/\Gamma(e^-\overline{\nu}_e\nu_{\tau})$

Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average.

VALUE	DOCUMENT IDTEC N	COMMENT
0.659 ±0.007 OUR FIT	Error includes scale factor of 1.4.	
	60	

0.6484 ± 0.0041 ± 0.0060 avg 60 ANASTASSOV 97 CLEO $E_{\rm Cm}^{ee} = 10.6$ GeV

⁶⁰The correlation coefficients between this measurement and the ANASTASSOV 97 measurgenetics of $B(\mu \overline{\nu}_{\mu} \nu_{\tau})$, $B(e \overline{\nu}_{e} \nu_{\tau})$, $B(\mu \overline{\nu}_{\mu} \nu_{\tau})/B(e \overline{\nu}_{e} \nu_{\tau})$, and $B(h^- \nu_{\tau})$ are 0.08, - 0.39, 0.45, and 0.63 respectively.

$\Gamma(\pi^-\nu_{\tau})$)/F _{total}							٦/ و٦
Dat	a marked "	'avg" a	re highly	y cor	related with dat	a app	earing e	sewhere in the Listings,
and	are theref	ore [–] use	d for th	e av	erage given bel	ow bu	t not in	the overall fits. "f&a"
mar	ks results i	used fo	r the fit	and	the average.			
VALUE (%)			EVTS		DOCUMENT ID		TECN	COMMENT
11.06 ± 0.2	1 OUR FI	T Er	ror inclu	ıd es	scale factor of 1	l.4.		
11.07 ± 0.2	8 OUR AN	/ERAG	iΕ					
11.06 ± 0.2	11 ± 0.14	avg		61	BUSKULIC	96	ALEP	LEP 1991–1993 data
11.7 ± 0.4	±1.8	f&∠a	1138		BLOCKER	82D	MRK2	$E_{Cm}^{ee} = 3.5 - 6.7 \text{ GeV}$
⁶¹ Not in	dependent	of BU	SKULIC	96	$B(h^- u_ au)$ and I	в(к-	$ u_{ au}$) val	ues.
Γ(K ⁻ ν _τ)/Г _{total}							Г10/Г
VALUE (%)			EVTS		DOCUMENT ID		TECN	COMMENT
0.686 ± 0.0	23 OUR F	ΠT						
0.685 ± 0.0	23 OUR A	VERA	GE					
0.658 ± 0.0	0.027 ± 0.029			62	ABBIENDI	01 J	OPAL	1990-1995 LEP runs
0.696 ± 0.0	0.025 ± 0.014		2032		BARATE	99K	ALEP	1991-1995 LEP runs
0.85 ± 0.3	18		27		ABREU	94 K	DLPH	LEP 1992 Z data
0.66 ± 0.	07 ± 0.09		99		BATTLE	94	CLEO	$E_{\rm Cm}^{ee} \approx 10.6 {\rm GeV}$
• • • We	do not us	e the f	ollowing	d at	a for averages, i	fits, li	mits, etc	
0.72 ±0.	04 ± 0.04		728		BUSKULIC	96	ALEP	Repl. by BARATE 99K
0.59 ± 0.3	18		16		MILLS	84	DLCO	$E_{\rm Cm}^{ee} = 29 {\rm GeV}$
1.3 ± 0.5	5		15		BLOCKER	82B	MRK2	$E_{\rm Cm}^{ee}$ = 3.9-6.7 GeV
62-		<i></i>						

 $6.0\ \pm 3.0\ \pm 1.8$

 $^{62}{\rm The}$ correlation coefficient between this measurement and the ABBIENDI 01J B($\tau^- \to \kappa^- \ge 0\pi^0 \ge 0\,\kappa^0 \ge 0\,\gamma\,\,\nu_\tau)$ is 0.60.

Г11/Г

VALUE (%)	DOCUMENT ID		TECN	COMMENT
36.92±0.14 OUR FIT Erro	or includes scale fac	tor of	1.1.	
• • • We do not use the fo	llowing data for ave	rages,	fits, lin	nits, etc. • • •
36.14±0.33±0.58	⁶³ AKERS	94E	OPAL	1991-1992 LEP runs
$38.4 \pm 1.2 \pm 1.0$	of BURCHAI	87	MRK 2	$E_{\rm cm}^{\rm cm} = 29 {\rm GeV}$
42.7 ± 2.0 ± 2.9	BERGER	85	PLUT	$E_{\rm cm}^{ee} = 34.6 {\rm GeV}$

 3 Not independent of ACKERSTAFF 98M B($h^-\,\pi^0\,
u_ au$) and B($h^-\,\geq 2\pi^0\,
u_ au$) values. 64 BURCHAT 87 quote for B(π^{\pm} \geq 1 neutral $u_{ au}$) = 0.378 \pm 0.012 \pm 0.010. We add 0.006 to account for contribution from $(\kappa^{*-}\nu_{\tau})$ which they fixed at BR = 0.013.

$\Gamma(h^- \pi^0 \nu_\tau) / \Gamma_{\text{total}}$				$\Gamma_{12}/\Gamma = (\Gamma_{13} + \Gamma_{15})/\Gamma$
VALUE (%)	EVTS	DOCUMENT ID	TECN	COMMENT
25.87±0.13 OUR FIT	Error incl	udes scale factor o	f 1.1.	
25.76±0.15 OUR AVE	RAGE			
$25.89 \pm 0.17 \pm 0.29$		ACKERSTAFF	98M OPAL	1991-1995 LEP runs
$25.76 \pm 0.15 \pm 0.13$	31k	BUSKULIC	96 ALEP	LEP 1991–1993 data
$25.05\pm 0.35\pm 0.50$	6613	ACCIARRI	95 L3	1992 LEP run
$25.87 \pm 0.12 \pm 0.42$	51k	⁶⁵ ARTUSO	94 CLEO	E ^{ee} _{cm} = 10.6 GeV
• • • We do not use the	he following	g data for average:	s, fits, limits	, etc. • • •
$25.98 \pm 0.36 \pm 0.52$		⁶⁶ AKERS	94E OPAL	Repl. by ACKER- STAFF 98M
$22.9 \pm 0.8 \pm 1.3$	283	⁶⁷ ABREU	92N DLPH	E ^{ee} _{cm} = 88.2-94.2 GeV
$23.1 \ \pm 0.4 \ \pm 0.9$	1249	⁶⁸ ALBRECHT	92Q ARG	E ^{ee} cm= 10 GeV
$25.02 \pm 0.64 \pm 0.88$	1849	DECAMP	92C ALEP	1989-1990 LEP runs
$22.0 \pm 0.8 \pm 1.9$	779	ANTREASYAN	91 CBAL	E ^{ee} _{cm} = 9.4-10.6 GeV
$22.6 \pm 1.5 \pm 0.7$	1101	BEHREND	90 CELL	E ^{ee} cm= 35 GeV
$23.1 \pm 1.9 \pm 1.6$		BEHREND	84 CELL	E ^{ee} _{cm} = 14,22 GeV

 6^5 ARTUSO 94 reports the combined result from three independent methods, one of which (23% of the $\tau^- \rightarrow h^- \pi^0 _{\mu \tau}$) is normalized to the inclusive one-prong branching fraction, taken as 0.854 \pm 0.004. Renormalization to the present value causes negligible change. 6^6 AKERS 94 caute($26.25 \pm 0.36 \pm 0.52$) $\times 10^{-2}$; we subtract 0.27% from their number to correct for $\tau^- \rightarrow h^- K_0^0 \nu_{\tau}$.

 67 ABREU 92N with 0.5% added to remove their correction for $K^*(892)^-$ backgrounds.

⁶⁸ALBRECHT 92Q with 0.5% added to remove their correction for $\tau^- \rightarrow \kappa^*(892)^- \nu_{\tau}$ background.

Г(π⁻	$\pi^0 \nu_{\tau}$)/ Γ_{total}	ιз/Г
•	Data marked "avg" are highly correlated with data appearing elsewhere in the List	ings,
	and are therefore used for the average given below but not in the overall fits. "	f&a"

marks results used	d for the fit and	the average.			
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
25.42±0.14 OUR FIT	Error includes s	cale factor of 1.1.			
25.31±0.18 OUR AVER	RAGE				
$25.30\pm 0.15\pm 0.13$	avg	⁶⁹ BUSKULIC	96	ALEP	LEP 1991-1993
25.36 ± 0.44	avg	⁷⁰ ARTUSO	94	CLEO	data E ^{ee} cm= 10.6 GeV
• • • We do not use the	ne following data	a for averages, fits, li	nits,	etc. • •	• •
$21.5\ \pm 0.4\ \pm 1.9$	4400	^{71,72} ALBRECHT	88L	ARG	$E_{\rm Cm}^{ee} = 10 {\rm GeV}$
$23.0\ \pm 1.3\ \pm 1.7$	582	ADLER	87B	MRK3	$E_{cm}^{ee} = 3.77 \text{ GeV}$
$25.8\ \pm 1.7\ \pm 2.5$		⁷³ BURCHAT	87	MRK2	E ^{ee} _{cm} = 29 GeV
$22.3\ \pm 0.6\ \pm 1.4$	629	72 YELT ON	86	MRK2	E ^{ee} cm= 29 GeV

421 Lepton Particle Listings

⁶⁹ Not independent ⁷⁰ Not independent ⁷¹ The authors divid ⁷² Experiment had information is giv ⁷³ BURCHAT 87 v included.	of BUSKULIC of ARTUSO de by ($\Gamma_3 + I$ no hadron iden ven to permit f alue is not in	$\begin{array}{l} 296 \ B(h^{-} \pi^{0} \nu_{\tau}) \\ 94 \ B(h^{-} \pi^{0} \nu_{\tau}) \\ 5 + \Gamma_{9} + \Gamma_{10} \\ 100 \\$	and $B(K^{-}\pi)$ nd BATTLE $/\Gamma = 0.467 trcorrections wLTON 86 va$	$^{0} \nu_{\tau}$) values. 94 B($K^{-} \pi^{0} \nu_{\tau}$) values. 9 obtain this result. vere made, but insufficient ilue. Nonresonant decays
$\Gamma(\pi^{-}\pi^0 \operatorname{non} -\rho(77))$	0) <i>ν_τ</i>)/Γ _{tota}	OCUMENT ID	<u>TECN</u> COI	Г ₁₄ /Г
$0.3 \pm 0.1 \pm 0.3$	⁷⁴ B	EHREND 84	CELL EC	en= 14,22 GeV
⁷⁴ BEHREND 84 as using events with	ssume a flat n 1 mass above 1	onresonant mass 1300 to set the lev	distribution (/el.	down to the $ ho(770)$ mass,
$\Gamma(K^{-}\pi^{0}\nu_{\tau})/\Gamma_{\rm tot}$	ai			Г15/Г
VALUE (%) 0.450 ± 0.030 OUR F		DOCUMENT ID	<u>TECN</u>	COMMENT
$0.444 \pm 0.026 \pm 0.024$	923	BARATE	99K ALEP	1991-1995 LEP runs
$0.51 \ \pm 0.10 \ \pm 0.07$	37	BATTLE	94 CLEO	$E_{\rm Cm}^{ee} \approx 10.6 {\rm GeV}$
• • • We do not us	e the following	data for averages	s, fits, limits,	etc. • • •
$0.52\ \pm 0.04\ \pm 0.05$	395	BUSKULIC	96 ALEP	Repl. by BARATE 99K
$\Gamma(h^{-} > 2\pi^{0}\mu_{-})/$	Teatal			Г 14/Г
$\Gamma_{16}/\Gamma = (\Gamma_{19})$	+ F ₂₂ + F ₂₅ + F	26+F28+0.157F3	3+0.157F35	+0.157F ₃₈ +0.157F ₄₀ +
0.0985F ₄₅ +0.	319F ₁₁₇ +0.32	2F ₁₁₉)/F		
Data marked " and are therefor marks results u	avg" are highly ore used for th used for the fit	y correlated with d le average given b and the average.	ata appearin elow but not	g elsewhere in the Listings, in the overall fits. "f&a"
	<u>EVTS</u>	<u>DOCUMENT ID</u>	<u>TECN</u>	COMMENT
10.0 ±0.4 OUR AV	ERAGE	des scale factor o	1 1.1.	
$9.91 \pm 0.31 \pm 0.27$ f	&a	ACK ER STAFF	98M OPAL	1991-1995 LEP runs
$12.0 \pm 1.4 \pm 2.5$ f	&a	⁷⁵ BURCHAT	87 MRK2	E ^{ee} cm= 29 GeV
• • • We do not us	e the following	data for averages	s, fits, limits,	etc. • • •
$9.89 \pm 0.34 \pm 0.55$		⁷⁶ AKERS	94E OPAL	Repl. by ACKER-
$14.0 \pm 1.2 \pm 0.6$	938	77 BEHREND	90 CELL	$E_{cm}^{ee} = 35 \text{ GeV}$
$13.9 \pm 2.0 \pm 1.9$		⁷⁸ AIHARA	86F TPC	$F_{ee}^{ee} = 29 \text{ GeV}$
-2.2			002 11 0	-cm- 17 001
⁷⁵ Error correlated v ⁷⁶ AKERS 94E not ₇₇ surements.	with BURCHA independent c	T 87 $\Gamma(\rho - \nu_e)/\Gamma_1$ of AKERS 94E B((total) value. $h^- \ge 1 \pi^0 \nu$	$_{\tau}$) and B($h^{-}\pi^{0}\nu_{ au}$) mea-
⁷⁸ AIHARA 86E (TI	of BEHREND PC) quote B(2	90 $\Gamma(h^{-} 2\pi^{0} \nu_{\tau}) = 1.61$ $(\pi^{0} \pi^{-} \nu_{\tau}) + 1.61$	exp. K ⁰)) an 3(3π ⁰ π ν _τ	d $\Gamma(h^{-} \ge 3\pi^{0} \nu_{\tau}).$) + 1.1B $(\pi^{0} \eta \pi^{-} \nu_{\tau}).$
$[(\hbar^{-}2\pi^{0}\nu_{\tau})/\Gamma_{to}]$	tal			[17/]
$\Gamma_{17}/\Gamma = (\Gamma_{19})$	+Γ ₂₂ +0.157Γ	₃₃ +0.157Γ ₃₅)/Γ		
<u>VALUE (%)</u> 9.39±0.14 OUR FIT	<u>EVTS</u> Error includ	<u>DOCUMENT ID</u> es scale factor of	1.1. <u>TECN</u>	COMMENT
$9.48 \pm 0.13 \pm 0.10$	12k	⁷⁹ BUSKULIC	96 ALEP	LEP 1991-1993 data
τ^{79} BUSKULIC 96 q $\tau^{-} \rightarrow h^{-} K^{0} \nu_{2}$	uote 9.29 ± ($0.13~\pm~0.10.$ We	add 0.19 to	undo their correction for
$\Gamma(h^{-}2\pi^{0}\nu_{\tau}(\text{ex},K))$	⁽⁰))/Γ_{total}			Г ₁₈ /Г
Data marked " and are therefo	avg" are highly	y correlated with d	ata appearin ow but not in	g elsewhere in the Listings, the overall fits, f&a marks
results used fo	r the fit and th	ne average.		
VALUE (%)	EVTS	DOCUMENT ID	TECN	COMMENT
9.23±0.14 OUR FI	FRAGE	ides scale factor o	T 1.1.	
8.88±0.37±0.42 f	&a 1060	ACCIARRI	95 L3	1992 LEP run
$8.96 \pm 0.16 \pm 0.44$ a	avg	⁸⁰ PROCARIO	93 CLEO	$E_{\rm Cm}^{ee} \approx 10.6 {\rm GeV}$
$10.38\pm0.66\pm0.82~\text{f}$	&a 809	⁸¹ DECAMP	92C ALEP	1989-1990 LEP runs
• • • We do not us	e the following	data for averages	s, fits, limits,	etc. • • •
$5.7 \pm 0.5 + 1.7 = 1.0$	133	82 ANTREASYA	N 91 CBAL	E ^{ee} _{CM} = 9.4-10.6 GeV
$10.0 \pm 1.5 \pm 1.1$	333	⁸³ BEHREND	90 CELL	E ^{ee} cm= 35 GeV
$8.7\ \pm 0.4\ \pm 1.1$	815	⁸⁴ band	87 MAC	E ^{ee} _{CM} = 29 GeV
$6.2\ \pm 0.6\ \pm 1.2$		⁸⁵ GAN	87 MRK2	E ^{ee} _{CM} = 29 GeV

result for $B(h^- \pi^0 \nu_{\tau})$. 81 We subtract 0.0015 to account for $\tau^- \rightarrow \ \kappa^*(892)^- \nu_{\tau}$ contribution.

⁴⁷ We subtract 0.001 to account for $\tau \to \pi^- (02_F) \nu_{\tau}$ contribution. ⁸³ANTREASYAN 91 subtract 0.001 to account for the $\tau^- \to K^*(892)^- \nu_{\tau}$ contribution. ⁸³BEHREND 90 subtract 0.002 to account for the $\tau^- \to K^*(892)^- \nu_{\tau}$ contribution. ⁸⁴BAND 87 assume $B(\pi^- 3\pi^0 \nu_{\tau}) = 0.01$ and $B(\pi^- \pi^0 \eta \nu_{\tau}) = 0.005$.

 80 PROCARIO 93 entry is obtained from B(h $^{-}$ $2\pi^{0}\nu_{\tau}$)/B(h $^{-}$ π^{0} ν_{τ}) using ARTUSO 94

BEHREND 84 CELL E^{ee}_{CM}= 14,22 GeV

85 GAN 87 analysis use photon multiplicity distribution.

τ

au

$(a_{1} K^{0}))/\Gamma(b = -0, 1)$

$\Gamma(h^{-} 2\pi^{0} \nu_{\tau} (\text{ex. } K^{0}))_{\Gamma_{18}/\Gamma_{12} = (\Gamma_{19} + \Gamma_{19})}$)/Γ(h⁻π -Γ ₂₂)/(Γ ₁₃	. ⁰ ν _τ) ₃ +Γ ₁₅)		Γ ₁₈ /Γ ₁₂
VALUE	DOCL	MENTID TE	<u>сп сомм</u>	ENT
0.357±0.006 OUR FIT	Errorinc 86 pp o	ludes scale factor	of 1.1. EO <i>E^{ee} :</i>	~ 10.6 GeV
⁸⁶ PROCARIO 93 quo	te 0.345 ±	0.006 ± 0.016 a	fter correctio	on for 2 kaon backgrounds
assuming B(K $^{*-}$ $ u_{ au}$ by 0.990 \pm 0.010 to)=1.42 \pm o remove the	0.18% and B(<i>h⁻ h</i> nese corrections to	$({}^{0}\pi^{0}\nu_{\tau}) = 0$ B $(h^{-}\pi^{0}\nu_{\tau})$).48 \pm 0.48%. We multiply).
Γ(π[−] 2π⁰ ν_τ (ex. K⁰) Data marked "avg and are therefore)/F _{total} 3" are highl used for th	y correlated with d he average given b	ata appearin elow but no	Γ₁₉/Γ g elsewhere in the Listings, t in the overall fits. "f&a"
Marks results used	for the fi	t and the average. DOCUMENTID	TECN	COMMENT
9.17±0.14 OUR FIT 9.21±0.13±0.11	Error inclue ave 8	des scale factor of ⁷ BUSK ULIC	1.1. 96 ALEP	LEP 1991-1993 data
⁸⁷ Not independent of values.	BUSKULI	C 96 B($h^{-} 2\pi^{0} \nu_{\tau}$	(ex. <i>K</i> ⁰)) a	nd B($K^{-}2\pi^{0}\nu_{\tau}$ (ex. K^{0}))
$\Gamma(\pi^{-} 2\pi^{0} \nu_{\tau} (\text{ex. } K^{0}))$, scalar)/	Γ (π⁻ 2π⁰ν_τ (ex	. K⁰)) TECN	Г ₂₀ /Г ₁₉
< 0.094	95	88 BROWDER	00 CLEO	$4.7 \text{ fb}^{-1} E_{\text{cm}}^{ee} = 10.6$
88 Model-independent $\pi^{-} 2\pi^{0} \nu_{\tau}$ (ex. κ^{0})	limit from) from scal	structure function lars.	ı analysis or	GeV a contribution to $B(\tau^- \rightarrow$
$\Gamma(\pi^{-} 2\pi^{0} \nu_{\tau} (\text{ex.} K^{0})$, vector)/	/Γ(π ⁻ 2π ⁰ ν _τ (e)	κ. κ⁰))	Γ ₂₁ /Γ ₁₉
<u>VALUE</u>	<u>CL%</u> 95	89 BROWDER	00 CLEO	$\frac{COMMENT}{4.7 \text{ fb}^{-1}} = \frac{66}{2} = 10.6$
⁸⁹ Model-independent	limit from	structure function	analysis or	GeV GeV $f(\tau^-) \rightarrow f(\tau^-)$
$\pi^{-2}\pi^{0}\nu_{\tau}$ (ex. κ^{0})) from vec	tors.	,	· · · ·
$\Gamma(K^- 2\pi^0 \nu_\tau (\text{ex.} K^0))$))/F _{total}	DOCUMENT ID	TECN	
0.058±0.023 OUR FIT		<u>bocoment ib</u>		COMMENT
0.058±0.024 OUR AVE 0.056±0.020±0.015	131	BARATE	99K ALEP	1991-1995 LEP runs
$0.09 \pm 0.10 \pm 0.03$	3 ne following	90 BATTLE	94 CLEO	$E_{\rm cm}^{ee} \approx 10.6 {\rm GeV}$
0.08 ±0.02 ±0.02	59	BUSKULIC	96 ALEP	Repl. by BARATE 99K
⁹⁰ BATTLE 94 quote 0 to account for τ^{-}	14 ± 0.10 $\rightarrow K^{-}(K)$	$\pm 0.03 \text{ or} < 0.3\%$ $^0 \rightarrow \pi^0 \pi^0) \nu \text{ bar}$	at 90% CL.V	Ve subtract (0.05 ± 0.02)%
$\Gamma(h^- \geq 3\pi^0 \nu_\tau) / \Gamma_{\rm te}$	otal	,.,		Г ₂₃ /Г
$\Gamma_{23}/\Gamma = (\Gamma_{25} + \Gamma_{23})/\Gamma$ 0.322 Γ_{119}/Γ	26+F ₂₈ +0	.157Г ₃₈ +0.157Г ₄	₀ +0.0985F ₄	5 +0.319F ₁₁₇ +
VALUE (%)	EVTS	DOCUMENT ID	TECN	COMMENT
1.37 ± 0.11 OOR FIT $1.53 \pm 0.40 \pm 0.46$	186	DECAMP	92C ALEP	1989-1990 LEP runs
• • • We do not use th	ne tollowing	g data for averages	90 CELL	etc. • • • <i>F^{ee}</i> = 35 GeV
		BEIIKEND	JU CELL	2 cm = 35 Gev
$\Gamma(\hbar^{-} 3\pi^{0} \nu_{\tau})/\Gamma_{\text{total}}$ $\Gamma_{24}/\Gamma = (\Gamma_{25} + \Gamma_{25})$	26 + 0.15 7F	₃₈ +0.157Г ₄₀ +0.3	з22Г ₁₁₉)/Г	1 ₂₄ /1
Data marked "avg and are therefore marks results used	;" are highl used for th 1 for the fi	y correlated with d he average given b t and the average.	ata appearin elow but no	g elsewhere in the Listings, t in the overall fits. "f&a"
	EVTS	DOCUMENT ID	TECN	COMMENT
1.22±0.10 OUR AVER/	AGE			
$1.24 \pm 0.09 \pm 0.11$ f&a	2.3k	91 BUSKULIC	96 ALEP	LEP 1991–1993 data
1.15±0.08±0.13 avg	293	92 PROCARIO	93 CLEO	$E_{\rm cm}^{ee} \approx 10.6 {\rm GeV}$
• • • We do not use th	ne following	g data for averages	, fits, limits	etc • • •
${}^{0.0} \ {}^{+1.4}_{-\ 0.1} \ {}^{+1.1}_{-\ 0.1}$		⁹³ GA N	87 MRK	2 <i>E</i> ^{<i>ee</i>} _{CM} = 29 GeV
⁹¹ BUSKULIC 96 quot	$B(h^- 3\pi)$	$^{0}\nu_{\tau} (ex. \ \kappa^{0})) =$	$1.17~\pm~0.0$	$9~\pm~0.11$. We add 0.07 to

remove their correction for K^0 backgrounds. ⁹²PROCARIO 93 entry is obtained from B($h^{-}3\pi^{0}\nu_{\tau}$)/B($h^{-}\pi^{0}\nu_{\tau}$) using ARTUSO 94 result for B($h^- \pi^0 \nu_{\tau}$).

 $\begin{array}{l} {}^{93} {\rm Highly \ correlated \ with \ GAN \ 87 \ } \Gamma \left(\eta \, \pi^- \, \pi^0 \, \nu_\tau \right) / \Gamma_{\rm total} \ {\rm value}. \\ {\rm B} \left(\pi^\pm \, 3 \pi^0 \, \nu_\tau \right) + 0.67 {\rm B} \left(\pi^\pm \, \eta \, \pi^0 \, \nu_\tau \right) = 0.047 \pm 0.010 \pm 0.011. \end{array}$ Authors quote

Γ_{24}/Γ_{12}

 $\label{eq:linear_line$

$\Gamma(\pi^{-} 3\pi^{0} \nu_{\tau} (\text{ex.} K^{0})) / \Gamma_{\text{total}}$	DOCUMENT ID		Γ ₂₅ /Γ
$I(K^{-} 3\pi^{\circ} \nu_{\tau} (ex. K^{\circ}, \eta))/I_{total}$	DOCUMENT ID	TECN COL	126/1
0.038 + 0.022 OUR FIT		· <u></u>	
0.037±0.021±0.011 22 •• We do not use the following co 0.05 ±0.13 95 95 BUSKULIC 94E quote $B(K^- \ge B(K^- K^0 \nu_{\tau}) + B(K^- \pi^0 \pi^0 \nu_{\tau}) + B(K^- \pi^0 \pi^0 \nu_{\tau}) + B(K^- \ge 2K)$ common systematic errors in BUS modes. We assume $B(K^- \ge 2K)$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	(ALEP 199 s, limits, etc.) (ALEP Rep $- [B(K^- v_7)] = 0.05 \pm$ (SKULIC 94F I $4\pi^0 v_7$) are	11–1995 LEP runs ••• b) by BARATE 99K ·) + B($K^{-}\pi^{0}\nu_{\tau}$) + 0.13% accounting for measurements of these negligible.
$ \Gamma \left(h^{-} 4 \pi^{0} \nu_{\tau} \left(\text{ex. } \mathcal{K}^{0} \right) \right) / \Gamma_{\text{total}} \atop \Gamma_{27} / \Gamma = \left(\Gamma_{28} + 0.319 \Gamma_{117} \right) / \Gamma $			Г ₂₇ /Г
VALUE (%) EVTS	DOCUMENT ID	TECN COL	MMENT
0.16±0.06 OUR AVERAGE			
0.16±0.04±0.09 232 96 0.16±0.05±0.05 97	BUSKULIC 96	ALEP LE	P 1991–1993 data
96 BLISKIII IC 96 quote result for τ	$- \rightarrow h^- > 4\pi^0 \mu$	We assum	$m \approx 10.0 \text{ GeV}$ $e B(h^- > 5\pi^0 \mu)$ is
negligible. 97 PROCARIO 93 quotes B($h^- 4\pi^0$ by the ARTUSO 94 result for E assume B($h^- \ge 5 \pi^0 \nu_{\tau}$) is small	$ \nu_{\tau})/B(h^{-}\pi^{0}\nu_{\tau}) = $ $ s(h^{-}\pi^{0}\nu_{\tau}) \text{ to obta} $ all and do not correc	0.006 \pm 0.002 in B(h^{-} 4 π^{0} t for it.	$(\nu_{\tau})^{1/2}$ (ν_{τ}). PROCARIO 93
$\Gamma(h^{-}4\pi^{0}\nu_{\tau}(\mathrm{ex},K^{0},\eta))/\Gamma_{\mathrm{total}}$			Г ₂₈ /Г
0.10+0.06 OUR FIT			
$\Gamma(K^{-} \geq 0\pi^{0} \geq 0K^{0} \geq 0\gamma \nu_{\tau}) = (\Gamma_{10} + \Gamma_{15} + \Gamma_{22} + \Gamma_{26})$	/Г_{total ;+Г₃₅+Г₄₀+0.7151}	- 119)/F	Г ₂₉ /Г
Data marked "avg" are highly o and are therefore used for the	correlated with data average given below	appearing els / but not in 1	ewhere in the Listings, he overall fits."f&a"
VALUE (%) EVTS	Ind the average.	TEC N	COMMENT
1.56 ±0.04 OUR FIT			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 ⁹⁸ ABBIENDI ⁹⁹ BARATE ABREU 100 BATTLE AIHARA MILLS lata for averages, fit 101 BUSKULIC 	01J OPAL 99K ALEP 94K DLPH 94 CLEO 87B TPC 84 DLCO s, limits, etc. 96 ALEP	1990–1995 LEP runs 1991–1995 LEP runs LEP 1992 Z data $E_{Cm}^{ee} \approx 10.6 \text{ GeV}$ $E_{Cm}^{ee} = 29 \text{ GeV}$ $E_{Cm}^{ee} = 29 \text{ GeV}$ •••
⁹⁸ The correlation coefficient betwe	en this measuremen	t and the AB	BIENDI 01 $B(\tau^- \rightarrow$
$\begin{array}{c} \kappa^{-}\nu_{\tau}) \text{ is } 0.60.\\ \\ 99 \text{ Not independent of BARATE 99}\\ \text{ B}(\kappa^{-}3\pi^{0}\nu_{\tau}(\text{ex. }\kappa^{0})), \text{ B}(\kappa^{-}\mu^{-})\\ 100 \text{ BATTLE 94 quote } 1.60\pm0.12\pm\\ \text{ of }\kappa^{0}_{S}\rightarrow\pi^{+}\pi^{-}\text{ decays.}\\ \\ 101 \text{ Not independent of BUSKUI}\\ \text{ B}(\kappa^{-}\kappa^{0}\nu_{\tau}), \text{ and }\text{ B}(\kappa^{-}\kappa^{0}\pi^{0}$	BY B($K^- \nu_{\tau}$), B($K^- \kappa^0 \nu_{\tau}$), and B($K^- \kappa$: 0.19. We add 0.10 .IC 96 B($K^- \nu_{\tau}$) ν_{τ}) values.	$^{-\pi^{0}} \nu_{\tau}$), B($^{0} \kappa^{0} \pi^{0} \nu_{\tau}$) val ± 0.02 to con	$\begin{aligned} & \kappa^{-} 2\pi^{0} \nu_{\tau} (\text{ex. } \kappa^{0})), \\ \text{ues.} \\ \text{rect for their rejection} \\ & \nu_{\tau}), B(\kappa^{-} 2\pi^{0} \nu_{\tau}), \end{aligned}$
$\Gamma\left(K^{-} \geq 1 \left(\pi^{0} \text{ or } K^{0} \text{ or } \gamma\right) \nu_{\tau}\right) /$	F _{total}		Г ₃₀ /Г
1 30/1 = (1 15 + 1 22 + 1 26 + 1 35 Data marked "avg" are highly of and are therefore used for the marks results used for the fit as VALUE (%) EVTS	; +1 40 +0.7151 119), correlated with data average given below ind the average. DOCUMENT ID	, i appearing els / but not in 1 <i>TECN</i>	ewhere in the Listings, he overall fits. "f&a" COMMENT
0.874±0.035 OUR FIT			
$0.869 \pm 0.031 \pm 0.034$ avg	¹⁰² ABBIENDI	01J OPAL	1990-1995 LEP
0.69 ± 0.25 avg	¹⁰³ ABREU	94K DLPH	runs LEP 1992 Z data
$1.2 \pm 0.5 \stackrel{+0.2}{-0.4}$ f&a 9	AIHARA	878 TPC	E ^{ee} _{cm} = 29 GeV
¹⁰² Not independent of ABBIENDI $0K^0 \ge 0\gamma \ \nu_{\tau}$) values.	$\begin{array}{ccc} \text{OIJ } B(\tau^{-} \rightarrow K^{-} i) \\ \text{D}(K^{-} \rightarrow K^{-} i) \end{array}$	ν_{τ}) and $B(\tau^{-1})$	$\rightarrow \kappa^- \ge 0\pi^0 \ge$
NOL INVERSE OF ABRED 94K	ν_{τ} and $B(K$	≥ u neutr	ais v_{τ}) measurements.
	$+\frac{1}{2}\Gamma_{40}+\Gamma_{45}+\Gamma_{46}$)/Г	Г ₃₁ /Г
MALUE (%) EVTS 0.92 ±0.04 OUR FIT Error inclus 0.97 ±0.07 OUR AVERAGE Error inclus	DOCUMENT ID des scale factor of 1	<u>TECN</u> <u>CO</u>	MMENT

.

 $0.970 \pm 0.058 \pm 0.062$

 $0.97\ \pm 0.09\ \pm 0.06$

929

141

BARATE

AKERS

98E ALEP 1991-1995 LEP runs

94G OPAL $E_{CM}^{ee} = 88-94 \text{ GeV}$

• •

 94 PROCARIO 93 quote 0.041 \pm 0.003 \pm 0.005 after correction for 2 kaon backgrounds assuming B(K* $^{-}\nu_{7}$)=1.42 \pm 0.18% and B(h $^{-}$ K $^{0}\pi^{0}\nu_{7}$)=0.48 \pm 0.48%. We add 0.003 \pm 0.003 and multiply the sum by 0.990 \pm 0.010 to remove these corrections.

 $\Gamma(h^- \overline{K}^0 \nu_\tau) / \Gamma_{\text{total}}$

	Data n and ar	narκed ≃a etherefor	vg"are e used	highly for the	correlated with data average given belo	a appearing e w but not in	sewhere in the Listings, the overall fits. "f&a"
	marks	results us	ed for	the fit	and the average.		
VALU	E (%)			EVTS	DOCUMENT ID	TECN	COMMENT
1.05	± 0.04	OUR FI	T Erro	or inclu	des scale factor of	1.1.	
0.9 0	± 0.07	OUR AV	/ERAG	E			
1.01	± 0.11	± 0.07	avg	555	¹⁰⁴ BARATE	98E ALEP	1991-1995 LEP runs
0.855	5 ± 0.036	± 0.073	f&∠a	1242	COAN	96 CLEO	$E_{\rm Cm}^{ee} \approx 10.6 { m GeV}$
104	lotindep	oendent o	f BARA	TE 98	$B(\tau^- \rightarrow \pi^- \overline{\kappa}^0 \nu)$	$_{ au}$) and B($ au$ $^-$	$\rightarrow \ \kappa^{-} \ \kappa^{0} \nu_{\tau}$) values.
Г (т	- K ⁰ ν,)/F _{total}	1				Г ₃₃ /Г
•	Data n	narked "a	vg" are	highly	correlated with data	a appearing e	sewhere in the Listings,
	and ar	e therefor	e used	for the	average given belo	w but not in	the overall fits. "f&a"
	marks	results us	ed for	the fit	and the average.		
VALU	E [%]			EVTS	DOCUMENT ID	TECN	COMMENT
0.89	± 0.04	OUR FI	T Erro	or inclu	des scale factor of	11	
0.88	+0.05			_			
	± 0.00	OUR AV	ERAG	E Err	or includes scale fac	tor of 1.2.	
0.933	3 ± 0.068	OUR AV ±0.049	f&a	E Err 377	or includes scale fac ABBIENDI	tor of 1.2. 00c OPAL	1991-1995 LEP
0.933 0.928	3 ± 0.068 3 ± 0.045	OUR AV ±0.049 ±0.034	f&a f&a f&a	E Err 377 937	or includes scale fac ABBIENDI ¹⁰⁵ BARATE	tor of 1.2. 00C OPAL 99K ALEP	1991-1995 LEP runs 1991-1995 LEP runs
0.933 0.928 0.855	3 ± 0.068 3 ± 0.045 5 ± 0.117	OUR AV ±0.049 ±0.034 ±0.066	/ERAG f&a f&a avg	E Ern 377 937 509	or includes scale fac ABBIENDI ¹⁰⁵ BARATE ¹⁰⁶ BARATE	tor of 1.2. 00C OPAL 99K ALEP 98E ALEP	1991-1995 LEP runs 1991-1995 LEP runs 1991-1995 LEP runs
0.933 0.928 0.855 0.704	3 ± 0.068 3 ± 0.045 5 ± 0.117 4 ± 0.041	OUR AV ±0.049 ±0.034 ±0.066 ±0.072	/ERAGI f&a f&a avg avg	E Err 377 937 509	or includes scale fac ABBIENDI ¹⁰⁵ BARATE ¹⁰⁶ BARATE ¹⁰⁷ COAN	tor of 1.2. 00C OPAL 99K ALEP 98E ALEP 96 CLEC	1991-1995 LEP runs 1991-1995 LEP runs 1991-1995 LEP runs Ecm ≈ 10.6 GeV
0.933 0.928 0.855 0.704 0.95	3 ± 0.068 3 ± 0.045 5 ± 0.117 4 ± 0.041 ± 0.15	OUR AV ± 0.049 ± 0.034 ± 0.066 ± 0.072 ± 0.06	/ERAG f&a f&a avg avg f&a	E Err 377 937 509	or includes scale fac ABBIENDI ¹⁰⁵ BARATE ¹⁰⁶ BARATE ¹⁰⁷ COAN ¹⁰⁸ ACCIARRI	tor of 1.2. 00C OPAL 99K ALEP 98E ALEP 96 CLEC 95F L3	1991-1995 LEP runs 1991-1995 LEP runs 1991-1995 LEP runs E ^g _{CM} ≈ 10.6 GeV 1991-1993 LEP runs
0.933 0.928 0.855 0.704 0.95	3 ± 0.068 3 ± 0.045 5 ± 0.117 4 ± 0.041 ± 0.15 • We do	OUR AV ± 0.049 ± 0.034 ± 0.066 ± 0.072 ± 0.06 o not use	/ERAGI f&a f&a avg avg f&a the foll	E Erro 377 937 509	or includes scale fac ABBIENDI ¹⁰⁵ BARATE ¹⁰⁶ BARATE ¹⁰⁷ COAN ¹⁰⁸ ACCIARRI data for averages, fi	tor of 1.2. 00C OPAL 99K ALEP 98E ALEP 96 CLEC 95F L3 ts, limits, etc	1991–1995 LEP runs 1991–1995 LEP runs 1991–1995 LEP runs EEm 20.6 GeV 1991–1993 LEP runs
0.933 0.928 0.855 0.704 0.95 • • 0.79	3 ± 0.068 3 ± 0.045 5 ± 0.117 4 ± 0.041 ± 0.15 • We do ± 0.10	OUR AV ± 0.049 ± 0.034 ± 0.066 ± 0.072 ± 0.06 o not use ± 0.09	/ERAG I f&a f&a avg avg f&a the foll	E Err 377 937 509 owing 98	or includes scale fac ABBIENDI 105 BARATE 106 BARATE 107 COAN 108 ACCIARRI 14ta for averages, fi 109 BUSKULIC	or of 1.2. 00C OPAL 99К ALEP 98E ALEP 96 CLEC 95F L3 ts, limits, etc 96 ALEP	1991-1995 LEP runs 1991-1995 LEP runs 1991-1995 LEP runs €€m ≈ 10.6 GeV 1991-1993 LEP runs

 $\lceil_{32}/\Gamma = (\lceil_{33} + \lceil_{35})/\Gamma$

 $^{105}\,{\rm BARATE}$ 99K measure ${\cal K}^0{\,}{\rm s}$ by detecting ${\cal K}^0_L{\,}{\rm s}$ in their hadron calorimeter. ¹⁰⁶BARATE 98E reconstruct K^{0} 's using $K^{0}_{S} \xrightarrow{L} \pi^{+}\pi^{-}$ decays. Not independent of

¹⁰⁰ BARATE 96: Reconstruct K° using $K_{S} \rightarrow \pi^{+}\pi^{-}$ decays. Not independent of BARATE 98: B(K^{0} particles $^{-}\nu_{\tau}$) value. ¹⁰⁷ Not independent of COAN 96 B($h^{-}K^{0}\nu_{\tau}$) and B($K^{-}K^{0}\nu_{\tau}$) measurements. ¹⁰⁸ ACCIARRI 95: do not identify π^{-}/K^{-} and assume B($K^{-}K^{0}\nu_{\tau}$) = (0.29 ± 0.12)%. ¹⁰⁹ BUSKULIC 96 measure K^{0} 's by detecting K_{L}^{0} 's in their hadron calorimeter.

$\Gamma(\pi^{-}\overline{K}^{0}(\operatorname{non} K^{*}(8$	92) [−]) <i>ν</i> _τ)	/F _{total}			Г ₃₄ /Г
VALUE (%)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
< 0.17	95	ACCIARRI	95F L3	1991-1993	LEP runs
$\Gamma(K^- K^0 \nu_\tau) / \Gamma_{\text{total}}$					Г ₃₅ /Г
VALUE (%)	EVTS	DOCUMENT I	D TECN	COMMENT	
0.154±0.016 OUR FIT					
0.158±0.017 OUR AV	1E O	110 DADATE		0 1001 1005	E LED runs
$0.162 \pm 0.021 \pm 0.011$ 0.158 ± 0.042 ± 0.017	150	111 BARATE	996 ALEI 986 ALEI	P 1991-1995	5 LEP runs
$0.151 \pm 0.021 \pm 0.022$	111	COAN	96 CLE	$E_{em}^{ee} \approx 1$	0.6 GeV
• • • We do not use t	he following	data for average	s, fits, limits	cm . etc. • • • •	
0.26 +0.09 +0.02	13	112 BUSKUUC	96 ALE	P Reni hvi	BARATE 99K
110 RADATE 00K mage			in their hodre	n colorimotor	,
111 BARATE 98E recon	struct K ⁰	susing $K^0 \rightarrow \pi$	$+\pi^{-}$ decays	on calorimeter	•
112 BUSKIULC OF mon		v detecting K0's	in their had	on colorimoto	
BUSKULIC 96 mea	sure K - Si	by detecting K L	in their nadr	on calorimete	r.
$\Gamma(K^- K^0 \ge 0\pi^0 \nu_\tau)$)/F _{total}			$\Gamma_{36}/\Gamma = (\Gamma$	35+Г40)/Г
VALUE (%)	EVTS	DOCUMENT ID	TECN	COMMENT	
0.309±0.024 OUR FIT					
0.330±0.055±0.039	124	ABBIENDI	00C OPAL	1991-1995	LEP runs
$\Gamma(h^{-}\overline{K}^{0}\pi^{0}\nu_{\tau})/\Gamma_{to}$ Data marked "av and are therefore marks results use	tal g" are highl used for th d for the fi FVTS	y correlated with ne average given t and the average	data appearin below but no	$\Gamma_{37}/\Gamma = (\Gamma_{37}/\Gamma)$	38+Γ40)/Γ 1 the Listings, all fits. "f&a"
0.52 ±0.04 OUR FIT		DOCOMENT	10 120	COMMEN	<u> </u>
0.50 ±0.06 OUR AVI	ER AGE E	rror includes scale	factor of 1.2	2.	
$0.446 \pm 0.052 \pm 0.046$	avg 157	¹¹³ BARATE	98E AL	EP 1991-19	95 LEP runs
$0.562 \pm 0.050 \pm 0.048$ 1	&a 264	COAN	96 CL	EO $E_{cm}^{ee} \approx$	10.6 GeV
¹¹³ Not independent of values.	BARATE	98E B $(\tau - \rightarrow \pi -$	$\overline{K}^0 \pi^0 \tau$) an	$d B(\tau^- \rightarrow h)$	$(-\kappa^0\pi^0\nu_{\tau})$
$\frac{\Gamma(\pi^{-}\overline{K^{0}}\pi^{0}\nu_{\tau})}{\Gamma_{to}}$ Data marked "av and are therefore marks results use	tal g"arehighl usedfortl dforthefi	y correlated with ne average given t and the average	data appearin below but no	ig elsewhere ir t in the overa	Γ₃₈/Γ n the Listings, all fits. "f&a"
VALUE (%)	EVTS	DOCUMEN	T ID TE	CN COMME	NT
0.37 ±0.04 OUR FIT					
0.36 ±0.04 UUK AVI	FRAGE		0.01/ 1	ED 1001 1	
$0.347 \pm 0.053 \pm 0.057$	102d 295	115	336 AI	runs	990 LEP
$0.294 \pm 0.073 \pm 0.037$	†&∠a 142	¹¹³ BARATE	98E A I	LEP 1991-1 runs	995 LEP
$0.417 \pm 0.058 \pm 0.044$	avg	116 COAN	96 CI	.EO E ^{ee} cm ≈	10.6 GeV
$0.41 \ \pm 0.12 \ \pm 0.03$	f&a	¹¹⁷ ACCIARF	11 95 FL3	3 1991-1	993 LEP
• • • We do not use t	he following	g data for average	s, fits, limits	, etc. • • •	
$0.32\ \pm 0.11\ \pm 0.05$	23	¹¹⁸ BUSKULI	C 96 A	LEP Repl. b	y ATE 99K

Lepton Particle Listings

au

423

 $^{114}\,{\rm BARATE}$ 99K measure ${\cal K}^{\,0}{}'{\rm s}$ by detecting ${\cal K}^{\,0}_{\,\,I}{}'{\rm s}$ in their hadron calorimeter.

- ¹¹⁵ BARATE 98E reconstruct K^0 's using $K_S^0 \rightarrow \pi^+\pi^-$ decays. ¹¹⁶ Not independent of COAN 96 B($h^-K^0\pi^0\nu_{\tau}$) and B($K^-K^0\pi^0\nu_{\tau}$) measurements.
- ¹¹⁷ACCIARRI 95F do not identify π^-/κ^- and assume B($\kappa^-\kappa^0\pi^0\nu_{\tau}$) = (0.05 ± 0.05)%.

¹¹⁸ BUSKULIC 96 measure K ⁰ 's	by detecting K_L^{0} 's	in their hadr	on calorimeter.
$\Gamma(\overline{K}^0 ho^- u_{ au}) / \Gamma_{ m total}$			Г ₃₉ /Г
VALUE (%)	DOCUMENT ID	TECN	COMMENT
0.22 ±0.05 OUR AVERAGE			
$0.250 \pm 0.057 \pm 0.044$	BARATE	99K ALEP	1991-1995 LEP runs
$0.188 \pm 0.054 \pm 0.038$	BARATE	98E ALEP	1991-1995 LEP runs
¹¹⁹ BARATE 99K measure K ⁰ 's I	by detecting K_I^0 's	in hadron ca	lorimeter. They determine
the $\overline{\kappa}^0 \rho^-$ fraction in τ^- —	$\pi = \overline{K}^0 \pi^0 \nu_{\tau} de$	cays to be ($(0.72~\pm~0.12~\pm~0.10)$ and
multiply their B($\pi - \overline{K}^0 \pi^0 \nu_{\tau}$)	measurement by t	his fraction t	o obtain the quoted result.
120 BARATE 98E reconstruct K	susing $K_c^0 \rightarrow \pi^+$	π^{-} decays.	They determine the $\overline{K}^0 \rho^-$
fraction in $\pi^- \rightarrow \pi^- \overline{K}^0 \pi^0$	v decays to be (() 64 + 0.09	+ 0.10 and multiply their
$D(=\overline{K}0,0)$ a measurement	ν_{τ} decays to be (
$B(\pi - \kappa - \pi - \nu_{\tau})$ measurement	by this fraction to	o obtain the	quoted result.
$\Gamma(K^- K^0 \pi^0 \nu_{\tau}) / \Gamma_{\text{total}}$			Γ40/Γ
VALUE (%) EVTS	DOCUMENT ID	TECN	COMMENT
0.155 ± 0.020 OUR FIT			
0.144 ± 0.023 OUR AVERAGE	1.01		
0.143±0.025±0.015 78	BARATE	99K ALEP	1991-1995 LEP runs
$0.152 \pm 0.076 \pm 0.021$ 15	22 BARATE	98E ALEP	1991-1995 LEP runs
$0.145 \pm 0.036 \pm 0.020$ 32	COAN	96 CLEO	$E_{\rm cm}^{\rm ee} \approx 10.6 {\rm GeV}$
• • • We do not use the followin	g data for average	s, fits, limits,	etc. • • •
$0.10 \pm 0.05 \pm 0.03$ 5 ¹	¹²³ BUSKULIC	96 ALEP	Repl. by BARATE 99K
¹²¹ BARATE 99K measure K ⁰ 's b	v detecting κ_{i}^{0} 's i	n their hadro	n calorimeter.
122 RARATE OFF reconstruct K0	susing K ⁰	+ = dec ave	
123	5 using <i>r</i> S - <i>x</i>	, accuys.	
*==BOSKOLIC 96 measure K = s	by detecting $\kappa \tilde{L}$'s	in their hadr	on calorimeter.
$\Gamma(\pi^{-}\overline{K}^{0} \geq 1\pi^{0}\nu_{\tau})/\Gamma_{\text{total}}$			$\Gamma_{41}/\Gamma = (\Gamma_{38} + \Gamma_{42})/\Gamma$
VALUE (%) EVTS	DOCUMENT ID	TECN	COMMENT
0.324±0.074±0.066 148	ABBIENDI	00C OPAL	1991-1995 LEP runs

$\Gamma\left(\pi^{-}\overline{K}^{0}\pi^{0}\pi^{0}\nu_{\tau}\right)$)/ _{[total}						Γ42/Γ
VALUE (units 10 ⁻³)	CL%	EVTS	DOCUMENT IE)	TECN	COMMENT	
$\textbf{0.26} \pm \textbf{0.24}$			¹²⁴ BARATE	99R	ALEP	1 991–1 995 runs	LEP
• • • We do not us	se the fol	lowing	data for averages, f	its, lim	its, etc.	• • •	
< 0.66	95	17	¹²⁵ BARATE	99K	ALEP	1 991-1 995	LEP
$0.58\pm 0.33\pm 0.14$		5	¹²⁶ BARATE	98E	ALEP	runs 1991–1995	LEP
						runs	

 $^{1\,24}$ BARATE 99R combine the BARATE 98E and BARATE 99K measurements to obtain this value $L^{0.1}$ 125 BARATE 99K measure K^{0} 's by detecting K_{L}^{0} 's in their hadron calorimeter.

¹²⁶BARATE 98E reconstruct κ^0 's using $\kappa^0_S \rightarrow \pi^+ \pi^-$ decays.

$\Gamma(K^- K^0 \pi^0 \pi^0 \nu,$)/F _{total}				Г ₄₃ /Г
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
$< 0.16 \times 10^{-3}$	95	¹²⁷ BARATE	99R ALEP	1991-1995 LE	EP runs
• • • We do not us	e the follow	ring data for averag	es, fits, limits,	etc. • • •	
$< 0.18 \times 10^{-3}$	95	¹²⁸ BARATE	99K ALEP	1991-1995 LE	P runs
$< 0.39 imes 10^{-3}$	95	¹²⁹ BARATE	98E ALEP	1991-1995 LE	P runs
¹²⁷ BARATE 99R co ¹²⁸ BARATE 99K m	mbine the I easure K ⁰	SARATE 98E and B by detecting κ_1^0 's	ARATE 99K b in hadron cal	ounds to obtair orimeter.	n this value.
129 BARATE 98F re	construct K	0 's by using κ_{0}^{0} –	$\pi^+\pi^-$ deca	avs	

42

 $0.023 \pm 0.005 \pm 0.003$

$$\label{eq:Gamma-constraint} \begin{split} \Gamma(\pi^-\,K^0\overline{K}^0\,\nu_{\tau})/\Gamma_{total} & \Gamma_{44}/\Gamma = (2\Gamma_{45}+\Gamma_{46})/\Gamma\\ \text{Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average. \end{split}$$

VALUE (%)	EVTS	DOCUMEN	T ID	TECN	COMMENT
0.159±0.029 OUR FIT	Error inclu	des scale factor	of 1.1.		
$0.153 \pm 0.030 \pm 0.016$ a	vg 74	¹³⁰ BARATE	986	ALEP	1991-1995 LEP runs
• • • We do not use the	e following o	data for average	s, fits, lin	nits, etc.	• • •
$0.31\ \pm 0.12\ \pm 0.04$		¹³¹ ACCIARR	I 95 F	L3	1991-1993 LEP runs
¹³⁰ BARATE 98E obtain B($\pi^{-}\kappa_{S}^{0}\kappa_{L}^{0}\nu_{\tau}$) val ¹³¹ ACCIABRI 95E assum	this value ue. ne Β(π [—] Κ	by adding twice $\frac{0}{2} K \frac{0}{2} \mu = B(\pi$	e their Β	$(\pi - \kappa_{S}^{0})$	$K_S^0 \nu_{\tau}$) value to their
	10 D(1 11	5 . 5 . 5 . 2		[, , = .	, 20(n
$\Gamma(\pi^- K^0_S K^0_S \nu_{\tau}) / \Gamma_{tot}$ Bose-Einstein corre	al lations mig	ht make the mi	king fract	ion diffe	Γ 45/ Γ rent than 1/4.
VALUE (%)	EVTS	DOCUMENT ID	TEC	N COL	MMENT
0.024 ± 0.005 OUR FIT					
0.024 ± 0.005 OUR AVE	≷AGE				
$0.026 \pm 0.010 \pm 0.005$	6	BARATE	98F A1	EP 199	1-1995 LEP runs

COAN

96 CLEO $E_{\rm CM}^{ee} \approx$ 10.6 GeV

τ

$\Gamma(\pi^{-}K_{S}^{0}K_{I}^{0}\nu_{\tau})/\Gamma_{tot}$	otal				Г ₄₆ /Г
VALUE (%)	EVTS	DOCUMENT ID	TECI	COMMENT	
0.110±0.028 OUR FIT	Errori	ncludes scale factor	of 1.1.		
$0.101 \pm 0.023 \pm 0.013$	68	BARATE	98E ALE	P 1991-1995	LEP runs
$\Gamma(\pi^- K^0 \overline{K}{}^0 \pi^0 \nu_\tau) /$	Γ _{total}				Г47/Г
VALUE		DOCUMENT ID	<u>TEC</u>	<u>COMMENT</u>	
(0.31±0.23)×10 ⁻³		132 BARATE	99R AL	EP 1991-1995	LEP runs
¹³² BARATE 99R	combine	BARATE 986	- Γ(π	$K_{S}^{0}K_{S}^{0}\pi^{0}\nu_{\tau}),$	/F _{total} and
$\Gamma(\pi^- \kappa^0_S \kappa^0_L \pi^0 \nu_\tau)$)/F _{total}	measurements to obt	tain this '	value.	
$\Gamma(\pi^{-}K^{0}_{S}K^{0}_{S}\pi^{0}\nu_{\tau}))$	/ 「 _{total}				Г ₄₈ /Г
VALUE (%)	CL%	DOCUMENT ID	TEC	N COMMENT	
< 0.020	95	BARATE	98E A L	EP 1991-1995	LEP runs
$\Gamma(\pi^- K^0_S K^0_L \pi^0 \nu_\tau)/$	Γ _{total}				Г49/Г
VALUE (%)	EVTS	DOCUMENT ID	TEC	N COMMENT	
$0.031 \pm 0.011 \pm 0.005$	11	BARATE	98E AL	EP 1991-1995	LEP runs
$\Gamma(K^0 h^+ h^- h^- \ge 0$	neutral	$(\nu_{\tau})/\Gamma_{\rm total}$			Г50/Г
VALUE (%)	CL%	DOCUMENT ID	TE	CN COMMENT	
< 0.17	95	TSCHIRHAR	T 88 H	RS $E_{cm}^{ee} = 29$	GeV
• • • We do not use t	he follow	ing data for averages	s, fits, lin	nits, etc. • • •	
< 0.27	90	BELTRAMI	85 H	RS $E_{\rm CM}^{ee} = 29$	GeV
$\Gamma(K^0 h^+ h^- h^- \nu_\tau)/$	Γ _{total}				Г51/Г
VALUE (%)	EVTS	DOCUMENT ID	TEC	OMMENT	
$0.023 \pm 0.019 \pm 0.007$	6	133 BARATE	98E A L	EP 1991-1995	LEP runs
	•	DANATE	JUL AL		cer rans

$$\begin{split} & \Gamma \Big(\hbar^- \hbar^- \hbar^+ \ge 0 \text{ neutrals } \ge 0 K_2^0 \nu_7 \Big) / \Gamma_{\text{total}} & \Gamma_{52} / \Gamma_{152} / \Gamma$$
T52/T

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
15.19± 0.07 OUR FIT	Error inclu	des scale factor	of 1.	1.	
14.8 ± 0.4 OUR AVE	RAGE				
$14.4~\pm~0.6~\pm0.3$		ADEVA	91F	L 3	E ^{ee} _{cm} = 88.3-94.3 GeV
$15.0~\pm~0.4~\pm0.3$		BEHREND	89B	CELL	E ^{ee} _{cm} = 14-47 GeV
$15.1 ~\pm~ 0.8 ~\pm 0.6$		AIHARA	87B	TPC	E ^{ee} _{cm} = 29 GeV
\bullet \bullet \bullet We do not use th	e following o	lata for averages	, fits	, limits,	etc. • • •
$13.5~\pm~0.3~\pm0.3$		ABACHI	89B	HRS	E ^{ee} _{cm} = 29 GeV
$12.8~\pm~1.0~\pm0.7$	134	BURCHAT	87	MRK2	E ^{ee} _{cm} = 29 GeV
$12.1~\pm~0.5~\pm1.2$		RUCKSTUHL	86	DLCO	E ^{ee} _{cm} = 29 GeV
$12.8~\pm~0.5~\pm0.8$	1420	SCHMIDKE	86	MRK2	E ^{ee} _{CM} = 29 GeV
$15.3 ~\pm~ 1.1 ~~ {+1.3 \atop -1.6}$	367	ALTHOFF	85	TASS	E ^{ee} _{cm} = 34.5 GeV
$13.6~\pm~0.5~\pm0.8$		BARTEL	85 F	JADE	E ^{ee} _{cm} = 34.6 GeV
$12.2~\pm~1.3~\pm 3.9$	1 35	BERGER	85	PLUT	E ^{ee} _{CM} = 34.6 GeV
$13.3~\pm~0.3~\pm0.6$		FERNANDEZ	85	MAC	E ^{ee} _{cm} = 29 GeV
24 ± 6	35	BRANDELIK	80	TASS	E ^{ee} _{cm} = 30 GeV
32 ± 5	692 136	BACINO	78B	DLCO	E ^{ee} _{cm} = 3.1-7.4 GeV
35 ± 11	130	BRANDELIK	78	DASP	Assumes V-A decay
18 ± 6.5	33 130	JAROS	78	MRK1	$E_{\rm CM}^{ee}$ > 6 GeV
134					

BURCHAT 87 value is not independent of SCHMIDKE 86 value. ¹³⁵Not independent of BERGER 85 $\Gamma(\mu^- \overline{\nu}_{\mu} \nu_{\tau})/\Gamma_{\text{total}}$, $\Gamma(e^- \overline{\nu}_e \nu_{\tau})/\Gamma_{\text{total}}$, $\Gamma(h^- \ge 1)$

neutrals ν_{τ})/ Γ_{total} and $\Gamma(h^{-} \ge 0\kappa_{I}^{0} \nu_{\tau})/\Gamma_{\text{total}}$ and therefore not used in the fit. 136 Low energy experiments are not in average or fit because the systematic errors in back-ground subtraction are judged to be large.

$$\begin{split} & \Gamma \left(h^- h^- h^+ \geq 0 \text{ neutrals } \nu_{\tau} (\text{ex. } K^0_S \to \pi^+ \pi^-) (\text{``3-prong''}) \right) / \Gamma_{\text{total}} \Gamma_{\text{s}} \\ & \Gamma_{53} / \Gamma = (\Gamma_{60} + \Gamma_{68} + \Gamma_{74} + \Gamma_{75} + \Gamma_{82} + \Gamma_{86} + \Gamma_{89} + \Gamma_{90} + 0.285 \Gamma_{117} + 0.285 \Gamma_{119} + 0.910 \Gamma_{138} \right) / \Gamma_{\text{total}} \Gamma_{\text{s}} \\ & 0.9101 \Gamma_{137} + 0.9101 \Gamma_{138} \right) / \Gamma_{\text{s}} \\ \end{split}$$ Г53/Г

Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average. VALUE

VALUE	[/0]			EVIS	DOCUMENT	TECN	COMMENT
14.57	±0.07	OUR F	T Er	ror inclu	des scale factor of	1.1.	
14.59	± 0.08	OUR AV	ERA@	SE Erro	or includes scale fa	ctor of 1.1.	
14.569	9 ± 0.093	3 ± 0.048	f&⊿a	23k	¹³⁷ ABREU	01M DLPH	1992-1995 LEP
14.556	5 ± 0.105	5 ± 0.076	f&a		¹³⁸ ACHARD	01D L3	1992-1995 LEP
14.96	±0.09	±0.22	f&a	10.4k	AKERS	95Y OPAL	1991-1994 LEP
14.22	± 0.10	±0.37	avg		¹³⁹ BALEST	95c CLEO	$E_{\rm Cm}^{ee} \approx 10.6 {\rm GeV}$
• • •	We do	not use t	he foll	owing d	ata for averages, fi	ts, limits, etc.	• • •
15.26	±0.26	±0.22			ACTON	92H OPAL	Repl. by AK-
13.3	± 0.3	± 0.8			¹⁴⁰ ALBRECHT	92D ARG	$E_{\rm cm}^{ee} = 9.4 - 10.6$ GeV
14.35	$^{+0.40}_{-0.45}$	±0.24			DECAMP	92C ALEP	1989-1990 LEP

¹³⁷ The correlation co	oefficients between	this measurement	and the ABREU	01M measure
ments of $B(\tau \rightarrow$	1-prong) and $B(\tau \cdot$	→ 5-prong) are — 0	0.98 and - 0.08 i	respectively.
¹³⁸ The correlation co	efficients between	this measurement a	and the ACHARE	01D measure
ments of $B(\tau \rightarrow \tau)$	'1-prong") and $B(\tau$	\rightarrow "5-prong") are	- 0.978 and - 0.	19 respectively

¹³⁹Not independent of BALEST 95 c B($h^ h^ h^+$ ν_{τ}) and B($h^ h^ h^+$ π^0 ν_{τ}) values, and BORTOLETTO 93 B($h^-h^-h^+2\pi^0\nu_{\tau}$)/B($h^-h^-h^+ \ge 0$ neutrals ν_{τ}) value.

¹⁴⁰ This ALBRECHT 92D value is not independent of their $\Gamma(\mu^- \overline{\nu}_\mu \nu_\tau)\Gamma(e^- \overline{\nu}_e \nu_\tau)/\Gamma_{total}^2$ value

$$\frac{\Gamma(h^-h^-h^+\nu_{\tau})}{\Gamma_{54}/\Gamma} = (0.3431\Gamma_{33} + 0.3431\Gamma_{35} + \Gamma_{60} + \Gamma_{82} + \Gamma_{89} + 0.0221\Gamma_{137})/\Gamma$$

Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average.

F54/F

VALUE [%]	EVIS	DOCUMENTID	TECI	N COMMENT
10.01 ± 0.09 OUR FIT	Error include	es scale factor of 1.2		
9.8 ± 0.6 OUR AVE	RAGE Error	includes scale factor	r of 4.4. S	See the ideogram below.
$7.6\ \pm 0.1\ \pm 0.5$	avg 7.5 k	¹⁴¹ ALBRECHT	96E AR ($E_{cm}^{ee} = 9.4 - 10.6$
$9.92 \pm 0.10 \pm 0.09$	f&a 11.2k	¹⁴² BUSKULIC	96 ALE	EP LEP 1991-1993
$9.49 \pm 0.36 \pm 0.63$	f&⊥a	DECAMP	92C ALE	P 1989-1990 LEP
••• We do not use	the following d	lata for averages, fit	s, limits, e	runs etc. • • •
$8.7\ \pm 0.7\ \pm 0.3$	694	¹⁴³ BEHREND	90 CEL	$L = E_{CM}^{ee} = 35 \text{ GeV}$
$7.0 \ \pm 0.3 \ \pm 0.7$	1566	¹⁴⁴ band	87 M.A	$C = E_{Cm}^{ee} = 29 \text{ GeV}$
$6.7\ \pm 0.8\ \pm 0.9$		¹⁴⁵ BURCHAT	87 M.R	K2 $E_{cm}^{ee} = 29 \text{ GeV}$
$6.4\ \pm 0.4\ \pm 0.9$		¹⁴⁶ RUCKSTUHL	86 DLC	$E_{CM}^{ee} = 29 \text{ GeV}$
$7.8\ \pm 0.5\ \pm 0.8$	890	SCHMIDKE	86 M R	K2 E ^{ee} = 29 GeV
$8.4\ \pm 0.4\ \pm 0.7$	1255	¹⁴⁶ FERNANDEZ	85 M.A	$C = E_{Cm}^{ee} = 29 \text{ GeV}$
$9.7\ \pm 2.0\ \pm 1.3$		BEHREND	84 CEL	L E ^{ee} _{cm} = 14,22 GeV
¹⁴¹ ALBRECHT 96E	not independe	nt of ALBRECHT	93⊂ F(<i>h</i>	$\hbar^{-} h^{+} \nu_{\tau} (\text{ex.} \kappa^{0}) \times$
i (particle [™] ≥ 0 ne	utrais $\geq 0K_{i}^{o}$	$(\nu_{\tau})/1$ fotal value.		

¹⁴²BUSKULIC 96 quote B($h^ h^ h^+$ ν_{τ} (ex. K^0)) = 9.50 \pm 0.10 \pm 0.11. We add 0.42 to remove their κ^0 correction and reduce the systematic error accordingly.

 143 BEHREND 90 subtract 0.3% to account for the $\tau^- \rightarrow \kappa^*(892)^- \nu_{\tau}$ contribution to measured events. 144 BAND 87 subtract for charged kaon modes; not independent of FERNANDEZ 85 value.

145 BURCHAT 87 value is not independent of SCHMIDKE 86 value.

¹⁴⁶Value obtained by multiplying paper's $R = B(h^- h^- h^+ \nu_\tau)/B(3\text{-prong})$ by B(3-prong) = 0.143 and subtracting 0.3% for $K^*(892)$ background.

$\left[\left(h^{-}h^{-}h^{+}\nu_{\tau}\left(\text{ex.}K^{0}\right)\right)/\Gamma_{\text{total}}\right]$

 $\Gamma_{55}/\Gamma = (\Gamma_{60} + \Gamma_{82} + \Gamma_{89} + 0.0221\Gamma_{137})/\Gamma$

Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average.

VALUE (%)		EVTS	DOCUMENT ID	TECN	COMMENT
9.65 ± 0.09 OUR FIT	Erro	rinclude	s scale factor of 1.2		
9.57±0.11 OUR AVE	RAGE				
$9.50 \pm 0.10 \pm 0.11$	avg	11.2k	¹⁴⁷ BUSK ULIC	96 ALEP	LEP 1991-1993 data
$9.87 \pm 0.10 \pm 0.24$	avg		¹⁴⁸ AK ER S	95 Y OPAL	1991-1994 LEP runs
$9.51 \pm 0.07 \pm 0.20$	f&⊿a	37.7k	BALEST	95 ⊂ CLEO	$E_{\rm Cm}^{ee} \approx 10.6 { m GeV}$

 $^{147}\,{\rm Not}$ independent of BUSKULIC 96 B($h^ h^ h^+$ ν_{τ}) value.

¹⁴⁸Not independent of AKERS 95Y B($h^-h^-h^+ \ge 0$ neutrals ν_{τ} (ex. $K_S^0 \rightarrow \pi^+\pi^-$)) and $\mathsf{B}(h^-h^-h^+\nu_{\tau}(\mathsf{ex},\ \mathcal{K}^0))/\mathsf{B}(h^-h^-h^+ \geq 0 \ \mathsf{neutrals} \ \nu_{\tau}(\mathsf{ex},\ \mathcal{K}^0_{\mathsf{S}} \rightarrow \pi^+\pi^-)) \ \mathsf{values}.$

Lepton Particle Listings

$\Gamma\left(\boldsymbol{h}^{-} \boldsymbol{h}^{-} \boldsymbol{h}^{+} \boldsymbol{\pi}^{0} \boldsymbol{\nu}_{\tau}\right) = \Gamma_{68} + \Gamma_{8}$					
	κ. Κ⁰))/Γ_{to 86 +Γ₉₀ +0.2}	. tal 231 Г _{1 19} +0.888Г ₁₃	37+0.0221F	Г ₆₄	¢/Г
VALUE (%)	EVIS	DOCUMENTID	TECN	COMMENT	
4.35 ± 0.09 UUK FIT	Error include	is scale factor of 1	. 3	00	
$4.23 \pm 0.06 \pm 0.22$	7.2K	BALESI	ISC CLEO	$E_{\rm Cm}^{\rm cm} \approx 10.6 {\rm GeV}$	
$\Gamma(h^- h^- h^+ \pi^0 \nu_\tau (ex)$	(. K ⁰ , ω)),	/Γ _{total} Γ ₆₅ /Γ=	= (Г ₆₈ +Г ₈	₈₆ +Γ ₉₀ +0.231Γ ₁₁₉)/г
2.62±0.09 OUR FIT	Error include	s scale factor of 1	.2.		
$\frac{\Gamma(\pi^-\pi^+\pi^-\pi^0\nu_\tau)}{\Gamma_{66}/\Gamma}$	F _{total} = (0.3431	LF38+F68+0.88	8F ₁₃₇ +0.(0221 F ₁₃₈)/F	
4.37+0.09 OUR FIT	Error include	s scale factor of 1	3		
	Liner mende	is seale raceor or 1			
$\Gamma(\pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{-})$	x. <i>K</i> ⁰))/Г₊,		Fee+0.88	86137+0.02216138	١/Г
VALUE (%)	DOCUMENT	TID TECN	COMMENT	101	~
4.25 ± 0.09 OUR FIT	Error include	s scale factor of 1	3.		
4.19±0.10±0.21 15	9 EDWARD	S 00A CLEO	4.7 fb ⁻¹	$E_{em}^{ee} = 10.6 \text{ GeV}$	
150	EBTWIRE	0 0000 0220		-cm= 1000 000	
159 EDWARDS 00A quo	te (4.19 \pm 0	$(10) \times 10^{-2}$ with	a 5% syste	ematic error.	
r(+0,, (m	· KO	r		г.,	. /r
$\Pi(\pi \pi'\pi \pi'\nu_{\tau})e$	κ.κ-,ω))/	total		161	B/ I
VALUE (%)		DOCUMENT ID			
2.51 ± 0.09 OUR FIT	Error include	s scale factor of 1	.2.		
	·	`		<u> </u>	-
ι(<i>n</i> ⁻ ρπ [°] ν _τ)/Γ(h ⁻	$n^-n^+\pi^0\nu$	'τ)		F 69/	63
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
• • • We do not use th	ie following	data for averages,	fits, limits,	etc. • • •	
$0.30 \pm 0.04 \pm 0.02$	393	ALBRECHT	1D ARG	Fee - 94-106 GeV	
0100 101011 0102	0,00	ALDREON .		-cm= 1000 000	
$\Gamma(h=a+h=\mu)/\Gamma(h$	- h- h+ ~ '	(س		Γ70/	Fe a
	EVTS	PT J	TECN	COMMENT	. 63
Ma de set une th	<u> </u>	DOCOMENT ID	Et a l'aste		
• • • vve do not use th	ie tollowing	data for averages,	tits, limits,	etc. • • •	
$0.10 \pm 0.03 \pm 0.04$	142	ALBRECHT 9	1D ARG	$E_{\rm Cm}^{ee} = 9.4 - 10.6 {\rm GeV}$	
		• •			
$\Gamma(h^- \rho^- h^+ \nu_{\tau})/\Gamma(h$	/¯ h¯ h+ π'	<i>י</i> עד)		Г ₇₁ /	Г <u>6</u> 3
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
• • • We do not use th	ne following ·	data for averages,	fits, limits,	etc. • • •	
0.26 ± 0.05 ± 0.01	370			Eee - 94-106 CoV	
$0.26 \pm 0.05 \pm 0.01$	570	ALDRECHT	ID ARG	-cm - 9.4-10.6 Gev	
$\Gamma(b=b=b+2\pi^{0}\mu)$	/г			Г-,	. /r
$\Gamma_{70}/\Gamma = (0.4307\Gamma$	''total ''r ⊥Ear⊥0	236	aa)/E	· /2	27 '
1/2/1 = (0110011	45 1 14 10	2001117 1000011	38//		
VALUE (%)		DOCUMENT ID			
0.55 ± 0.04 OUR FIT					
	120 V 12			_	
$ n^{-}n^{-}n^{-}2\pi^{\circ}\nu_{-} $	≥x.K°))/it	otal		17:	3/1
. ($236\Gamma_{117} + 0$	8885****//			
$\Gamma_{73}/\Gamma = (\Gamma_{74} + 0.$	1111	138//1			
$\Gamma_{73}/\Gamma = (\Gamma_{74} + 0.$	EVTS	DOCUMENT ID	TECN	COMMENT	
$\Gamma_{73}/\Gamma = (\Gamma_{74}+0.$ <u>VALUE (%)</u> 0.54±0.04 OUR FIT	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT	
$\Gamma_{73}/\Gamma = (\Gamma_{74}+0.)$ VALUE(%) 0.54 ± 0.04 OUR FIT $0.50\pm0.07\pm0.07$	<u>EVTS</u>	DOCUMENT ID	<u>TECN</u>	<u>COMMENT</u>	
$\frac{1}{\Gamma_{73}/\Gamma} = (\Gamma_{74}+0.)$ $\frac{VALUE(\%)}{0.54\pm0.04 \text{ OUR FIT}}$ $0.50\pm0.07\pm0.07$	<u>EVTS</u> 1.8k	DOCUMENT ID BUSKULIC	<u>TECN</u>	<u>COMMENT</u> LEP 1991–1993 data	
$\Gamma_{73}/\Gamma = (\Gamma_{74}+0.$ $\frac{VALUE(\%)}{0.54\pm0.04 \text{ OUR FIT}}$ $0.50\pm0.07\pm0.07$ $\Gamma (h^-h^-h^+2\pi^0\nu_{\tau})$	<u>EVTS</u> 1.8k 2x. K⁰))/Γ ι	$\frac{DOCUMENTID}{BUSKULIC}$	<u>TECN</u> 96 ALEP n eutrals ≥	<u>COMMENT</u> LEP 1991–1993 data ≥ 0 <i>K</i> ⁰ , <i>v</i> ₇) Г 73/	Г52
$ \frac{\Gamma_{73}/\Gamma = (\Gamma_{74} + 0.)}{\Gamma_{73}/\Gamma = (\Gamma_{74} + 0.)} $ $ \frac{VALUE(\%)}{0.54 \pm 0.04 \text{ OUR FIT}} $ $ 0.50 \pm 0.07 \pm 0.07 $ $ \Gamma (h^- h^- h^+ 2\pi^0 \nu_{\tau} (e^- \Gamma_{73}/\Gamma_{52} = (\Gamma_{74} + e^- \Gamma_{74})) $	1.8k 1.8k ex. K⁰))/F I	$\frac{bocument id}{bocument id}$ BUSKULIC $(h^- h^- h^+ \ge 0)$ $+0.888\Gamma_{138})/(0.34$	<u>TECN</u> 96 ALEP n eutrals 2 .31F ₃₃ +0.3	<u>COMMENT</u> LEP 1991–1993 data ≥ 0 <i>K°_L v₇</i>) Г73/ 3431Г35 +0.3431Г38 +	Г52
$ \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \frac{1}{2}) \frac{1}{2} \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \frac{1}{2}) \frac{1}{2} \Gamma_{74} + 0. \frac{1}{2} \Gamma$	<u>EVTS</u> 1.8k 2X. K⁰))/Γ -0.236Γ ₁₁₇ + 7Γ ₄₅ + 0.686	$\frac{DOCUMENT ID}{(h^- h^- h^+ \ge 0)}$ $\frac{(h^- h^- h^+ \ge 0)}{(h^- h^+ h^+ \ge 0)}$ $\frac{(h^- h^- h^+ \ge 0)}{(h^- h^- h^+ h^+ \ge 0)}$	<u>TECN</u> 96 ALEP neutrals 2 .31F ₃₃ +0.3 .F ₇₄ +F ₇₅ +	<u>COMMENT</u> LEP 1991–1993 data ≥ ΟΚ ⁰ ₂ ν ₇) Γ ₇₃ / 3431Γ35 +0.3431Γ38+ -Γ82+Γ86+Γ89+Γ90-	Г 5 2 +
$ \begin{array}{c} \Gamma_{73}/\Gamma = (\Gamma_{74}+0.\\ \hline \nu_{73}/\Gamma = (\Gamma_{74}+0.\\ \hline \nu_{55}\pm 0.04 \text{ OUR FIT}\\ 0.59\pm 0.07\pm 0.07\\ \hline \Gamma \left(h^-h^-h^+2\pi^0\nu_r \left(e^{-1}\rho_{73}/\Gamma_{52} = (\Gamma_{74}+0.\\ \hline 0.3431\Gamma_4(-0.430)\\ 0.285\Gamma_{11}\tau + 0.285\\ \hline \end{array} \right) \end{array} $	<u>EVTS</u> 1.8k 2X. K⁰))/Γ -0.236Γ ₁₁₇ + 7Γ ₄₅ + 0.686 Γ ₁₁₉ + 0.910	$\frac{DOCUMENT ID}{(h^-h^-h^+ \ge 0)}$ BUSKULIC $(h^-h^-h^+ \ge 0)$ $(h^{0.888}\Gamma_{138})/(0.34)$ $(1\Gamma_{46}+\Gamma_{60}+\Gamma_{68}+)$ $(1\Gamma_{137}+0.9101\Gamma_{12})$	<u>TECN</u> 96 ALEP 91 ALEP 91 ALEP 931 ALEP 93 ALEP 93 ALEP 93 ALEP 94 ALEP 94 ALEP 94 ALEP 95 ALEP 96 ALEP 96 ALEP	<u>COMMENT</u> LEP 1991–1993 data ≥ OK(2ν,) Γ73/ 3431Γ35+0.3431Γ38+ -Γ82+Γ86+Γ89+Γ90-	Γ <u>52</u> +
$ \Gamma_{73}/\Gamma = (\Gamma_{74} + 0.$ $ \frac{VALUE[\%]}{0.54 \pm 0.04 \text{ OUR FIT}} $ $ 0.59 \pm 0.07 \pm 0.07 $ $ \Gamma \left(h^- h^- h^+ 2\pi^0 \nu_r \left(e^{-73/\Gamma_{52}} = (\Gamma_{74} + 0.343)\Gamma_{40} + 0.430 - 0.285\Gamma_{117} + 0.285 \right) $ $ VAUUE $	<u>EVTS</u> 1.8k 2X. Κ⁰))/Γ -0.236Γ ₁₁₇ + 7Γ ₄₅ +0.686 Γ ₁₁₉ +0.910 EVTS	$\frac{DOCUMENT ID}{(h^- h^- h^+ \ge 0)}$ BUSKULIC $(h^- h^- h^+ \ge 0)$	<u>TECN</u> D6 ALEP neutrals 2 .31Г ₃₃ +0.3 . ⁷ 74+Г75 + .8) TECN	<u>COMMENT</u> LEP 1991-1993 data 2 ΟΚ⁰₂ν₇) Γ73/ 3431Γ35 +0.3431Γ38 + -Γ82+Γ86+Γ89+Γ90- COMMENT	Γ 5 2 +
$\Gamma_{73}/\Gamma = (\Gamma_{74} + 0.$ $\frac{VALUE(\%)}{0.54 \pm 0.04 \text{ OUR FIT}}$ $0.50 \pm 0.07 \pm 0.07$ $\Gamma \left(h^{-}h^{-}h^{+}2\pi^{0}\nu_{r} \left(e^{-}\Gamma_{73}/\Gamma_{52} = (\Gamma_{74} + 0.343)\Gamma_{40} + 0.430) - 0.285\Gamma_{117} + 0.285$ $\frac{VALUE}{0.0355 \pm 0.0028 \text{ OUR FIT}}$	<u>EVTS</u> 1.8k ex. K⁰))/Γ -0.236Γ ₁₁₇ + 7Γ ₄₅ +0.686 Γ ₁₁₉ +0.910 <u>EVTS</u>	$\frac{DOCUMENT ID}{(h-h-h+ \ge 0)}$ BUSKULIC $(h-h-h+ \ge 0)$ $(h-0.888 \Gamma_{138})/(0.34)$ $(1\Gamma_{46}+\Gamma_{60}+\Gamma_{68}+1)$ $(1\Gamma_{137}+0.9101\Gamma_{12})$ $\frac{DOCUMENT ID}{10}$	<u>TECN</u> D6 ALEP neutrals 2 .31Г ₃₃ +0.3 . ⁷ 74+Г75 + .8) <u>TECN</u>	<u>COMMENT</u> LEP 1991-1993 data ≥ OK ⁰ ₂ ν ₇) Γ73/ 3431735+0.3431738+ - ⁷ 82+ ⁷ 86+ ⁷ 89+ ⁷ 90- <u>COMMENT</u>	Г 5 2 +
$\Gamma_{73}/\Gamma = (\Gamma_{74} + 0.$ $VALUE (\%)$ 0.54 ± 0.04 OUR FIT 0.50 ± 0.07 ± 0.07 $\Gamma (h^- h^- h^+ 2\pi^0 \nu_r (e^{-1} (7_3 + 1 (7_5 - e^{-1} (7_7 + 1 (7_5 - e^{-1} (7_5 - 1 ($	<u>EVTS</u> 1.8k ex. K⁰))/Γ -0.236Γ ₁₁₇ + 7Γ ₄₅ +0.686 Γ ₁₁₉ +0.910 <u>EVTS</u> IT 668	$\frac{DOCUMENT ID}{(h - h - h + \ge 0)}$ BUSKULIC $(h - h - h + \ge 0)$ $(h - 0.88 f_{138})/(0.34)$ $(1 - 46 + f_{60} + f_{68} + 11 - 137 + 0.9101 \Gamma_{13})$ $\frac{DOCUMENT ID}{1000000000000000000000000000000000000$	<u></u>	<u>COMMENT</u> LEP 1991-1993 data $\geq 0K_1^0 \nu_7$) $\Gamma_{73}/$ J4311 35 +0.3431 F 38 + - $\Gamma_{82} + \Gamma_{80} + \Gamma_{89} + \Gamma_{90} -$ <u>COMMENT</u> $E_{22}^{S2} \approx 10.6 \text{ GeV}$	Г <u>52</u> +
$ \begin{array}{c} \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ \hline \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ \hline 0.50 \pm 0.07 \pm 0.07 \\ \hline 0.50 \pm 0.07 \pm 0.07 \\ \hline \Gamma_{73}/\Gamma_{52} = (\Gamma_{74} + 0.343)\Gamma_{40} + 0.430 \\ \hline 0.343\Gamma_{40} + 0.430 \\ \hline 0.0355 \pm 0.0028 \text{ OUR FI} \\ \hline 0.034 \pm 0.002 \pm 0.003 \\ \hline \end{array} $. <u>EVTS</u> 1.8k ex. K ⁰))/Γ +0.236Γ ₁₁₇ + 7Γ ₄₅ +0.686 Γ ₁₁₉ +0.910 <u>EVTS</u> IT 668	$\frac{DOCUMENT ID}{(h^-h^-h^+ \ge 0)}$ BUSKULIC (h-b-set 138)/(0.34) (h-0.886F138)/(0.34) 11F46+F60+F68+ 11F137+0.9101F13 <u>DOCUMENT ID</u> BORTOLETTOS	<u>TECN</u> 06 ALEP 131F ₃₃ +0.3 131F ₃₃ +0.3 13774+F75+ 188) <u>TECN</u> 03 CLEO	$\begin{array}{c} \underline{COMMENT} \\ \text{LEP 1991-1993 data} \\ \geq OK_{0}^{0}\nu_{7}) \Gamma_{73}/ \\ 3431\Gamma_{35} + 0.3431\Gamma_{38} + \\ \Gamma_{82} + \Gamma_{89} + \Gamma_{89} + \Gamma_{90} \\ \hline \underline{COMMENT} \\ \underline{COMMENT} \\ E_{\text{CM}}^{ee} \approx 10.6 \text{ GeV} \end{array}$	Г <u>52</u> +
$ \begin{array}{c} \Gamma_{73}/\Gamma = (\Gamma_{74}+0.\\ \hline \\ \Gamma_{73}/\Gamma = (\Gamma_{74}+0.\\ \hline \\ 0.54\pm0.04 \text{ OUR FIT}\\ 0.50\pm0.07\pm0.07\\ \hline \\ \Gamma(h-h+2\pi^0\nu_{\Gamma}(e\\ \Gamma_{73}/\Gamma_{52} = (\Gamma_{74}+0.34)\\ 0.285\Gamma_{117}+0.285\\ \hline \\ 0.035\pm0.0022 \text{ OUR FI}\\ 0.034\pm0.002\pm0.003\\ \hline \\ \Gamma(h-h+2\pi^0\nu_{\Gamma})e_{10} \end{array} $	<u>EVTS</u> 1.8k ex. K ⁰))/Γl +0.236Γ ₁₁₇ + 7Γ ₄₅ + 0.686 Γ ₁₁₉ + 0.910 <u>EVTS</u> iT 668 ex. K ⁰ .ω.η)	$\frac{DOCUMENT ID}{(h^-h^-h^+ \ge 0)}$ BUSKULIC (1) BUSKULIC (2) BUSKULIC	<u>TECN</u> 06 ALEP 131F ₃₃ +0.3 174+F75+ 180 <u>TECN</u> 03 CLEO	<u>COMMENT</u> LEP 1991-1993 data ≥ 0K ⁰ / ₂ v ₇) Г73/ 3431138+0.3431Г38+ - ⁷ 82+ ⁷ 86+ ⁷ 89+ ⁷ 90 ⁻⁷ <u>COMMENT</u> <u>E⁶⁰_{CM} ≈ 10.6 GeV</u>	Γ ₅₂ +
$ \begin{array}{c} \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ 0.50 \pm 0.07 \pm 0.07 \\ \Gamma(h^- h^- h^+ 2\pi^0 \nu_r (e_{\Gamma_{74}} + 0.343)\Gamma_{40} + 0.430 \\ 0.285\Gamma_{117} + 0.285 \\ \hline 0.0355 \pm 0.0028 \text{ OUR FI} \\ 0.034 \pm 0.002 \pm 0.003 \\ \Gamma(h^- h^- h^+ 2\pi^0 \nu_r (e_{\Gamma_{74}}) \\ \Gamma(h^- h^- h^+ 2\pi^0 \nu_r (e_{\Gamma_{74}}) \\ \hline 0.034 \pm 0.002 \pm 0.003 \\ \Gamma(h^- h^- h^+ 2\pi^0 \nu_r (e_{\Gamma_{74}}) \\ \Gamma(h^- h^- h^+ e_{\Gamma_{74}}) \\ \Gamma(h^- h^- h^+$	<u>EVTS</u> 1.8k ex. K⁰))/Γι +0.236Γ ₁₁₇ + 17Γ ₄₅ +0.686 Γ ₁₁₉ +0.910 <u>EVTS</u> iT 668 ex. K⁰ ,ω,η)	DOCUMENT ID DOCUMENT ID BUSKULIC BUSKULIC (h ⁻ h ⁻ h ⁺ ≥ 0i +0.8881138)/(1.638 11146+f6.0+f6.84 11747+60+f6.94 DOCUMENT ID BORTOLETTOS DOCUMENT ID	<u>TECN</u> 26 ALEP 131Г ₃₃ +0.3 Г74+Г75+ 188) <u>TECN</u> 23 CLEO	$\frac{COMMENT}{LEP 1991-1993 data} \ge 0K_2^0 \nu_7) \Gamma_{73}/3431\Gamma_{35} + 0.3431\Gamma_{38} + -\Gamma_{82} + \Gamma_{86} + \Gamma_{89} + \Gamma_{90} + \frac{COMMENT}{E_{CM}^{ee}} > 10.6 \text{ GeV}$	Г ₅₂ +
$ \begin{array}{c} & \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ & \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ & 0.54 \pm 0.04 \text{ OUR FIT} \\ & 0.55 \pm 0.07 \pm 0.07 \\ \hline & \Gamma \left(h^- h^- h^+ 2\pi^0 \nu_r \left(e \\ & \Gamma_{73}/\Gamma_{52} = (\Gamma_{74} + 0. \\ & 0.3431\Gamma_{40} + 0.430 \\ & 0.285\Gamma_{117} + 0.285 \\ \hline & \underline{VALUE} \\ & 0.035 \pm 0.0028 \text{ OUR FI} \\ & 0.034 \pm 0.002 \pm 0.003 \\ \hline & \Gamma \left(h^- h^- h^+ 2\pi^0 \nu_r \left(e \\ & \underline{VALUE} \left(y_0\right) \\ & 0.11 \pm 0.04 \text{ OUR FIT} \\ \end{array} \right) $	<u>EVTS</u> 1.8k EX. K⁰))/Γ +0.236Γ ₁₁₇ + 17Γ ₄₅ + 0.686 Γ ₁₁₉ + 0.910 <u>EVTS</u> 17 668 EX. K⁰ , ω, η)	DOCUMENT ID DOCUMENT ID BUSKULIC BUSKULIC (h-h-h+≥01 H-0.8881138)/(0.34 biT (46+F60+F68+ DOCUMENT ID BORTOLETTOS)/Ftotal DOCUMENT ID	<u>TECN</u> 76 ALEP neutrals ≥ 131Γ ₃₃ +0.3 ⁷ 74+ ⁷ 75 + 139 <u>TECN</u> 73 CLEO	$\frac{COMMENT}{LEP 1991-1993 data} \ge OK_{0}^{0} \nu_{7}) \Gamma_{73} / 3431\Gamma_{35} + 0.3431\Gamma_{38} + -\Gamma_{82} + \Gamma_{86} + \Gamma_{89} + \Gamma_{90} - \frac{COMMENT}{C_{cm}} \approx 10.6 \text{ GeV}$	Г 52 + ¢∕Г
$ \begin{array}{c} \Gamma_{73}/\Gamma = (\Gamma_{74}+0.\\ \hline \\ \Gamma_{73}/\Gamma = (\Gamma_{74}+0.\\ \hline \\ \hline \\ 0.54\pm0.04 \text{ OUR FIT}\\ 0.50\pm0.07\pm0.07\\ \hline \\ \Gamma_{73}/\Gamma_{52} = (\Gamma_{74}+0.30\\ \hline \\ 0.3431\Gamma_{40}+0.430\\ \hline \\ 0.285\Gamma_{117}+0.285\\ \hline \\ \hline \\ 0.034\pm0.002\pm0.003\\ \hline \\ \Gamma_{0}h^{-}h^{+}2\pi^{0}\nu_{\tau} \left(e_{\frac{M4UE}{2}}(\%)\right) \\ \hline \\ \end{array} $	<u>EVTS</u> 1.8k EX.K ⁰))/ΓI 0.236Γ ₁₁₇ + 7Γ ₄₅ +0.686 Γ ₁₁₉ +0.910 <u>EVTS</u> 1.668 EX.K ⁰ ,ω,η)	DOCUMENT ID DOCUMENT ID BUSKULIC (h-h-h+≥0) +0.888F_{138})/(0.34) 11 ⁴ 46+F60+F68+ 11 ⁷ 137+0.9101F13 DOCUMENT ID BORTOLETTOS)/Ftotal DOCUMENT ID	<u>TECN</u> 76 ALEP neutrals 2 1317 33 +0.3 -774 + 775 + 38) <u>TECN</u> 13 CLEO	<u>COMMENT</u> LEP 1991-1993 data ≥ 0K ⁰ / ₂ v ₇) Γ73/ 3431138+0.3431Γ38+ -F82+F86+F89+F90- <u>COMMENT</u> <u>E^{6e}</u> ≈ 10.6 GeV Г7 4	Γ ₅₂ + ¢/Γ
$ \begin{array}{c} & \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ & \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ & 0.54 \pm 0.04 \text{ OUR FIT} \\ & 0.50 \pm 0.07 \pm 0.07 \\ \hline & \Gamma \left(h^- h^- h^+ 2\pi^0 \nu_{\Gamma} \left(e^{-1} + 0.3431\Gamma_{40} + 0.4300 \\ & 0.285\Gamma_{117} + 0.285 \\ \hline & 0.034 \pm 0.002 \\ \hline & 0.034 \\ \hline & 0.004 \\ \hline & 0.11 \pm 0.04 \\ \hline & 0.11 \pm 0.04 \\ \hline & 0.11 \\ \hline & 0.14 \\ \hline & 0.04 \\ \hline & 0.11 \\ \hline & 0.14 \\ \hline &$	<u>EVTS</u> 1.8k EX.K ⁰))/Γl +0.236Γ ₁₁₇ + 7745+0.686 Γ ₁₁₉ +0.910 <u>EVTS</u> 668 EX.K ⁰ ,ω,η)	DOCUMENT ID DOCUMENT ID BUSKULIC BUSKULIC (h ⁻ h ⁻ h ⁺ ≥ 0i +0.8881_138)/(1.34) 111146+f_60+f_68+ 117147+0.9101f_12 DOCUMENT ID BORTOLETTOS)/Ftotal DOCUMENT ID	<u></u>	<u>COMMENT</u> LEP 1991-1993 data $\geq 0K_2^0 \nu_7$) $\Gamma_{73}/$ $3431\Gamma_{35} + 0.3431\Gamma_{38} + - R_{22} + \Gamma_{86} + \Gamma_{89} + \Gamma_{90} - \frac{COMMENT}{\Gamma_{74}}$ <u>COMMENT</u> $E_{cm}^{ee} \approx 10.6 \text{ GeV}$	−− + ¢/Γ
$ \begin{array}{c} (\Gamma_{73}/\Gamma = (\Gamma_{74}+0. \\ \Gamma_{73}/\Gamma = (\Gamma_{74}+0. \\ 0.54\pm0.04 \text{ OUR FIT} \\ 0.50\pm0.07\pm0.07 \\ \Gamma(h-h-h+2\pi^0\nu_r (e \\ \Gamma_{73}/\Gamma_{52} = (\Gamma_{74}+0.33 \\ 0.343\Gamma_{40}+0.430 \\ 0.345\Gamma_{117}+0.285 \\ VALUE \\ 0.035\pm0.0028 \text{ OUR FI} \\ 0.034\pm0.002\pm0.003 \\ \Gamma(h-h-h+2\pi^0\nu_r (e \\ VALUE (\%) \\ 0.11\pm0.04 \text{ OUR FIT} \\ \Gamma(h-h+3\pi^0\nu_r)) \\ VALUE (\%) \\ \end{array} $	<u>EVTS</u> 1.8k ex.K ⁰))/Γl 0.236Γ ₁₁₇ + 0.668 Γ119+0.910 <u>EVTS</u> 668 ex.K ⁰ ,ω,η)	DOCUMENT ID DOCUMENT ID BUSKULIC BUSKULIC (h-h-h+201 Inf 46+F60+F68+ DOCUMENT ID BORTOLETTOS)/Ftotal DOCUMENT ID	<u></u>	COMMENT LEP 1991-1993 data ≥ 0K ⁰ ₂ ν ₇) Γ ₇₃ / 34317 ₃₅ +0.34317 ₃₈ + -f ₈₂ +F ₈₆ +F ₈₉ +F ₉₀ - <u>COMMENT</u> E ^{cee} _{cm} ≈ 10.6 GeV Γ ₇₄ TECN COMMENT	Γ ₅₂ + ¢/Γ
$ \begin{array}{c} \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ \hline \\ \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ \hline \\ 0.54 \pm 0.04 \text{ OUR FIT} \\ 0.50 \pm 0.07 \pm 0.07 \\ \hline \\ \Gamma_{73}/\Gamma_{52} = (\Gamma_{74} + 0. \\ \hline \\ 0.343 \Gamma_{40} + 0.430 \\ \hline \\ 0.285 \Gamma_{117} + 0.285 \\ \hline \\ \hline \\ 0.035 \pm 0.002 \text{ OUR FI} \\ \hline \\ 0.034 \pm 0.002 \pm 0.003 \\ \hline \\ \hline \\ 0.035 \pm 0.0028 \text{ OUR FI} \\ \hline \\ 0.034 \pm 0.004 \text{ OUR FIT} \\ \hline \\ \Gamma \left(h^-h^-h^+ 3\pi^0 \nu_r\right) \\ \hline \\ \frac{MLUE(V_{5})}{MLUE(V_{5})} \\ 0.023 \pm 0.008 \text{ OUR FI} \\ \hline \end{array} $	<u>EVTS</u> 1.8k ex.K ⁰))/Γι +0.236Γ ₁₁₇ -4, -0.686 F ₁₁₉ +0.686 F ₁₁₉ +0.686 F ₁₁₉ +0.686 F ₁₁₉ +0.686 EVTS EVTS Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant	DOCUMENT ID DOCUMENT ID BUSKULIC (h-h-h+20) +0.888F_138)/(0.34) IIF14+F60+F68+ DOCUMENT ID BORTOLETTOS)//Ftotal DOCUMENT ID 15 DOCUMENT ID Cludes scale factor	<u>TECN</u> 36 ALEP neutrals ≥ 31Γ ₃₃ +0.3 574+175+ 38) <u>TECN</u> 33 CLEO <u>VT ID</u> of 1.5	<u>COMMENT</u> LEP 1991-1993 data ≥ 0K ⁰ / ₂ y ₇) Γ73/ 34311 ³ 38+0.3431Γ38+ - ⁷ 82+ ⁷ 86+ ⁷ 89+ ⁷ 90 ⁻⁷ <u>COMMENT</u> <u>E^{6e}</u> ≈ 10.6 GeV Г7 2 <u>TECN</u> <u>COMMENT</u>	Γ ₅₂ + ₅ /Γ
$ \frac{\Gamma_{73}}{\Gamma} = (\Gamma_{74} + 0.9) + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.00000 + 0.0000 + 0.0000 + 0.00000 + 0.00000 + 0.00000 + 0.00000 + 0.00000 + 0.00000 + 0.00000 + 0.000$	<u>EVTS</u> 1.8k ex.K ⁰))/Γ ₁ 0.236Γ ₁₁₇ + 0.668 f ₁₁₉ + 0.910 <u>EVTS</u> 668 ex.K ⁰ ,ω,η) (Γ _{total} <u>Ev</u> FacFe	DOCUMENT ID DOCUMENT ID BUSKULIC BUSKULIC (h ⁻ h ⁻ h ⁺ ≥ 0i +0.8881_138)/(1.34) 111114 11740+160+168 DOCUMENT ID BORTOLETTOS)/Ftotal DOCUMENT ID TS DOCUMENT ID Cludes scale factor	<u>TECN</u> 106 ALEP 131Γ ₃₃ +0.3 174+Γ75+ 188) <u>TECN</u> 133 CLEO <u>VT ID</u> of 1.5.	$\frac{COMMENT}{LEP 1991-1993 data} \ge 0K_2^0 \nu_7) \Gamma_{73}/3431\Gamma_{35} + 0.3431\Gamma_{36} + \Gamma_{82} + \Gamma_{86} + \Gamma_{89} + \Gamma_{90} + \Gamma_{70} + \Gamma$	Γ 52 + 5/Γ
$ \left(\begin{array}{c} \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ 0.54 \pm 0.04 \text{ OUR FIT} \\ 0.50 \pm 0.07 \pm 0.07 \\ \Gamma_{773}/\Gamma_{52} = (\Gamma_{74} + 1 \\ 0.34 \pm 10^{-10} \cdot 0.43 \\ 0.285 \Gamma_{117} + 0.285 \\ \hline 0.035 \pm 0.002 \text{ OUR FI} \\ 0.035 \pm 0.002 \text{ OUR FI} \\ 0.034 \pm 0.002 \pm 0.003 \\ \Gamma_{11} + 0.04 \text{ OUR FIT} \\ \hline 0.11 \pm 0.04 \text{ OUR FIT} \\ \Gamma_{1} + \Gamma_{3} + 3\pi^{0} \nu_{7} \right) \\ \frac{VALUE}{V_{31}} = V_{31} + 0.003 \text{ OUR FI} \\ 0.023 \pm 0.005 \text{ OUR AI} \\ 0.024 \pm 0.002 \pm 0.003 \\ 0.024 \pm 0.005 \text{ OUR AI} \\ 0.024 \pm 0.002 \pm 0.003 \\ 0.024 \pm 0.005 \\ 0.025 \pm 0.005 \\ 0.024 \\ 0.024 \pm 0.005 \\ 0.024 \\ $	EVTS 1.8k 2367177 1.9k 0.2367177 76540.668 FT 668 EX.K ⁰ ,ω,η) // Total ET ET FT 668 EX.K ⁰ ,ω,η) // Total ET FT ET	DOCUMENT ID DOCUMENT ID BUSKULIC BUSKULIC (h-h-h+≥0i H-0.8881138)/(0.34 IIT (af + f 60 + f 68 + 1137 DOCUMENT ID BORTOLETTOS)/ F (total DOCUMENT ID 'T5 DOCUMENT ID cludes scale factor 30	<u>7ECN</u> 36 ALEP neutrals 2 131733+0.3 1774+F75+ 188) <u>7ECN</u> 13 CLEO <u>VT ID</u> of 1.5. USSOV 21	$\frac{COMMENT}{LEP 1991-1993 data} \ge OK_{0}^{0} \nu_{7}) \Gamma_{73} / 3431\Gamma_{35} + 0.3431\Gamma_{36} + -F_{82} + F_{86} + F_{89} + F_{90} - \frac{COMMENT}{F_{cm}} \ge 10.6 \text{ GeV}$ $\frac{F_{cm}}{TECN} = \frac{COMMENT}{COMMENT}$ $CLEO = E^{ee} - 10.6 \text{ GeV}$	F ₅₂ + 4 /Γ 5/Γ
$ \begin{array}{c} (\Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ \hline \\ 0.54 \pm 0.04 \text{ OUR FIT} \\ 0.50 \pm 0.07 \pm 0.07 \\ \hline \\ (h^- h^- h^+ 2\pi^0 \nu_r (e_{73}/\Gamma_{52} = (\Gamma_{74} + 0.343)\Gamma_{40} + 0.430 \\ 0.285\Gamma_{117} + 0.285 \\ \hline \\ 0.035 \pm 0.0028 \text{ OUR FI} \\ 0.034 \pm 0.002 \pm 0.003 \\ \hline \\ (h^- h^- h^+ 2\pi^0 \nu_r (e_{74} + 0.363) \\ \hline \\ 0.11 \pm 0.04 \text{ OUR FIT} \\ \hline \\ \Gamma (h^- h^- h^+ 3\pi^0 \nu_r) \\ \hline \\ NLUE (\%) \\ 0.023 \pm 0.008 \text{ OUR FI} \\ 0.024 \pm 0.$.EVTS 1.8k 2.36[117+ 719+0.910	DOCUMENT ID DOCUMENT ID BUSKULIC Housson BORTOLETTOS DOCUMENT ID To DOCUMENT ID TS DOCUMENT ID 10 TS DOCUMENT ID 10 TS DOCUMENT ID 10 10	<u>TECN</u> 1311 33 + 0.3 1311 33 + 0.3 1317 34 1317	COMMENT LEP 1991-1993 data ≥ $0K_{2}^{0}\nu_{r}$) $\Gamma_{73}/$ $J_{3431r_{33}+0.3431r_{38}+0.789+1.690+1.690+1.600$	Γ 52 + \$/Γ 5/Γ
$ \begin{array}{c} (\Gamma_{73}/\Gamma = (\Gamma_{74}+0. \\ \Gamma_{73}/\Gamma = (\Gamma_{74}+0. \\ \hline \\ \text{0.54 \pm 0.04 OUR FIT} \\ \text{0.50 \pm 0.07 \pm 0.07} \\ \hline \\ \Gamma(\hbar^-\hbar^-\hbar^+2\pi^0\nu_{r}(\epsilon \\ \Gamma_{73}/\Gamma_{52} = (\Gamma_{74}+0.343)\Gamma_{40}+0.430 \\ 0.285\Gamma_{117}+0.285 \\ \hline \\ \text{0.0335 \pm 0.0028 OUR FI} \\ \hline \\ \text{0.034 \pm 0.002 \pm 0.003} \\ \hline \\ \hline \\ \Gamma(\hbar^-\hbar^-\hbar^+2\pi^0\nu_{r}(\epsilon \\ \frac{VALUE}{V_{0}}) \\ \hline \\ \hline \\ \text{0.11 \pm 0.04 OUR FIT} \\ \hline \\ \Gamma(\hbar^-\hbar^-\hbar^+3\pi^0\nu_{r}) \\ \hline \\ \hline \\ \text{0.022 \pm 0.003 OUR FI} \\ \hline \\ \text{0.022 \pm 0.003 OUR FI} \\ \hline \\ \hline \\ \text{0.024 \pm 0.005 OUR A} \\ \hline \\ \hline \end{array} $	EVTS 1.8k 236 [117] 7745 0.38 [117] 668 ext.K ⁰ , ω, η) [Γ Error in VERAGE 1 4.	DOCUMENT ID DOCUMENT ID BUSKULIC BUSKULIC (h ⁻ h ⁻ h ⁺ ≥ 0i +0.8881_138)/(1.34) DOCUMENT ID DOCUMENT ID BORTOLETTOS)/Flotal DOCUMENT ID Cludes scale factor 39 ANASTA 40 160 BUSKULI	<u>TECN</u> neutrals ≥ neutrals ≥ 1317 ₃₃ +0.3 1317 ₃₃ +0.3 1317 ₄ -75 1377 ₄ +75 1380 <u>TECN</u> 38 <u>TECN</u> 33 CLEO <u>VT ID</u> of 1.5. (SSOV 01 .IC 96	$\frac{COMMENT}{LEP 1991-1993 data} \ge 0K_2^0 \nu_7) \Gamma_{73}/3431\Gamma_{35} + 0.3431\Gamma_{36} + \Gamma_{82} + \Gamma_{86} + \Gamma_{89} + \Gamma_{90} + \Gamma$	Г52 + ≰/Г 5/Г Ge∨
$ \begin{array}{c} (\mu & \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ \hline 0.54 \pm 0.04 \text{ OUR FIT} \\ 0.54 \pm 0.04 \text{ OUR FIT} \\ 0.54 \pm 0.07 \pm 0.07 \\ \hline (h - h - h + 2\pi^0 \nu_r (e \\ \Gamma_{73}/\Gamma_5 = (\Gamma_{74} + 1 \\ 0.343\Gamma_{40} + 0.430 \\ 0.285\Gamma_{117} + 0.285 \\ \hline 0.0355 \pm 0.0028 \text{ OUR FI} \\ \hline 0.034 \pm 0.002 \pm 0.003 \\ \hline (h - h - h + 2\pi^0 \nu_r (e \\ \hline MLUE (\%) \\ 0.11 \pm 0.04 \text{ OUR FIT} \\ \hline (h - h - h + 3\pi^0 \nu_r)) \\ \hline 0.023 \pm 0.005 \text{ OUR AV} \\ 0.022 \pm 0.003 \pm 0.004 \\ 0.11 \pm 0.04 \pm 0.05 \\ \bullet \bullet \bullet \text{ We do not use th} \end{array} $.EVTS 1.8k exx.K ⁰))/Γ 0.236Г ₁₁₇ - 0.910	DOCUMENT ID DOCUMENT ID BUSKULIC BUSKULIC (h-h-h+≥0i +0.8881138)/(0.34 ilf 46+f60+f68+ pocument iD BORTOLETTOS)/Ftotal pocument iD Cludes scale factor 39 ANASTA 40 160 BUSKUL	TECN 96 ALEP neutrals 2 1317 33+0.3 774+1775 4 93 CLEO 93 CLEO 94 15. VT ID of 1.5. VSSOV 01 96 fits, limits, 11	$\frac{COMMENT}{LEP 1991-1993 data} \ge OK_{UT}^{0} \int \Gamma_{73} / 3431\Gamma_{35} + 0.3431\Gamma_{36} + -\Gamma_{82} + \Gamma_{86} + \Gamma_{89} + \Gamma_{90} - \frac{COMMENT}{\Gamma_{77}} \\ \frac{COMMENT}{TECN} = \frac{COMMENT}{COMMENT} \\ CLEO E_{Cm}^{ee} = 10.6 GeV \\ CLEO E_{Cm}^{ee} = 10.6 data \\ ALEP LEP 1991-19 \\ data \\ etc. • • • • • • • • • • • • • • • • • • •$	F52 + 4/ Γ 5/Γ Ge∨ 993
$ \left(\begin{array}{c} \Gamma_{73}/\Gamma = (\Gamma_{74}+0. \\ \Gamma_{73}/\Gamma = (\Gamma_{74}+0. \\ \hline \\ N_{2} UE (\%) \\ \hline \\ 0.54 \pm 0.04 \text{ OUR FIT} \\ 0.50 \pm 0.07 \pm 0.07 \\ \hline \\ \Gamma_{73}/\Gamma_{52} = (\Gamma_{74}+0. \\ \Gamma_{74}/\Gamma_{52} = (\Gamma_{74}+0. \\ \Gamma_{74})/\Gamma_{52} = (\Gamma_{74}+0. \\ \Gamma_{74})/\Gamma_{74} = (\Gamma_{74}+$	EVTS 1.8k exx. K ⁰)//Γ 0.236Γ ₁₁₇ - 719+0.910 EVTS 668 exx. K ⁰ , ω, η) Γ Total VERAGE 1 4 1 4	DOCUMENT ID DOCUMENT ID BUSKULIC BUSKULIC (h-h-h+20) +0.8881;130/10.38 DOCUMENT ID BORTOLETTOS)/ Ftotal DOCUMENT ID Cludes scale factor 39 ANASTA 40 160 BUSKULI data for averages, 57	TECN 06 ALEP neutrals 2 1311 3.10.3 17.33 +0.3 17.34 +75.4 38 7 203 CLEO 93 CLEO 93 CLEO 94 1.5. VT ID 96 1.1C 96 fits, limits, SON 97	COMMENT LEP 1991-1993 data ≥ $0K_{2}^{0}\nu_{r}$) $\Gamma_{73}/$ $J_{3431\Gamma_{38}^{+}+ \Gamma_{82}^{+}+ \Gamma_{80}^{-}+ \Gamma_{90}^{-}+ \Gamma_{90}^$	F 52 + 4 / F 5/ F GeV 993
$ \left(\begin{array}{c} \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ \Gamma_{73}/\Gamma = (\Gamma_{74} + 0. \\ \hline \nu_{ALUE}(\%) \\ \hline 0.54 \pm 0.04 \text{ OUR FIT} \\ \hline 0.50 \pm 0.07 \pm 0.07 \\ \hline 0.50 \pm 0.07 \pm 0.07 \\ \hline \Gamma_{(h} - h^{-} h^{+} 2\pi^{0} \nu_{r} (e \\ \Gamma_{73}/\Gamma_{52} = (\Gamma_{74} + 0.33)\Gamma_{40} + 0.430 \\ \hline 0.285 \Gamma_{117} + 0.285 \\ \hline \nu_{ALUE} \\ \hline 0.034 \pm 0.002 \pm 0.003 \\ \hline 0.034 \pm 0.002 \text{ OUR FI} \\ \hline 0.035 \pm 0.0028 \text{ OUR FI} \\ \hline 0.034 \pm 0.002 \pm 0.003 \\ \hline \Gamma_{(h} - h^{-} h^{+} 2\pi^{0} \nu_{r} (e \\ \frac{\nu_{ALUE}(\%)}{0.11 \pm 0.04 \text{ OUR FIT}} \\ \hline \Gamma_{(h} - h^{-} h^{+} 3\pi^{0} \nu_{r}) \\ \hline 0.023 \pm 0.005 \text{ OUR A} \\ \hline 0.022 \pm 0.003 \pm 0.004 \\ \hline 0.011 \pm 0.04 \pm 0.05 \\ \hline \cdot \cdot \text{ We do not use th} \\ 0.0285 \pm 0.0056 \pm 0.0051 \\ \hline \end{array} \right) $.EVTS 1.8k EX.K ⁰)//Γ	DOCUMENT ID DOCUMENT ID BUSKULIC BUSKULIC (h ⁻ h ⁻ h ⁺ ≥ 0 h +0.8881_138)/(1.34) DOCUMENT ID DOCUMENT ID BORTOLETTOS)//Fotal DOCUMENT ID Cludes scale factor 39 ANASTA 40 160 BUSKULI data for averages, 57 ANDER:	TECN 06 ALEP neutrals 2 1317 33 74 F75 38 7 73 CLEO 93 CLEO 93 CLEO 110 1.5 xSSOV 01 .IC 96 fits, limits, SON 97	COMMENT LEP 1991-1993 data ≥ OK? ν_7) Γ_{73} / J4311 35 +0.34311 38 + - -62 + F 86 + F 89 + F 90° - COMMENT - E ^{ee} _{COM} ≈ 10.6 GeV - TECN COMMENT CLEO E ^{ee} _{CM} = 10.6 Gata etc. • CLEO Repl. 1991-19 etc. • CLEO Repl. by ANN	F 52 + 4 / F 5/ F GeV 093 4,S- 01
$ \begin{array}{c} (\Gamma_{73}/\Gamma = (\Gamma_{74}+0. \\ \Gamma_{73}/\Gamma = (\Gamma_{74}+0. \\ \hline \\ \hline \\ N_{2}UE(\%) \\ \hline \\ 0.54\pm0.04 \ OUR \ FIT \\ 0.50\pm0.07\pm0.07 \\ \hline \\ \Gamma_{73}/\Gamma_{52} = (\Gamma_{74}+1 \\ \Gamma_{74}/\Gamma_{52} = (\Gamma_{74}+1 \\ \Gamma_{74})\Gamma_{52} = (\Gamma_{74}+1 \\ \Gamma_{74})\Gamma_{74} = (\Gamma_{74}+1 \\ \Gamma_{74}+1 \\ $		DOCUMENT ID DOCUMENT ID BUSKULIC BUSKULIC (h-h-h+201 h-0.8887138)/(0.34 ilf46+f60+f68+ pocument iD BORTOLETTOS))/Ftotal pocument iD TS pocument iD cludes scale factor 39 ANASTA 40 160 BUSKULI data for averages, 57 ANDER: rement is for B/h ⁻	TECN 06 ALEP neutrals 2 317 33 + 0.3 .74 + Г 75 + 33 TECN 03 CLEO 03 CLEO 04 .10 05 .10 06 .10 07 .10 08 .10 09 .11 <	$\frac{COMMENT}{LEP 1991-1993 data} \ge 0K_{1}^{0}\nu_{7}) \Gamma_{73}/$ $\frac{1}{351135+0.3431\Gamma_{38}+-\Gamma_{82}+\Gamma_{86}+\Gamma_{89}+\Gamma_{90}-\Gamma_{74}/$ $\frac{COMMENT}{E_{CM}^{ee}} \approx 10.6 \text{ GeV}$ $\frac{\Gamma_{74}}{TECN} \frac{COMMENT}{CMMENT}$ CLEO $E_{CM}^{ee} = 10.6 \text{ data}$ etc. • • • CLEO Repl. by AN/ TASSOV	F 52 + 4/F 5/F GeV 993 4,S- 01 that
$ \begin{array}{c} \Gamma_{73}/\Gamma = (\Gamma_{74}+0. \\ \Gamma_{73}/\Gamma = (\Gamma_{74}+0. \\ \hline \\ \hline \\ N_{2}UE(\%) \\ \hline \\ 0.54\pm0.04 \ OUR \ FIT \\ 0.50\pm0.07\pm0.07 \\ \hline \\ \Gamma_{73}/\Gamma_{52} = (\Gamma_{74}+0. \\ \Gamma_{74}/\Gamma_{52} = (\Gamma_{74}+0. \\ \Gamma_{74})(\Gamma_{52}+0. \\ \Gamma_{74})(\Gamma_{74}+0. \\ \Gamma_$	$\frac{EVTS}{1.8k}$ 1.8k $ex. K^{0})/(\Gamma$ 1.0.236 Γ_{117} 1.745+0.668 $ex. K^{0}, \omega, \eta$ 1.7 668 $ex. K^{0}, \omega, \eta$ 1.7 668 1.7 7 668 1.7 7 668 1.7 7 668 1.7 7 668 1.7 7 668 1.7 7 668 1.7 7 7 668 1.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	DOCUMENT ID DOCUMENT ID BUSKULIC BUSKULIC (h-h-h+20) +0.8887138)/(0.387 DOCUMENT ID BORTOLETTOS DOCUMENT ID BORTOLETTOS DOCUMENT ID Cludes scale factor 39 ANASTA 40 160 BUSKULI 434 for averages, 57 ANDER: rement is for B(h ⁻ small.	$\frac{TECN}{06} \text{ A LEP}$ neutrals 2 331r_33+0.3 TF74+F75+38) TECN 03 CLEO $\frac{VT ID}{of 1.5.}$ SSOV 01 .IC 96 fits, limits, SSON 97 -h-h+ \geq	COMMENT LEP 1991-1993 data ≥ 0K9 ν_{τ}) Г73/ 4341r33+0.3431r33+ -f82+f86+f89+f90 ⁻ COMMENT E ^{gen} ≈ 10.6 GeV Г72 <u>TECN</u> <u>COMMENT</u> CLEO E ^{gen} ₂ = 10.6 d ALEP LEP 1991-19 data etc. • • • CLEO Repl. by ANJ TASSOV 3 $\pi^0 \nu_{\tau}$). We assume	F 52 + 4/F 5/F GeV 993 4 S- 01 that
$ \begin{array}{c} \Gamma_{73}/\Gamma = (\Gamma_{74}+0, \\ \hline \\ \Gamma_{73}/\Gamma = (\Gamma_{74}+0, \\ \hline \\ \hline \\ 0.54\pm0.04 \text{ OUR FIT} \\ 0.50\pm0.07\pm0.07 \\ \hline \\ \Gamma_{73}/\Gamma_{52} = (\Gamma_{74}+0, \\ 0.343)\Gamma_{40}+0.430 \\ 0.285\Gamma_{117}+0.285 \\ \hline \\ \hline \\ \hline \\ 0.035\pm0.0028 \text{ OUR FI} \\ 0.035\pm0.0028 \text{ OUR FI} \\ \hline \\ 0.035\pm0.0028 \text{ OUR FI} \\ \hline \\ 0.035\pm0.0028 \text{ OUR FI} \\ \hline \\ \hline \\ 0.11\pm0.04 \text{ OUR FIT} \\ \hline \\ \Gamma \left(h^-h^-h^+3\pi^0\nu_r\right) \\ \hline \\ \hline \\ V^{AUUE} (\%) \\ 0.023\pm0.005 \text{ OUR W} \\ 0.022\pm0.003 \pm0.004 \\ 0.022\pm0.003 \pm0.004 \\ 0.11\pm0.04 \text{ OUR FI} \\ \hline \\ 0.028\pm0.005 \text{ OUR SI} \\ 0.025\pm0.0056\pm0.0051 \\ \hline \\ 160 \text{ BUSKULC 96 state} \\ \hline \\ B(h^-h^-h^+\geq4\pi^0 \end{array} $	$\frac{EVTS}{1.8k}$ 1.8k EX.K ⁰))/[Γ 4.236[117-7745+0.686[117-7745+0.686] EX.K ⁰ ,ω,η) (Γ 4.275 T 668 EX.K ⁰ ,ω,η) (Γ 4.275 T 4.	DOCUMENT ID DOCUMENT ID BUSKULIC BUSKULIC (h ⁻ h ⁻ h ⁺ ≥ 0i +0.8881_138)/(134 DOCUMENT ID BORTOLETTOS DOCUMENT ID BORTOLETTOS DOCUMENT ID Cludes scale factor 39 ANASTA 40 160 BUSKULI data for averages, 57 ANDER' rement is for B(h ⁻	$\frac{TECN}{100} = \frac{TECN}{100} = TE$	$\frac{COMMENT}{LEP 1991-1993 data} \ge 0K_{2}^{0} \nu_{7}) \Gamma_{73} / 3431\Gamma_{38} +782+\Gamma_{86} + \Gamma_{89} + \Gamma_{90}782 + .$	F52 + 4/ 5 / GeV 993 4 S- 01 that

 τ

425

 $\Gamma_{76}/\Gamma = (0.3431\Gamma_{35} + 0.3431\Gamma_{40} + \Gamma_{82} + \Gamma_{86} + \Gamma_{89} + \Gamma_{90} + 0.285\Gamma_{119})/\Gamma$ VALUE (%) CL% DOCUMENT ID TECN COMMENT

0.69±0.04 OUR FIT	Error inc	ludes scale factor	of 1.3.	
< 0.6	90	AIHARA	84C TPC	$E_{\rm Cm}^{ee}$ = 29 GeV

⁴²⁶ Lepton Particle Listings

τ

 $\Gamma(K^- h^+ \pi^- \nu_\tau (ex. K^0)) / \Gamma_{total}$ $\Gamma_{77}/\Gamma = (\Gamma_{82} + \Gamma_{89})/\Gamma$ DOCUMENT ID 0.48±0.04 OUR FIT Error includes scale factor of 1.5. $\Gamma\left(K^{-}h^{+}\pi^{-}\nu_{\tau}\left(\text{ex.}K^{0}\right)\right)/\Gamma\left(\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}\left(\text{ex.}K^{0}\right)\right)$ $\Gamma_{77}/\Gamma_{58} = (\Gamma_{82} + \Gamma_{89})/(\Gamma_{60} + 0.0221\Gamma_{137})$
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 5.2
 ±0.4
 OUR FIT
 Error includes scale factor of 1.6.
 5.44 ± 0.21 ± 0.53
 5.44±0.21±0.53 RICHICHI 99 CLEO E ee = 10.6 GeV 7.9k $\Gamma(K^- h^+ \pi^- \pi^0 \nu_\tau (\text{ex} K^0)) / \Gamma_{\text{total}}$ $\Gamma_{78}/\Gamma = (\Gamma_{86} + \Gamma_{90} + 0.231\Gamma_{119})/\Gamma$ DOCUMENT ID 0.107±0.022 OUR FIT $\Gamma\left(K^{-}h^{+}\pi^{-}\pi^{0}\nu_{\tau}\left(\mathrm{ex}\,K^{0}\right)\right)/\Gamma\left(\pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}\left(\mathrm{ex}\,K^{0}\right)\right)$ $\Gamma_{78}/\Gamma_{67} = (\Gamma_{86} + \Gamma_{90} + 0.231\Gamma_{119})/(\Gamma_{68} + 0.888\Gamma_{137} + 0.0221\Gamma_{138})$ VALUE (%) EVTS DOCUMENTID TECN COMMENT 2.5 ± 0.5 OUR FIT $2.61 \pm 0.45 \pm 0.42$ RICHICHI 99 CLEO $E_{cm}^{ee} = 10.6 \text{ GeV}$ 719 $\Gamma(K^{-}\pi^{+}\pi^{-} \geq 0 \text{ neutrals } \nu_{\tau})/\Gamma_{\text{total}}$ $\Gamma_{79}/\Gamma = (0.3431\Gamma_{35} + 0.3431\Gamma_{40} + \Gamma_{82} + \Gamma_{86} + 0.285\Gamma_{119})/\Gamma$ VALUE [%] EVTS DOCUMENT ID TECN COMMEN 0.50±0.04 OUR FIT Error includes scale factor of 1.3. $0.58 + 0.15 \pm 0.12$ - 0.13 ± 0.12 20 ¹⁶¹ BAUER 94 TPC *E^{ee}* = 29 GeV • • We do not use the following data for averages, fits, limits, etc. • • 9 ¹⁶² MILLS $0.22 \substack{+ \ 0.16 \\ - \ 0.13 } \pm 0.05$ 85 DLCO $E_{\rm Cm}^{ee} = 29 \, {\rm GeV}$ 161 We multiply 0.58% by 0.20, the relative systematic error quoted by BAUER 94, to obtain the systematic error. 162 Error correlated with MILLS 85 ($KK\pi\nu$) value. We multiply 0.22% by 0.23, the relative systematic error quoted by MILLS 85, to obtain obtain the systematic error. $\begin{array}{l} \Gamma\left(K^-\pi^+\pi^-\geq 0\pi^0\,\nu_\tau\left(ex,K^0\right)\right)/\Gamma_{total} & \Gamma_{80}/\Gamma=(\Gamma_{82}+\Gamma_{86}+0.231\Gamma_{119})/\Gamma_{119}/\Gamma_$ $\Gamma_{80}/\Gamma = (\Gamma_{82} + \Gamma_{86} + 0.231\Gamma_{119})/\Gamma$ and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average. VALUE (%) DOCUMENT ID TECN COMMENT 0.39 ±0.04 OUR FIT Error includes scale factor of 1.3. 0.30 ± 0.05 OUR AVERAGE 0.343±0.073±0.031 f&a ABBIENDI 00D OPAL 1990-1995 LEP runs 98 ALEP 1991-1995 LEP runs avg ¹⁶³ BARATE 0.275 ± 0.064 ¹⁶³Not independent of BARATE 98 $\Gamma(\tau^- \rightarrow \kappa^- \pi^+ \pi^- \nu_\tau)/\Gamma_{total}$ and $\Gamma(\tau^- \rightarrow \kappa^- \pi^+ \pi^- \nu_\tau)/\Gamma_{total}$ $\kappa^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau})/\Gamma_{total}$ values. $\Gamma (K^{-}\pi^{+}\pi^{-}\nu_{\tau})/\Gamma_{\text{total}}$ $\Gamma_{81}/\Gamma = (0.3431\Gamma_{35} + \Gamma_{82})/\Gamma$ DOCUMENT ID 0.38±0.04 OUR FIT Error includes scale factor of 1.6. $\Gamma(K^{-}\pi^{+}\pi^{-}\nu_{\tau}(ex.K^{0}))/\Gamma_{total}$ Γ₈₂/Γ Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average.
 VALUE [%]
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 0.33 ±0.04
 OUR FIT
 Error includes scale factor of 1.6.
 Comment
 Comment
 0.32 ±0.04 OUR AVERAGE Error includes scale factor of 1.6. See the ideogram below. $0.384 \pm 0.014 \pm 0.038$ f&a 3.5k 164 BRIERE 03 CLE3 $E_{Cm}^{ee} = 10.6 \text{ GeV}$ $0.360 \pm 0.082 \pm 0.048$ avg ABBIENDI 00D OPAL 1990-1995 LEP runs 158 165 RICHICHI 0.346±0.023±0.056 avg 99 CLEO Ecm = 10.6 GeV $0.214 \pm 0.037 \pm 0.029$ f&a BARATE 98 ALEP 1991-1995 LEP runs 164 47% correlated with BRIERE 03 $\tau^ \to$ $\pi^-\pi^+\pi^-\,\nu_{\tau}$ and 34% correlated with $\tau^ \to$ $K^- K^+ \pi^- \nu_{\tau}$ because of a common 5% normalization error. ¹⁶⁵ Not independent of RICHICHI 99 $h^- h^- h^+ \nu_\tau (\text{ex.} \kappa^0)) / \Gamma_{\text{total}}$ values.

0.203 ± 0.031 OUR AVERAGE								
$0.159 \pm 0.053 \pm 0.020$	f&a		ABBIENDI	00D	OPAL	1990-1995 LEP		
0.238 ± 0.042	avg		¹⁶⁹ BARATE	98	ALEP	1991-1995 LEP		
$\begin{array}{rrr} 0.15 & + \ 0.09 \\ - \ 0.07 & \pm \ 0.03 \end{array}$	f&a	4	¹⁷⁰ BAUER	94	ТРС	$E_{\rm CM}^{\it ee}=$ 29 GeV		

¹⁶⁹Not independent of BARATE 98 $\Gamma(\tau^- \rightarrow \kappa^- \kappa^+ \pi^- \nu_\tau)/\Gamma_{\text{total}}$ and $\Gamma(\tau^- \rightarrow \kappa^- \kappa^+ \pi^- \pi^0 \nu_\tau)/\Gamma_{\text{total}}$ values.

170 We multiply 0.15% by 0.20, the relative systematic error quoted by BAUER 94, to obtain the systematic error.

$$\label{eq:Freq} \begin{split} & \Gamma\left(K^-\,K^+\,\pi^-\,\nu_{\tau}\right)/\Gamma_{total} & \Gamma_{89}/F \\ & \text{Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average. \end{split}$$

VALUE (%)		EVTS	DOCUMENT ID		TECN	COMMENT	
0.155±0.007 OUR FIT							
0.154±0.009 OUR AVE	RAGE						
$0.155 \pm 0.006 \pm 0.009$	f&⊥a	932	¹⁷¹ BRIERE	03	CLE 3	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$	I
$0.087 \pm 0.056 \pm 0.040$	avg		ABBIENDI	00D	OPAL	1990-1995 LEP	
$0.145 \pm 0.013 \pm 0.028$	avg	2.3k	¹⁷² RICHICHI	99	CLEO	$E_{\rm cm}^{ee} = 10.6 {\rm GeV}$	
$0.163\pm 0.021\pm 0.017$	f&⊥a		BARATE	98	ALEP	1991-1995 LEP	
						runs	
$0.22 + 0.17 \pm 0.05 - 0.11 \pm 0.05$	f&a	9	¹⁷³ MILLS	85	DLCO	E ^{ee} _{cm} = 29 GeV	
17171% correlated with	BRIERE	$03 \tau^{-1}$	$\rightarrow \pi^- \pi^+ \pi^- \nu_{\pi}$	and	34% coi	rrelated with $ au \rightarrow$	I

 $K^{-}\pi^{+}\pi^{-}\nu_{\tau}$ because of a common 5% normalization error.

 $\begin{array}{ccc} & & & & & & & & & \\ 1^{72} \operatorname{Not} & & & & & & \\ \operatorname{independent} & & & & & \\ & & & & & & \\ \pi^-\pi^+\pi^-\nu_\tau \left(\operatorname{ex} \mathcal{K}^0\right) \right) \text{ and BALEST 95C } \Gamma(\tau^- \to h^-h^-h^+\nu_\tau \left(\operatorname{ex} \mathcal{K}^0\right))/\Gamma_{\text{total}} \text{ value} \right) \\ \end{array}$ ues

¹⁷³ Error correlated with MILLS 85 ($K\pi\pi\pi^0\nu$) value. We multiply 0.22% by 0.23, the relative systematic error quoted by MILLS 85, to obtain obtain the systematic error.

$\Gamma \left(K^{-} K^{+} \pi^{-} \nu_{\tau} \right) / \Gamma \left(\pi^{-} \pi^{+} \pi^{-} \nu_{\tau} \left(\text{ex.} K^{0} \right) \right) \Gamma_{89} / \Gamma_{58} = \Gamma_{89} / (\Gamma_{60} + 0.0221 \Gamma_{137})$

 VALUE (%)
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 1.69±0.08 OUR FIT
 Error includes scale factor of 1.1.
 Error includescale factor of 1.1.
 RICHICHI 99 CLEO $E_{\rm cm}^{ee} = 10.6 \, {\rm GeV}$ $1.60 \pm 0.15 \pm 0.30$ 2.3k

$$\label{eq:rescaled} \begin{split} & \Gamma\left(K^-K^+\pi^-\pi^0\nu_T\right)/\Gamma_{total} & \Gamma_{90}/\Gamma \\ & \text{Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average. \end{split}$$

VALUE (units 10 ⁻⁴)		L% EVTS	DOCUMENT ID		TECN	COMMENT
4.2±1.6 OUR F	Error	includes sca	le factor of 1.1.			
4.4 ± 1.8 OUR A	VERAGE	Error inclu	des scale factor of	1.1.		
$3.3 \pm 1.8 \pm 0.7$	avg	158	¹⁷⁴ RICHICHI	99	CLEO	$E_{cm}^{ee} = 10.6$
$7.5 \pm 2.9 \pm 1.5$	f&a		BARATE	98	ALEP	GeV 1991–1995 LEP runs

• • • We do not use the following data for averages, fits, limits, etc. • • • < 27 95 ABBIENDI 00D OPAL 1990-1995 LEP runs

 $^{174}\,\mathrm{Not}$ independent of RICHICHI 99 $\Gamma(\tau^- \rightarrow \ \mathcal{K}^- \ \mathcal{K}^+ \ \pi^- \ \nu_{\tau})/\Gamma(\tau^- \rightarrow \ \pi^- \ \pi^+ \ \pi^- \ \nu_{\tau} \ (\mathrm{ex}. \mathcal{K}^0)) \ \mathrm{and} \ \mathrm{BALEST} \ \mathrm{95c} \ \Gamma(\tau^- \rightarrow \ \mathcal{K}^- \ \mathcal{K}^+ \ \mathcal{K}^- \ \mathcal$ $h^- h^- h^+ \nu_\tau (\text{ex.} \mathcal{K}^0)) / \Gamma_{\text{total}}$ values.

$\Gamma(K^{-}K^{+}\pi^{-}\pi^{0}\nu_{\tau})/\Gamma(\pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}(\text{ex},K^{0}))$

	<i>//</i> ·	$\Gamma_{90} / \Gamma_{67} = I$	'90/(Г ₆₈ +0	.888Г ₁₃₇ +0.0221Г ₁	38)
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT	
1.0 ±0.4 OUR FIT	Error inc	ludes scale factor o	f 1.1.			
$0.79 \pm 0.44 \pm 0.16$	158	175 RICHICHI	99	CLEO	$E_{\rm CM}^{ee} = 10.6 {\rm GeV}$	

г /г

175 RICHICHI 99 also quote a 95%CL upper limit of 0.0157 for this measurement. $\Gamma(V = V \pm V = > 0$

i(n n n ≥	oneur. ν_{τ}	/ total				191/1
VALUE (%)	CL%	DOCUMENT ID		TECN	COMMENT	
< 0.21	95	BAUER	94	ТРС	$E_{\rm CM}^{ ee} = 29 {\rm GeV}$	
Γ(K ⁻ K ⁺ K ⁻ ν _τ)	/Γ _{total}					Г92/Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$< 3.7 \times 10^{-5}$	90	BRIERE	03	CLE3	E ^{ee} _{cm} = 10.6 GeV	
$< 1.9 \times 10^{-4}$	90	BARATE	98	ALEP	1991-1995 LEP	runs
$\Gamma(\pi^- K^+ \pi^- \ge 0$	neut. ν_{τ}),	/ _{Ttotal}				Г93/Г
VALUE (%)	CL%	DOCUMENT ID		TECN	COMMENT	
< 0.25	95	BAUER	94	трс	E ^{ee} _{CM} = 29 GeV	
$\Gamma(e^-e^-e^+\overline{\nu}_e\nu_\tau)$)/F _{total}					Г94 /Г
VALUE (units 10 ⁻⁵)	EVTS	DOCUMENT ID		TECN	COMMENT	
$\textbf{2.8} \pm \textbf{1.4} \pm \textbf{0.4}$	5	ALAM	96	CLEO	$E_{\rm CM}^{ee} = 10.6 {\rm GeV}$	
$\Gamma(\mu^- e^- e^+ \overline{\nu}_\mu \nu_\tau)$)/「 _{total}					Г95 /Г
VALUE (units 10 ⁻⁵)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
< 3.6	90	ALAM	96	CLEO	<i>E</i> ^{<i>ee</i>} _{cm} = 10.6 GeV	

 $\Gamma(3h^- 2h^+ \ge 0 \text{ neutrals } \nu_\tau (\text{ex. } K^0_S \to \pi^- \pi^+)("5-\text{prong"}))/\Gamma_{\text{total}}$ Г96/Г Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average. $\Gamma_{96}/\Gamma = (\Gamma_{97} + \Gamma_{98})/\Gamma$

Lepton Particle Listings

τ

427

VALUE (%)		<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
0.100 ± 0.006 OUR FIT					
0.111 ± 0.008 OUR AVE	RAGE	Error	includes scale factor of	1.1.	
$0.115 \pm 0.013 \pm 0.006$	f&a	112	¹⁷⁶ ABREU 01N	IDLPH	1992-1995 LEP
$0.170 \pm 0.022 \pm 0.026$	f&a		177 ACHARD 010	L3	runs 1992–1995 LEP
$0.119 \pm 0.013 \pm 0.008$	avg	119	¹⁷⁸ ACKERSTAFF 99E	0 PAL	1991-1995 LEP
$0.097 \pm 0.005 \pm 0.011$	f&∠a	419	GIBAUT 94 E	CLEO	$E_{\rm cm}^{ee} = 10.6 {\rm GeV}$
0.102 ± 0.029	f&a	13	BYLSMA 87	HRS	$E_{\rm Cm}^{ee} = 29 {\rm GeV}$
• • • We do not use t	he follov	ving da	ta for averages, fits, lim	ts, etc.	• • •
$0.26\ \pm 0.06\ \pm 0.05$			ACTON 92H	OPAL	E ^{ee} _{cm} = 88.2-94.2 GeV
${\substack{0.10 \\ -0.04}} {}^{+ 0.05}_{- 0.04} \pm 0.03$			DECAMP 920	ALEP	1989-1990 LEP
$0.16\ \pm 0.13\ \pm 0.04$			BEHREND 89E	CELL	$E_{\rm Cm}^{ee} = 14-47 {\rm GeV}$
$0.3 \pm 0.1 \pm 0.2 $			BARTEL 85 F	JADE	E ^{ee} cm= 34.6 GeV
$0.13 \pm 0.04 $		10	BELTRAMI 85	HRS	Repl. by
$0.16\ \pm 0.08\ \pm 0.04$		4	BURCHAT 85	MRK2	$E_{\rm cm}^{ee} = 29 {\rm GeV}$
1.0 ± 0.4		10	BEHREND 82	CELL	Repl. by BEHREND 89B

 176 The correlation coefficients between this measurement and the ABREU 01M measure-

¹⁷⁵ The correlation coefficients between this measurement and the ABREU UIM measurements of B(τ → 1-prong) and B(τ → 3-prong) are −0.08 and −0.08 respectively. ¹⁷⁷ The correlation coefficients between this measurement and the ACHARD 01D measurements of B(τ → "1-prong") and B(τ → "3-prong") are −0.082 and −0.19 respectively. ¹⁷⁸ Not independent of ACKERSTAFF 99E B(τ → 3*h*⁻2*h*⁺ν_τ (ex. K⁰)) and B(τ → 3*h*⁻2*h*⁺π⁰ν_τ (ex. K⁰)) measurements.

$\Gamma(3h^-2h^+\nu_\tau)$ (ex. K^0))/Γ _{total}			Г97/Г
VALUE (%)	EVTS	DOCUMENT ID	TECN	COMMENT
0.082±0.006 OUR FIT				
0.076±0.007 OUR AVE	RAGE			
$0.091 \pm 0.014 \pm 0.006$	97	ACKERSTAFF	99E OPAL	1991-1995 LEP runs
$0.080 \pm 0.011 \pm 0.013$	58	BUSKULIC	96 ALEP	LEP 1991-1993 data
$0.077 \pm 0.005 \pm 0.009$	295	GIBAUT	94B CLEO	$E_{CM}^{ee} = 10.6 \text{ GeV}$
$0.064 \pm 0.023 \pm 0.01$	12	ALBRECHT	88B ARG	E ^{ee} _{cm} = 10 GeV
0.051 ± 0.020	7	BYLSMA	87 HRS	$E_{\rm cm}^{ee} = 29 {\rm GeV}$
• • • We do not use the	e followin	g data for averages,	fits, limits,	etc. • • •
0.067 ± 0.030	5 1	⁷⁹ BELTRAMI	85 HRS	Repl. by BYLSMA 87
¹⁷⁹ The error quoted is	statistical	oniv.		
-/		,		
$\Gamma(3h^-2h^+\pi^0\nu_{\tau})$ (ex.	K"))/[t	otal		1 ₉₈ /1
VALUE (%)	EVTS	DOCUMENT ID	TECI	COMMENT
0.0181 ± 0.0027 OUR F	T			
0.0172±0.0027 OUR A	VERAGE			
$0.017 \pm 0.002 \pm 0.002$	231	ANASTASSO	OV 01 CLE	$O = E_{cm}^{ee} = 10.6 \text{ GeV}$
$0.027 \pm 0.018 \pm 0.009$	23	ACKERSTAF	F 99E OPA	L 1991-1995 LEP runs
$0.018 \pm 0.007 \pm 0.012$	18	BUSKULIC	96 ALE	P LEP 1991–1993 data
 • • We do not use the 	ne followin	g data for averages,	fits, limits,	etc. • • •
$0.019 \pm 0.004 \pm 0.004$	31	GIBAUT	94B CLE	O Repl. by ANAS- TASSOV 01
0.051 ± 0.022	6	BYLSMA	87 HRS	$E_{\rm Cm}^{ee} = 29 {\rm GeV}$
0.067 ± 0.030	5	¹⁸⁰ BELTRAMI	85 HRS	6 Repl. by BYLSMA 87
¹⁸⁰ The error quoted is	statistical	only.		
$\Gamma(3h^{-}2h^{+}2\pi^{0}\nu_{\tau})/$	F total			۲٫۹۹/۲
VALUE (%)	CI %	DOCUMENT ID	TECN	COMMENT
< 0.011	90	GIBAUT	94B CLEO	$E_{cm}^{ee} = 10.6 \text{ GeV}$
				CIII
$\frac{\Gamma((5\pi)^{-}\nu_{\tau})}{\Gamma_{100}/\Gamma} = (\Gamma_{28} + \Gamma_{100})$	45 + F 74 +	Г ₉₇ +0.553Г ₁₁₇ +().888F ₁₃₈)/	г Г₁₀₀/Г
Data marked "avg and are therefore	;" are high used for t	y correlated with da he average given be	ata appearin elow but not	g elsewhere in the Listings, : in the overall fits."f&a"
MATHE (%)	i ior the fi	DOCUMENT ID	TECN CO	MMENT
0.80+0.07 OUR FIT		Docoment ib		
0.61±0.06±0.08 a	vg ¹⁸¹	GIBAUT 94	CLEO E	ee cm= 10.6 GeV
181 Not independent of	GIBAUT	94B B(3 $h^- 2h^+ \nu_{\tau}$), PROCAF	RIO 93 B($h^- 4\pi^0 \nu_{\pi}$), and
BORTOLETTO 93 for η contributions.	B(2 <i>h</i> ⁻ <i>h</i> ⁺	$2\pi^0 \nu_{\tau})/B("3prong$	g") measure	ments. Result is corrected
F/44-24+ > 0				F /F

i(4 <i>n −</i> 3 <i>n</i> · ∠ (101/1				
VALUE	CL %	DOCUMENT ID		TEC N	COMMENT
$<2.4 \times 10^{-6}$	90	EDWARDS	97B	CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$
• • • We do not	use the following da	ata for averages,	fits,	limits, (etc. • • •
$<$ 1.8 \times 10 $^{-5}$	95	ACKERSTAFF	97J	0 PAL	1990-1995 LEP runs
$<2.9 \times 10^{-4}$	90	BYLSMA	87	HRS	$E_{cm}^{ee} = 29 \text{ GeV}$

au

$$\begin{split} & \Gamma\left(X^{-}\left(S=-1\right)\nu_{r}\right)/\Gamma_{\text{total}} \\ & \Gamma_{102}/\Gamma=(\Gamma_{10}+\Gamma_{15}+\Gamma_{22}+\Gamma_{26}+\Gamma_{33}+\Gamma_{36}+\Gamma_{82}+\Gamma_{66}+\Gamma_{119})/\Gamma \\ & \text{Data marked "avg" are highly correlated with data appearing elsewhere in the Listings, and are therefore used for the average given below but not in the overall fits. "f&a" marks results used for the fit and the average.$$

VALUE [%]		DOCUMENTID	TECN	COMMENT		
2.91 ± 0.08 OUR FIT	Error	includes scale facto	r of 1.1.			
2.87 ± 0.12	avg	¹⁸² BARATE	99R ALEP	1991-1995	LEP runs	
¹⁸² BARATE 99R per fraction measuren	rform a nents for	combined analysis decay modes havi	of all ALEPH ng total strang	I LEP1 data geness equal t	on τ bran to -1 .	ching
					-	

$\Gamma(K^*(892)^- \ge 0 \text{ neutral})$	ls ≥ 0	$(K_L^{\nu_{\tau}})/(t_{total})$		103/F
VALUE (%)	EVTS	DOCUMENT ID	TECN	COMMENT
1.42±0.18 OUR AVERAGE	Error	includes scale factor	of 1.4. See	the ideogram below.
$1.19 \pm 0.15 \stackrel{+}{-} \stackrel{0.13}{-} \stackrel{-}{0.18}$	104	ALBRECHT	95 HARG	<i>E^{ee}</i> _{cm} = 9.4–10.6 GeV
$1.94 \pm 0.27 \pm 0.15$	74	¹⁸³ AK ER S	94 GOPAL	$E_{cm}^{ee} = 88-94 \text{ GeV}$
$1.43\pm 0.11\pm 0.13$	475	¹⁸⁴ GOLDBERG	90 CLEO	$E_{\rm Cm}^{ee}$ = 9.4-10.9 GeV
¹⁸³ AKERS 94G reject event	s in whi	ch a κ^0_S accompanie	s the K*(89	2) [—] . We do not correct

for them. 184 GOLDBERG 90 estimates that 10% of observed K*(892) are accompanied by a $\pi^0.$

Г(K*(892)) [−] ν _τ)/I	total				Г ₁₀₄ /
VAL	UE (%)		EVTS	DOCUMENT ID		TECN	COMMENT
1.2	9 ± 0.05	OUR A	VERAGE				
1.3	26 ± 0.063	3		BARATE	99R /	ALEP	1991-1995 LEP runs
1.1	1 ± 0.12		18	³⁵ COAN	96 (CLEO	$E_{\rm Cm}^{ee} \approx 10.6 {\rm GeV}$
1.4	2 ± 0.22	± 0.09	18	³⁶ ACCIARRI	95 F L	L 3	1991-1993 LEP runs
1.2	3 ±0.21	$^{+0.11}_{-0.21}$	54 18	³⁷ ALBRECHT	88L /	٩RG	$E_{\rm Cm}^{ee} = 10 {\rm GeV}$
1.9	± 0.3	± 0.4	44 18	³⁸ T SCHIR HART	88 H	HRS	$E_{\rm Cm}^{ee} = 29 {\rm GeV}$
1.5	± 0.4	± 0.4	15 18	³⁹ AIHARA	87 C -	ТРС	$E_{\rm Cm}^{ee} = 29 {\rm GeV}$
1.3	± 0.3	± 0.3	31	YELTON	86 I	MRK 2	$E_{cm}^{ee} = 29 \text{ GeV}$
••	• We de	o not use	the following	data for averages,	fits, I	imits,	etc. • • •
1.3	9 ± 0.09	± 0.10	19	⁰ BUSKULIC	96 /	ALEP	Repl. by BARATE 99R
1.4	5 ± 0.13	± 0.11	273 19	⁹¹ BUSKULIC	94 F /	ALEP	Repl. by BUSKULIC 96
1.7	± 0.7		11	DORFAN	81 I	MRK 2	$E_{\rm Cm}^{ee} = 4.2 - 6.7 {\rm GeV}$

 $^{185}\,\rm Not$ independent of COAN 96 ${\rm B}(\pi^-\,\overline{\kappa}^0\,\nu_{\tau})$ and BATTLE 94 ${\rm B}(\kappa^-\,\pi^0\,\nu_{\tau})$ measurements. $\kappa \pi$ final states are consistent with and assumed to originate from $\kappa^*(892)^$ production.

 186 This result is obtained from their B($\pi^-\,\overline{\kappa}{}^0\,\nu_\tau)$ assuming all those decays originate in $K^*(892)^-$ decays. 187 The authors divide by $\Gamma_2/\Gamma = 0.865$ to obtain this result.

 $B(K^{-}\pi^{0}\nu_{\tau})$ assuming all of those decays originate in $K^{*}(892)^{-1}$ decays.

$\Gamma(K^*(892)^0 K^- \ge 0$ neutrals $\nu_r)/\Gamma_{total}$						
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.32 {\pm} 0.08 {\pm} 0.12$	119	GOLDBERG	90	CLEO	E ^{ee} _{cm} = 9.4-10.9 GeV	

$\Gamma(K^*(892)^0 K^- \nu_\tau) / \Gamma_{\rm tot}$	al					Г ₁₀₆ /Г
VALUE (%) EVT	<u>s</u>	DOCUMENT ID		TECN	COMMENT	
0.213 ± 0.048 $0.20 \pm 0.05 \pm 0.04$	- 193 7	BARATE	98 95 u	ALEP	1991-1995 LEP	runs
¹⁹³ BARATE 98 measure the	κ= ($\rho^0 \rightarrow \pi^+\pi^-$)	frac	tion in ·	$\tau^- \rightarrow K^- \pi^+ \pi$	$-\nu_{\tau}$ de-
cays to be $(35 \pm 11)\%$ $\kappa^- \pi^+ \pi^- \nu_{ au})/\Gamma_{ ext{total}}$ as	and de suming	erive this result the intermediate	fron e stat	n their es are al	measurement of ΙΚ ρ and Κ Κ	$\Gamma(\tau^{-} \rightarrow (892)^{0}.$
$\Gamma(\overline{K}^*(892)^0 \pi^- \ge 0$ neut	rals <i>v</i> ,)/「 _{total}				Г ₁₀₇ /Г
<u>VALUE (%)</u> 0.38±0.11±0.13 10 ²	<u>s</u> 5	GOLDBERG	90	<u>TECN</u> CLEO	$\frac{COMMENT}{E_{cm}^{ee}} = 9.4-10.9$	GeV
$\lceil (\overline{K}^*(892)^0 \pi^- \nu_\tau) / \lceil_{\text{total}} \rceil$	l			Ten		Г ₁₀₈ /Г
0.22 ±0.05 OUR AVERAGE	E	DOCUMENT ID		TECN	COMMENT	
$\begin{array}{c} 0.209 \pm 0.058 \\ 0.25 \ \pm 0.10 \ \pm 0.05 \end{array}$ 2	194 7	BARATE ALBRECHT	98 95 н	ALEP ARG	1991-1995 LEP $E_{Cm}^{ee} = 9.4-10.6$	runs Ge V
¹⁹⁴ BARATE 98 measure t	he K	К*(892) ⁰ fra	ction	in τ^-	$\rightarrow K^-K^+\pi^-$	$-\nu_{ au}$ de-
cays to be $(87 \pm 13)\%$ $\kappa^- \kappa^+ \pi^- \nu_\tau)/\Gamma_{total}$	and de	erive this result	fron	n their	measurement of	$\Gamma(\tau^- \rightarrow$
$\Gamma((\overline{K}^*(892)\pi)^-\nu_\tau \to \pi)^{(1)}$	- <i>Ҡ</i> ⁰ѫ	⁰ ν _τ)/Γ _{total}		TEC N	COMMENT	Γ ₁₀₉ /Γ
0.10 ± 0.04 OUR AVERAG	E					
$0.097 \pm 0.044 \pm 0.036$ $0.106 \pm 0.037 \pm 0.032$	195 196	BARATE	99K 98E	ALEP ALEP	1991-1995 LEP 1991-1995 LEP	runs runs
¹⁹⁵ BARATE 99K measure K	⁰ 's by	detecting $\frac{\kappa_L^0}{2}$'s	in tł	neir had	ron calorimeter.	They de-
termine the $K^0 \rho^-$ fractionand multiply their B(π^-	on in τ Κ ⁰ π ⁰ ι	$- \rightarrow \pi^- K^0 \pi'$ ν_{τ}) measuremer	ν _τ α nt by	lecayst onemi	o be (0.72 ± 0.12) nus this fraction :	? ± 0.10) to obtain
¹⁹⁶ BARATE 98E reconstruct	<i>к</i> ⁰ 's u	sing $\kappa^0_S \to \pi^+$	π- α	lecays.	They determine th	ne $\overline{\kappa}^0 \rho^-$
fraction in $\tau^- \rightarrow \pi^- \overline{K}$ B $(\pi^- \overline{K}{}^0 \pi^0 \nu_{\tau})$ measure	⁰ π ⁰ ν _τ ment b	decays to be (y one minus this	0.64 s frac	± 0.09 tion to	\pm 0.10) and mult obtain the quoted	iply their result.
$\lceil (K_1(1270)^- \nu_\tau) / \Gamma_{\text{total}} \rangle$						Г ₁₁₀ /Г
0.47±0.11 OUR AVERAGE	<u>s</u>	DOCUMENT ID		TECN	COMMENT	
0.48 ± 0.11	105	BARATE	99R	ALEP	1991-1995 LEP	runs
$0.41 \pm 0.41 \pm 0.10$	5 197	BAUER	94	трс	$E_{\rm Cm}^{\rm ee} = 29 {\rm GeV}$	
the systematic error.	o, the r	erative systemat	lic err	orquote	O DY BAUER 94,	to obtain
$\Gamma(K_1(1400)^- \nu_{\tau})/\Gamma_{\text{total}}$	c.	DOCUMENT ID		TECN	COMMENT	Г111/Г
0.17±0.26 OUR AVERAGE	Error	includes scale fa	ctor	of 1.7.	COMMENT	
0.05 ± 0.17 $0.76 \pm 0.40 \pm 0.20$ 1	1 198	BARATE	99R	ALEP	1991-1995 LEP	runs
198 We multiply 0.76% by 0.2	- 5. the r	elative systemat	ic err	or a note	d by BAUER 94.	to obtain
the systematic error.	- ,					
$\left[\Gamma\left(K_{1}(1270)^{-}\nu_{T}\right)+\Gamma\left(K_{1}(1270)^{-}\nu_{T}\right)\right]$	ג <mark>ו (14</mark> 0 יז	0) ⁻ ν _τ)]/Γ _{tol}	tal	TECN	(Г ₁₁₀ +	「111)/「
1.17+0.41 -0.37±0.29 1	- 6 199	BAUER	94	трс	E ^{ee} cm= 29 GeV	
¹⁹⁹ We multiply 1.17% by 0.2	5, the r	elative systemat	ic err	orquote	d by BAUER 94,	to obtain
the systematic error. Not $B(\kappa_1(1400)^- u_ au)$ measu	indepe rements	ndent of BAUEI 5.	R 94	в(<i>к</i> ₁ (1	270) [—] ν _τ) and B.	AUER 94
Γ (K₁(1270)⁻ ν_τ)/[Γ(K₁ VALUE	(1270)) [—] <i>v</i> _т) + Г(К ₁ ^{DOCUMENT ID}	14	00) [—] и, _{ТЕС N}	.)] Г110/(Г110 COMMENT	,+Γ ₁₁₁)
0.69±0.15 OUR AVERAGE	200		0.00	0.041	1000 1005 1 5 0	
$0.71 \pm 0.16 \pm 0.11$ $0.66 \pm 0.19 \pm 0.13$	201	ASNER	00D	CLEO	$E_{\rm cm}^{ee} = 10.6 {\rm GeV}$	runs /
²⁰⁰ ABBIENDI 00D assume	the res	onance structur	re of	$\tau^- \rightarrow$	$\kappa^-\pi^+\pi^-\nu_\tau$	decays is
dominated by the K ₁ (127 ²⁰¹ ASNER 00B assume the	70) — ar resonan	nd K ₁ (1400) [—] r ce structure of ·	resona τ = _	ances. → K τ	$\pi^+\pi^-\nu_{\pi}$ (ex. K	⁰)decays
is dominated by $\kappa_1(1270)$) [—] and	$\kappa_1(1400)^-$ res	sonan	ces.	1 1	
$\Gamma(K^*(1410)^- \nu_\tau)/\Gamma_{\text{total}}$						Г ₁₁₂ /Г
VALUE (units 10 ⁻³)	_	DOCUMENT ID		TEC N	COMMENT	
1.5 1.0		BARATE	99R	ALEP	1991-1995 LEP	runs

1.5 1.0		BARATE	99R ALEP	1991-1995 LEP runs
$\lceil (K_0^*(1430)^- \nu_\tau) \rangle$	/Γ _{total}			Г113/Г
VALUE (units 10 - 3)	CL%	DOCUMENT ID	TECN	COMMENT
<0.5	95	BARATE	99R ALEP	1991-1995 LEP runs

$1.17 + 0.41 \pm 0.29$	16	¹⁹⁹ BAUER	94	трс	$E_{\rm Cm}^{ee}$ = 29 GeV
------------------------	----	----------------------	----	-----	----------------------------

_ ----

Γ(τ -

 \rightarrow

88

$\Gamma(K_2^*(1430)^-\nu_\tau))$	/Γ _{total}			Г ₁₁₄ /Г
VALUE (%)	<u>CL% EVTS</u>	DOCUMENT ID	TECI	COMMENT
< 0.3	95	TSCHIRHART	88 HRS	$E_{\rm cm}^{\rm ee} = 29 {\rm GeV}$
• • • vve do not use	the following	Tata for averages, fi 202 a course	ts, limits,	etc. • • •
< 0.33	95 95 0	DOREAN	95⊢L3 81 MRF	1991-1993 LEP runs
202 ACCIADDU 055 -		(1420)=	- 70	$\sim 2 cm = 4.2 cm = 6.0 cc$
B(K*(1430) -	$\pi^{-}\overline{K}^{0} = 0.$	$X^{+}(1430) \rightarrow \pi$ 33 to obtain the lim	it shown.) < 0.11%. We alvide by
$\Gamma(a_0(980)^- \ge 0 \text{ n}$	eutrals $\nu_{\tau})/1$	$t_{\rm total} \times B(a_0(980))$))→ K ^a	<i>К</i> ⁻) Г ₁₁₅ /Г × В
VALUE (units 10 ⁻⁴)	<u>CL%</u>	DOCUMENT ID		COMMENT
2.0	50	GOLDBERG 90	CLLO	2 cm = 9.4 10.9 Gev
$\Gamma(\eta \pi^- \nu_\tau)/\Gamma_{\rm total}$				Г116/Г
VALUE (units 10 ⁻⁺)	<u>CL%EVT</u>	DOCUMENT I		TECN COMMENT
< 1.4	95 U the following	BARIELI Lata for averages fi	96 (ts limits	etc ● ● ●
< 62	95	BUSKINC	97 <i>c</i> 4	LEP 1991-1994 LEP
0.2		BOSKOEIC	5707	
< 3.4	95	ARTUSO	92 (LEO $E_{\rm Cm}^{ee} \approx 10.6 {\rm GeV}$
< 90	95	ALBRECHT	88 0 0	$E_{\rm cm}^{\rm ee} \approx 10 {\rm GeV}$
< 140	90	BEHREND	55 ($E_{Cm} = 14-46.8$ GeV
<180	95	BARINGER	87 (CLEO E ^{ee} _{cm} = 10.5 GeV
< 250	90 0	COFFMAN	87 M	MRK3 E ^{ee} _{CM} = 3.77 GeV
$510 \pm 100 \pm 120$	65	DERRICK	87 H	HRS $E_{\rm CM}^{ee} = 29 {\rm GeV}$
<100	95	GAN	87B M	$MRK2 E_{Cm}^{ee} = 29 \text{ GeV}$
$\Gamma(\eta \pi^- \pi^0 \nu_\tau) / \Gamma_{\rm to}$	tal		F 10	
0.174±0.024 OUR	FIT	<u>bocoment</u>		<u>reen</u> <u>comment</u>
0.173 ± 0.024 OUR	AVERA GE			
$0.18 \pm 0.04 \pm 0.0$	2	BUSKULI	C 970	ALEP 1991-1994 LEP
$0.17\ \pm 0.02\ \pm 0.0$	2 1	25 ARTUSO	92	CLEO $E_{Cm}^{ee} \approx 10.6$ GeV
• • • We do not use	the following	lata for averages, fi	ts, limits,	etc. • • •
<1.10	95	ALBRECH	IT 88№	IARG $E_{cm}^{ee} \approx 10$
< 2.10	95	BARINGE	R 87	CLEO $E_{cm}^{ee} = 10.5 \text{ GeV}$
4.20 + 0.70 + 1.6	0	203 GAN	87	MRK2 Eeg = 29 GeV
- 1.20 203 Highly correlated	with GAN 87	$(\pi^{-3\pi^{0}}\mu)/\Gamma(tot)$	al) value	ciii
	-	(x 3x P _T)/1(101	arj varac.	
$(\eta \pi^- \pi^\circ \pi^\circ \nu_\tau)/$	total			118/
VALUE (units 10 ⁻⁴)	CL% EVTS	DOCUMENT ID		CN COMMENT
1.5 ± 0.5	30 the fellowing	204 ANASIASSO	V 01 CL	$EO = E_{Cm}^{2} = 10.6 \text{ GeV}$
• • • We do not use	the following o	205 percent	us, irmits,	EC
$1.4 \pm 0.6 \pm 0.5$	15	BERGFELD	97 CL	TASSOV 01
< 4.3	95	ARTUSO	92 CL	EO $E_{\rm cm}^{ee} \approx 10.6 {\rm GeV}$
204	90	ALBRECHT	00M AF	G E _{cm} ≈ 10 GeV
** VVeighted average 10 ⁻⁴ obtained up	e of BERGFELE	997 and ANASTAS: ructed from ∞ →	SOV 01 v .+0	arue of $(1.5 \pm 0.6 \pm 0.3) \times decays$
²⁰⁵ BERGFELD 97 re	econstruct η's ι	$sing \eta \rightarrow \gamma \gamma decay$	ys.	uccays.
$[(n K^{-} \nu_{-})/\Gamma_{max}]$				Г110 /Г
VALUE (units 10 ⁻⁴) CI	% EVTS	DOCUMENT ID	TECN	COMMENT
2.7±0.6 OUR FIT				
2.7±0.6 OUR AVE	RAGE			
$2.9^{+1.3}_{-1.2} \pm 0.7$		BUSKULIC 97	C ALEP	1991-1994 LEP runs
$2.6\pm0.5\pm0.5$	85	BARTELT 96	CLEO	$E_{ m CM}^{ ee} pprox 10.6 { m GeV}$
• • • We do not use	the following	lata for averages, fi	ts, limits,	etc. • • •
<4.7 95		ARTUSO 92	CLEO	$E_{ m Cm}^{ ee} pprox $ 10.6 GeV
Γ(η K*(892) ⁻ ν_)	/F _{total}			Г120 /Г
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID	TECN	COMMENT
2.90±0.80±0.42	25	BISHAI 99	CLEO	E ^{ee} _{cm} = 10.6 GeV
ι(η K [−] π ^υ ν _τ)/Γ _{tc}	otal			Г ₁₂₁ /Г
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID	TECN	COMMENT
$1.77 \pm 0.56 \pm 0.71$	36	BISHAI 99	CLEO	$E_{\rm Cm}^{\rm cc} = 10.6 {\rm GeV}$
$[(n\overline{K}^0\pi^-\nu_{\pi})/\Gamma_{\pi}]$	tal			Г122 /Г
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID	TECN	COMMENT
2 20 + 0 70 + 0 22	15 20			$F^{ee} = 10.6 \text{ GeV}$

¹⁵ ⁻⁻⁻⁻ BISHAI 99 CLEO $E_{\rm Cm}^{20}$ = 10.6 GeV ²⁰⁶We multiply the BISHAI 99 measurement B($\tau^- \rightarrow \eta K_S^0 \pi^- \nu_{\tau}$) = (1.10 ± 0.35 ± 0.11) × 10⁻⁴ by 2 to obtain the listed value.

429 Lepton Particle Listings

_
τ

$\Gamma(\eta \pi^+ \pi^- \pi^- \ge 0 \mathrm{ne})$	utrals ν _τ)	/Γ _{total}		TECH	Г ₁₂₃ /Г
<0.3	90	ABACHI	87	B HRS	$E_{cm}^{ee} = 29 \text{ GeV}$
$\Gamma(n \sigma^{-} - + u)/\Gamma$					с
$VALUE(units 10^{-4})$	otal EVTS	DOCUMENT ID		TECN	COMMENT
2.3±0.5	170 20	ANASTASSOV	01	CLEO	E ^{ee} _{CM} = 10.6 GeV
• • • We do not use the	e following	data for averages	s, fits	, limits,	etc. • • •
$3.4 \substack{+ \ 0.6 \\ - \ 0.5} \pm 0.6$	89 208	BERGFELD	97	CLEO	Repl. by ANAS-
²⁰⁷ Weighted average of	f BERGFEL	D 97 and ANA	STAS	SSOV 0	1 measurements using η's
reconstructed from η 208 BERGEELD 97 recor	$\rightarrow \pi^+\pi^-$	π^0 and $\eta \rightarrow 3^{\circ}$ using $n \rightarrow \infty \infty 3^{\circ}$	π ⁰ d nd n	ecays. 3π ⁰	decaus
F (= = (1060)= -:)/r	nu η		ссауз. г /г
V_{ALUE} $V_{T} \rightarrow V_{ALUE}$	η κ ρυ_τ CL%	J/ I total DOCUMENT ID		TECN	COMMENT
$< 3.9 \times 10^{-4}$	90	BERGFELD	97	CLEO	$E_{\rm CM}^{ee} = 10.6 {\rm GeV}$
$[(\eta \eta \pi^- \nu)/[t_{total}]$					[126/ [
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT
< 1.1	95	ARTUSO	92	CLEO	$E_{ m cm}^{ee} pprox 10.6 { m GeV}$
• • • We do not use the	e following	data for averages	s, fits	i, limits,	etc. • • •
<83	95	ALBRECHT	88M	ARG	$E_{\rm cm}^{\rm ecm} \approx 10 {\rm GeV}$
$\Gamma(\eta \eta \pi^- \pi^0 \nu_\tau)/\Gamma_{tota}$	il .				Г ₁₂₇ /Г
VALUE (units 10 ⁻⁴)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
< 2.0 • • • We do not use the	95 e following (data for averages	92 5. fits	LEO Limits.	etc. • • •
<90	95	ALBRECHT	88M	ARG	$E_{\rm Cm}^{ee} \approx 10 \text{ GeV}$
Г (=/(059) _= ··) /Г					 F /F
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$< 7.4 \times 10^{-5}$	90	BERGFELD	97	CLEO	$E_{\rm Cm}^{ee} = 10.6~{\rm GeV}$
$\Gamma(n'(958)\pi^{-}\pi^{0}\nu_{-})/$	Ftotal				[129 /[
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 8.0 \times 10^{-5}$	90	BERGFELD	97	CLEO	<i>E</i> ^{<i>ee</i>} _{cm} = 10.6 GeV
$\Gamma(\phi \pi^- \nu_{\tau}) / \Gamma_{\text{total}}$					Г ₁₃₀ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<2.0 × 10 -	90 -0.	' AVERY data for averages	97 5. fits	CLEO L limits.	$E_{\rm CM}^{\rm cm} = 10.6 {\rm GeV}$
$< 3.5 \times 10^{-4}$	90	ALBRECHT	95 H	ARG	$E_{\rm cm}^{ee} = 9.4 - 10.6 {\rm GeV}$
²⁰⁹ AVERY 97 limit varie	es from (1.2	$(-2.0) \times 10^{-4} d$	epend	ding on (decay model assumptions.
$\Gamma(\phi K^- \nu_\tau) / \Gamma_{\text{total}}$					[131/[
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
< 6.7 × 10 ⁻⁵	90 210	AVERY	97	CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$
²¹⁰ AVERY 97 limit varie	es from (5.4	$-6.7) \times 10^{-5} d$	epend	ding on o	decay model assumptions.
$\Gamma(f_1(1285)\pi^-\nu_{\tau})/\Gamma_1$	total				Г ₁₃₂ /Г
VALUE (units 10 ⁻⁺)	EVTS	DOCUMENT ID		TECN	COMMENT
$5.8 - 1.3 \pm 1.8$	54	BERGFELD	97	CLEO	$E_{\rm Cm}^{\rm ecc} = 10.6 {\rm GeV}$
$\Gamma(f_1(1285)\pi^-\nu_\tau\to z)$	$\eta \pi^- \pi^+ \pi^-$	$(-\nu_{\tau})/\Gamma(\eta \pi^{-1})$	π ⁺ π	r ⁻ ν _τ)	Γ ₁₃₃ /Γ ₁₂₄
VALUE		DOCUMENT ID		TECN	COMMENT
0.55 ± 0.14		BERGFELD	97	CLEO	$E_{\rm CM}^{\rm cm} = 10.6 {\rm GeV}$
$\Gamma(\pi(1300)^-\nu_{\tau} \rightarrow (\rho$	$\pi)^- \nu_{\tau} \rightarrow$	$(3\pi)^{-}\nu_{\tau})/\Gamma_{1}$	total		Г ₁₃₄ /Г
<1.0 × 10 ⁻⁴	<u>CL%</u> 90	<u>DOCUMENT ID</u> ASNER	0.0	<u>TECN</u>	$\frac{COMMENT}{E_{em}^{ee}} = 10.6 \text{ GeV}$
- ((1) (1 (1					
$I(\pi(1300)^{-}\nu_{\tau} \rightarrow ((\pi))^{-}\nu_{\tau})$	$\pi\pi$)S-wav	$_{e}\pi)^{-}\nu_{\tau} \rightarrow (3$	iπ) ⁻	ν _τ)/Γ	total F135/F
<1.9 × 10 ⁻⁴	90	ASNER	00	CLEO	$E_{\rm cm}^{ee} = 10.6 {\rm GeV}$
F(h=1) > 0+	.,) /r				
$\Gamma_{136}/\Gamma = (\Gamma_{137} + \Gamma_{136})/\Gamma$	ντ)/ I total Γ ₁₃₈)/Γ				136/
Data marked "avg" and are therefore	" are highly used for the	correlated with d average given b	l ata a e low	appearin but not	g elsewhere in the Listings, in the overall fits. "f&a"
marks results used	for the fit a	and the average.			
	EVIS	DOCUMENT ID		TECN	LUMMENT

2.30 - 0.00						
1.65 ± 0.3	± 0.2	avg	1513	ALBRECHT	88M ARG	$E_{\rm Cm}^{ee} \approx 10 {\rm GeV}$

au

Γ(hων_τ)/Γ_{total} Data marked "a and are therefor	vg" are highly e used for th	r correlated with e average given	data appearin below but no	Γ <mark>137/Γ</mark> g elsewhere in the Listings, t in the overall fits. "f&a"
marks results us <u>VALUE (%)</u>	ed for the fit	and the average <u>DOCUME</u>	NTID <u>1</u>	ECNCOMMENT
1.94 ± 0.07 OUR FIT	RAGE			
1.92 ± 0.07 OOK AVE	f&a 5803	BUSKU	.IC 97c A	LEP 1991-1994 LEP
$1.95 \pm 0.07 \pm 0.11$	avg 2223	²¹¹ BALEST	95 C C	LEO $E_{\rm Cm}^{ee} \approx 10.6 {\rm GeV}$
$1.60 \pm 0.27 \pm 0.41$	f&a 139	BARING	ER 87 C	LEO $E_{\rm CM}^{ee} = 10.5 {\rm GeV}$
²¹¹ Not independent o	f BALEST 95	$C B(\tau^- \rightarrow h^-)$	$\omega \nu_{\tau})/B(\tau - \cdot$	$\rightarrow h^- h^- h^+ \pi^0 \nu_{\tau}$) value.
Γ(h⁻ων_τ)/Γ(h⁻h _{Γ137} /Γ ₆₄ = Γ ₁₃	- h+ π ⁰ ν _τ (₃₇ /(Γ ₆₈ +Γ ₈₆	(ex. K⁰)) ;+Г ₉₀ +0.231Г ₁	₁₉ +0.888Г ₁₃	Γ ₁₃₇ /Γ ₆₄ ₇ +0.0221Γ ₁₃₈)
VALUE	EVTS	<u>DOCUMENT</u>	ID TEC	N COMMENT
0.446±0.015 OUR F	/ERAGE			
$\begin{array}{c} 0.431\pm 0.033\\ 0.464\pm 0.016\pm 0.017\\ \end{array}$	2350 2223	212 BUSKULIC 213 BALEST	96 ALE 95 CCLE	P LEP 1991–1993 data O <i>E</i> ^{ee} _{Cm} ≈ 10.6 GeV
• • • VVe do not use	the tollowing	214 ALPRECH	es, tits, limits	etc. • • • • $E^{ee} = 9.4 \pm 10.6 \text{ GeV}$
212 PUSKING 96 au	400 Note the fract		-b-b+a0	$E_{\rm CM} = 9.4 - 10.6 \text{GeV}$
originate in a h^- $\pi^+\pi^-\pi^0$ branchi	ω final state ng fraction (C	$= 0.383 \pm 0.0$ 0.888).)29. Wediv	de this by the $\omega(782) \rightarrow$
²¹³ BALEST 95€ quo	te the fractio	on of $\tau^- \rightarrow h$	$-h^{-}h^{+}\pi^{0}\nu$	$_{ au}$ (ex. κ^0) decays which
originate in a h^- $\omega(782) \rightarrow \pi^+\pi^-$	ω final state π^0 branching	equals 0.412 \pm fraction (0.888	0.014 ± 0.0	15. We divide this by the
214 ALBRECHT 91D c	uote the fract	tion of $\tau^- \rightarrow h$	$-h^{-}h^{+}\pi^{0}\nu$	$_{ au}$ decays which originate in
a $\pi^- \omega$ final state branching fraction	eq uals $0.33 \pm (0.888)$.	$0.04\pm0.02.$ We	edividethisb;	(the $\omega(782) \rightarrow \pi^+\pi^-\pi^0$
$\Gamma(h^-\omega\pi^0\nu_\tau)/\Gamma_{\rm tot}$	al			Г ₁₃₈ /Г
0.44 ± 0.05 OUR FIT	EVIS	DOCUMENT ID	TECN	COMMENT
$0.43 \pm 0.06 \pm 0.05$	7283	BUSKULIC	97C ALEP	1991-1994 LEP runs
$\Gamma(\hbar^- \omega 2\pi^0 \nu_\tau)/\Gamma_{tc}$	stal			Г ₁₃₉ /Г
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID	TECN	COMMENT
1.4 ±0.4 ±0.3	53 the following	ANASTASSO	V 01 CLEO as fits limits	$E_{\rm CM}^{ee} = 10.6 {\rm GeV}$
$1.89 + 0.74 \pm 0.40$ $1.89 - 0.67 \pm 0.40$	19	ANDERSON	97 CLEO	Repl. by ANAS- TASSOV 01
$ \Gamma(h^{-}\omega\pi^{0}\nu_{\tau})/\Gamma(h) \\ \Gamma_{138}/\Gamma_{52} = \Gamma_{13} \\ 0.6861\Gamma_{46} + \Gamma_{60} \\ 0.9101\Gamma_{137} + 0.7 $	- h -h+≥ ₃₈ /(0.3431Γ3 +Γ ₆₈ +Γ ₇₄ + _{9101Γ138})	$0 \text{ neutrals } \geq 3 + 0.3431\Gamma_{35} + 0.5431\Gamma_{75} + 0.56575 + 0.56775 + 0.577755 + 0.5777555 + 0.577755 + 0.577755 + 0.577755 + 0.577755 + 0.577755 + 0.577755 + 0.577755 + 0.5777555 + 0.5777555 + 0.577755 + 0.5777555 + 0.577755 + 0.577755 + 0.5777555 + 0.5777555 + 0.5777555 + 0.5777555 + 0.5777555 + 0.5777555 + 0.57775555 + 0.5777555 + 0.5777555 + 0.57775555 + 0.577755555 + 0.57775555 + 0.57775555 + 0.5777555555 + 0.5777555555555555555555555555555555555$	ΟΚ⁰μ,) D.3431Γ ₃₈ +0 +Γ ₈₉ +Γ ₉₀ +(Γ₁₃₈/Γ₅₂ 3431Γ ₄₀ +0.4307Γ ₄₅ + 0.285Γ ₁₁₇ +0.285Γ ₁₁₉ +
Data marked "a and are therefor	vg" are highly e used for th	r correlated with e average given	data appearin below but no	g elsewhere in the Listings, t in the overall fits. "f&a"
marks results us <u>VALUE</u>	ed for the fit	and the average <u>VTS DOCU</u>	MENT ID	TECN COMMENT
0.0286±0.0031 OUR 0.028 ±0.003 ±0.00	FIT 3 avg 4	430 ²¹⁵ BORT	FOLETTO93	CLEO $E_{cm}^{ee} \approx 10.6$
$\frac{215}{h^-}$ Not independent $h^- h^- h^+ 2\pi^0 \nu_{\tau}$	of BORT (ex. <i>K</i> ⁰)) valu	OLETTO 93 e.	$\Gamma(\tau^{-} \rightarrow$	$h^- \omega \pi^0 \nu_{\tau}) / \Gamma(\tau^- \rightarrow$
Γ(h⁻ωπ⁰ν_τ)/Γ(h Γ ₁₃₈ /Γ ₇₃ = Γ ₁₃	- h -h+2π ⁰ 38/(Γ ₇₄ +0.2:	⁰ ν _τ (ex. K ⁰)) ^{36Γ} 117+0.888Γ	138)	Г ₁₃₈ /Г ₇₃
VALUE		DOCUMENT ID	TECN	COMMENT
0.81±0.08 OUR FIT 0.81±0.06±0.06		BORTOLETT	093 CLEO	$E_{ m Cm}^{ee} pprox 10.6~ m GeV$
$\Gamma(2h^-h^+\omega\nu_r)/\Gamma_h$	otai			Г <u>140</u> /Г
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID	TECN	COMMENT
$1.2 \pm 0.2 \pm 0.1$	110	A NA STA SSO	V 01 CLEO	E ^{ee} _{CM} = 10.6 GeV
Γ (e⁻γ)/Γ_{total} Test of lepton f	amily number	conservation.		Г ₁₄₁ /Г
VALUE	<u>CL%</u>	DOCUMENT IL		<u>COMMENT</u>
<2.7 × 10 ⁻⁰ • • • We do not use	90 the following	EDWARDS data for average	97 CLEC es. fits. limits) etc. • • •
$<1.1 \times 10^{-4}$	90	ABREU	950 DLPF	1 1990-1993 LEP runs
$< 1.2 \times 10^{-4}$	90	ALBRECHT	92K ARG	$E_{\rm cm}^{ee} = 10 {\rm GeV}$
$< 2.0 \times 10^{-4}$	90	KEH	88 CBAI	$E_{\rm cm}^{ee} = 10 {\rm GeV}$
$< 6.4 \times 10^{-4}$	90	HAYES	82 MRK	2 Ečm = 3.8−6.8 GeV

Γ(μ ⁻ γ)/Γ _{total} Test of lepton	family number	conservation.		Г ₁₄₂ /Г
VALUE	<u>CL %</u>	DOCUMENT ID	TEC N	COMMENT
< 1.1 × 10 ⁻⁶	90	AHMED	00 CLEO	E ^{ee} _{CM} = 10.6 GeV
• • • We do not use	e the following	data for average	s, fits, limits,	etc. • • •
$< 3.0 \times 10^{-6}$	90	EDWARDS	97 CLEO	
$< 6.2 \times 10^{\circ}$	90	BEAN	950 DLPH	1990-1993 LEP runs E ^{ee} - 10.6 GeV
$< 3.4 \times 10^{-5}$	90	ALBRECHT	92K ARG	$E_{\rm CM} = 10.6 {\rm GeV}$
< 5.4 × 10 <55 × 10 ⁻⁵	90	HAVES	82 MRK3	$E_{\rm CM} = 10 {\rm GeV}$
<	20	HATES	02 WINN2	
$\Gamma(e^-\pi^0)/\Gamma_{\text{total}}$ Test of lepton	family number	conservation.	TECH	Г ₁₄₃ /Г
× 27×10-6		BONVICINI		
• • • We do not use	90 the following	data for average	s fits limits	etc • • •
< 17 v 10 ⁻⁵	00			500 - 10 CoV
$< 11 \times 10^{-5}$	90	KEH	88 CRAI	$E_{\rm CM} = 10 \text{ GeV}$
$< 14 \times 10^{-5}$	90	HAYES	82 MRK2	$E_{\rm Cm} = 10 {\rm GeV}$
(210 // 10			02 101101	
Γ (μ ⁻ π ⁰)/Γ _{total} Test of lepton	family number	conservation.		Г ₁₄₄ /Г
VALUE	<u></u> <u>CL%</u>	DOCUMENT ID		<u>COMMENT</u>
< 4.0 × 10 *	90 the followir -	BUNVICINI	97 CLEO	⊭ _{čm} = 10.6 GeV
• • • vve do not use	ane rollowing	and for average	one too	CIC. • • •
$< 4.4 \times 10^{-5}$ $< 82 \times 10^{-5}$	90 90	HAYES	92K ARG 82 MRK2	$E_{\rm cm}^{ee} = 10 {\rm GeV}$ 2 $E_{\rm cm}^{ee} = 3.8 - 6.8 {\rm GeV}$
Γ(e ⁻ K ⁰ _S)/Γ _{total} Test of lepton	family number	conservation.		Г ₁₄₅ /Г
VALUE	<u>CL%</u>	DOCUMENT ID	TEC N	COMMENT
< 9.1 × 10 ⁻⁷	90	CHEN	02C CLEO	E ^{ee} _{CM} = 10.6 GeV
• • • We do not use	the following	data for average	s, fits, limits,	etc. • • •
$<1.3 \times 10^{-3}$	90	HAYES	82 MRK2	2 E ^{ee} _{Cm} = 3.8-6.8 GeV
$\Gamma(\mu^- K^0_S) / \Gamma_{\text{total}}$ Test of lepton	family number	conservation.	TECH	Г ₁₄₆ /Г
<95 × 10-7	90	CHEN		E ^{ee} - 10.6 GeV
• • • We do not use	the following	data for average	s. fits. limits.	etc. • • •
$< 1.0 imes 10^{-3}$	90	HAYES	82 MRK2	2 E ^{ee} _{cm} = 3.8-6.8 GeV
$\Gamma(e^{-}n)/\Gamma_{\text{total}}$				[147/]
Test of lepton	family number	conservation.		
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
< 8.2 × 10 ⁻⁶	90	BONVICINI	97 CLEO	$E_{\rm Cm}^{\rm ee} = 10.6 {\rm GeV}$
• • • We do not use	e the following	data for average	s, fits, limits,	etc. • • •
$< 6.3 \times 10^{-5}$ $< 24 \times 10^{-5}$	90 90	ALBRECHT KEH	92KARG 88 CBAL	$E_{cm}^{ee} = 10 \text{ GeV}$ $E_{cm}^{ee} = 10 \text{ GeV}$
_/ \.				sill.
Γ(μ ⁻ η)/Γ _{total} Test of lepton	family number	conservation.		Г ₁₄₈ /Г
VALUE	<u> CL%_</u>	DOCUMENT ID	TECN	COMMENT
< 9.6 × 10 •	90 	BONVICINI	97 CLEO	$E_{\rm Cm}^{\rm cm} = 10.6 {\rm GeV}$
$<7.3 \times 10^{-5}$	90	ALBRECHT	92K ARG	$E_{\rm cm}^{ee} = 10 {\rm GeV}$
$\Gamma(e^- \rho^0) / \Gamma_{\text{total}}$	f 11 11			Г ₁₄₉ /Г
VALUE	CL%	CONSERVATION. DOCUMENT ID	TEC N	COMMENT
$< 2.0 \times 10^{-6}$	90	BLISS	98 CLEO	$E_{cm}^{ee} = 10.6 \text{ GeV}$
• • • We do not use	the following	data for average	s, fits, limits,	etc. • • •
$< 0.42 \times 10^{-5}$	90 2	* BARTELT	94 CLEO	Repl. by BLISS 98
$< 1.9 \times 10^{-5}$	90	ALBRECHT	92K ARG	$E_{\rm CM} = 10 {\rm GeV}$
< 31 × 10 ° 216 BARTELT 94 ass	90 ume phase soa	HAYES ace decavs.	82 MRK2	ε ε _{čm} = 3.8−6.8 GeV
r/ = 0\;=	,pr	<i>y</i>		
$(\mu \rho^*)/ _{total}$	family pumber	concernation		I 150/
VALUE	canny number	DOCUMENT ID	<u>TE</u> C N	COMMENT
$< 6.3 \times 10^{-6}$	90	BLISS	98 CLEO	$E_{\rm cm}^{ee} = 10.6 {\rm GeV}$
• • • We do not use				
	the following	data for average	s, fits, limits,	etc. • • •
$< 0.57 \times 10^{-5}$	the following 90 ²	data for average [:] ¹⁷ BARTELT	s, fits, limits, 94 CLEO	etc. • • • Repl. by BLISS 98
$< 0.57 \times 10^{-5} \\ < 2.9 \times 10^{-5}$	the following 90 2 90	data for average ¹⁷ BARTELT ALBRECHT	s, fits, limits, 94 CLEO 92к ARG	etc. • • • Repl. by BLISS 98 $E_{cm}^{ee} = 10 \text{ GeV}$

I

L

²¹⁷BARTELT 94 assume phase space decays.

431 Lepton Particle Listings

au

$(e^{-K^{*}(892)^{\circ}})/ _{tot}$	al					Г ₁₅₁ /Г
Test of lepton fami	ly number c	onservation.		TECN	COMMENT	
-51 v10-6	90	DUCUMENTID	0.0		E ^{ee} _ 10 6 C-	V
• • We do not use the	following 4	ata for overages	90 fita	limite	-cm - 10.0 Ge	•
	an 21	aca ioi averages 8 DADTEIT	, 1115		Banl by BLICS	. 00
< 0.63 × 10 °	90	AIRDECUT	94		E ^{ee} - 10 CoV	98
18		AEBRECHT	92	K ANG	-cm - 10 0ev	
¹⁰ BARTELT 94 assume	e phase spac	e decays.				
(μ ⁻ K*(892) ⁰)/Γ _{tot} Test of lepton fami	al ly number c	onservation.				Г ₁₅₂ /Г
ALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<7.5 ×10 ⁻⁰	90	BLISS	98	CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm Ge}$	v
• • We do not use the	following d	ata for averages	, fits	, limits,	etc. • • •	
0.94 × 10 ⁻⁵	90 21	9 BARTELT	94	CLEO	Repl. by BLISS	5 98
(4.5×10^{-5})	90	ALBRECHT	92	K ARG	$E_{\rm Cm}^{\rm ec} = 10 {\rm GeV}$	
⁹ BARTELT 94 assume	e phase spac	e decays.				
(e= <u>K</u> *(892) ⁰)/[-1					[
Test of lepton fami	aı İy number c	onservation.				. 123/1
LUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	
7.4 × 10 ⁻⁶	90	BLISS	98	CLEO	$E_{\rm CM}^{ee} = 10.6~{\rm GeV}$	
• • We do not use the	following d	ata for averages	, fits	, limits,	etc. • • •	
1.1×10^{-5}	90 220	BARTELT	94	CLEO	Repl. by BLISS	98
⁰ BARTELT 94 assume	phase space	e decays.				
/ 						
$(\mu^{-}K^{*}(892)^{v})/\Gamma_{tot}$	al					Г ₁₅₄ /Г
lest of lepton fami	iy number c	onservation.		TECN	COMMENT	
7.5 × 10 ⁻⁶	90	BLISS	98	CLEO	$F_{ee}^{ee} = 10.6 \text{ GeV}$	
We do not use the	following d	ata for averages	. fite	. limits	-cm - 10.0 Gev	
0.87 × 10 ⁻⁵	90 221	BARTELT	,з 	CLEO	Repl by PLICE	98
1 DADTELT AL		DARIELI	94	CLEU	Nept. by DE155	20
- BARIELI 94 assume	e phase spac	e decays.				
$(e^-\phi)/\Gamma_{total}$						Г155 /Г
Test of lepton fami	ly number c	onservation.				
ALUE 6	<u>CL%</u>	DOCUMENTID		TECN	COMMENT	
					00	
6.9 × 10 ⁻⁰	90	BLISS	98	CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$	
:6.9 × 10 [−] ° (μ− φ)/Γ. · ·	90	BLISS	98	CLEO	$E_{\rm cm}^{ee} = 10.6 {\rm GeV}$	Гля <i>с /</i> Г
(μ−φ)/Γ_{total} Test of lepton fami	90 ly number c	BLISS onservation.	98	CLEO	E ^{ee} _{cm} = 10.6 GeV	Г ₁₅₆ /Г
6.9 × 10 ⁻⁰ (μ ⁻ φ)/Γ _{total} Test of lepton fami LUE	90 ly number c <u>CL%</u>	BLISS onservation. <u>DOCUMENT ID</u>	98	CLEO <u>TECN</u>	Е ^{ee} _{CM} = 10.6 GeV <u>соммент</u>	Г ₁₅₆ /Г
(μ [−] φ)/Γ _{total} Test of lepton fami ;7.0 × 10 ^{−6}	90 ly number c <u>CL%</u> 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS	98	CLEO <u>TECN</u> CLEO	$E_{\rm cm}^{ee} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{\rm cm}^{ee}} = 10.6 \text{ GeV}$	Г156/Г
$(\mu^{-}\phi)/\Gamma_{\text{total}}$ Test of lepton fami $\frac{\mu}{100}$ (7.0 × 10 ⁻⁶	90 ly number c <u>CL%</u> 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS	98 98	CLEO <u>TECN</u> CLEO	$E_{CM}^{ee} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{CM}^{ee}} = 10.6 \text{ GeV}$	Г <u>156</u> /Г
$\frac{(\mu^- \phi)}{\text{Test of lepton fami}}$ Test of lepton fami $\frac{\mu}{2}$ ($e^- e^+ e^-$)/ Γ_{total} Test of lepton family	90 ly number c <u>CL%</u> 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS	98	CLEO <u>TECN</u> CLEO	$E_{\rm CM}^{ee} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{\rm CM}^{ee}} = 10.6 \text{ GeV}$	Г ₁₅₆ /Г Г ₁₅₇ /Г
$(\mu^- \phi)/\Gamma_{\text{total}}$ Test of lepton fami UUE $(\tau - e^+ e^-)/\Gamma_{\text{total}}$ Test of lepton fami UUE	90 ly number c <u>CL%</u> 90 ly number c <i>CL</i> %	BLISS onservation. <u>DOCUMENT ID</u> BLISS onservation. <u>DOCUMENT ID</u>	98 98	CLEO <u>TECN</u> CLEO	$E_{Cm}^{ee} = 10.6 \text{ GeV}$ <u>COMMENT</u> $E_{Cm}^{ee} = 10.6 \text{ GeV}$ <u>COMMENT</u>	Г ₁₅₆ /Г Г ₁₅₇ /Г
$(\mu^- \phi)/\Gamma_{\text{total}}$ Test of lepton fami <u>UUE</u> $(e^- e^+ e^-)/\Gamma_{\text{total}}$ Test of lepton fami <u>UUE</u> (2.9×10^{-6})	90 ly number c <u>CL%</u> 90 ly number c <u>CL%</u> 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS onservation. <u>DOCUMENT ID</u> BLISS	98 98 98	CLEO <u>TECN</u> CLEO <u>TECN</u> CLEO	$E_{Cm}^{ee} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{Cm}^{ee}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{Cm}^{ee}} = 10.6 \text{ GeV}$	Г ₁₅₆ /Г Г ₁₅₇ /Г
$(\mu^- \phi)/\Gamma_{\text{total}}$ Test of lepton fami LUE $(e^- e^+ e^-)/\Gamma_{\text{total}}$ Test of lepton fami LUE 2.9 × 10 ⁻⁶ • We do not use the	90 ly number c <u>CL%</u> 90 ly number c <u>CL%</u> 90 following d	BLISS onservation. <u>DOCUMENT ID</u> BLISS onservation. <u>DOCUMENT ID</u> BLISS ata for averages	98 98 98 98	CLEO <u>TECN</u> CLEO <u>TECN</u> CLEO	$E_{Cm}^{ee} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{Cm}^{ee}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{Cm}^{ee}} = 10.6 \text{ Ge}$	Г <u>156</u> /Г Г <u>157</u> /Г V
$(\mu^{-}\phi)/\Gamma_{\text{total}}$ Test of lepton fami LUE $(e^{-}e^{+}e^{-})/\Gamma_{\text{total}}$ Test of lepton fami LUE (UE)	90 ly number of <u>CL%</u> 90 ly number of <u>CL%</u> 90 following d 90 22	BLISS onservation. <u>DOCUMENTID</u> BLISS onservation. <u>DOCUMENTID</u> BLISS ata for averages 2 RAPTEIT	98 98 98 , fits	CLEO <u>TECN</u> CLEO , limits, CLEO	$E_{cm}^{ee} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 10.6 \text{ GeV}$ etc. •••	Γ ₁₅₆ /Γ Γ ₁₅₇ /Γ
$(\mu^-\phi)/\Gamma_{\text{total}}$ Test of lepton fami ALUE $(c^-e^+e^-)/\Gamma_{\text{total}}$ Test of lepton fami ALUE (2.9×10^{-6}) • We do not use the (0.33×10^{-5}) (1.3×10^{-5})	90 ly number of <u>CL%</u> 90 ly number of <u>CL%</u> 90 following d 90 22 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS onservation. <u>DOCUMENT ID</u> BLISS ata for averages ² BARTELT ALBRECHT	98 98 98 98 98 98 98 98 98 94 92	CLEO <u>TECN</u> CLEO , limits, CLEO K ARG	$E_{cm}^{em} = 10.6 \text{ GeV}$ $COMMENT$ $E_{cm}^{em} = 10.6 \text{ GeV}$ $COMMENT$ $E_{cm}^{em} = 10.6 \text{ GeV}$	F₁₅₆/F F₁₅₇/F ∨
$(\mu^- \phi)/\Gamma_{\text{total}}$ Test of lepton fami AUE $(e^- e^+ e^-)/\Gamma_{\text{total}}$ Test of lepton fami AUE (2.9×10^{-6}) • We do not use the (0.33×10^{-5}) (2.7×10^{-5})	90 ly number c <u>CL%</u> 90 ly number c <u>CL%</u> 90 following d 90 22 90 90	BLISS onservation. <u>DOCUMENTID</u> BLISS ata for averages ² BARTELT ALBRECHT BDWCOCK	98 98 98 , fits 94 92 90	CLEO <u>TECN</u> CLEO , limits, CLEO K ARG CLEO	$E_{cm}^{em} = 10.6 \text{ GeV}$ <u>comment</u> $E_{cm}^{em} = 10.6 \text{ GeV}$ <u>comment</u> $E_{cm}^{em} = 10.6 \text{ GeV}$ Repl. by BLISS $E_{cm}^{em} = 10 \text{ GeV}$	F₁₅₆/F F₁₅₇/F ∨ 5 98
$(\mu^{-}\phi)/\Gamma_{\text{total}}$ Test of lepton fami <i>WUE</i> (7.0 × 10 ⁻⁶ $(e^{-}e^{+}e^{-})/\Gamma_{\text{total}}$ Test of lepton fami <i>LUE</i> 2.9 × 10 ⁻⁶ • We do not use the 0.33×10^{-5} 1.3×10^{-5} 2.7×10^{-5} 40×10^{-5}	90 ly number c <u>CL%</u> 90 ly number c <u>CL%</u> 90 following d 90 22 90 90 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS BLISS BLISS ata for averages ² BARTELT ALBRECHT BOWCOCK HAYES	98 98 98 98 98 98 98 98 92 90 82	CLEO <u>TECN</u> CLEO , limits, CLEO K ARG CLEO MRK2	$E_{cm}^{em} = 10.6 \text{ GeV}$ <u>comment</u> $E_{cm}^{em} = 10.6 \text{ GeV}$ <u>comment</u> $E_{cm}^{em} = 10.6 \text{ GeV}$ etc. • • Repl. by BLISS $E_{cm}^{em} = 10 \text{ GeV}$ $E_{cm}^{em} = 10.4 \text{ GeV}$ $E_{cm}^{em} = 10.4 \text{ GeV}$	F₁₅₆/F F₁₅₇/F V 5 98 .9 GeV
$(\mu - \phi)/\Gamma_{\text{total}}$ Test of lepton fami <i>LUE</i> ($e^- e^+ e^-$)/ Γ_{total} Test of lepton fami <i>LUE</i> : 2.9 × 10 ⁻⁶ • • We do not use the 0.33 × 10 ⁻⁵ 1.3 × 10 ⁻⁵ 2.7 × 10 ⁻⁵ 40 × 10 ⁻⁵	90 ly number c <u>CL%</u> 90 ly number c <u>CL%</u> 90 following d 90 22 90 90 90 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS onservation. <u>DOCUMENT ID</u> BLISS ata for averages 2 BART ELT ALBRECHT BOWCOCK HAYES	98 98 98 98 98 98 98 92 90 82	CLEO <u>TECN</u> CLEO , limits, CLEO K ARG CLEO MRK2	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ etc. • • • Repl. by BLISS $E_{cm}^{em} = 10 \text{ GeV}$ $E_{cm}^{em} = 10 \text{ GeV}$	Γ156/Γ Γ157/Γ ∨ 5 98 .9 GeV
$(\mu^{-}\phi)/\Gamma_{\text{total}}$ Test of lepton fami ALUE ($e^{-}e^{+}e^{-})/\Gamma_{\text{total}}$ Test of lepton fami ALUE ($e^{-}e^{+})/\Gamma_{\text{total}}$ Test of lepton fami ALUE ($e^{-}e^{+})/\Gamma_{\text{total}}$ Test of lepton fami ALUE ($e^{-}e^{+})/\Gamma_{\text{total}}$ Test of lepton fami ALUE ($e^{-}e^{+})/\Gamma_{\text{total}}$ Test of lep	90 ly number c <u>CL%</u> 90 ly number c <u>CL%</u> 90 10 10 10 10 10 10 10 10 10 1	BLISS onservation. <u>DOCUMENT ID</u> BLISS onservation. <u>DOCUMENT ID</u> BLISS ata for averages 2 BARTELT ALBRECHT BOWCOCK HAYES e decays.	98 98 98 98 98 98 98 98 92 90 82	CLEO <u>TECN</u> CLEO , limits, CLEO K ARG CLEO MRK2	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $etc. \bullet \bullet$ Repl. by BLISS $E_{cm}^{em} = 10.6 \text{ GeV}$ $E_{cm}^{em} = 10.4 \text{ -} 10$ $E_{cm}^{em} = 3.8 \text{ -} 6.8$	F₁₅₆/f F₁₅₇/f V 5 98 .9 GeV
$\langle 6.9 \times 10^{-9} \rangle$ Test of lepton fami ALUE $\langle 7.0 \times 10^{-6} \rangle$ $\mathbf{(e^-e^+e^-)/\Gamma total}$ Test of lepton fami ALUE $\langle 2.9 \times 10^{-6} \rangle$ • We do not use the $\langle 0.33 \times 10^{-5} \rangle$ $\langle 2.7 \times 10^{-5} \rangle$ $\langle 2.7 \times 10^{-5} \rangle$ $\langle 2.9 \times 10^{-5} \rangle$ $\langle 2.9 \times 10^{-5} \rangle$ $\langle 2.7 \times 10^{-5} \rangle$ $\langle 2.9 \times 10^{-5} \rangle$	90 ly number c <u>CL%</u> 90 ly number c <u>CL%</u> 90 following d 90 20 90 90 90 90 90 90	BLISS onservation. <i>DOCUMENT ID</i> BLISS BLISS BLISS ata for averages 2 BARTELT ALBRECHT BOWCOCK HAYES e decays.	98 98 98 98 98 98 98 90 82	CLEO <u>TECN</u> CLEO , limits, CLEO K ARG CLEO MRK2	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ Repl. by BLISS $E_{cm}^{em} = 10 \text{ GeV}$ $E_{cm}^{em} = 10.4-10$ $E_{cm}^{em} = 3.8-6.8$	Γ ₁₅₆ /Γ Γ ₁₅₇ /Γ V 5 98 .9 GeV Γ ₁₅₈ /Γ
$(e^{-9} \times 10^{-9})/\Gamma_{\text{total}}$ Test of lepton fami Aute (7.0 × 10^{-6})/\Gamma_{\text{total}} Test of lepton fami Aute (2.9 × 10^{-6})/\Gamma_{\text{total}} Test of lepton fami Aute (2.9 × 10^{-5})/\Gamma_{\text{total}} (3.3 × 10^{-5}) (1.3 × 10^{-5})/\Gamma_{\text{total}} Test of lepton fami Test of lepton fami	90 ly number c <u>C1%</u> 90 ly number c <u>C1%</u> 90 10 10 10 10 10 10 10 10 10 1	BLISS onservation. <u>DOCUMENT ID</u> BLISS anservation. <u>DOCUMENT ID</u> BLISS ata for averages 2 BARTELT ALBRECHT BOWCOCK HAYES e decays. onservation.	98 98 98 98 98 98 98 92 90 82	CLEO <u>TECN</u> CLEO , limits, CLEO K ARG CLEO MRK2	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $etc. \bullet \bullet$ Repl. by BLISS $E_{cm}^{em} = 10.6 \text{ eV}$ $E_{cm}^{em} = 10.4 \text{ -10}$ $E_{cm}^{em} = 3.8 \text{ -6.8}$	Γ156/Γ Γ157/Γ ∨ : 98 .9 GeV Γ158/Γ
$(\mu^{-}\phi)/\Gamma_{total}$ Test of lepton fami AUE $(e^{-}e^{+}e^{-})/\Gamma_{total}$ Test of lepton fami AUE $(e^{-}e^{+}e^{-})/\Gamma_{total}$ Test of lepton fami AUE (2.9×10^{-5}) (2.3×10^{-5}) (2.7×10^{-5}) (90 ly number c <u>C1%</u> 90 ly number c <u>C1%</u> 90 20 90 90 90 90 90 90 90 90 90 9	BLISS onservation. <u>DOCUMENT ID</u> BLISS onservation. <u>DOCUMENT ID</u> BLISS ata for averages 2 BARTEIT ALBRECHT BOWCOCK HAYES e decays. onservation. <u>DOCUMENT ID</u>	98 98 98 98 98 98 98 92 90 82	CLEO <u>TECN</u> CLEO , limits, CLEO K ARG CLEO MRK2 <u>TECN</u>	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $E_{cm}^{em} = 10.6 \text{ GeV}$ $E_{cm}^{em} = 10 \text{ GeV}$ $E_{cm}^{em} = 10 \text{ GeV}$ $E_{cm}^{em} = 10 \text{ A-10}$ $E_{cm}^{em} = 3.8 - 6.8$ $\frac{COMMENT}{E_{cm}^{em}} = 10 \text{ GeV}$	Γ156/Γ Γ157/Γ ν 5 98 .9 GeV Γ158/Γ
$(\mu^{-}\phi)/\Gamma_{\text{total}}$ Test of lepton fami <i>LUE</i> 7.0 × 10 ⁻⁶ (e ⁻ e ⁺ e ⁻)/\Gamma_{\text{total}} Test of lepton fami <i>LUE</i> • • We do not use the 0.33 × 10 ⁻⁵ 1.3 × 10 ⁻⁵ 2.7 × 10 ⁻⁵ 40 × 10 ⁻⁵ ¹² BARTELT 94 assume (e ⁻ \mu ⁺ \mu ⁻)/\Gamma_{\text{total}} Test of lepton fami <i>LUE</i> : 1.8 × 10 ⁻⁶	90 ly number c <u>CL%</u> 90 ly number c <u>CL%</u> 90 90 90 90 90 90 90 90 90 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS ata for averages 2 BARTELT ALBRECHT BOWCOCK HAYES e decays. onservation. <u>DOCUMENT ID</u> BLISS	98 98 98 98 98 98 90 82 90 82	CLEO <u>TECN</u> CLEO , limits, CLEO K ARG CLEO MRK2 <u>TECN</u> CLEO	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $etc. \bullet \bullet$ Repl. by BLISS $E_{cm}^{em} = 10 \text{ GeV}$ $E_{cm}^{em} = 10 \text{ GeV}$ $E_{cm}^{em} = 3.8 - 6.8$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$	F156/F F157/F ∨ 5.98 GeV F158/F ∨
$(\mu^{-}\phi)/\Gamma_{\text{total}}$ Test of lepton family the formation form the formation family to the formation formation for the formation family the formation formation for the formation family the formation family formation for the formation for the formation formation formation for the formation for the formation for	90 ly number c <u>CL%</u> 90 ly number c <u>90</u> following d 90 90 90 90 90 90 90 90 90 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS ata for averages 2 BARTELT ALBRECHT BOWCOCK HAYES e decays. onservation. <u>DOCUMENT ID</u> BLISS ata for averages	98 98 98 98 94 92 90 82 90 82 98 , fits	CLEO <u>TECN</u> CLEO <u>TECN</u> CLEO K ARG CLEO MRK2 <u>TECN</u> CLEO , limits,	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ Repl. by BLISS $E_{cm}^{em} = 10 \text{ GeV}$ $E_{cm}^{em} = 10.4 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$	Γ₁₅₆/Γ Γ₁₅₇/Γ ∨ ⁵ 98 ^{.9} GeV Γ₁₅₈/Γ ∨
($\mu^{-}\phi$)/ Γ_{total} Test of lepton familize ($\mu^{-}\phi$)/ Γ_{total} Test of lepton familize ($e^{-}e^{+}e^{-}$)/ Γ_{total} Test of lepton familize 2.9×10^{-6} • We do not use the 0.33×10^{-5} 1.3×10^{-5} 2.7×10^{-5} ¹² BARTELT 94 assume ($e^{-}\mu^{+}\mu^{-}$)/ Γ_{total} Test of lepton familize : 1.8 $\times 10^{-6}$ • We do not use the 0.36×10^{-5}	90 ly number of <u>C1%</u> 90 ly number of <u>C1%</u> 90 20 90 90 90 90 90 90 90 90 90 9	BLISS onservation. <u>DOCUMENT ID</u> BLISS BLISS BLISS BLISS BLISS BLISS BARTELT ALBRECHT BOWCOCK HAYES e decays. onservation. <u>DOCUMENT ID</u> BLISS ata for averages BARTELT	98 98 98 98 94 92 90 82 90 82 98 , fits 94	CLEO <u>TECN</u> CLEO CLEO CLEO K ARG CLEO MRK2 <u>CLEO</u> MRK2 CLEO MRK2	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $E_{cm}^{em} = 10.6 \text{ GeV}$ $E_{cm}^{em} = 10.6 \text{ GeV}$ $E_{cm}^{em} = 10.4 \text{ GeV}$ $E_{cm}^{em} = 10.4 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$	Γ156/Γ Γ157/Γ ∨ 3 98 3 98 GeV Γ158/Γ ∨ 3 98
($\mu = \psi$)/ Γ_{total} Test of lepton family <i>UVE</i> Test of lepton family <i>UVE</i> Test of lepton family <i>UVE</i> 2.9 × 10 ⁻⁶ • We do not use the 0.33 × 10 ⁻⁵ 1.3 × 10 ⁻⁵ 2.7 × 10 ⁻⁵ 2.7 × 10 ⁻⁵ 2 ² BARTELT 94 assume ($e^{-\mu} + \mu^{-}$)/ Γ_{total} Test of lepton family <i>UVE</i> • We do not use the 0.36 × 10 ⁻⁵ 1.9 × 10 ⁻⁵	90 ly number of <u>C1%</u> 90 ly number of <u>C1%</u> 90 20 90 90 90 90 90 90 90 90 90 9	BLISS onservation. <u>DOCUMENT ID</u> BLISS anservation. <u>DOCUMENT ID</u> BLISS ata for averages PBARTELT ALBRECHT BOWCOCK HAYES e decays. onservation. <u>DOCUMENT ID</u> BLISS ata for averages BARTELT ALBRECHT	98 98 98 98 94 92 90 82 90 82 90 82 91 92 92	CLEO <u>TECN</u> CLEO <u>CLEO</u> <u>CLEO</u> <u>CLEO</u> <u>CLEO</u> <u>CLEO</u> <u>CLEO</u> <u>CLEO</u> <u>CLEO</u> <u>CLEO</u> <u>CLEO</u> <u>CLEO</u> <u>CLEO</u>	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $E_{cm}^{em} = 10.4 \text{ -10}$ $E_{cm}^{em} = 10.4 \text{ -10}$ $E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$	Γ156/Γ Γ157/Γ ν 9 98 98 98 98 Γ158/Γ ν 5 98
6.9 × 10 ⁻⁰ ($\mu^{-\phi}$)/ Γ_{total} Test of lepton fami Test of lepton fami <i>UE</i> 2.9 × 10 ⁻⁶ 6. We do not use the 0.33 × 10 ⁻⁵ 1.3 × 10 ⁻⁵ 2.7 × 10 ⁻⁵ 2.7 × 10 ⁻⁵ 2.8 ARTELT 94 assumt ($e^{-\mu}\mu^{-}\mu^{-}$)/ Γ_{total} Test of lepton fami <i>UE</i> 1.8 × 10 ⁻⁶ • We do not use the 0.36 × 10 ⁻⁵ 2.7 × 10 ⁻⁵ 1.3 × 10 ⁻⁵ 2.7 × 10 ⁻⁵ 2.7 × 10 ⁻⁵ 2.7 × 10 ⁻⁵ 3.8 × 10 ⁻⁶ • We do not use the 0.36 × 10 ⁻⁵ 2.7 × 10 ⁻⁵ 2.7 × 10 ⁻⁵ 2.7 × 10 ⁻⁵ 3.8 × 10 ⁻⁵ 3.9 × 10 ⁻⁵ 3.9 × 10 ⁻⁵ 3.0	90 ly number c <u>C1%</u> 90 ly number c <u>C1%</u> 90 following d 90 90 90 90 90 90 90 90 90 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS ata for averages 2 BARTELT ALBRECHT BOWCOCK HAYES e decays. onservation. <u>DOCUMENT ID</u> BLISS ata for averages 3 BARTELT ALBRECHT BOWCOCK	98 98 98 98 98 94 92 90 82 90 82 90 82 91 92 92 90	CLEO <u>TECN</u> CLEO , limits, CLEO K ARG CLEO MRK2 - <u>TECN</u> CLEO K ARG CLEO CLEO CLEO	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$	Γ156/Γ Γ157/Γ V V S 98 .9 GeV Γ158/Γ V V S 98 .9 .9
($\mu^{-}\phi$)/ Γ_{total} Test of lepton familize Test of lepton familize Tot to 1 epton familize Tot to 1 epton familize Test of lepton familize 2.9 × 10 ⁻⁶ • We do not use the 0.33 × 10 ⁻⁵ 1.3 × 10 ⁻⁵ 2.7 × 10 ⁻⁵ ² BARTELT 94 assume ($e^{-}\mu^{+}\mu^{-}$)/ Γ_{total} Test of lepton familize UE 1.8 × 10 ⁻⁶ • We do not use the 0.36 × 10 ⁻⁵ 1.9 × 10 ⁻⁵ 2.7 × 10 ⁻⁵ 3.3 × 10 ⁻⁵	90 ly number c <u>CL%</u> 90 ly number c <u>90</u> 90 90 90 90 90 90 90 90 90 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS ata for averages BARTELT ALBRECHT BOWCOCK HAYES ata for averages BLISS ata for averages BLISS ata for averages BLISS	98 98 98 98 98 94 92 90 82 90 82 98 94 92 90 82	CLEO <u>TECN</u> CLEO <u>TECN</u> CLEO K ARG CLEO K ARG CLEO K ARG CLEO K ARG CLEO	$E_{cm}^{cm} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{cm}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{cm}} = 10.6 \text{ GeV}$ Repl. by BLISS: $E_{cm}^{cm} = 10.4 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{cm}} = 10.6 \text{ GeV}$ Repl. by BLISS: $E_{cm}^{cm} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{cm}} = 10.6 \text{ GeV}$	Γ156/Γ Γ157/Γ V 5 98 .9 GeV Γ158/Γ V 5 98 .9 GeV
($\mu^{-}\phi)/\Gamma_{total}$ Test of lepton family test of lepton family	90 ly number c <u>CL%</u> 90 ly number c <u>CL%</u> 90 following d 90 22 90 90 90 90 90 90 19 number c <u>CL%</u> 90 90 90 90 90 90 90 90 90 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS at for averages ² BARTELT ALBRECHT BOWCOCK HAYES e decays. onservation. <u>DOCUMENT ID</u> BLISS at for averages ³ BARTELT ALBRECHT BOWCOCK HAYES e decays. ³ Conservation. Conservation. DOCUMENT ID BLISS at for averages ³ BARTELT ALBRECHT BOWCOCK HAYES e decays.	98 98 98 98 98 98 92 90 82 98 94 92 90 82	CLEO <u>TECN</u> CLEO <u>TECN</u> CLEO CLEO CLEO MRK2 CLEO MRK2	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.4 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.4 \text{ GeV}$	Γ156/Γ Γ157/Γ V S 98 .9 GeV Γ158/Γ V S 98 .9 GeV
$(\mu^{-}\phi)/\Gamma_{total}$ Test of lepton fami AUVE Test of lepton fami AUVE (e^-e^+e^-)/\Gamma_{total} Test of lepton fami AUVE (2.9 × 10 ⁻⁶ • We do not use the (0.33 × 10 ⁻⁵ (1.3 × 10 ⁻⁵ (2.7 × 10 ⁻⁵) (2.7 × 10 ⁻⁵) (e^-\mu^+\mu^-)/\Gamma_{total} Test of lepton fami AUVE (1.8 × 10 ⁻⁶ • We do not use the (0.36 × 10 ⁻⁵) (2.7	90 ly number of <u>C1%</u> 90 ly number of <u>C1%</u> 90 20 90 90 90 90 90 90 90 90 90 9	BLISS onservation. <u>DOCUMENT ID</u> BLISS ata for averages ² BARTELT ALBRECHT BOWCOCK HAYES e decays. onservation. <u>DOCUMENT ID</u> BLISS ata for averages ³ BARTELT ALBRECHT BOWCOCK HAYES e decays.	98 98 98 98 98 98 92 90 82 98 92 94 92 90 82	CLEO TECN CLEO - TECN CLEO K ARG CLEO MRK2 - TECN CLEO MRK2 CLEO K ARG CLEO K ARG CLEO MRK2	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $E_{cm}^{em} = 10.4 \text{ -10}$ $E_{cm}^{em} = 10.4 \text{ -10}$ $E_{cm}^{em} = 10.6 \text{ GeV}$	Γ156/Γ Γ157/Γ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
$\langle 6.9 \times 10^{-9}$ $(\mu^- \phi)/\Gamma_{total}$ Test of lepton fami AUE $<7.0 \times 10^{-6}$ $(e^- e^+ e^-)/\Gamma_{total}$ Test of lepton fami AUE $< 2.9 \times 10^{-6}$ • We do not use the $< 0.33 \times 10^{-5}$ $< 2.7 \times 10^{-5}$ $< 40 \times 10^{-5}$ $^{22}BARTELT 94$ assume $(e^- \mu^+ \mu^-)/\Gamma_{total}$ Test of lepton fami AUE $< 1.8 \times 10^{-6}$ • We do not use the $< 0.36 \times 10^{-5}$ $< 2.7 \times 10^{-5}$ $< 1.9 \times 10^{-5}$ $< 2.7 \times 10^{-5}$ $< 3.3 \times 10^{-5}$ $< 2.7 \times 10^{-5}$ $< 3.3 \times 10^{-5}$ $< 2.7 \times 10^{-5}$ $< 3.3 \times 10^{-5}$ $< 3.5 \times 10^{-5}$	90 ly number c <u>C1%</u> 90 ly number c <u>C1%</u> 90 climit d 90 22 90 90 90 90 90 90 90 90 90 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS anservation. <u>DOCUMENT ID</u> BLISS ata for averages 2 BARTELT ALBRECHT BOWCOCK HAYES e decays. 3 BARTELT ALBRECHT BOWCOCK HAYES e decays. 	98 98 98 98 98 94 92 90 82 90 82 98 91 92 90 82 90 82	CLEO <u>TECN</u> CLEO , limits, CLEO K ARG CLEO MRK2 CLEO MRK2	$E_{cm}^{ee} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 10.6 \text{ GeV}$ $E_{cm}^{ee} = 10 \text{ GeV}$ $E_{cm}^{ee} = 10 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 10 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{ee}} = 10 \text{ GeV}$ $E_{cm}^{ee} = 10 \text{ GeV}$	Γ156/Γ Γ157/Γ Γ Γ Γ Γ Γ Γ Γ
(< 6.9 × 10 ⁻⁰ ($\mu^{-}\phi$)/ Γ_{total} Test of lepton family accurate to the period family accurate to th	90 ly number c <u>CL%</u> 90 ly number c <u>CL%</u> 90 ly number c 90 90 90 90 phase spac () number c <u>CL%</u> 90 following d 90 22 90 90 c phase spac () number c <u>CL%</u> 90 90 90 90 90 90 90 90 90 90 90 90 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS BLISS BLISS BLISS BLISS BLISS BLISS BLISS BLISS BARTELT ALBRECHT BOWCOCK HAYES e decays. ONSERVATION. BUISS ata for averages BARTELT ALBRECHT BOWCOCK HAYES e decays.	98 98 98 98 98 94 92 90 82 90 82 98 98 98 92 90 82 90 82	CLEO <u>TECN</u> CLEO - <u>TECN</u> CLEO CLEO MRK2 - <u>TECN</u> CLEO MRK2 TECN	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ Repl. by BLISS $E_{cm}^{em} = 10.6 \text{ GeV}$ $E_{cm}^{em} = 10.4 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ Repl. by BLISS $E_{cm}^{em} = 10.6 \text{ GeV}$ $Repl. by BLISS E_{cm}^{em} = 10.6 \text{ GeV}	Γ156/Γ Γ157/Γ ✓ ✓ GeV Γ158/Γ GeV Γ159/Γ
$(\mu^{-}\phi)/\Gamma_{\text{total}}$ Test of lepton fami AUE (7.0 × 10 ⁻⁶ (e ⁻ e ⁺ e ⁻)/\Gamma_{\text{total}} Test of lepton fami AUE (2.9 × 10 ⁻⁶ (2.9 × 10 ⁻⁵ (3.3 × 10 ⁻⁵ (3.3 × 10 ⁻⁵ (2.7 × 10 ⁻⁵) (2.7 × 10 ⁻⁵) (2.8 × 10 ⁻⁵) (2.8 × 10 ⁻⁵) (2.8 × 10 ⁻⁵) (1.8 × 10 ⁻⁶) • We do not use the (0.36 × 10 ⁻⁵) (2.7 × 10 ⁻⁵) (2.	90 ly number c <u>CL%</u> 90 ly number c <u>CL%</u> 90 following d 90 22 90 90 90 90 90 90 90 90 90 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS anservation. <u>DOCUMENT ID</u> BLISS ata for averages BARTELT ALBRECHT BOWCOCK HAYES e decays. onservation. <u>DOCUMENT ID</u> BLISS ata for averages BARTELT ALBRECHT BOWCOCK HAYES e decays. onservation. <u>DOCUMENT ID</u> BUISS	98 98 98 98 98 94 90 82 98 94 92 90 82 90 82	CLEO TECN CLEO	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{E_{cm}^{em}}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $E_{cm}^{em}} = 10.6 \text{ GeV}$ $E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $E_{cm}^{em}} = 10.6 \text{ GeV}$ $E_{cm}^{em} = 10.6 \text{ GeV}$ $E_{cm}^{em} = 10.8 \text{ GeV}$ $E_{cm}^{em} = 10.8 \text{ GeV}$ $E_{cm}^{em} = 10.6 \text{ GeV}$	F156/F F157/F V S 98 .9 GeV F158/F V S 98 .9 GeV F159/F F159/F
(< 6.9 × 10 ⁻⁰ ($\mu^{-}\phi$)/ Γ_{total} Test of lepton family accurate to the period family accurate to th	90 ly number of <u>C1%</u> 90 ly number of <u>C1%</u> 90 20 90 90 90 90 90 90 90 90 90 9	BLISS onservation. <u>DOCUMENT ID</u> BLISS anservation. <u>DOCUMENT ID</u> BLISS ata for averages BARTELT ALBRECHT BOWCOCK HAYES e decays. onservation. <u>DOCUMENT ID</u> BLISS ata for averages BARTELT ALBRECHT BOWCOCK HAYES e decays.	98 98 98 98 94 92 90 82 90 82 90 82 90 82 91 82	CLEO TECN CLEO - TECN CLEO - TECN CLEO K ARG CLEO MRK2 - TECN CLEO MRK2 - TECN CLEO MRK2 - TECN MRK2 - TECN MRK2 - TECN MRK2 - TECN - T	$E_{Cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{Cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{Cm}^{em}} = 10.6 \text{ GeV}$ $E_{Cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{Cm}^{em}} = 10.6 \text{ GeV}$ $E_{Cm}^{em} = 10.6 \text{ GeV}$	Γ156/Γ Γ157/Γ V S 98 .9 GeV Γ158/Γ V S 98 .9 GeV Γ158/Γ V V V
$(\mu^{-}\phi)/\Gamma_{\text{total}}$ Test of lepton fami AUE (7.0×10^{-6}) $(e^{-}e^{+}e^{-})/\Gamma_{\text{total}}$ Test of lepton fami AUE (2.9×10^{-6}) • We do not use the (0.33×10^{-5}) (2.7×10^{-5}) (2.7×10^{-5}) (2.7×10^{-5}) (2.7×10^{-5}) (1.8×10^{-6}) • We do not use the (0.36×10^{-5}) (1.9×10^{-5}) $(2.7 \times 1$	90 y number c <u>c1%</u> 90 ly number c <u>c1%</u> 90 following d 90 20 phase space y number c <u>c1%</u> 90 cllowing d 90 20 phase space ly number c <u>c1%</u> 90 50 cllowing d 90 90 20 phase space ly number c <u>c1%</u> 90 90 90 90 90 90 90 90 90 90 90 90 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS ata for averages 2 BARTELT ALBRECHT BOWCOCK HAYES e decays. onservation. <u>DOCUMENT ID</u> BLISS ata for averages 3 BARTELT ALBRECHT ALBRECHT BOWCOCK HAYES e decays. onservation. <u>DOCUMENT ID</u> BLISS ata for averages 4 Da DATCIT	98 98 98 98 94 92 90 82 90 82 90 82 90 82 90 82	CLEO <u>TECN</u> CLEO <u>TECN</u> CLEO K ARG CLEO K ARG CLEO K ARG CLEO K ARG CLEO K ARG CLEO K ARG CLEO K ARG CLEO K ARG CLEO	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$	Γ156/Γ Γ157/Γ Γ157/Γ Γ Γ Γ Γ Γ Γ Γ
($\mu^{-}\phi$)/ Γ_{total} Test of lepton fami Test of lepton fami Test of lepton fami Test of lepton fami LUE ($e^{-}e^{+}e^{-}$)/ Γ_{total} Test of lepton fami LUE ($e^{-}\mu^{+}\mu^{-}$)/ Γ_{total} Test of lepton fami LUE ($e^{-}\mu^{+}\mu^{-}$)/ Γ_{total} Test of lepton fami LUE ($e^{-}\mu^{+}\mu^{-}$)/ Γ_{total} Test of lepton fami LUE ($e^{-}\mu^{-}\mu^{-}$)/ Γ_{total} Test of lepton fami LUE ($e^{+}\mu^{-}\mu^{-}$)/ Γ_{total} Test of lepton fami LUE ($e^{-}\mu^{-}\mu^{-}$)/ Γ_{total} Test of lepton fami	90 y number c <u>CL%</u> 90 ly number c <u>CL%</u> 90 following d 90 22 90 90 90 phase spac (y number c <u>CL%</u> 90 following d 90 20 phase spac (y number c <u>CL%</u> 90 following d 90 20 phase spac (y number c <u>CL%</u> 90 50 100000000000000000000000000000000	BLISS onservation. <u>DOCUMENT ID</u> BLISS BLISS BLISS ata for averages 2 BARTELT ALBRECHT BOWCOCK HAYES e decays. onservation. <u>DOCUMENT ID</u> BLISS ata for averages 3 BARTELT ALBRECHT DOCK HAYES e decays.	98 98 98 98 98 94 92 90 82 90 82 90 82 90 82 90 82 91 82 90 82 91 92 90 82 91 92 90 82 91 92 92 93	CLEO TECN CLEO CLEO CLEO CLEO CLEO CLEO CLEO MRK2 CLEO MRK2 CLEO MRK2 CLEO MRK2 CLEO MRK2 CLEO	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $Repl. by BLISS E_{cm}^{em} = 10.4 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $Repl. by BLISS E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.8 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$ $Repl. by BLISS E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$	Γ156/Γ Γ157/Γ Γ157/Γ Γ Γ Γ Γ Γ Γ Γ
6.9 × 10 ⁻⁹ (μ ⁻ φ)/Γtotal Test of lepton fami <i>UUE</i> 7.0 × 10 ⁻⁶ (e ⁻ e ⁺ e ⁻)/Γtotal Test of lepton fami <i>UUE</i> 2.9 × 10 ⁻⁵ • We do not use the 0.33 × 10 ⁻⁵ 1.3 × 10 ⁻⁵ 2.7 × 10 ⁻⁵ 2 BARTELT 94 assume (e ⁻ μ ⁺ μ ⁻)/Γtotal Test of lepton fami <i>UUE</i> 1.8 × 10 ⁻⁵ 3 BARTELT 94 assume (e ⁺ μ ⁻ μ ⁻)/Γtotal Test of lepton fami <i>UUE</i> 1.5 × 10 ⁻⁵ 1.5 × 10 ⁻⁵ 1.8 × 10 ⁻⁵	90 ly number c <u>CL%</u> 90 ly number c <u>CL%</u> 90 following d 90 22 90 90 90 90 90 90 90 90 90 90	BLISS onservation. <u>DOCUMENT ID</u> BLISS a for averages ² BARTELT ALBRECHT BOWCOCK HAYES e decays. onservation. <u>DOCUMENT ID</u> BLISS ata for averages ³ BARTELT ALBRECHT BOWCOCK HAYES e decays. onservation. <u>DOCUMENT ID</u> BLISS ata for averages ⁴ BARTELT ALBRECHT BOWCOCK	98 98 98 98 98 94 92 90 82 90 82 90 82 98 82 90 82 90 82 90 82 90 82 90 82 90 82 90 82 90 82 90 98 98 98 98 98 98 98 98 98 98 98 98 98	CLEO TECN CLEO	$E_{cm}^{em} = 10.6 \text{ GeV}$ $\frac{COMMENT}{E_{cm}^{em}} = 10.6 \text{ GeV}$	Γ156/Γ Γ157/Γ V S 98 .9 GeV Γ158/Γ V S 98 .9 GeV Γ159/Γ V S 98 .9 GeV Γ159/Γ

$\Gamma(\mu^-e^+e^-)/\Gamma_{total}$ Test of lepton fan	nily number (conservation.			Г ₁₆₀ /Г
VALUE	<u>CL %</u>	DOCUMENT ID		TEC N	COMMENT
< 1.7 × 10 ⁻⁶	90	BLISS	98	CLEO	E ^{ee} _m= 10.6 GeV
• • • We do not use th	e following o	lata for averages,	, fits,	limits, e	tc. • • •
$< 0.34 \times 10^{-5}$	90 ²²	25 BARTELT	94	CLEO	Repl. by BLISS 98
$< 1.4 \times 10^{-5}$	90	ALBRECHT	92K	ARG	E ^{ee} cm = 10 GeV
$< 2.7 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{cm}^{ee} = 10.4 - 10.9$
<44 $\times 10^{-5}$	90	HAYES	82	MRK 2	E ^{ee} _{Cm} = 3.8–6.8 GeV
²²⁵ BARTELT 94 assum	ne phase spac	ce decays.			
$\Gamma(\mu^+ e^- e^-)/\Gamma_{\text{total}}$	ally pumbor .	concernation			Г ₁₆₁ /Г
VALUE	CL %	DOCUMENT ID		TEC N	COMMENT
<1.5 × 10 ⁻⁶	90	BLISS	98	CLEO	$E^{ee}_{ee} = 10.6 \text{ GeV}$
• • • We do not use th	e following a	lata for averages	fits	limits e	10.0 000
<0.34 × 1.0-5	9n 22	26 BARTELT	94	CLEO	Repl. by BLISS 98
$< 1.4 \times 10^{-5}$	90	ALBRECHT	92k	ARG	$E_{em}^{ee} = 10$ GeV
<1.6 × 10 ⁻⁵	90	BOWCOCK	90	CLEO	$F_{ee}^{ee} = 10.4 - 10.9$
226				0220	-cm- 1000 1000
BARIELI 94 assum	ie priase spac	ce decays.			
$\Gamma(\mu^-\mu^+\mu^-)/\Gamma_{total}$					Г ₁₆₂ /Г
Test of lepton fan	nily number	conservation.			
VALUE	<u>CL %</u>	DOCUMENT ID		TEC N	COMMENT
< 1.9 × 10 ⁻⁰	90	BLISS	98	CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$
• • • We do not use th	e following o	lata for averages,	, fits,	limits, e	tc. • • •
$< 0.43 \times 10^{-5}$	90 ²²	²⁷ BARTELT	94	CLEO	Repl. by BLISS 98
$< 1.9 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{\rm Cm}^{ee} = 10 {\rm GeV}$
$< 1.7 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{cm}^{ee} = 10.4 - 10.9$
$<49 \times 10^{-5}$	90	HAYES	82	MRK2	E ^{ee} _{Cm} = 3.8–6.8 GeV
²²⁷ BARTELT 94 assum	ne phase spac	ce decays.			
r (- + -) r		-			F /F
$(e \pi \pi)/total$	ally number .	conservation			163/1
VALUE	CL %	DOCUMENT ID		TECN	COMMENT
<2.2 × 10 ⁻⁶	90	BLISS	98	CLEO	$F^{ee}_{ee} = 10.6 \text{ GeV}$
• • • We do not use th	e following a	lata for averages	fits	limits e	tc • • •
	an 22	28 dadteit	0/	CLEO	Peol by PLISS 0.9
$< 0.44 \times 10$ $< 2.7 \times 10^{-5}$	90		94	ARG	F ^{ee} - 10 GeV
<6.0 × 10 ⁻⁵	90	ROWCOCK	920		$E_{cm} = 10.4 - 10.9$
200 × 10	90	BOWCOCK	90	CLEO	² cm ^{-10.4} -10.9
²²⁰ BARTELT 94 assum	ie phase spac	ce decays.			
$\Gamma(e^+\pi^-\pi^-)/\Gamma_{\text{total}}$					Г ₁₆₄ /Г
Test of lepton nur	nber conserv	ration.			
VALUE	<u>CL %</u>	DOCUMENT ID		TEC N	COMMENT
<1.9 ×10 ⁻⁰	90	BLISS	98	CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$
• • • We do not use th	e following o	lata for averages,	, fits,	limits, e	tc. • • •
$< 0.44 \times 10^{-5}$	90 22	29 BARTELT	94	CLEO	Repl. by BLISS 98
<1.8 ×10 ⁻⁵	90	ALBRECHT	92K	ARG	$E_{\rm Cm}^{ee} = 10 {\rm GeV}$
$< 1.7 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{cm}^{ee} = 10.4 - 10.9$
²²⁹ BARTELT 94 assum	ne phase spac	ce decays.			
$\Gamma(u = -+)/\Gamma$					Г /Г
Test of lepton fan	nilv number i	conservation			165/1
VALUE	CL%	DOCUMENT ID		TEC N	COMMENT
$< 8.2 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{cm}^{ee} = 10.6 \text{ GeV}$
• • • We do not use th	e following o	lata for averages.	fits.	limits, e	tc. • • •
$< 0.74 \times 10^{-5}$	90 23	³⁰ BARTELT	94	CLEO	Repl. by BLISS 98
$<3.6 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{cm}^{ee} = 10 \text{ GeV}$
$< 3.9 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{em}^{ee} = 10.4 - 10.9$
230 DADTELT 04 accum	o phace cha	so docore			CIII
DARIELI 94 dosuli	ie priase spac	te decays.			
$\Gamma(\mu^+\pi^-\pi^-)/\Gamma_{\rm total}$					Г ₁₆₆ /Г
Test of lepton nur	nber conserv	ration.			
VALUE	<u>CL %</u>	DOCUMENTID		TECN	
<3.4 ×10 ⁻⁰	90	BLISS	98	CLEO	$E_{\rm Cm}^{\rm em} = 10.6 {\rm GeV}$
• • • vve do not use th	ie tollowing d	lata for averages,	, nts,	limits, e	tC. ● ● ●
$< 0.69 \times 10^{-5}$	90 23	BARTELT	94	CLEO	Repl. by BLISS 98
< 6.3 × 10 ⁻⁵	90	ALBRECHT	92K	ARG	$E_{\rm Cm}^{\rm ec} = 10 {\rm GeV}$
$< 3.9 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\rm Cm}^{\rm ee} = 10.4 - 10.9$
²³¹ BARTELT 94 assum	ne phase spa	ce decays.			
$\Gamma(a - a + K -)/\Gamma$					г/г
Test of lenton fan	nilv number (conservation			167/1
VALUE	<u>CL%</u>	DOCUMENT ID		TEC N	COMMENT
$< 6.4 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{cm}^{ee} = 10.6 \text{ GeV}$
•••We do not use th	e following o	lata for averages,	, fits,	limits, e	tc. • • •
$< 0.77 \times 10^{-5}$	90 23	³² BARTELT	94	CLEO	Repl. by BLISS 98
$<2.9 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{cm}^{ee} = 10 \text{ GeV}$
$< 5.8 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{cm}^{ee} = 10.4 - 10.9$
					e.m

 $^{232}{\rm BARTELT}$ 94 assume phase space decays.

au

$\frac{\Gamma(e^{-}\pi^{-}K^{+})}{\Gamma_{\text{total}}}$	ily numb	er conservation.	7	ECN	COMMENT	Г ₁₆₈ /Г
<3.8 ×10 ⁻⁶	90	BLISS	98 C	LEO	$E_{\rm cm}^{ee} = 10.6 {\rm GeV}$	/
• • • We do not use the	followin	g data for average	s, fits,	limits,	etc. • • •	
$< 0.46 \times 10^{-5}$	90	233 BARTELT BOWCOCK	94 C	LEO	Repl. by BLISS	98 9
233 BARTELT 94 assum	e nhase s	nace decays	50 C		- cm - 10.4 10.	,
$\Gamma(e^+\pi^-K^-)/\Gamma_{\rm total}$	e pilase s					Г ₁₆₉ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$< 2.1 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\rm Cm}^{ee} = 10.6~{\rm Ge}$	٧
• • We do not use the	followin	g data for average	s, fits,	limits,	etc. • • •	
$< 0.45 \times 10^{-5}$ $< 2.0 \times 10^{-5}$	90 90	AIBRECHT	94 92K	ARG	Repl. by BLIS $E_{em}^{ee} = 10 \text{ GeV}$	598
$<4.9 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\rm cm}^{ee} = 10.4 - 10$	0.9
234 BARTELT 94 assum	e phase s	pace decays.				
$\Gamma(e^- K^0_S K^0_S) / \Gamma_{total}$ Test of lepton fam	ilv numb	er conservation.				Г ₁₇₀ /Г
VALUE	<u>CL%</u>	DOCUMENT ID	7	ECN	<u>COMMENT</u>	
< 2.2 × 10 ⁻⁶	90	CHEN	02C C	LEO	$E_{\rm CM}^{ee} = 10.6 {\rm GeV}$	/
$\Gamma(e^- K^+ K^-) / \Gamma_{total}$ Test of lepton fam	ily numb	er conservation.				Г ₁₇₁ /Г
VALUE	<u>CL%</u> 90	DOCUMENTID BLISS	98 7	TECN	COMMENT	1
	50	01133	50 C	LLV	-cm- 10.0 Gev	,
Γ(e ⁺ K ⁻ K ⁻)/Γ _{total} Test of lepton num	ber cons	ervation.	-	CCN .	COMMENT	Г ₁₇₂ /Г
< 3.8 × 10 ⁻⁶	90	BLISS	98 0	LEO	$E_{cm}^{ee} = 10.6 \text{ GeV}$	/
$\Gamma(\mu^-\pi^+K^-)/\Gamma_{total}$		52100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2 cm - 10/0 00/	Г ₁₇₃ /Г
lest of lepton fam	CL%	er conservation. DOCUMENT ID		TECN	COMMENT	
$< 7.5 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm Ge}$	٧
$\bullet \bullet \bullet$ We do not use the	followin	g data for average	s, fits,	limits,	etc. • • •	
$< 0.87 \times 10^{-5}$	90	²³⁵ BARTELT	94	CLEO	Repl. by BLIS	S 98
$<11 \times 10^{-5}$	90	ALBRECHT	92K		$E_{cm}^{ee} = 10 \text{ GeV}$	
235 BARTELT 94 assum	o nhose s	nace decays	50	CLLO	-cm - 10.4 1	
$\Gamma(\mu^{-}\pi^{-}K^{+})/\Gamma_{\text{total}}$	ily numb	ar conservation				Г ₁₇₄ /Г
VALUE	<u>CL%</u>	DOCUMENT ID	7	ECN	COMMENT	
$< 7.4 \times 10^{-6}$	90	BLISS	98 C	LEO	$E_{\rm CM}^{ee} = 10.6 {\rm GeV}$	/
• • • We do not use the	followin	g data for average	s, fits,	limits,	etc. • • •	
$<1.5 \times 10^{-5}$ $<7.7 \times 10^{-5}$	90 · 90	230 BARTELT BOWCOCK	94 C	LEO	Repl. by BLISS	98 9
236 PARTELT 94 accum	o nhose s	nace decays	,,, ,		- cm - 10.4 10.	, ,
$\Gamma(\mu^+\pi^-K^-)/\Gamma_{\text{total}}$	ber cons	ervation				Г ₁₇₅ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<7.0 × 10 ⁻⁶	90 foll'	BLISS	98	CLEO	$E_{\rm Cm}^{ee} = 10.6$ Ge	٧
••• vve uo not use the $< 2.0 \times 10^{-5}$: IUIIOWIN an	g u ata ior average 237 влотеіт	5, IITS, 04	CLEO	Rent by DUC	5 92
$< 5.8 \times 10^{-5}$	90	ALBRECHT	94 92K	ARG	$E_{\rm cm}^{ee} = 10 {\rm GeV}$, 10 1
$<\!4.0 imes 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\rm cm}^{ee} = 10.4 - 10$	D.9
²³⁷ BARTELT 94 assum	e phase s	pace decays.				
$\Gamma(\mu^{-} K^{0}_{S} K^{0}_{S}) / \Gamma_{\text{total}}$	CL%	DOCUMENT IN	Ŧ	ECN	COMMENT	Г ₁₇₆ /Г
$< 3.4 \times 10^{-6}$	90	CHEN	02c C	LEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$	/
$\Gamma(\mu^- K^+ K^-) / \Gamma_{\text{total}}$	ilv numb	er conservation				Г ₁₇₇ /Г
VALUE	<u>CL%</u>	DOCUMENT ID	7	ECN	COMMENT	
<15 × 10 ⁻⁶	90	BLISS	98 C	LEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$	/
$\Gamma(\mu^+ K^- K^-) / \Gamma_{\text{total}}$	bor	onution				Г ₁₇₈ /Г
i est of lepton nun	iber cons	ervation. <u>DOCUMENT</u> ID	7	<u>ECN</u>	<u>COMME</u> NT	
$< 6.0 \times 10^{-6}$	90	BLISS	98 C	LEO	$E_{\rm CM}^{ee} = 10.6 {\rm GeV}$	/
Γ (e⁻π⁰π⁰)/Γ_{total} Test of lepton fam	ily numb	er conservation.				Г ₁₇₉ /Г
VALUE	<u>CL%</u>	DOCUMENT ID	7	ECN	COMMENT	
< 6.5 × 10 ⁻⁰	90	BONVICINI	97 C	LE0	$E_{\rm cm}^{\rm cc} = 10.6 {\rm GeV}$	/

I

L

up π ⁻ π ⁻)/Itota Test of lepton f	l family numbe	r conservation.			118
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMMENT</u>
<14 × 10 ⁻⁶	90	BONVICINI	97 (CLEO	$E_{\rm CM}^{\it ee}=10.6~{\rm GeV}$
Γ(e ηη)/Γ _{total}					Г18
Test of lepton 1	amily numbe	r conservation.			
<35 × 10 ⁻⁶	90	BONVICINI	97 (TEO	E ^{gg} = 10.6 GeV
$\Gamma(\mu^-\eta\eta)/\Gamma_{\text{total}}$	amily pumbo	r conconstion			Г ₁₈
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$< 60 \times 10^{-6}$	90	BONVICINI	97 (CLEO	$E_{\rm Cm}^{\it ee}=$ 10.6 GeV
$\Gamma(e^{-}\pi^{0}\eta)/\Gamma_{\text{total}}$					Гта
Test of lepton i	amily numbe	r conservation.			
< 24 × 10 ⁻⁶	90	BONVICINI	97 (TEO	ECOMMENT
	50	Donvienni	,, ,		-cm - 10.0 Gev
$\Gamma(\mu^{-}\pi^{0}\eta)/\Gamma_{total}$	in an lles and an les				Г ₁₈
VALUE	CL%	DOCUMENT ID	;	TECN	COMMENT
<22 × 10 ⁻⁶	90	BONVICINI	97 (CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$
F (===) / F					г
total // ۲۰۱۱ (۲۰۱۱) Test of lepton i	number and t	oaryon number co	onservat	ion.	18
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
< 3.5 × 10 ⁻⁶	90	GODANG	99 (CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$
• • • vve do not use	the following	g uata tor average	es, rits,	umits,	elc. • • •
<29 ×10 ⁻⁵	90	ALBRECHT	92K /	ARG	⊏čm = 10 GeV
$\Gamma(\overline{\rho}\pi^0)/\Gamma_{\text{total}}$					Г ₁₈
Test of lepton i	number and t	DOCUMENT ID	onservat	ion.	COMMENT
<15 × 10 ⁻⁶	90	GODANG	99 (TEO	$E^{ee}_{ee} = 10.6 \text{ GeV}$
• • • We do not use	the following	g data for average	es, fits,	limits,	etc. • • •
$< 66 imes 10^{-5}$	90	ALBRECHT	92K A	A R G	$E_{cm}^{ee} = 10 \text{ GeV}$
<33 × 10 ⁻⁶	90	GODANG	99 (CLEO	$E_{\rm CM}^{ee} = 10.6 {\rm GeV}$
i (<i>P1</i>)/itotal Test of lepton ו	number and t	oaryon number co	onservat	ion.	118
VALUE	<u>CL%</u>	DOCUMENT ID	÷	TECN	COMMENT
< 8.9 × 10 ⁻⁰	90 the following	GODANG data for average	99 (se fite	LEO	$E_{\rm Cm}^{\rm ec} = 10.6 {\rm GeV}$
130 × 10 ⁻⁵			90 K /	NRG	$E^{ee} = 10 \text{ GeV}$
	50	AEBRECHT	22107	in o	-cm - 10 000
$\Gamma(\overline{\rho}\pi^0\eta)/\Gamma_{\text{total}}$	aumhor and I	arvon number co	nconvot	lan	Г ₁₈
VALUE	<u>CL%</u>	DOCUMENT ID	anoe i val	TECN	COMMENT
<27 × 10 ⁻⁶	90	GODANG	99 (CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$
Γ(e−light boson),	Γ(e ⁻ ∇.ν.)			Гтео
Test of lepton i	amily numbe	r conservation.			
VALUE	<u>CL%</u> 0F 2	38 AL PRECHT	OF C	RECN	COMMENT
• • • We do not use	the following	ALDRECHT z data for average	א טכני es. fits	limits	-cm - 9.4-10.6 GeV etc. • • •
< 0.018	95 2	39 ALBRECHT	90F 4	ARG	$E_{cm}^{ee} = 9.4 - 10.6 \text{ GeV}$
<0.040	95 2	⁴⁰ BALTRUSAIT		ARK3	$E_{\rm cm}^{ee} = 3.77 {\rm GeV}$
²³⁸ ALBRECHT 95G	limit holds fo	or bosons with m	ass < 0).4 Ge∖	/. The limit rises to 0
for a mass of 1.0 ²³⁹ ALBRECHT 90E 0.050 for mass =	GeV, then fa limit applies 500 MeV.	lls to 0.006 at th for spinless bosc	e upper on with	mass mass	limit of 1.6 GeV. < 100 MeV, and rise
- TY BALTRUSAITIS	85 limit appli	es tor spinless bo	son wit	h mass	< 100 MeV.
$\Gamma(\mu^{-} \ ght boson),$	/Γ(e ⁻ ν _e ν _τ)			Г ₁₉₁
Test of lepton 1	amily numbe	r conservation.		TECN	COMMENT
<0.026	95 2	41 ALBRECHT	95 G #	ARG	$E_{\rm Cm}^{ee} = 9.4 - 10.6 {\rm GeV}$
• • • We do not use	the following	g data for average	es, fits,	limits,	etc. • • •
< 0.033	95 2	⁴² ALBRECHT	90E /	ARG .	$E_{\rm cm}^{ee} = 9.4 - 10.6 {\rm GeV}$
< 0.1 25	95 2	⁴³ BALTRUSAIT	85 M	ARK3	$E_{\rm Cm}^{ee} = 3.77 {\rm GeV}$
²⁴¹ ALBRECHT 95G	limit holds fo	or bosons with m	ass < 1	.3 Ge\	/. The limit rises to 0
for a mass of 1.4	GeV, then fa	lls to 0.003 at th	e upper	mass	limit of 1.6 GeV
241 ALBRECHT 95G for a mass of 1.4 242 ALBRECHT 90E 0.071 for mass = 243 BALTRUSAITIS	limit holds fo GeV, then fa limit applies 500 MeV. 35 limit appli	or bosons with m Ils to 0.003 at th for spinless boso es for spinless bo	ass < 1 e upper on with son wit	3 Ge\ mass mass h mass	-cm = 3.11 GeV J. The limit rises t limit of 1.6 GeV. < 100 MeV, and < 100 MeV.

τ -DECAY PARAMETERS

au-LEPTON DECAY PARAMETERS

Written April 2002 by A. Stahl (DESY).

The purpose of the measurements of the decay parameters (*i.e.*, Michel parameters) of the τ is to determine the structure (spin and chirality) of the current mediating its decays.

Leptonic Decays: The Michel parameters are extracted from the energy spectrum of the charged daughter lepton $\ell = e, \mu$ in the decays $\tau \rightarrow \ell \nu_{\ell} \nu_{\tau}$. Ignoring radiative corrections, neglecting terms of order $(m_{\ell}/m_{\tau})^2$ and $(m_{\tau}/\sqrt{s})^2$, and setting the neutrino masses to zero, the spectrum in the laboratory frame reads

$$\frac{d\Gamma}{dx} = \frac{G_{\tau\ell}^2}{192} \frac{m_{\tau}^5}{\pi^3} \times \left\{ f_0(x) + \rho f_1(x) + \eta \frac{m_{\ell}}{m_{\tau}} f_2(x) - P_{\tau} \left[\xi g_1(x) + \xi \delta g_2(x) \right] \right\} , (1)$$

with

$$\begin{split} f_0\left(x\right) &= 2-6 \; x^2+4 \; x^3 \\ f_1\left(x\right) &= -\frac{4}{9}+4 \; x^2-\frac{32}{9} \; x^3 \quad g_1\left(x\right) = -\frac{2}{3}+4 \; x-6 \; x^2+\frac{8}{3} \; x^3 \\ f_2\left(x\right) &= 12 \; (1-x)^2 \qquad \qquad g_2\left(x\right) = \frac{4}{9} -\frac{16}{3} \; x+12 \; x^2-\frac{64}{9} \; x^3 \; . \end{split}$$

The integrated decay width is given by

$$\Gamma = \frac{G_{\tau\ell}^2 \ m_\tau^5}{192 \ \pi^3} \left(1 + 4 \ \eta \ \frac{m_\ell}{m_\tau} \right) \ . \tag{2}$$

The situation is similar to muon decays $\mu \to e\nu_e\nu_\mu$. The generalized matrix element with the couplings $g_{\epsilon\mu}^{\gamma}$ and their relations to the Michel parameters ρ , η , ξ , and δ have been described in the "Note on Muon Decay Parameters". The Standard Model expectations are 3/4, 0, 1, and 3/4, respectively. For more details, see Ref. 1.

Hadronic Decays: In the case of hadronic decays $\tau \to h\nu_{\tau}$, with $h = \pi$, ρ , or a_1 , the ansatz is restricted to purely vectorial currents. The matrix element is

$$\frac{G_{\tau h}}{\sqrt{2}} \sum_{\lambda=R,L} g_{\lambda} \langle \overline{\Psi}_{\omega}(\nu_{\tau}) \mid \gamma^{\mu} \mid \Psi_{\lambda}(\tau) \rangle J^{h}_{\mu}$$
(3)

with the hadronic current J^h_μ . The neutrino chirality ω is uniquely determined from λ . The spectrum depends only on a single parameter ξ_h

$$\frac{d\Gamma}{d\vec{x}} = f\left(\vec{x}\right) + \xi_h P_\tau g\left(\vec{x}\right) \quad , \tag{4}$$

with f and g being channel-dependent functions of the observables \vec{x} (see Ref. 2). The parameter ξ_h is related to the couplings through

$$\xi_h = |g_L|^2 - |g_R|^2 \quad . \tag{5}$$

 ξ_h is the negative of the chirality of the τ neutrino in these decays. In the Standard Model, $\xi_h = 1$. Also included are measurements of the neutrino helicity which coincide with ξ_h ,

au

if the neutrino is massless (ASNER 00, ACKERSTAFF 97R, AKERS 95P, ALBRECHT 93C, and ALBRECHT 90I).

Combination of Measurements: The individual measurements are combined, taking into account the correlations between the parameters. There is one fit, assuming universality between the two leptonic decays, and between all hadronic decays and a second fit without these assumptions. These are the values labeled 'OUR FIT' in the tables. The measurements show good agreement with the Standard Model. The χ^2 values with respect to the Standard model predictions are 24.1 for 41 degrees of freedom and 26.8 for 56 degrees of freedom, respectively. The correlations are reduced through this combination to less than 20%, with the exception of ρ and η which are correlated by +23%, for the fit with universality and by +70% for $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$.

Model-independent Analysis: From the Michel parameters, limits can be derived on the couplings $g_{\varepsilon\lambda}^{\kappa}$ without further module assumptions. In the Standard model $g_{LL}^{V} = 1$ (leptonic decays), and $g_{L} = 1$ (hadronic decays) and all other couplings vanish. First, the partial decay widths have to be compared to the Standard Model predictions to derive limits on the normalization of the couplings $A_{x} = G_{\tau x}^{2}/G_{F}^{2}$ with Fermi's constant G_{F} :

$$A_e = 1.0012 \pm 0.0053$$
 ,
 $A_\mu = 0.981 \pm 0.018$,
 $A_\pi = 1.018 \pm 0.012$. (6)

Then limits on the couplings (95% CL) can be extracted (see Ref. 3 and Ref. 4). Without the assumption of universality, the limits given in Table 1 are derived.

Model-dependent Interpretation: More stringent limits can be derived assuming specific models. For example, in the framework of a two Higgs doublet model, the measurements correspond to a limit of $m_{H^{\pm}} > 1.9$ GeV × tan β on the mass of the charged Higgs boson, or a limit of 253 GeV on the mass of the second W boson in left-right symmetric models for arbitrary mixing (both 95% CL). See Ref. 4 and Ref. 5.

Footnotes and References

F. Scheck, Phys. Reports 44, 187 (1978);
 W. Fetscher and H.J. Gerber in *Precision Tests of the Standard Model*, edited by P. Langacker, World Scientific, 1993;

A. Stahl, Physics with τ Leptons, Springer Tracts in Modern Physics.

- M. Davier, L. Duflot, F. Le-Diberder, and A. Rougé Phys. Lett. B306, 411 (1993).
- OPAL Collab., K. Ackerstaff *et al.*, Eur. Phys. J. C8, 3 (1999).
- 4. A. Stahl, Nucl. Phys. (Proc. Supp.) B76, 173 (1999).
- M.-T. Dova *et al.*, Phys. Rev. **D58**, 015005 (1998);
 T. Hebbeker and W. Lohmann, Z. Phys. **C74**, 399 (1997);
 - A. Pich and J.P. Silva, Phys. Rev. **D52**, 4006 (1995).

au

Table 1: Coupling constants $g_{\varepsilon\mu}^{\gamma}$. 95% confidence level experimental limits. The limits include the quoted values of A_e, A_{μ} , and A_{π} and assume $A_{\rho} = A_{a_1} = 1$.

$\tau \rightarrow e \nu_e \nu_\tau$		
$\left g_{\scriptscriptstyle RR}^{S}\right < 0.70$	$\left g_{\scriptscriptstyle RR}^V\right < 0.17$	$ g_{\scriptscriptstyle RR}^T \equiv 0$
$\left g_{\scriptscriptstyle LR}^{S}\right < 0.99$	$\left g_{\scriptscriptstyle LR}^V\right < 0.13$	$\left g_{\scriptscriptstyle LR}^T\right < 0.082$
$\left g_{\scriptscriptstyle RL}^{S}\right < 2.01$	$\left g_{\scriptscriptstyle RL}^V\right < 0.52$	$\left g_{\scriptscriptstyle RL}^T\right < 0.51$
$\left g_{\scriptscriptstyle LL}^{S}\right < 2.01$	$\left g_{\scriptscriptstyle LL}^{V} \right < 1.005$	$ g_{\scriptscriptstyle LL}^T \equiv 0$
$\tau \to \mu \nu_{\mu} \nu_{\tau}$		
$\left g_{\scriptscriptstyle RR}^{S}\right < 0.72$	$\left g_{\scriptscriptstyle RR}^V ight < 0.18$	$\left g_{\scriptscriptstyle RR}^T ight \equiv 0$
$ g^{S}_{{}_{LR}} < 0.95$	$\left g_{\scriptscriptstyle LR}^V\right < 0.12$	$\left g_{\scriptscriptstyle LR}^T\right < 0.079$
$\left g_{\scriptscriptstyle RL}^{S}\right < 2.01$	$\left g_{\scriptscriptstyle RL}^V\right < 0.52$	$\left g_{\scriptscriptstyle RL}^T\right < 0.51$
$\left g_{\scriptscriptstyle LL}^{S}\right < 2.01$	$\left {g_{{\scriptscriptstyle L}{\scriptscriptstyle L}}^V} \right < 1.005$	$ g_{\scriptscriptstyle LL}^T \equiv 0$
$\tau \to \pi \nu_{\tau}$		
$\left g_{R}^{V}\right <0.15$	$\left g_{\scriptscriptstyle L}^{V}\right >0.992$	
$\tau \to \rho \nu_{\tau}$		
$\left g_{R}^{V}\right <0.10$	$\left g_{\scriptscriptstyle L}^{V} ight >0.995$	
$\tau \to a_1 \nu_{\tau}$		
$\left g_{R}^{V}\right <0.16$	$\left g_{\scriptscriptstyle L}^{V}\right >0.987$	

$\rho^{\tau}(e \text{ or } \mu)$ PARAMETER

(V – A) theory p	redicts $\rho =$: 0	/5.			
VALUE	EVTS		DOCUMENT ID		TECN	COMMENT
0.745 ± 0.008 OUR FI	Г					
0.749±0.008 OUR AV	/ERAGE					
$0.742 \pm 0.014 \pm 0.006$	81 k		HEISTER	01E	ALEP	1991-1995 LEP runs
$0.775 \pm 0.023 \pm 0.020$	36k		ABREU	00L	DLPH	1992-1995 runs
$0.781 \pm 0.028 \pm 0.018$	46k		ACKERSTAFF	99D	OPAL	1990-1995 LEP runs
0.762 ± 0.035	54k		ACCIARRI	98R	L 3	1991-1995 LEP runs
0.731 ± 0.031		244	ALBRECHT	98	ARG	E ^{ee} _{cm} = 9.5-10.6 GeV
$0.72\ \pm 0.09\ \pm 0.03$		245	ABE	970	SLD	1993-1995 SLC runs
$0.747 \pm 0.010 \pm 0.006$	55 k		ALEXANDER	97F	CLEO	E ^{ee} _{cm} = 10.6 GeV
$0.79\ \pm 0.10\ \pm 0.10$	3732		FORD	87B	MAC	E ^{ee} _{cm} = 29 GeV
$0.71 \ \pm 0.09 \ \pm 0.03$	1426		BEHRENDS	85	CLEO	e^+e^- ne ar $\Upsilon(4S)$
\bullet \bullet \bullet We do not use	the followin	ng d	ata for averages	, fits	, limits,	etc. • • •
$0.735 \pm 0.013 \pm 0.008$	31 k		AMMAR	97B	CLEO	Repl. by ALEXAN- DER 97F
$0.794\pm0.039\pm0.031$	18k		ACCIARRI	96H	L 3	Repl. by ACCIARRI 98R
$0.732 \pm 0.034 \pm 0.020$	8.2k	246	ALBRECHT	95	ARG	E ^{ee} _{cm} = 9.5-10.6 GeV
0.738 ± 0.038		247	ALBRECHT	95 C	ARG	Repl. by ALBRECHT 98
$0.751 \pm 0.039 \pm 0.022$			BUSKULIC	95 D	ALEP	Repl. by HEISTER 01E
$0.742 \pm 0.035 \pm 0.020$	8000		ALBRECHT	90E	ARG	$E_{cm}^{ee} = 9.4 - 10.6 \text{ GeV}$

²⁴⁴ Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 98, ALBRECHT 95c, ALBRECHT 93c, and ALBRECHT 94E. ALBRECHT 98 use tau pair events of the type $\tau^- \tau^+ \rightarrow (\ell^- \overline{\nu}_\ell \nu_\tau)(\pi^+ \pi^0 \overline{\nu}_\tau)$, and their charged conjugates. ²⁴⁵ ABE 970 assume $\eta^\tau = 0$ in their fit. Letting η^τ vary in the fit gives a ρ^τ value of

 $0.69\pm0.13\pm0.05$. ²⁴⁶ Value is from a simultaneous fit for the ρ^{τ} and η^{τ} decay parameters to the lepton energy

spectrum. Not independent of ALBRECHT 90E ρ^{T} (e or μ) value which assumes $\eta^{T} = 0$. Result is strongly correlated with ALBRECHT 95 C.

247 Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 95C, AL-BRECHT 93G, and ALBRECHT 94E.

$\rho^{\tau}(e)$ PARAMETER

(V-A) theory pr	edicts ρ :	= 0.75.		
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.747±0.010 OUR FIT				
0.744±0.010 OUR AVE	RAGE			
$0.747 \pm 0.019 \pm 0.014$	44k	HEISTER	01E ALEP	1991-1995 LEP runs
$0.744 \pm 0.036 \pm 0.037$	17k	ABREU	00L DLPH	1992-1995 runs
$0.779 \pm 0.047 \pm 0.029$	25 k	ACKERSTAFF	99D OPAL	1990-1995 LEP runs
$0.68\ \pm 0.04\ \pm 0.07$		²⁴⁸ ALBRECHT	98 ARG	E ^{ee} _{cm} = 9.5-10.6 GeV
$0.71 \ \pm 0.14 \ \pm 0.05$		ABE	970 SLD	1993-1995 SLC runs

$0.747 \pm 0.012 \pm 0.004$	34 k	ALEXANDER	97F CLEO	$E_{\rm cm}^{ee} = 10.6 {\rm GeV}$
$0.735 \pm 0.036 \pm 0.020$	4.7k	²⁴⁹ ALBRECHT	95 A R G	$E_{cm}^{ee} = 9.5 - 10.6 \text{ GeV}$
$0.79\ \pm 0.08\ \pm 0.06$	3230	²⁵⁰ ALBRECHT	93G ARG	E ^{ee} _{cm} = 9.4-10.6 GeV
$0.64\ \pm 0.06\ \pm 0.07$	2753	JANSSEN	89 CBAL	E ^{ee} _{cm} = 9.4-10.6 GeV
$0.62\ \pm 0.17\ \pm 0.14$	1823	FORD	878 MAC	E ^{ee} _{cm} = 29 GeV
0.60 ± 0.13	699	BEHRENDS	85 CLEO	$e^+ e^-$ near $\Upsilon(4S)$
$0.72\ \pm 0.10\ \pm 0.11$	594	BACINO	79B DLCO	E ^{ee} _{CM} = 3.5-7.4 GeV
• • • We do not use t	he followi	ng data for averages	, fits, limits,	etc. • • •
$0.732 \pm 0.014 \pm 0.009$	19k	AMMAR	97B CLEO	Repl. by ALEXAN- DER 975
$0.793 \pm 0.050 \pm 0.025$		BUSKULIC	95 DALEP	Repl. by HEISTER 01E
$0.747 \pm 0.045 \pm 0.028$	5106	ALBRECHT	90E ARG	Repl. by ALBRECHT 95
248 ALBRECHT 98 us	e tau pair	events of the type	$\tau^- \tau^+ \rightarrow ($	$\ell^- \overline{\nu}_\ell \nu_\tau$) $(\pi^+ \pi^0 \overline{\nu}_\tau)$, and
their charged conju	gates.			6 1 / 1 /
²⁴⁹ ALBRECHT 95	use tau	pair events of	the type $ au$	$^{-}\tau^{+} \rightarrow (\ell^{-}\overline{\nu}_{\ell}\nu_{\tau})$

 $(h^+ h^- h^+ (\pi^0) \overline{\nu_\tau})$ and their charged conjugates.

 $^{(1)}$ $^{(1)}$ $^{(2)}$ $^$ their charged conjugates.

$\rho^{\tau}(\mu)$ PARAMETER

(v = A) theory pro	suices $p =$	1.13.	
VALUE	EVTS	DOCUMENTID TECN C	OMMENT
0.763 ± 0.020 OUR FIT			
$0.770\pm0.022~OUR~AVE$	RAGE		
$0.776 \pm 0.045 \pm 0.019$	46 k	HEISTER 01E ALEP 1	991–1995 LEP runs
$0.999 \pm 0.098 \pm 0.045$	22k	ABREU 00L DLPH 1	992–1995 runs
$0.777 \pm 0.044 \pm 0.016$	27 k	ACKERSTAFF 99D OPAL 1	990-1995 LEP runs
$0.69\ \pm 0.06\ \pm 0.06$	2	³¹ ALBRECHT 98 ARG <i>E</i>	ee = 9.5-10.6 GeV
$0.54\ \pm 0.28\ \pm 0.14$		ABE 970 SLD 1	993-1995 SLC runs
$0.750 \pm 0.017 \pm 0.045$	22 k	ALEXANDER 97F CLEO E	<i>ee</i> cm = 10.6 GeV
$0.76\ \pm 0.07\ \pm 0.08$	3230	ALBRECHT 93G ARG E	ee = 9.4-10.6 GeV
$0.734 \pm 0.055 \pm 0.027$	3041	ALBRECHT 90E ARG E	ee = 9.4-10.6 GeV
$0.89\ \pm 0.14\ \pm 0.08$	1909	FORD 87B MAC E	ee cm = 29 GeV
0.81 ± 0.13	727	BEHRENDS 85 CLEO e	$+e^{-}$ near $\Upsilon(4S)$
• • • We do not use the	ne following	data for averages, fits, limits, et	c. • • •
$0.747 \pm 0.048 \pm 0.044$	13k	AMMAR 97B CLEO R	epl. by ALEXAN-
$0.693 \pm 0.057 \pm 0.028$		BUSKULIC 95DALEP R	epl. by HEISTER 01E

251 ALBRECHT 98 use tau pair events of the type $\tau^- \tau^+ \rightarrow (\ell^- \overline{\nu}_\ell \nu_\tau)(\pi^+ \pi^0 \overline{\nu}_\tau)$, and their charged conjugates.

$\xi^{\tau}(e \text{ or } \mu) \text{ PARAMETER}$ (V-A) theory predicts $\mathcal{E} = 1$.

())))						
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT		
0.985 ± 0.030 OUR FIT						
0.981 ± 0.031 OUR AVE	RAGE					
$0.986 \pm 0.068 \pm 0.031$	81 k	HEISTER	01E ALEP	1991-1995 LEP runs		
$0.929 \pm 0.070 \pm 0.030$	36 k	ABREU	00L DLPH	1992-1995 runs		
$0.98\ \pm 0.22\ \pm 0.10$	46 k	ACKERSTAFF	99D OPAL	1990-1995 LEP runs		
0.70 ± 0.16	54 k	ACCIARRI	98R L3	1991-1995 LEP runs		
1.03 ± 0.11		²⁵² ALBRECHT	98 ARG	E ^{ee} _{cm} = 9.5-10.6 GeV		
$1.05\ \pm 0.35\ \pm 0.04$		²⁵³ ABE	970 SLD	1993-1995 SLC runs		
$1.007 \pm 0.040 \pm 0.015$	55 k	ALEXANDER	97F CLEO	$E_{\rm CM}^{ee} = 10.6 {\rm GeV}$		
\bullet \bullet \bullet We do not use th	e follow	ing data for averages	, fits, limits,	etc. • • •		
$0.94\ \pm 0.21\ \pm 0.07$	18k	ACCIARRI	96H L 3	Repl. by ACCIARRI 98R		
0.97 ± 0.14		²⁵⁴ ALBRECHT	95 CARG	Repl by ALBRECHT 98		
$1.18\ \pm 0.15\ \pm 0.16$		BUSKULIC	95D ALEP	Repl. by HEISTER 01E		
$0.90\ \pm 0.15\ \pm 0.10$	3230	²⁵⁵ ALBRECHT	93G ARG	E ^{ee} _{cm} = 9.4-10.6 GeV		
²⁵² Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 98, AL						
BRECHT 95C, ALB	RECHT	93G, and ALBREC	HT 94E. AL	BRECHT 98 use tau pai		

BRCH 195, ALERCH 195, and ALBRCH 194. ALERCH 194. ALERCH 198 use tal pair events of the type $\tau^- \tau^+ \rightarrow (t^- \tau^0_{\mu\nu})(\pi^+ \pi^0 \tau^0_{\mu\nu})$, and their charged conjugates. ²⁵³ABE 970 assume $\eta^{\tau} = 0$ in their fit. Letting η^{τ} vary in the fit gives a ξ^{τ} value of 1.02 ± 0.36 ± 0.05. ²⁵⁴Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 95C, AL-

BRECHT 93G, and ALBRECHT 94E. ALBRECHT 95C uses events of the type $au^+ o$ $(\ell^- \overline{\nu}_\ell \nu_\tau) (h^+ h^- h^+ \overline{\nu}_\tau)$ and their charged conjugates.

255 ALBRECHT 93G measurement determines $|\xi^{\tau}|$ for the case $\xi^{\tau}(e) = \xi^{\tau}(\mu)$, but the authors point out that other LEP experiments determine the sign to be positive.

$\xi^{\tau}(e)$ PARAMETER

	(V-A) theory pre-	dicts ξ =	1.				
VALUI	E		EVTS		DOCUMENT ID		TECN	COMMENT
0.994	±0.040	OURFIT						
1.00	± 0.04	OUR AVE	RAGE					
1.011	± 0.094	± 0.038	44 k		HEISTER	01E	ALEP	1991-1995 LEP runs
1.01	± 0.12	± 0.05	17k		ABREU	00L	DLPH	1992-1995 runs
1.13	± 0.39	± 0.14	25 k		ACKERSTAFF	99D	OPAL	1990-1995 LEP runs
1.11	±0.20	± 0.08	2	56	ALBRECHT	98	ARG	$E_{cm}^{ee} = 9.5 - 10.6 \text{ GeV}$
1.16	±0.52	± 0.06			ABE	970	SLD	1993-1995 SLC runs
0.979	± 0.048	± 0.016	34 k		ALEXANDER	97F	CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$
•••	• We do	not use th	e following	g d	ata for averages	fits	, limits,	etc. • • •
1.03	±0.23	±0.09			BUSKULIC	95 D	ALEP	Repl. by HEISTER 01E
256 _A	LBREC	HT 98 use	tau paire ates.	ve	nts of the type	τ - 1	·+ → ($\ell^- \overline{\nu}_\ell \nu_\tau)(\pi^+ \pi^0 \overline{\nu}_\tau),$ and

$\xi^{\tau}(\mu)$ PARAMETER

(V-A) theory pred	icts $\xi = 1$.				
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1.030±0.059 OUR FIT					
1.06 ±0.06 OUR AVER	AGE				
$1.030 \pm 0.120 \pm 0.050$	46k	HEISTER	01E	ALEP	1991-1995 LEP runs
$1.16\ \pm 0.19\ \pm 0.06$	22k	ABREU	00L	DLPH	1992-1995 runs
$0.79 \ \pm 0.41 \ \pm 0.09$	27k	ACKERSTAFF	99D	OPAL	1990-1995 LEP runs
$1.26\ \pm 0.27\ \pm 0.14$	257	ALBRECHT	98	ARG	E ^{ee} _{cm} = 9.5-10.6 GeV
$0.75\ \pm 0.50\ \pm 0.14$		ABE	970	SLD	1993-1995 SLC runs
$1.054 \pm 0.069 \pm 0.047$	22k	ALEXANDER	97F	CLEO	E ^{ee} _{cm} = 10.6 GeV
$\bullet~\bullet~\bullet$ We do not use the	following d	lata for averages	, fits	, limits,	etc. • • •
$1.23\ \pm 0.22\ \pm 0.10$		BUSKULIC	95 D	ALEP	Repl. by HEISTER 01E
²⁵⁷ ALBRECHT 98 use tau pair events of the type $\tau^- \tau^+ \rightarrow (\ell^- \overline{\nu}_\ell \nu_\tau)(\pi^+ \pi^0 \overline{\nu}_\tau)$, and their charged conjugates.					

$\eta^{\tau}(e \text{ or } \mu)$ PARAMETER

(V – A) theory pred	$\cos \eta = 0$.			
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.013±0.020 OUR FIT				
0.015 ± 0.021 OUR AVE	RAGE			
$0.012\pm0.026\pm0.004$	81k	HEISTER	01E ALEP	1991-1995 LEP runs
$-\ 0.005 \pm 0.036 \pm 0.037$		ABREU	00L DLPH	1992-1995 runs
$0.027 \pm 0.055 \pm 0.005$	46k	ACKERSTAFF	99D OPAL	1990-1995 LEP runs
0.27 ± 0.14	54k	ACCIARRI	98R L3	1991-1995 LEP runs
$- \; 0.13 \;\; \pm 0.47 \;\; \pm 0.15$		ABE	970 SLD	1993-1995 SLC runs
$= 0.015 \pm 0.061 \pm 0.062$	31k	AMMAR	97B CLEO	$E_{cm}^{ee} = 10.6 \text{ GeV}$
$0.03\ \pm 0.18\ \pm 0.12$	8.2k	ALBRECHT	95 ARG	Ecm= 9.5-10.6 GeV
$\bullet~\bullet~\bullet$ We do not use the	following da	ta for averages, f	its, limits, et	C. • • •
$0.25\ \pm 0.17\ \pm 0.11$	18k	ACCIARRI	96H L3	Repl. by ACCIA- RRI 98R
$- \ 0.04 \ \pm 0.15 \ \pm 0.11$		BUSKULIC	95 DALEP	Repl. by HEIS- TER 01E

$\eta^{\tau}(\mu)$ PARAMETER

(V = A) theory	predicts $\eta = 0$	J.						
VALUE	EVTS	DOCUMENT ID	TECN	<u>COMMENT</u>				
0.094±0.073 OUR	FIT							
0.17 ±0.15 OUR	AVERAGE	Error includes sca	le factor of 1	.2.				
$0.160 \pm 0.150 \pm 0.0$	60 46k	HEISTER	01E ALEP	1991-1995 LEP runs				
$0.72 \pm 0.32 \pm 0.15$	5	ABREU	00L DLPH	1992-1995 runs				
$- \ 0.59 \ \pm 0.82 \ \pm 0.49$	5 25	⁸ ABE	970 SLD	1993-1995 SLC runs				
$0.010\pm0.149\pm0.1$	71 13k ²⁵	⁹ AMMAR	97B CLEO	E ^{ee} _{cm} = 10.6 GeV				
• • • We do not use	e the following	data for averages	, fits, limits,	etc. • • •				
$0.010\pm 0.065\pm 0.0$	01 27k ²⁶	⁵⁰ ACKERSTAFF	99D OPAL	1990-1995 LEP runs				
$- \ 0.24 \ \pm 0.23 \ \pm 0.1$	8	BUSKULIC	95D ALEP	Repl. by HEISTER 01E				
²⁵⁸ Highly correlated	258 Highly correlated (corr. = 0.92) with ABE 970 $ ho^{ au}(\mu)$ measurement.							
259	/		T / N					

 59 Highly correlated (corr. = 0.949) with AMMAR 97B $ho^{ au}(\mu)$ value.

²⁶⁰ACKERSTAFF 99D result is dominated by a constraint on η^{T} from the OPAL measurements of the τ lifetime and B($\tau^{-} \rightarrow \mu^{-} \overline{\nu}_{\mu} \nu_{\tau}$) assuming lepton universality for the total coupling strength.

$(\delta\xi)^{\tau}(e \text{ or } \mu)$ PARAMETER

(V-A) theory pred	icts (δξ) =	= 0.75.		
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.746±0.021 OUR FIT				
0.744±0.022 OUR AVER	AGE			
$0.776 \pm 0.045 \pm 0.024$	81k	HEISTER	01E ALE	P 1991-1995 LEP runs
$0.779 \pm 0.070 \pm 0.028$	36k	ABREU	00L DLP	H 1992–1995 runs
$0.65\ \pm 0.14\ \pm 0.07$	46k	ACKERSTAFF	99D OPA	L 1990-1995 LEP runs
0.70 ± 0.11	54k	ACCIARRI	98R L3	1991-1995 LEP runs
$0.63\ \pm 0.09$	26	¹ ALBRECHT	98 ARG	E ^{ee} _{cm} = 9.5-10.6 GeV
$0.88\ \pm 0.27\ \pm 0.04$	26	² ABE	970 SLD	1993-1995 SLC runs
$0.745 \pm 0.026 \pm 0.009$	55 k	ALEXANDER	97F CLE	D E ^{ee} _{cm} = 10.6 GeV
• • • We do not use the	following	data for averages	s, fits, limi	ts, etc. • • •
$0.81 \ \pm 0.14 \ \pm 0.06$	18k	ACCIARRI	96H L 3	Repl. by ACCIARRI98R
0.65 ± 0.12	26	³ ALBRECHT	95C ARG	Repl. by ALBRECHT 98
$0.88\ \pm 0.11\ \pm 0.07$		BUSKULIC	95D ALE	P Repl. by HEISTER 01E
²⁶¹ Combined fit to ARC	GUS tau d	ecay parameter i G and ALBREC	measureme HT 94F 4	nts in ALBRECHT 98, AL-

events of the type $\tau^- \tau^+ \rightarrow (\ell^- \overline{\nu}_{\ell} \nu_{\tau})(\pi^+ \pi^0 \overline{\nu}_{\tau})$, and their charged conjugates.

events of the type $\tau \tau' \to (t - \nu_{\ell}\nu_{\tau})(\pi + \pi^{-}\nu_{\tau})$, and their charged conjugaces. 2^{62} ABE 970 assume $\eta^{\tau} = 0$ in their fit. Letting η^{τ} vary in the fit gives a $(\rho\xi)^{\tau}$ value of 0.87 ± 0.27 ± 0.04. 2^{63} Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 95C, AL-BRECHT 93G, and ALBRECHT 94E. ALBRECHT 95C uses events of the type $\tau^{-}\tau^{+} \to (t^{-}\overline{\nu}_{\ell}\nu_{\tau})(h^{+}h^{-}h^{+}\overline{\nu}_{\tau})$ and their charged conjugates.

Lepton Particle Listings

au

435

(δξ) ^τ (ε) PARAMETER							
(V – A) theory pre	dicts $(\delta \xi) =$	0.75.					
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT			
0.734 ± 0.028 OUR FIT							
0.731 ± 0.029 OUR AVE	RAGE						
$0.778 \pm 0.066 \pm 0.024$	44 k	HEISTER	01E ALEP	1991-1995 LEP runs			
$0.85\ \pm 0.12\ \pm 0.04$	17k	ABREU	00L DLPH	1992-1995 runs			
$0.72\ \pm 0.31\ \pm 0.14$	25 k	ACKERSTAFF	99d OPAL	1990-1995 LEP runs			
$0.56\ \pm 0.14\ \pm 0.06$	264	ALBRECHT	98 ARG	E ^{ee} _{cm} = 9.5-10.6 GeV			
$0.85\ \pm 0.43\ \pm 0.08$		ABE	970 SLD	1993-1995 SLC runs			
$0.720 \pm 0.032 \pm 0.010$	34 k	ALEXANDER	97F CLEO	$E_{\rm CM}^{ee} = 10.6 {\rm GeV}$			
\bullet \bullet \bullet We do not use the	e following o	data for averages	, fits, limits,	etc. • • •			
$1.11\ \pm 0.17\ \pm 0.07$		BUSKULIC	95D ALEP	Repl. by HEISTER 01E			
²⁶⁴ ALBRECHT 98 use their charged conjug	tau pair eve ates.	ents of the type	$\tau^- \tau^+ \to ($	$\ell^- \overline{ u}_\ell u_ au)(\pi^+ \pi^0 \overline{ u}_ au)$, and			
$(\delta\xi)^{\tau}(\mu)$ PARAMET (V-A) theory pre-	ER dicts ($\delta \xi$) =	0.75.					
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT			
0.778±0.037 OUR FIT							
0.79 ±0.04 OUR AVE	RAGE						
$0.786 \pm 0.066 \pm 0.028$	46 k	HEISTER	01E ALEP	1991-1995 LEP runs			
$0.86\ \pm 0.13\ \pm 0.04$	22 k	ABREU	00L DLPH	1992-1995 runs			
$0.63\ \pm 0.23\ \pm 0.05$	27 k	ACKERSTAFF	99d OPAL	1990-1995 LEP runs			
$0.73\ \pm 0.18\ \pm 0.10$	265	ALBRECHT	98 ARG	E ^{ee} _{cm} = 9.5-10.6 GeV			
$0.82\ \pm 0.32\ \pm 0.07$		ABE	970 SLD	1993-1995 SLC runs			
$0.786 \pm 0.041 \pm 0.032$	22 k	ALEXANDER	97F CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$			
• • • We do not use th	e following o	lata for averages	, fits, limits,	etc. • • •			
$0.71\ \pm 0.14\ \pm 0.06$		BUSKULIC	95D ALEP	Repl. by HEISTER 01E			

²⁶⁵ALBRECHT 98 use tau pair events of the type $\tau^- \tau^+ \rightarrow (\ell^- \overline{\nu}_\ell \nu_\tau)(\pi^+ \pi^0 \overline{\nu}_\tau)$, and their charged conjugates.

$\xi^{\tau}(\pi)$ PARAMETER

	(V-A)) theory prec	licts $\xi^{\tau}(\pi)$	= 1.			
VALUI	:		EVTS	DOCUMENT ID		TECN	COMMENT
0.993	±0.022						
0.994	±0.023	OUR AVER	AGE				
0.994	±0.020	± 0.014	27k	HEISTER	01E	ALEP	1991-1995 LEP runs
0.81	± 0.17	± 0.02		ABE	970	SLD	1993-1995 SLC runs
1.03	±0.06	±0.04	2.0k	COAN	97	CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$
•••	• We do	not use the	following d	lata for averages	fits	, limits,	etc. • • •
0.987	± 0.057	± 0.027		BUSKULIC	95 D	ALEP	Repl. by HEISTER 01E
0.95	± 0.11	± 0.05	266	BUSKULIC	94D	ALEP	1990+1991 LEP run
266 S	upersede	ed by BUSK	ULIC 95D.				

$\xi^{\tau}(\rho)$ PARAMETER

(V-A) theory pr	edicts ξ'	$(\rho) = 1.$		
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.994 ± 0.008 OUR FIT				
0.994 ± 0.009 OUR AVE	RAGE			
$0.987 \pm 0.012 \pm 0.011$	59k	HEISTER	01E ALEP	1991-1995 LEP runs
$0.99\ \pm 0.12\ \pm 0.04$		ABE	970 SLD	1993-1995 SLC runs
$0.995 \pm 0.010 \pm 0.003$	66 k	ALEXANDER	97F CLEO	$E_{\rm CM}^{ee} = 10.6 {\rm GeV}$
$1.022\pm 0.028\pm 0.030$	1.7k	²⁶⁷ ALBRECHT	94E ARG	E ^{ee} _{cm} = 9.4-10.6 GeV
• • • We do not use t	he follow	ing data for averages	, fits, limits,	etc. • • •
$1.045 \pm 0.058 \pm 0.032$		BUSKULIC	95D ALEP	Repl. by HEISTER 01E
$1.03\ \pm 0.11\ \pm 0.05$		²⁶⁸ BUSKULIC	94D ALEP	1990+1991 LEP run
²⁶⁷ ALBRECHT 94E m ALBRECHT 901 to ²⁶⁸ Superseded by BUS	easure ti obtain tr KULIC 9	ne square of this qua ne quoted result. 5D.	antity and u	se the sign determined by

$\xi^{\tau}(a_1)$ PARAMETER

(V-A) theory pre-	dicts $\xi^{\tau}(a_1)$	= 1.		
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
1.001 ± 0.027 OUR FIT				
1.002 ± 0.028 OUR AVE	RAGE			
$1.000\pm 0.016\pm 0.024$	35 k ²⁶⁹	HEISTER	01E ALEP	1991-1995 LEP runs
$1.02\ \pm 0.13\ \pm 0.03$	17.2k	ASNER	00 CLEO	E ^{ee} _{CM} = 10.6 GeV
$1.29\ \pm 0.26\ \pm 0.11$	7.4k ²⁷⁰	ACKERSTAFF	97R OPAL	1992-1994 LEP runs
${\begin{array}{ccc} 0.85 & + \ 0.15 \\ - \ 0.17 & \pm \ 0.05 \end{array}}$		ALBRECHT	95 CARG	$E_{\rm Cm}^{ee} = 9.5 - 10.6 {\rm GeV}$
$\begin{array}{rrrr} 1.25 & \pm \ 0.23 & + \ 0.15 \\ & - \ 0.08 \end{array}$	7.5 k	ALBRECHT	93CARG	E ^{ee} _{cm} = 9.4-10.6 GeV
• • • We do not use the	e following o	lata for averages	, fits, limits,	etc. • • •
${}^{1.08} \ {}^{+ 0.46}_{- 0.41} \ {}^{+ 0.14}_{- 0.25}$	2.6k ²⁷¹	AKERS	95 POPAL	Repl. by ACKER-
$0.937 \pm 0.116 \pm 0.064$		BUSKULIC	95D ALEP	Repl. by HEISTER 01E
²⁶⁹ HEISTER 01E quote	1.000 ± 0.00	016 \pm 0.013 \pm	0.020 where	the errors are statistical,

²⁰ HEISTER 01E quote 1.000 ± 0.016 ± 0.013 ± 0.020 where the errors are statistical, systematic, and an uncertainty due to the final state model. We combine the systematic error and model uncertainty.
 ²¹⁰ ACKERSTAFE 97R obtain this result with a model independent fit to the hadronic structure functions. Fitting with the model of Kuhn and Santamaria (ZPHY **C48**, 445 (1990)) gives 0.87 ± 0.16 ± 0.04, and with the model of of sgur *et al.* (PR **D39**, 1357 (1989)) they obtain 1.20 ± 0.21 ± 0.14.

they obtain $1.20 \pm 0.21 \pm 0.14$. 271 AKERS 95 Potain this result with a model independent fit to the hadronic structure functions. Fitting with the model of Kuhn and Santamaria (ZPHY **C48**, 445 (1990)) gives $0.87 \pm 0.27 + 0.05$ and with the model of of Isgur *et al.* (PR **D39**, 1357 (1989)) they obtain $1.10 \pm 0.31 + 0.13 - 0.14$

au

ξ^{τ} (all hadronic modes) PARAMETER

(V-A) theory pr	edicts ξ^{τ}	= 1.		
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.995 ± 0.007 OUR FIT				
0.997±0.007 OUR AVE	RAGE			
$0.992 \pm 0.007 \pm 0.008$	102k	²⁷² HEISTER	01E ALEP	1991-1995 LEP runs
$0.997 \pm 0.027 \pm 0.011$	39k	²⁷³ ABREU	00L DLPH	1992-1995 runs
$1.02\ \pm 0.13\ \pm 0.03$	17.2k	²⁷⁴ ASNER	00 CLEO	$E_{\rm CM}^{ee} = 10.6 {\rm GeV}$
1.032 ± 0.031	37k	²⁷⁵ ACCIARRI	98R L3	1991-1995 LEP runs
$0.93\ \pm 0.10\ \pm 0.04$		ABE	970 SLD	1993-1995 SLC runs
$1.29\ \pm 0.26\ \pm 0.11$	7.4 k	276 ACKERSTAFF	97R OPAL	1992-1994 LEP runs
$0.995 \pm 0.010 \pm 0.003$	66k	²⁷⁷ ALEXANDER	97F CLEO	E ^{ee} _{cm} = 10.6 GeV
$1.03\ \pm 0.06\ \pm 0.04$	2.0k	²⁷⁸ COAN	97 CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$
1.017 ± 0.039		²⁷⁹ ALBRECHT	95C ARG	E ^{ee} _{cm} = 9.5-10.6 GeV
$1.25\ \pm 0.23\ +0.15\\-0.08$	7.5 k	²⁸⁰ ALBRECHT	93C ARG	E ^{ee} _{cm} = 9.4-10.6 GeV
• • • We do not use the	he follow	ing data for averages	, fits, limits,	etc. • • •
$0.970 \pm 0.053 \pm 0.011$	14k	²⁸¹ ACCIARRI	96H L3	Repl. by ACCIARRI 98R
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.6 k	²⁸² AKERS	95P OPAL	Repl. by ACKER-
$1.006 \pm 0.032 \pm 0.019$		²⁸³ BUSKULIC	95D ALEP	Repl. by HEISTER 01E
$1.022 \pm 0.028 \pm 0.030$	1.7k	²⁸⁴ ALBRECHT	94E ARG	E ^{ee} _{cm} = 9.4-10.6 GeV
$0.99\ \pm 0.07\ \pm 0.04$		²⁸⁵ BUSKULIC	94D ALEP	1990+1991 LEP run
272 UEICTED 015	- 0.000		0.005	

 72 HEISTER 01E quote 0.992 \pm 0.007 \pm 0.006 \pm 0.005 where the errors are statistical, systematic, and an uncertainty due to the final state model. We combine the systematic error and model uncertainty. They use $\tau \to \pi \nu_{\tau}, \tau \to K \nu_{\tau}, \tau \to \rho \nu_{\tau}$, and $\tau \to a_1 \nu_{\tau}$ decays.

The find all model dimensions the product of the strength terms o

²⁵³ ACCIARKI 96H use $\tau \to \pi \nu_{\tau}$, $\tau \to K \nu_{\tau}$, and $\tau \to \rho \nu_{\tau}$ decays. ²⁶² AKERS 95P use $\tau \to a_1 \nu_{\tau}$ decays. ²⁶³ BUSKULIC 95D use $\tau \to \pi \nu_{\tau}$, $\tau \to \rho \nu_{\tau}$, and $\tau \to a_1 \nu_{\tau}$ decays. ²⁶⁴ ALBRECHT 94E measure the square of this quantity and use the sign determined by ALBRECHT 901 to obtain the quoted result. Uses $\tau \to a_1 \nu_{\tau}$ decays. Replaced by ²⁶⁵ ALBRECHT 95C.

 $\begin{array}{rcl} \text{ALBRECHT 90C.} \\ \text{285} \text{BUSKULIC 94D use } \tau \ \rightarrow \ \pi \, \nu_{\tau} \ \text{and} \ \tau \ \rightarrow \ \rho \, \nu_{\tau} \ \text{decays.} \ \text{Superseded by BUSKULIC 95D.} \end{array}$

τ REFERENCES

ABBIENDI	03	PL B551 35	G. Abbiendi et al.	(OPAL Collab.)
BRIERE	03	PRL 90 181802	R. A. Briere et al.	CLEO Collab.
HEISTER	0.3E	EP1_C30_291	A Heister et al	(ÁLEPH Collabí
INAMI	03	PL B551 16	K Inamietal	BELLE Collabí
CHEN	020	PR D66 071101R	S Chen et al	(CLEO Collab.)
ABBIENDI	011	EDI C19 653	G Abbiendi et al	(OPAL Collab.)
ADDIENDI	0.13	EPJ C19 033	D Abres et al.	(DELDHI Collab.)
ACCIARRI	0.16	DI DE07 47	M. Accienti et al.	(L2 Collab.)
ACUARRI	010	FL DJ07 47	D Ashend at al.	(L3 Collab.)
ACHARD	010	PL 0019 109	P. Acitatu et al.	(CLS CONAD.)
ANASTASSOV	01	PRL 86 446/	A Anastassov et al.	(CLEO COND.)
HEISTER	UIE	EPJ C22 217	A. Hester et al.	(ALEPH Collab.)
ABBIENDI	UUA	PL B4 92 23	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	000	EPJ C13 213	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	00D	EPJ C13 197	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABREU	00L	EPJ C16 229	P. Abreu et al.	(DELPHI Collab.)
ACCIARRI	00B	PL B479 67	M. Acciarri et al.	(L3 Collab.)
AHMED	00	PR D61 071101R	S. Ahmed et al.	(CLEO Collab.)
ALBRECHT	00	PL B485 37	H. Albrecht et al.	(ARGUS Collab.)
ASNER	00	PR D61 012002	D.M. Asner et al.	(CLEO Collab.)
ASNER	00B	PR D62 072006	D.M. Asner et al.	CLEO Collab.
BERGFELD	00	PRL 84 830	T. Bergfeld et al.	CLEO Collab.
BROWDER	0.0	PR D61 052004	T.F. Browder et al.	CLEO Collabí
EDWARDS	004	PR D61 072003	K W Edwards et al	(CLEO, Collab.)
GON ZALEZ-S	00	NP 8582 3	G A Gonzalez Sprinherg et al.	(0220 00100.)
ABRIENDI	оон	DI R//7 13/	G Abbiendi et al	(OPAL Callab.)
ADDIENDI	0.02	EDI C10 201	B Abreu et al	(DELDHI Collab.)
ACKEDSTARE	2 2 2 4	EPJ CI0 201	F. Ableti er al. K. Ackerstaff, et al.	(OPAL Collab.)
ACKERSTAFF	99D	EPJ C0 3	K. Ackerstaff et al.	(OPAL Collab.)
DADATE	99E	EPJ C0 103	R. AUKEISTAIL <i>et al.</i>	(ALEDU CONSE)
DARATE	996	EPJ CIU I	R. Barate et al.	(ALEPH COND.)
BARALE	99K	EPJ CII 599	R. Barate et al.	(ALEPH Collab.)
BISHAT	99	PRE 82 281	M. Benai et al.	CLEO COMD.
GODANG	99	PK D59 091303	R. Godang et al.	(CLEO Collab.)
RICHICHI	99	PR D60 112002	S.J. Richichi et al.	(CLEO Collab.)
ACCIARRI	98 C	PL B426 207	M. Acciarri et al.	(L3 Collab.)
ACCIARRI	98E	PL B434 169	M. Aciarri <i>et al.</i>	(L3 Collab.)
ACCIARRI	98R	PL B438 405	M. Acciarri et al.	(L3 Collab.)
ACKERSTAFF	98M	EPJ C4 193	K. Ackerstaff et al.	(OPAL Collab.)
ACKERSTAFF	98 N	PL B431 188	K. Ackerstaff et al.	(OPAL Collab.)
ALBRECHT	98	PL B431 179	H. Albrecht et al.	(ARGUS Collab.)
BARATE	98	EPJ C1 65	R. Barate et al.	(ALEPH Collab.)
BARATE	98E	EPJ C4 29	R. Barate et al.	(ALEPH Collab.)
BLISS	98	PR D57 5903	D.W. Bliss et al.	(CLEO Collab.)
ABE	97 O	PRL 78 4691	K. Abe et al.	(SLD Collab.)
ACKERSTAFF	97J	PL B404 213	K. Ackerstaff et al.	(OPAL Collab.)
ACKERSTAFF	97L	ZPHY C74 403	K. Ackerstaff et al.	(OPAL Collab.)
ACKERSTAFF	97R	ZPHY C75 593	K. Ackerstaff et al.	(OPAL Collab.)
ALEXANDER	97F	PR D56 5320	J.P. Alexander et al.	CLEO Collab.
AMMAR	97B	PRL 78 4686	R. Ammar et al.	CLEO Collab.
ANASTASSOV	97	PR D55 2559	A. Anastassov et al.	CLEO Collab.
A Iso	98B	PR D58 119903 (erratum'A Anastassov et al	ÌCLEO, Collab Ì
ANDERS ON	97	PRI 79 3814	S Anderson et al	(CLEO, Collab.)
AVERY	97	PR D55 R1119	P Avery et al	CLEO Collab
BARATE	971	ZPHY C74 387	R Barate et al	(ALEPH Collab.)
BARATE	97R	PL B414 362	R Barate et al	(ALEPH Collab.)
BERGEELD	97	PRI 79 2406	T Berafeld et al	(CLEO Colleb.)
BONVICINI	97	PRI 79 1221	G Bonvicini et al	(CLEO Collab.)
BUSKILLC	97.C	7PHY C74 263	D Buskulic et al	(ALEPH Collab.)
DODROLIC	2.0	2011 014 200	D. Daskand Ct Bl.	(ACCITE CONSUL)

COAN COAN COAN EDWARDS EDWARDS ESCRIBANO ACCLARRI ACCLARRI ACCLARRI ACCLARRI ALEXANDER ALEXANDER BAIST	9777778 BHKK EDEES 949666679710 FFIPY CGHC CDPKEGE DEFRMOUS 3333333333332222232322222222222222222	PR D55 7291 PR D55 7291 PR D56 75939 PL B355 448 PL B377 313 PL B355 448 PL B377 313 PL B359 187 PR D56 7233 PL B359 187 PR D56 320 PL B358 447 PR D53 20 PL B384 457 PR D53 20 PR D53 21 PR D53 21 PR D53 21 PR D53 21 PR D53 11 PL B34 255 PR D53 11 PL B34 255 PR D53 11 PL B35 209 PR D53 11 PL B35 209 PR D53 11 PL B35 209 PR D53 11 PR D54 11 PR D55 11 PR D5	T.E. Coan et al. K.W. Edwards et al. R. Bacribano, E. Masso P. Abres et al. M. Acciarri et al. G. Alexander et al. B. Acciarri et al. G. Alexander et al. J.Z. Bait et al. J.Z. Bait et al. J.Z. Bait et al. J.E. Bartet et al. D. Buskuik et al. D. Buskuik et al. H. Abrecht et al. H. Abrecht et al. H. Abrecht et al. H. Abrecht et al. D. Buskuik et al. H. Abrecht et al.	(CLEO Collab.) (CLEO Collab.) (BARC, PARIT) (ELEO Collab.) (BARC, PARIT) (ELEO Collab.) (CLEO Collab.) (CLEO Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (OPAL Collab.) (OPAL Collab.) (CLEO Collab.) (CLEO Collab.) (OPAL Collab.) (AREUS Collab.) (AREUS Collab.) (AREUS Collab.) (ALEPH Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (CLEO Collab
ADEVA ALBRECHT	92 C 91 F 91 D	PL B265 451 PL B260 259	B. Adeva et al. H. Albrecht et al.	(ACEPH Collab.) (L3 Collab.) (ARGUS Collab.)
A LEXANDER	91 D	PL B266 201	G. Alexander <i>et al.</i>	(OPAL Collab.)
A NT REA SYAN	91	PL B259 216	D. Antreasyan <i>et al.</i>	(Crystal Ball Collab.)
G RIF OLS	91	PL B255 611	J.A. Grifols, A. Mendez	(BARC)
SAMUEL Also Erratum.	91 B 92 B	PRL 67 668 PRL 69 995	M.A. Samuel, G.W. Li, R. Mendel M.A. Samuel, G.W. Li, R. Mendel	(OKSU, WONT) (OKSU, WONT)
AISU Erratum. ABACHI ALBRECHT ALBRECHT	90 E 90 I 90 I	PR D41 1414 PL B246 278 PL B250 164	m.A. Samuer, G.W. Li, K. Mendel S. Abachi <i>et al.</i> H. Albrecht <i>et al.</i> H. Albrecht <i>et al.</i>	(UKSU, WUNT) (HRS Collab.) (ARGUS Collab.) (ARGUS Collab.)
BEHREND BOWCOCK DELAGUILA	90 90 90	ZPHY C46 537 PR D41 805 PL B252 116 PL B251 332	H.J. Behrend <i>et al.</i> T.J.V. Bowcock <i>et al.</i> F. del Aguila, M. Sher	(CELLO Collab.) (CLEO Collab.) (BAR.C. WILL)
WU	90	PR D41 2339	D.Y. Wu et al.	(Mark II Collab.)
ABACHI	8 9 B	PR D40 902	S. Abachi et al.	(HRS Collab.)
BEHREND	8 9 B	PL B222 163	H.J. Behrend et al.	(CELLO Collab.)
I ANSSEN	89	PL B228 273	H. Janssen <i>et al.</i>	(Crystal Ball Collab.)
KLEINWORT	89	ZPHY C42 7	C. Kleinwort <i>et al.</i>	(JADE Collab.)
A DEVA	88	PR D38 2665	B. Adeva <i>et al.</i>	(Mark-J Collab.)
ALBRECHT	88 B	PL B202 149	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	88 L	ZPHY C41 1	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	88 M	ZPHY C41 405	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
A MIDEI	88	PR D37 1/50	D. Amidei et al.	(Mark II Collab.)
BEHREND	88	PL B200 226	H.J. Behrend et al.	(CELLO Collab.)
BRAUNSCH	88 C	ZPHY C39 331	W. Braunschweig et al.	(TASSO Collab.)
TSCHIRHART ABACHI	88 87 B	PL B212 123 PL B205 407 PL B197 291 PRI 50 2510	S. Rell et al. R. Tschirhart et al. S. Abachi et al.	(HRS Collab.) (HRS Collab.) (HRS Collab.)
ADLER	87B	PRL 59 1527	J. Adler et al.	(Mark III Collab.)
AIHARA	87B	PR D35 1553	H. Aihara et al.	(TPC Collab.)
AIHARA	87C	PRI 59 751	H. Aihara et al.	(TPC Collab.)
ALBRECHT	87L	PL B185 223	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT	87P	PL B199 580	H. Albrecht et al.	(ARGUS Collab.)
BAND	87	PL B198 297	H.R. Band et al.	(MAC Collab.)
BAND	87 B	PRL 59 415	H.R. Band et al.	(MAC Collab.)
BARINGER	87	PRL 59 1993	P. Baringer et al.	(CLEO Collab.)
BEBEK	87 C	PR D36 690	C. Bebek et al.	(CLEO Collab.)
BURCHAT	87	PR D35 27	P.R. Burchat et al.	(Mark II Collab.)
BYLSMA	87	PR D35 2269	B.G. Bylsma et al.	(HRS Collab.)
COFFMAN	87	PR D36 2185	D.M. Coffman et al.	(Mark III Collab.)
D ER RIC K	87	PL B189260	M. Derrick et al.	(HRS Collab.)
F ORD	87	PR D35408	W.T. Ford et al.	(MAC Collab.)
F ORD	87 B	PR D361971	W.T. Ford et al.	(MAC Collab.)
GAN	87	PRL 59 411	K.K. Gan et al.	(Mark II Collab.)
GAN	87 B	PL B197 561	K.K. Gan et al.	(Mark II Collab.)
AIHARA	86 E	PRL 57 1836	H. Aihara et al.	(TPC Collab.)
BARTEL	86D	PL B182 216	W. Bartel et al.	(ĴADE Collab.)
PDG	86	PL 170B	M. Aguilar-Benitez et al.	(CERN, CIT+)

RUCKST UHL SCHMIDKE SCHMIDKE SCHMIDKE SCHMIDKE SATRUSAT. BARTEL BARTEL BEHRENDS BEUTRAM BEHREND BERGER BURCHAT FERMANDES BEHREND BLOCKER BLOCK	86 86 85 85 85 85 85 85 85 85 85 85 85 85 85	PRL 55 6 1322 PRL 57 6 327 PRL 57 6 327 PRL 55 2118 PRL 55 2118 PRL 55 1018 PRL 55 1018 PRL 54 1775 ZPHY C28 1 PRL 54 1624 PRL 52 10 PRL 52 1624 PRL 54 1624 PRL 52 10 PRL 1278 240 PRL 45 249 PL 199 119 PRL 45 269 PL 986 199 PL 986 199 PL 986 199 PL 986 199 PL 478 199 PL 478 194 PL 478 49 PL 47	W. Rucistahi et al. W.B. Schmidte et al. W.B. Schmidte et al. M.B. Schmidte et al. M. Abhoff et al. W. Bartel et al. W. Bartel et al. S. Behrends et al. I. Beitrami et al. C. Berger et al. P.R. Burchat et al. H.J. Behrend et al. H.J. Behrend et al. H.J. Behrend et al. H.J. Behrend et al. G.B. Shiverman, G.L. Shaw H.J. Behrend et al. G.A. Bocker et al. G.A. Bocker et al. C.A. Bocker et al. C.A. Bocker et al. B.J. Rohrend et al. K.G. Hayes et al. K.G. Hayes et al. A. Zholents et al. A. Zholents et al. A. Zholents et al. M. Dortan et al.	(DELCO GOIB.) Mark II Golb.) Mark II Golb.) (MAC Golb.) (DELCO Golb.) (CELCO Golb.) (CELCO Golb.) (CELCO Golb.) (CELCO Golb.) (CELCO Golb.) (CELCO Golb.) (MAR II Golb.) (MOVO) (NOVO)
KIRKBY	79B 79	SLAC-PUB-2419	J. Kirkby	(DELCO COMD.) (SLAC) J
Batavia Le	pton F	hoton Conference.		
BACINO	78B	PRL 41 13	W.J. Bacino et al.	(DELCO Collab.) J
A ISO	78	TOKYO CONT. 249	J. KITZ	(STON)
A ISO B PA N DELIK	0U 70	PL 90D 214 DI 72B 100	R Brandelik et al.	(DASP Collab.)
EELDMAN	70	Tokyo Conf 777	G I Faldman	(SIAC) I
LAROS	78	PRI 40 1120	I laros et al	(SLAC LBL NWES HAWA)
PERI	75	PRI 35 1489	MI Perlet al	(IBL SLAC)
				(202, 0212)

- OTHER RELATED PAPERS -----

RAHAL-CAL GENTILE WEINSTEIN PERL PICH BARISH	98 96 93 92 90 88	IJMP A13 695 PRPL 274 287 ARNPS 43 457 RPP 55 653 MPL A5 1995 PRPL 157 1	G. Rahal-Callot S. Gentile, M. Pohl (1 A.J. Weinstein, R. Stroynowski M.L. Peth B.C. Barkh, R. Stroynowski	(ET H) ROMAI, ET H) (CIT, SMU) (SLA C) (VALE) (CIT)
GAN	88	UMP A3 531	K.K. Gan, M.L. Perl	(SLAC)
HAYES	88	PR D38 3351	K.G. Hayes, M.L. Perl	(SLAC)
PERL	80	ARNPS 30 299	M.L. Perl	(SLAC)

Heavy Charged Lepton Searches

Charged Heavy Lepton MASS LIMITS

Sequential Charged Heavy Lepton (L[±]) MASS LIMITS

These experiments assumed that a fourth generation L^\pm decayed to a fourth generation ν_L (or L^0) where ν_L was stable, or that L^\pm decays to a light ν_ℓ via mixing.

See the "Quark and Lepton Compositeness, Searches for" Listings for limits on radiatively decaying excited leptons, i.e. $\ell^* \to \ell\gamma$. See the "WIMPs and other Particle Searches" section for heavy charged particle search limits in which the charged particle could be a lepton.

VALUE (GeV)	CL%		DOCUMENT ID		TECN	COMMENT
>100.8	95		ACHARD	01B	L 3	Decay to νW
>101.9	95		ACHARD	01B	L 3	$m_L - m_{10} > 15 \text{ GeV}$
• • • We do no	t use t	he fo	llowing data for	aver	ages, fit	s, limits, etc. • • •
> 81.5	95		ACKERSTAFF	98C	OPAL	Assumed $m_{L^{\pm}} - m_{L^0} > 8.4$ GeV
> 80.2	95		ACKERSTAFF	98C	OPAL	$m_{I^0} > m_{I^\pm}$ and $L^\pm \rightarrow \nu W$
< 48 or $>$ 61	95	1	ACCIARRI	96G	L 3	
> 63.9	95		ALEXANDER	96P	OPAL	Decay to massless $ u$'s
> 63.5	95		BUSKULIC	96S	ALEP	$m_L - m_{10} > 7 \text{ GeV}$
> 65	95		BUSKULIC	96S	ALEP	Decay to massless $ u$'s
none 10-225		2	AHMED	94	CNTR	H1 Collab. at HERA
none 12.6-29.6	95		KIM	91B	AMY	Massless ν assumed
> 44.3	95		AKRAWY	90G	OPAL	
none 0.5-10	95	3	RILES	90	MRK2	For $(m_{10} - m_{10}) > 0.25 - 0.4 \text{GeV}$
> 8		4	STOKER	89	MRK2	For $(m_{1+} - m_{10}) = 0.4 \text{ GeV}$
> 12		4	STOKER	89	MRK2	For $m_{10} = 0.9$ GeV
none 18.4–27.6	95	5	ABE	88	VNS	-
> 25.5	95	6	ADACHI	88B	торг	
none 1.5-22.0	95		BEHREND	88C	CELL	
> 41	90	7	ALBAJAR	87B	UA1	
> 22.5	95	8	ADEVA	85	MRKJ	
> 18.0	95	9	BARTEL	83	JADE	
none 4–14.5	95	10	BERGER	81B	PLUT	
> 15.5	95	11	BRANDELIK	81	TASS	
> 13.		12	AZIMOV	80		
> 16.	95	13	BARBER	80B	CNTR	
> 0.490		14	ROTHE	69	RVUE	

Lepton Particle Listings τ , Heavy Charged Lepton Searches

 $^1\,\text{ACCIARRI}$ 96G assumes LEP result that the associated neutral heavy lepton mass >40

- ²The AHMED 94 limits are from a search for neutral and charged sequential heavy leptons at HERA via the decay channels $L^- \rightarrow e \gamma$, $L^- \rightarrow \nu W^-$, L^- eZ; and L⁰ $L^0 \rightarrow e^- W^+, \, L^- \rightarrow \nu Z$, where the W decays to $\ell \,
 u_\ell$, or to jets, and Z decays to $\ell^+ \ell^-$ or jets.
- ³RILES 90 limits were the result of a special analysis of the data in the case where the mass [RLES 90 limits were the result of a special analysis of the data in the case where the mass difference $m_{L^{-}} - m_{L^{0}}$ was allowed to be quite small, where L^{0} denotes the neutrino into which the sequential charged lepton decays. With a slightly reduced $m_{L^{\pm}}$ range, the mass difference extends to about 4 GeV. ⁴STOKER 89 (Mark II at PEP) gives bounds on charged heavy lepton (L^+) mass for
- the generalized case in which the corresponding neutral heavy lepton (L^0) in the SU(2)
- doublet is not of negligible mass. 5 ABE 88 search for L^+ and $L^- \to hadrons looking for acoplanar jets. The bound is valid for <math>m_{\nu} < 10$ GeV.
- ⁶ADACHI 88B search for hadronic decays giving acoplanar events with large missing energy. $E_{cm}^{ee} = 52 \text{ GeV}.$
- ⁷Assumes associated neutrino is approximately massless.
- 8 ADEVA 85 analyze one-isolated-muon data and sensitive to τ $<\!10$ nanosec. Assume B(lepton) = 0.30. $E_{\rm Cm}$ = 40–47 GeV.
- ⁹BARTEL 83 limit is from PETRA e^+e^- experiment with average $E_{\rm CM} = 34.2$ GeV.
- ¹⁰BERGER 81B is DESY DERIS and PETRA experiment. Looking for $e^+e^- \rightarrow L^+L^-$. ¹¹BRANDELIK 81 is DESY-PETRA experiment. Looking for $e^+e^- \rightarrow L^+L^-$. ¹²A ZIM OV 80 estimated probabilities for M + N type events in $e^+e^- \rightarrow L^+L^-$ deducing All not destinated probabilities for m + t = - annihilation data at $E_{cm} = (2/3)m_L$. Obtained above limit comparing these with e^+e^- data (BRANDELIK 80).
- ¹³BARBER 80B looked for $e^+e^- \rightarrow L^+L^-$, $L \rightarrow \nu_L^+$ X with MARK-J at DESY-PETRA. $^{14}\,{\rm ROTHE}$ 69 examines previous data on μ pair production and π and ${\it K}$ decays.

Stable Charged Heavy Lepton (L^{\pm}) MASS LIMITS

VALUE (GeV)	CL%	DOCUMENT ID	TECN
>102.6	95	A CHARD	01B L 3
• • • We do not use	the followi	ng data for averag	es, fits, limits, etc. • • •
> 28.2	95	¹⁵ ADACHI	90C TOPZ
none 18.5-42.8	95	AKRAWY	900 OPAL
> 26.5	95	DECAMP	90F ALEP
none m_{μ} –36.3	95	SODERSTRO	DM90 MRK2
15		-	

¹⁵ ADACHI 90C put lower limits on the mass of stable charged particles with electric charge Q satisfying 2/3 < Q/e < 4/3 and with spin 0 or 1/2. We list here the special case for</p> a stable charged heavy lepton.

Charged Long-Lived Heavy Lepton MASS LIMITS

VALUE (GeV)	CL% EVTS	DOCUMENT ID		TECN	CHG	COMMENT
•••We do no	ot use the follo	wing data for averag	es, fits	, limits,	etc.	
>102.0	95	ABBIENDI	03L	OPAL		pair produced in e^+e^-
> 0.1	0	¹⁶ ANSORGE	73B	нвс	-	Long-lived
none 0.55–4.5		¹⁷ BUSHNIN	73	CNTR	-	Long-lived
none 0.2-0.92		¹⁸ BARNA	68	CNTR	-	Long-lived
none 0.97-1.03		¹⁸ barna	68	CNTR	-	Long-lived
¹⁶ ANSORGE	73B looks for e	lectron pair production	on and	electro	n-like	Bremsstrahlung.

¹⁷ BUSHNID 73 is SERPUKHOV 70 GeV p experiment. Masses assume mean life above 7×10^{-10} and 3×10^{-8} respectively. Calculated from cross section (see "Charged Quasi-Stable Lepton Production Differential Cross Section" below) and 30 GeV muon pair production data.

¹⁸BARNA 68 is SLAC photoproduction experiment.

Doubly-Charged Heavy Lepton MASS LIMITS

VALUE (GeV) CL% DOCUMENT ID TECN CHG \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

¹⁹ CLARK none 1-9 GeV 90 81 SPEC ++

 19 CLARK 81 is FNAL experiment with 209 GeV muons. Bounds apply to μ_P which couples with full weak strength to muon. See also section on "Doubly-Charged Lepton Production Cross Section."

Doubly-Charged Lepton Production Cross Section (µN Scattering)

VALUE (cm²) EVTS DOCUMENT ID TECN CHG • • • We do not use the following data for averages, fits, limits, etc. • • • $< 6. \times 10^{-38}$ 0 ²⁰ CLARK 81 SPEC ++ ²⁰CLARK 81 is FNAL experiment with 209 GeV muon. Looked for μ^+ nucleon $\rightarrow \ \overline{\mu}_D^0$ X, $\mu_D^0 \to \mu^+ \mu^- \overline{\nu}_{\mu}$ and $\mu^+ n \to \mu_D^{++} X$, $\mu_D^{++} \to 2\mu^+ \nu_{\mu}$. Above limits are for $\sigma \times BR$ taken from their mass-dependence plot figure 2.

438 Lepton Particle Listings Heavy Charged Lepton Searches, e, μ , τ Neutrinos

REFERENCES FOR Heavy Charged Lepton Searches

ABBIENDI ACHAED ACHAED ACCAER BUSKULC ALEXANDER BUSKULC ALEXANDER BUSKULC ALEXANDER BUSKULC ALEXANDER BUSKULC ALEXANDER BUSKULC ALEXANDER ADCAL ALEXANDER ADCAL BERGER BEHREND BERANDELLK ALEXANDER ADCAL ADCAL AD	03L 01B 98C 96G 96P 96B 90F 90C 90G 90F 90 90F 90F 888 888 888 885 844C 831 81 81 82 80	PL 8572 8 PL 8517 75 EPJ C1 45 PL 8377 304 PL 8385 433 PL 8384 439 PL 8384 439 PL 8384 439 PL 8384 2583 PL 8244 352 PL 8240 250 PL 8220 250 PL 8220 511 PR 042 1 PR 042 1 PR 042 1 PR 055 241 PR 055 241 PL 1528 439 PR 109 151 PR 052 3762 JETPL 32 664 PR 052 7762 JETPL 32 664 PR 055 2762 JETPL 32 664	G. Abbiendi et al. P. Achard et al. P. Achard et al. M. Acciarti et al. M. Acciarti et al. G. Alexader et al. D. Bucklik et al. T. Ahmed et al. D. Bucklik et al. M.Z. Akrawy et al. M.Z. Akrawy et al. D. Decamp et al. K. Riles et al. E. Soderstrom et al. D.P. Stoker et al. K. Abce et al. H. Adachi et al. H. Adachi et al. H. Adachi et al. B. Adeva et al. B. Ad	(OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (Ark II Collab.) (Mark II Collab.) (Mark II Collab.) (UAI Collab.) (UAI Collab.) (UAI Collab.) (Mark J Collab.) (Mark J Collab.) (ELLO Collab.) (ULT Collab.) (ULT Collab.) (ULT Collab.) (LBL, FNAL, PRIN) (ENDAL COLLAB.) (Mark II Collab.) (IDAL COLLAB.)
BARBER BRANDELIK ANSORGE BUSHNIN Also ROTHE BARNA	80B 80 73B 73 72 69 68	Translated from ZETFP PRL 45 1904 PL 92B 199 PR D7 26 NP B58 476 PL 42B 136 NP B10 241 PR 173 1391	32 677. D.P. Barber et al. R. Brandelik et al. R. Brandelik et al. Y.B. Bushnin et al. S.V. Gobykin et al. K.W. Rothe, A.M. Wosky A. Barna et al. DEI ATED DADEDES	(Mark-J Collab.) (TASSO Collab.) (CAVE) (SERP) (SERP) (PENN) (SLAC, STAN)
PERL Physics in	81 Collisio	SLAC-PUB-2752 on Conference.	M.L. Perl	(SLAC)

Neutrinos

OMITTED FROM SUMMARY TABLE ELECTRON, MUON, AND TAU NEUTRINO LIST-INGS

Revised July 2003 by P. Vogel (Caltech) and A. Piepke (University of Alabama).

The following Listings concern measurements of the properties of neutrinos produced in association with e^{\pm} , μ^{\pm} , and τ^{\pm} . Nearly all of the measurements, all of which so far are upper limits, actually concern superpositions of the mass eigenstates ν_i , which are in turn related to the weak eigenstates ν_{ℓ} , via the neutrino mixing matrix

$$|\nu_{\ell}\rangle = \sum_{i} U_{\ell i} |\nu_{i}\rangle \quad . \tag{1}$$

In the analogous case of quark mixing via the CKM matrix, the smallness of the off-diagonal terms (small mixing angles) permits a "dominant eigenstate" approximation. Previous editions of this Review have assumed that the dominant eigenstate paradigm applies to neutrinos as well. However, the present results of neutrino oscillation searches suggest that the mixing matrix contains two large mixing angles. We can therefore no longer associate any particular state $|\nu_i\rangle$ with any particular lepton label e, μ , or τ . Nevertheless, neutrinos are produced in weak decays with a definite lepton flavor, and are typically detected by the charged current weak interaction again associated with a specific lepton flavor. The listings that follow are separated into the three associated charged lepton categories.

Measured quantities (mass-squared, magnetic moments, mean lifetimes, *etc.*) all depend upon the mixing parameters $|U_{ti}|^2$, but to some extent also on experimental conditions (energy resolution). Most of these observables, in particular mass-squared, cannot distinguish between Dirac and Majorana neutrinos and are unaffected by *CP* phases. Direct neutrino mass measurements are usually based on the analysis of the kinematics of charged particles (leptons, pions) emitted together with neutrinos (flavor states) in various weak decays. The most sensitive neutrino mass measurement to date, involving electron type neutrinos, is based on fitting the shape of the beta spectrum. The quantity $m_{\nu_e}^{2(\text{eff})} = \sum_i |U_{ei}|^2 m_{\nu_i}^2$ is determined or constrained, where the sum is over all mass eigenvalues m_{ν_i} that are too close together to be resolved experimentally. If the energy resolution is better than $\Delta m_{ij}^2 \equiv m_{\nu_i}^2 - m_{\nu_j}^2$, the corresponding heavier m_{ν_i} and mixing parameter could be determined by fitting the resulting spectral anomaly (step or kink).

A limit on $m_{\nu_e}^{2(\text{eff})}$ implies an *upper* limit on the *minimum* value $m_{\nu_{\min}}^2$ of $m_{\nu_i}^2$ independent of the mixing parameters U_{ei} : $m_{\nu_{\min}}^2 \leq m_{\nu_e}^{2(\text{eff})}$. However, if and when the study of neutrino oscillations provides us with the values of all neutrino mass-squared differences Δm_{ij}^2 and the mixing parameters $|U_{ei}|^2$, then the individual neutrino mass squares $m_{\nu_j}^2 = m_{\nu_e}^{2(\text{eff})} - \sum_i |U_{ei}|^2 \Delta m_{ij}^2$ can be determined. If only the $|\Delta m_{ij}^2|$ are known, a limit on $m_{\nu_e}^{(\text{eff})}$ from beta decay may be used to define an *upper* limit on the *maximum* value $m_{\nu_{\max}}$ of m_{ν_i} : $m_{\nu_{\max}}^2 \leq m_{\nu_e}^{2(\text{eff})} + \sum_{i < j} |\Delta m_{ij}^2|$.

and the matrix of $m_{\nu_e}: m_{\nu_{max}}^2 \leq m_{\nu_e}^{2(\mathrm{eff})} + \sum_{i < j} |\Delta m_{ij}^2|.$ The analysis of the low energy beta decay of tritium yields the most stringent limit on $m_{\nu_e}^{(\mathrm{eff})}$ to date (where $m_{\nu_e}^{(\mathrm{eff})} \equiv \sqrt{m_{\nu_e}^{2(\mathrm{eff})}}$). Unphysical negative $m_{\nu_e}^{2(\mathrm{eff})}$ fits, caused by an as yet not understood event excess near the spectrum endpoint, are sometimes encountered. In Ref. 1 two analyses which either exclude the spectral anomaly by choice of the analysis energy window or by using one of four data sets yield an acceptable $m_{\nu_e}^{2(\mathrm{eff})}$ fit and a $m_{\nu_e}^{(\mathrm{eff})}$ limit of 2.8 eV. Ref. 2 reports a $m_{\nu_e}^{(\mathrm{eff})}$ limit of the anomalous near-endpoint events into the spectral analysis.

In analogous way, by measuring the muon momentum in the pion decay $\pi^+ \to \mu^+ + \nu_{\mu}$ one constrains the quantity $m_{\nu_{\mu}}^{2(\text{eff})} = \sum_i |U_{\mu i}|^2 m_{\nu_i}^2$, where the sum is again over all m_{ν_i} that cannot be resolved experimentally. Obviously, the true $m_{\nu_{\mu}}^{2(\text{eff})}$ cannot be larger than the maximum value of $m_{\nu_i}^2$. As pointed out above, this maximum could be restricted by the tritium beta decay, provided all neutrino mass-squared differences $|\Delta m_{ij}^2|$ are known. The most sensitive measurement is $m_{\nu_{\mu}}^{(\text{eff})} < 170 \text{ keV}$ [3], more than four orders of magnitude less stringent than the tritium experiments.

Similar remarks can be made about $m_{\nu_{\tau}}^{2(\text{eff})}$ constrained by the shape of the spectrum of decay products of the τ lepton. Again, the true $m_{\nu_{\tau}}^{2(\text{eff})}$ cannot exceed the maximum $m_{\nu_{\iota}}^{2}$ value, which could be constrained by both $m_{\nu_{e}}^{2(\text{eff})}$ and $m_{\nu_{\mu}}^{2(\text{eff})}$ values or limits, provided the corresponding $|\Delta m_{ij}^{2}|$ are known. The most stringent limit on $m_{\nu_{\tau}}^{(\text{eff})}$, 18.2 MeV [4], is yet another two orders of magnitude less sensitive than the $m_{\nu_{\mu}}^{(\text{eff})}$ limit. The different sensitivities of the current experiments regarding $m_{\nu_{\tau}}^{(\text{eff})}$, $m_{\nu_{\mu}}^{(\text{eff})}$, and $m_{\nu_{e}}^{(\text{eff})}$ are relevant, however, only if the oscillation searches, reported below, can be regarded as an reliable source of all $|\Delta m_{ij}^{2}|$ values.

The spread of arrival times of the neutrinos from SN1987A, coupled with the measured neutrino energies, provides a timeof-flight limit on a quantity similar to $m_{\nu_e}^{(\text{eff})}$. This statement, clothed in various degrees of sophistication, has been the basis for a very large number of papers. The resulting limits, however, are no longer competitive with the limits from the tritium beta decay.

Another constraint has been obtained recently from the analysis of the cosmic microwave background anisotropy ([5]), combined with the galaxy redshift surveys and other data. The constrained quantity is the sum of the neutrino masses, $\sum_{i} m_{\nu_i} \leq 0.7$ eV. Discussion concerning the model dependence of this limit is continuing.

References

- 1. Ch. Weinheimer et al., Phys. Lett. **B460**, 219 (1999); Phys. Lett. B464, 352 (1999) (erratum).
- 2. M. Lobashev et al., Phys. Lett. B460, 227 (1999).
- 3. K.A. Assamagan et al., Phys. Rev. D53, 6065 (1996).
- R. Barate et al., Eur. Phys. J. C2, 395 (1998). 4.
- N. Spergel et al., Astrophys. J. Supp. 148, 175 (2003). 5.

 \mathcal{V}_{ρ}

 $J = \frac{1}{2}$

The following results are obtained using neutrinos associated with e^+ or e^- . See Note on "Electron, muon, and tau neutrino listings.

7 MASS

Those limits given below for $\overline{\nu}$ mass that come from the kinematics of ${}^{3}\mathrm{H}\beta^{-}\overline{\nu}$ decay are the square roots of limits for $m_{\nu}^{2(\mathrm{eff})}$. These are obtained from the measurements reported in the Listings for " $\overline{\nu}$ Mass Soluared." below.

VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT
< 3 OUR EVALUATI	ON				_
< 5.7	95	¹ LOREDO	02	ASTR	SN1987A
< 2.5	95	² LOBASHEV	99	SPEC	$^{3}H\beta$ decay
< 2.8	95	³ WEINHEIMER	99	SPEC	$^{3}H\beta$ decay
• • • We do not use the	following	; data for averages	, fits	, limits,	etc. • • •
< 4.35	95	⁴ BELESEV	95	SPEC	3 H β decay
<12.4	95	⁵ CHING	95	SPEC	$^{3}H\beta$ decay
< 92	95	⁶ HIDDEMANN	95	SPEC	3 H β decay
15 + 32 - 15		HIDDEMANN	95	SPEC	3 H eta decay
<19.6	95	KERNAN	95	ASTR	SN 1987A
< 7.0	95	⁷ STOEFFL	95	SPEC	$^{3}H\beta$ decay
< 7.2	95	⁸ WEINHEIMER	93	SPEC	$^{3}H\beta$ decay
<11.7	95	⁹ HOLZSCHUH	92B	SPEC	3 H β decay
<13.1	95	¹⁰ KAWAKAMI	91	SPEC	$^{3}H\beta$ decay
< 9.3	95	¹¹ ROBERTSON	91	SPEC	$^{3}H\beta$ decay
<14	95	AVIGNONE	90	ASTR	SN 1987A
<16		SPERGEL	88	ASTR	SN 1987A
17 to 40		¹² BORIS	87	SPEC	3 H β decay

¹LOREDO 02 updates LOREDO 89.

²LOBASHEV 99 report a new measurement which continues the work reported in BELE-SEV 95. This limit depends on phenomenological fit parameters used to derive their best fit to $m_{\nu}^2,$ making unambiguous interpretation difficult. See the footnote under " $\overline{\nu} M$ ass Squared."

³WEINHEIMER 99 presents two analyses which exclude the spectral anomaly and result in an acceptable m_{ν}^2 . We report the most conservative limit, is nearly the same. See the footnote under " $\overline{\nu}$ Mass Squared." . We report the most conservative limit, but the other (< 2.7 eV)

- 4 BELESEV 95 (Moscow) use an integral electrostatic spectrometer with adiabatic magnetic collimation and a gaseous tritium sources. A fit to a normal Kurie plot above 18300–18350 eV (to avoid a low-energy anomaly) plus a monochromatic line 7–15 eV below the endpoint yields $m_{y}^2 = -4.1 \pm 10.9 \text{ eV}^2$, leading to this Bayesian limit.
- ⁵ CHING 95 quotes results previously given by SUN 93; no experimental details are given. A possible explanation for consistently negative values of m_{μ}^2 is given.

⁶HIDDEMANN 95 (Munich) experiment uses atomic tritium embedded in a metal-dioxide lattice. Bayesian limit calculated from the weighted mean $m_{
m \nu}^2=$ 221 \pm 4244 eV 2 from the two runs listed below.

439 Lepton Particle Listings

 e, μ, τ Neutrinos, ν_e

 7 STOEFFL 95 (LLNL) result is the Bayesian limit obtained from the m_{y}^{2} errors given below but with m_{μ}^2 set equal to 0. The anomalous endpoint accumulation leads to a value of m_{η}^2 which is negative by more than 5 standard deviations.

- 8 WEINHEIMER 93 (Mainz) is a measurement of the endpoint of the tritium eta spectrum using an electrostatic spectrometer with a magnetic guiding field. The source is molecular tritium frozen onto an aluminum substrate. ⁹HOLZSCHUH 92B (Zurich) result is obtained from the measurement $m_{y}^{2} = -24 \pm 48 \pm 61$
- $(1\sigma \text{ errors})$, in eV², using the PDG prescription for conversion to a limit in m_{μ} . ¹⁰KAWAKAMI 91 (Tokyo) experiment uses tritium-labeled arachidic acid. This result is the
- Bayesian limit obtained from the m_{ν}^2 limit with the errors combined in quadrature. This was also done in ROBERTSON 91, although the authors report a different procedure.
- We also used in the other solution of the authors report a concern proceeder. ¹¹ ROBERTSON 91 (LANL) experiment uses gaseous molecular fiftium. The result is in strong disagreement with the earlier claims by the ITEP group [UBIMOV 80, BORIS 87 (+BORIS 88 erratum)] that m_y lies between 17 and 40 eV. However, the probability of a positive m^2 is only 3% if statistical and systematic error are combined in quadrature. ¹² See also comment in BORIS 87B and erratum in BORIS 88.

v MASS SQUARED

Given troubling systematics which result in improbably negative estimators of $m_2^{2(\rm eff)}$ in many experiments, we use only WEINHEIMER 99 and LOBASHEV 99 for our average, as discussed above in the Note on the "Electron, muon, and tau neutrino listings."

VALUE (eV ²)			CL%		DOCUMENT ID		TECN	COMMENT
- 2.5	i ±	3.3	3 OUR	AVERAGE					
- 1.9) ±	3.4	1 ± 2.2	2	13	LOBASHEV	99	SPEC	3 H β decay
- 3.7	'±	5.3	3 ± 2.1		14	WEINHEIMER	99	SPEC	3 H β decay
• • •	Wed	to no	ot use	the followin	g d	ata for averages	, fits	, limits,	etc. • • •
- 22	±	4.8	3		15	BELESEV	95	SPEC	3 H β decay
129	± 60	010			16	HIDDEMANN	95	SPEC	3 H β decay
313	± 59	994			16	HIDDEMANN	95	SPEC	3 H β decay
-130	\pm	20	±15	95	17	STOEFFL	95	SPEC	3 H β decay
- 31	\pm	75	± 48		18	SUN	93	SPEC	3 H β decay
- 39	\pm	34	±15		19	WEINHEIMER	93	SPEC	3 H β decay
- 24	\pm	48	±61		20	HOLZSCHUH	92B	SPEC	3 H β decay
- 65	\pm	85	± 65		21	KAWAKAMI	91	SPEC	3 H β decay
- 147	±	68	±41		22	ROBERTSON	91	SPEC	3 H β decay

- 13 LOBASHEV 99 report a new measurement which continues the work reported in BELE-SEV 95. The data were corrected for electron trapping effects in the source, eliminating the dependence of the fitted neutrino mass on the fit interval. The analysis assuming a pure beta spectrum yields significantly negative fitted $m_{
 m
 m
 m
 m }^2 pprox -$ (20–10) eV 2 . This problem is attributed to a discrete spectral anomaly of about 6×10^{-11} intensity with a time-dependent energy of 5–15 eV below the endpoint. The data analysis accounts for this anomaly by introducing two extra phenomenological fit parameters resulting in a best fit of $m_2^2 = -1, 9 \pm 3.4 \pm 2.2 eV^2$ which is used to derive a neutrino mass limit. However, the introduction of phenomenological fit parameters which are correlated with the derived m_{u}^{2} limit makes unambiguous interpretation of this result difficult.
- ¹⁴WEINHEIMER 99 is a continuation of the work reported in WEINHEIMER 93 . Using WEINHEIMER 99 is a continuation of the work reported in WEINHEIMER 93. Using a lower temperature of the frozen tritium source eliminated the dewetting of the T₂ film, which introduced a dependence of the fitted neutrino mass on the fit interval in the earlier work. An indication for a spectral anomaly reported in LOBASHEV 99 has been seen, but its time dependence does not agree with LOBASHEV 99. Two which exclude the spectral anomaly either by choice of the analysis interval or by using a particular data set which does not exhibit the anomaly, result in acceptable m_{μ}^2 fits and are used to derive the neutrino mass limit published by the authors. We list the most conservative of the two. ¹⁵BELESEV 95 (Moscow) use an integral electrostatic spectrometer with adiabatic mag-
- netic collimation and a gaseous tritium sources. This value comes from a fit to an ormal Kurie plot above 18300-18350 eV (to avoid a low-energy anomaly), including the effects of an apparent peak 7-15 eV below the endpoint.
- 16 HIDE MANN 95 (Munich) experiment uses atomic tritium embedded in a metal-dioxide lattice. They quote measurements from two data sets.
- ¹⁷ STOEFFL 95 (LLNL) uses a gaseous source of molecular tritium. An anomalous pileup of events at the endpoint leads to the negative value for m_{μ}^2 . The authors acknowledge that "the negative value for the best fit of m_{ν}^2 has no physical meaning" and discuss possible explanations for this effect. $^{\nu}$ ¹⁸SUN 93 uses a tritiated hydrocarbon source. See also CHING 95.
- ¹⁹WEINHEIMER 93 (Mainz) is a measurement of the endpoint of the tritium β spectrum using an electrostatic spectrometer with a magnetic guiding field. The source is poecular 20 trillum frozen onto an aluminum substrate. HOLZSCHUH 928 (Zurich) source is a monolayer of triliated hydrocarbon.
- ²¹KAWAKAMI 91 (Tokyo) experiment uses tritium-labeled arachidic acid.
- ²² ROBERTSON 91 (LANL) experiment uses an use of the solution decide distinct term is strong disagreement with the earlier claims by the ITEP group [LUBIMOV 80, BORIS 87 (+BORIS 88 erratum)] that m_{ν} lies between 17 and 40 eV. However, the probability of
- a positive m_{ii}^2 is only 3% if statistical and systematic error are combined in quadrature.

 ν_e

ν MASS

These are measurement of m_{ν} (in contrast to $m_{\overline{\nu}}$ given above). The masses can be different for a Dirac neutrino in the absence of CPT invariance. The possible distinction between u and $\overline{
u}$ properties is usually ignored elsewhere in these Listings.

VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT
< 460	68	YASUMI	94	CNTR	¹⁶³ Ho decay
< 225	95	SPRINGER	87	CNTR	¹⁶³ Ho decay
• • • We do not use the	following d	ata for averages	, fits	, limits,	etc. • • •
$<~4.5\times10^{5}$	90	CLARK	74	ASPK	K _{e3} decay
< 4100	67	BECK	68	CNTR	²² Na decay

ν CHARGE

<u>TECN</u> <u>COMMENT</u> VALUE (units: electron charge) DOCUMENT ID ata for averages, fits. limits • We do not use the following

• • • we do no	. use the following data for average	s, nus	, mms,	
$<\!2 imes 10^{-14}$	²³ RAFFELT	99	ASTR	Red giant luminosity
$< 6 \times 10^{-14}$	²⁴ RAFFELT	99	ASTR	Solar cooling
$< 2 \times 10^{-15}$	25 BARBIELLINI	87	ASTR	SN 1987A
$< 1 imes 10^{-13}$	BERNSTEIN	63	ASTR	Solar energy losses

 23 This RAFEELT 99 limit applies to all neutrino flavors which are light enough (<5 keV) to be emitted from globular-cluster red glants. ²⁴This RAFFELT 99 limit is derived from the helioseismological limit on a new energy-loss

channel of the Sun, and applies to all neutrino flavors which are light enough (<1 keV) to be emitted from the sun.

magnetic fields and about the direct distance and time through the field.

ν MEAN LIFE

Measures $\left[\sum |U_{\ell j}|^2 \Gamma_j
ight]^{-1}$, where the sum is over mass eigenstates which cannot be resolved experimentally. In most cases the limit pertains to any decaying neutrino. See footnotes for qualifications and exceptions.

VALUE (s)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the followin	ng data for average	s, fits	, limits,	etc. • • •
		²⁶ BILLER	98	ASTR	$m_{\mu} = 0.05 - 1 \text{ eV}$
		²⁷ COWSIK	89	ASTR	$m_{H} = 1 - 50 \text{ MeV}$
		²⁸ RAFFELT	89	RVUE	ν (Dirac, Majorana)
		²⁹ RAFFELT	89B	ASTR	
>278	90	³⁰ LOSECCO	87B	IMB	
$> 1.1 \times 10^{25}$		³¹ HENRY	81	ASTR	$m_{\nu} = 16-20 \text{ eV}$
$> 10^{22} - 10^{23}$		³² KIMBLE	81	ASTR	$m_{\mu} = 10 - 100 \text{ eV}$

 26 BILLER 98 use the observed TeV γ -ray spectra to set limits on the mean life of any radiatively decaying neutrino between 0.05 and 1 eV. Curve shows $\tau_{\nu}/{\rm B}_{\gamma}>$ 0.15 $\times 10^{21}$ s at 0.05 eV, $> 1.2 \times 10^{21}$ s at 0.17 eV, $> 3 \times 10^{21}$ s at 1 eV, where B₂ is the branching ratio to photons.

²⁷COWSIK 89 use observations of supernova SN 1987A to set the limit for the lifetime of a neutrino with 1 < m < 50 MeV decaying through $\nu_H \rightarrow \nu \, ee$ to be τ > 4 $\times 10^{15}$ exp(-m/5 MeV)s.

 28 RAFFELT 89 uses KYULDJIEV 84 to obtain $\tau m^3 > 3 \times 10^{18}$ s eV³ (based on $\overline{\nu}e$ cross sections). The bound is not valid if electric and magnetic transition moments are equal for Dirac neutrinos.

 22 RAFFELT 89B analyze stellar evolution and exclude the region 3 \times 10^{12} < $\tau\,m^3$ $_{\sim}<$ 3 \times 10^{21} s eV^3.

 $<3\times10^{-5}$ eV $^{\circ}$ sectors of 2.1 SNU (solar neutrino units) comes from sun while 7.0 \pm 3.0 is theory.

 31 HENRY 81 uses UV flux from clusters of galaxies to find limit for radiative decay. 32 KIMBLE 81 uses extreme UV flux limits.

v (MEAN LIFE) / MASS

Measures $\left|\sum |U_{ej}|^2 ~ r_j ~ m_j
ight|^{-1}$, where the sum is over mass eigenstates which cannot be resolved experimentally. For many of the ASTR papers (RAFFELT 85 excepted), the limit applies to any ν in the indicated mass range

VAL	UE (s/	eV)	CL%		DOCUMENT ID		TECN	COMMENT
>	7	× 10 ⁹		33	RAFFELT	85	ASTR	
>	300		90	34	REINES	74	CNTR	$\overline{\nu}$
• •	• W	'e do not use the	following	d	ata for averages	, fits	, limits,	etc. • • •
>	8.7	$\times 10^{-5}$	99	35	BANDYOPA	03	FIT	nonradiative decay
≥ 4	200		90	36	DERBIN	02B	CNTR	Solar pp and Be v
>	2.8	$\times 10^{-5}$	99	37	JOSHIPURA	02B	FIT	nonradiative decay
>	2.8	1×10^{15}	38,3	39	BLUDMAN	92	ASTR	$m_{\nu} < 50 \text{ eV}$
>	6.4		90 '	40	KRAKAUER	91	CNTR	ν at LAMPF
>	6.3	1×10^{15}	39,4	41	CHUPP	89	ASTR	$m_{\nu} < 20 \text{ eV}$
>	1.7	1×10^{15}	:	39	KOLB	89	ASTR	$m_{\mu} < 20 \text{ eV}$
>	8.3	1×10^{14}	4	42	VONFEILIT	88	ASTR	
>	22		68 4	43	OBERAUER	87		$\overline{\nu}_R$ (Dirac)
>	38		68 4	43	OBERAUER	87		ν (Majorana)
>	59		68 4	43	OBERAUER	87		\overline{v}_{l} (Dirac)
>	30		68		KETOV	86	CNTR	ν (Dirac)
>	20		68		KETOV	86	CNTR	₩ (Majorana)
>	2	$\times 10^{21}$	4	44	STECKER	80	ASTR	$m_{\nu} = 10 - 100 \text{ eV}$

 33 RAFFELT 85 limit is from solar x- and γ -ray fluxes. Limit depends on u flux from pp, now established from GALLEX and SAGE to be > 0.5 of expectation

- now established from GALLEA and GAGL to $\nu > 0.5$ of expectation. ³⁴ REINES 74 looked for ν of nonzero mass decaying to a neutral of lesser mass $+ \gamma$. Used liquid scintillator detector near fission reactor. Finds lab lifetime 6×10^7 s or more. Above value of (mean life)/mass assumes average effective neutrino energy of 0.2 MeV. To obtain the limit 6×10^7 s REINES 74 assumed that the full $\overline{\nu}$ reactor flux could be the full $\overline{\nu}$ reactor flux could be responsible for yielding decays with photon energies in the interval of 10.0 KeV. -0.5 MeV. This represents some overestimate so their lower limit is an over-estimate of the lab lifetime (VOGEL 84). If so, OBERAUER 87 may be comparable or better.
- The ratio of the lifetime over the mass derived by BANDY OPADHYAY 03 is for ν_2 . They obtained this result using the following solar-neutrino data: total rates measured in Cl and Ga experiments, the Super-Kamiokande's zenith-angle spectra, and SNO's day and night spectra. They assumed that ν_1 is the lowest mass, stable or nearly stable neutrino state and ν_2 decays through nonradiative Majoron emission process, $\nu_2 \rightarrow \overline{\nu}_1 + J$, or through nonradiative process with all the final state particles being sterile. The best fit is obtained in the region of the LMA solution. 35 The ratio of the lifetime over the mass derived by BANDYOPADHYAY 03 is for ν_2 .
- Is obtained in the region of the LWA Solution. δ^{20} DERBIN O28 (also BACK 038) obtained this bound from the results of background measurements with Counting Test Facility (the prototype of the Borexino detector). The laboratory gamma spectrum is given as $dh_{\gamma}/d\cos e [1/2)$ (1 + $\alpha \cos \theta$) with $\alpha = 0$ for a Majorana neutrino, and α varying to -1 to 1 for a Dirac neutrino. The listed bound is for the case of $\alpha{=}0$. The most conservative bound $1.5 \times 10^3 \, {
 m s \, eV^{-1}}$ is obtained for the case of $\alpha = -1$
- the case of α =-1. ³⁷ The ratio of the lifetime over the mass derived by JOSHIPURA 02b is for ν_2 . They obtained this result from the total rates measured in all solar neutrino experiments. They assumed that ν_1 is the lowest mass, stable or nearly stable neutrino state and ν_2 decays through nonradiative process like Majoron emission decay, $u_2
 ightarrow
 u_1' + J$ where u_1' state is sterile. The exact limit depends on the specific solution of the solar neutrino problem. The quoted limit is for the LMA solution.

³⁸BLUDMAN 92 sets additional limits by this method for higher mass ranges. Cosmological limits are also obtained

limits are also obtained. ⁹Nonobservation of γ 's in coincidence with ν 's from SN 1987A. ⁴⁰KRAKAUER 91 quotes the limit τ/m_{ν} > $(0.3a^2 + 9.8a + 15.9)$ s/eV, where a is a parameter describing the asymmetry in the neutrino decay defined as $dN_{\gamma}/dcos\theta = 1$ $(1/2)(1 + a\cos\theta) = 0$ for a Majorana neutrino, but can vary from -1 to 1 for a Dirac neutrino. The bound given by the authors is the most conservative (which applies for a = -1).

d = -1; d = L, d = L ⁴² Model-dependent theoretical analysis of SN 1987A neutrinos

⁴³OBERAUER 87 bounds are from comparison of observed and expected rate of reactor

neutrinos. 44 STECKER 80 limit based on UV background; result given is $\tau>4\times10^{22}\,{\rm s}$ at $m_{\nu}=$ 20 ٥٧

$|(v - c) / c| (v \equiv v \text{ VELOCITY})$

Expected to be zero for massless neutrino, but tests also whether photons and neutrinos have the same limiting velocity in vacuum.

VALUE (units 10 ⁻⁸)	EVTS	DOCUMENT ID		TECN	COMMENT	
<1 <0.2	17	⁴⁵ STODOLSKY ⁴⁶ LONGO	88 87	A ST R A ST R	SN 1987A SN 1987A	

 45 STODOLSKY 88 result based on ${<}10$ hr between $\overline{
u}$ detection in IMB and KAMI detectors and beginning of light signal. Inclusion of the problematic 5 neutrino events from Mont Blanc (four hours later) does not change the result.

46LONGO 87 argues that uncertainty between light and neutrino transit times is ±3 hr, ignoring Mont Blanc events.

v **MAGNETIC MOMENT**

Must vanish for a purely chiral massless Dirac neutrino. A massive Dirac or Majorana neutrino can have a transition magnetic moment connecting one mass eigenstate to another one. The experimental limits below usually cannot distinguish between the true (diagonal, in mass) magnetic moment and a transition magnetic moment. The value of the magnetic moment for the standard $SU(2) \times U(1)$ electroweak theory extended to include massive neutrinos (see FUJIKAWA 80) is $\mu_{
u}=3eG_Fm_{
u}/(8\pi^2\sqrt{2})$ Clube massive neutrons (see Fourier to), $\mu_{FF} = p_{e} + p$ both magneton, over the upper bound $m_p < 5 \text{ eV}$ in those standard electroweak theory, $\mu_p < 1 \times 10^{-16} \mu_B$. Current experiments are not yet challenging this limit. There is considerable controversy over the validity of many of the claimed upper limits on the magnetic moment from the astrophysical data. For example, VOLOSHIN 90 states that "in connection with the astrophysical limits on $\mu_{\nu^+}\ldots$ there is by now a general consensus that contrary to the initial claims (BAR-BIERI 88, LATTIMER 88, GOLDMAN 88, NOTZOLD 88), essentially no better than quoted limits (from previous constraints) can be derived from detection of the neutrino flux from the supernova SN1987A." See VOLOSHIN 88 and VOLOSHIN 88c.

VALUE (10-10 µB)	CL%	DOCUMENT ID	TECN	COMMENT
< 1.0	90	⁴⁷ DARAKTCH	03	Reactor $\overline{ u}_e$
• • • We do not use the	followin	g data for averages,	fits, limits,	etc. • • •
< 5.5	90	⁴⁸ BACK	03B CNTR	Solar pp and Be v
< 1.3	90	⁴⁹ LI	03B CNTR	Reactor $\overline{ u}_e$

Lepton Particle Listings

 ν_e

441

ν₀ REFERENCES

< 2	90	⁵⁰ GRIMUS	02	FIT	solar + reactor (Majo- rana ν)
< 0.01 - 0.04		⁵¹ AYALA	99	ASTR	$\nu_I \rightarrow \nu_R$ in SN 1987A
< 1.5	90	⁵² BEACOM	99	SKAM	v spectrum shape
< 0.03		⁵³ RAFFELT	99	ASTR	Red giant luminosity
< 4		⁵⁴ RAFFELT	99	ASTR	Solar cooling
< 0.62		⁵⁵ ELMFORS	97	COSM	Depolarization in early universe plasma
< 1.9	95	⁵⁶ DERBIN	93	CNTR	Reactor $\overline{\nu} e \rightarrow \overline{\nu} e$
< 2.4	90	⁵⁷ VIDYAKIN	92	CNTR	Reactor $\overline{\nu} e \rightarrow \overline{\nu} e$
<10.8	90	⁵⁸ KRAKAUER	90	CNTR	LAMPF $\nu e \rightarrow \nu e$
< 0.02		⁵⁹ RAFFELT	90	ASTR	Red giant luminosity
< 0.1		⁶⁰ RAFFELT	89B	ASTR	Cooling helium stars
		⁶¹ FUKUGITA	88	COSM	Primordial magn. fields
< .3		⁶⁰ RAFFELT	88B	ASTR	He burning stars
< 0.11		⁶⁰ FUKUGITA	87	ASTR	Cooling helium stars
< 0.1-0.2		MORGAN	81	COSM	⁴ He abundance
< 0.85		BEG	78	ASTR	Stellar plasmons
< 0.6		⁶² SUTHERLAND	76	ASTR	Red giants + degenerate dwarfs
< 1		BERNSTEIN	63	ASTR	Solar cooling
<14		COWAN	57	CNTR	Reactor $\overline{\nu}$

I

 47 Search for non-standard $\overline{\nu}_e$ -e scattering component at Bugey nuclear reactor. Full kinematical event reconstruction by use of TPC. Most stringent laboratory limit on magnetic

48 BACK 03B obtained this bound from the results of background measurements with Back use obtained this bound from the results of backgound measurements with Counting Test Facility (the prototype of the Borexing detector). Standard Solar Model flux was assumed. This μ_{ν} can be different from the reactor μ_{ν} in certain oscillation scenarios (see BEACOM 99).

⁴⁹LI 03B used Ge detector in active shield near nuclear reactor to test for nonstandard $\overline{\nu}_e \cdot e$ scattering

scattering. ⁵⁰ GRIMUS 02 obtain stringent bounds on all Majorana neutrino transition moments from a simultaneous fit of LMA-MSW oscillation parameters and transition moments to global solar neutrino data + reactor data. Using only solar neutrino data, a 90% CL bound of $6.3 \times 10^{-10} \mu_B$ is obtained.

 $^{6.3 \times 10}$ μ_B is obtained. $^{5.1}$ AVAL 99 improves the limit of BARBIERI 88. 52 BEACOM 99 obtain the limit using the shape, but not the absolute magnitude which is affected by oscillations, of the solar neutrino spectrum obtained by Superkamiokande (825 days). This μ_P can be different from the reactor μ_P in certain oscillation scenarios.

(825 days). This μ_{μ} can be different from the feactor μ_{μ} in certain oscination scenarios. 53 RAFFELT 99 is an update of RAFFELT 90. This limit applies to all neutrino flavors which are light enough (< 5 keV) to be emitted from globular-cluster red glants. This limit pertains equally to electric dipole moments and magnetic transition moments, and it applies to both Dirac and Majorana neutrinos. 54 RAFFELT 99 is essentially an update of BERNSTEIN 63, but is derived from the he-discretion-diract limit on a new perevises channel of the Sµn. This limit applies to all

lioseismological limit on a new energy-loss channel of the Sun. This limit applies to all neutrino flavors which are light enough (<1 keV) to be emitted from the Sun. This limit pertains equally to electric dipole and magnetic transition moments, and it applies to

- both Dirac and Majorana neutrinos. $55\,$ ELMFORS 97 calculate the rate of depolarization in a plasma for neutrinos with a magnetic moment and use the constraints from a big-bang nucleosynthesis on additional degrees of freedom

degrees of freedom. ⁵⁶DERBIN 93 determine the cross section for 0.6–2.0 MeV electron energy as (1.28 ± 0.63) × σ_{Weak} . However, the (reactor on – reactor off)/(reactor off) is only ~ 1/100. ⁵⁷VIDVAKIN 92 limit is from a σ_{R} elastic scattering experiment. No experimental details are given except for the cross section from which this limit is derived. Signal/noise was 1/10. The limit uses $\sin^2\theta_W = 0.23$ as input. ⁵⁸KRAKAUER 90 experiment fully reported in ALLEN 93. ⁵⁹RAFFELT 90 limit applies for a diagonal magnetic moment of a Dirac neutrino, or for a transition magnetic moment of a Majorana neutrino. In the latter case, the same analysis gives < 1.4×10^{-12} . Limit at 95%CL obtained from δM_C .

⁶⁰Significant dependence on details of stellar models.

⁶¹ Significant dependence on decision science models. ⁶¹ FUKUGITA 88 find magnetic dipole moments of any two neutrino species are bounded by $\mu < 10^{-16} [10^{-9} G/B_0]$ where B_0 is the present-day intergalactic field strength. ⁶²We obtain above limit from SUTHERLAND 76 using their limit f < 1/3.

NONSTANDARD CONTRIBUTIONS TO NEUTRINO SCATTERING

We report limits on the so-called neutrino charge radius squared. While the straight-forward definition of a neutrino charge radius has been proven to be gauge-dependent and, hence, unphysical (LEE 77C), there have been recent attempts to define a physically observable neutrino charge radius (BERNABEU 00, BERNABEU 02). The issue is still controversial (FU-JIKAWA 03, BERNABEU 03). A more general interpretation of the experimental results is that they are limits on certain nonstandard contributions to neutrino scattering.

VAL	UE (10 ⁻³² cm ²)	CL%	DOCUMENT ID		TECN	COMMENT
•••	-2.97 to 4.14 • We do not use the	90 63 following d	AUERBACH ata for averages	01 , fits	LSND limits,	$\nu_e e \rightarrow \nu_e e$ etc. • • •
	0.9 ± 2.7		ALLEN	93	CNTR	LAMPF $\nu e \rightarrow \nu e$
<	2.3	95	MOURAO	92	ASTR	$HOME/KAM2 \nu$ rates
<	7.3	90 64	VIDYAKIN	92	CNTR	Reactor $\overline{\nu} e \rightarrow \overline{\nu} e$
	1.1 ± 2.3		ALLEN	91	CNTR	Repl. by ALLEN 93
		65	GRIFOLS	89B	ASTR	SN 1987A
C 2						

 63 AUERBACH 01 measure $\nu_e\,e$ elastic scattering with LSND detector. The cross section agrees with the Standard Model expectation, including the charge and neutral current

interference. The 90% CL applies to the range shown. 64 VIDYAKIN 92 limit is from a *eT* elastic scattering experiment. No experimental details are given except for the cross section from which this limit is derived. Signal/noise was 1/10. The limit uses sin² θ_W = 0.23 as input. ⁶⁵ GRIFOLS 89B sets a limit of $\langle r^2 \rangle < 0.2 \times 10^{-32} \,\mathrm{cm}^2$ for right-handed neutrinos.

BACK BANDYOPA BERNABEU DARAKTCH	03B 03 03 03 03	PL B563 35 PL B555 33 hep-ph/0303202 PL B564 190	H.O. Back <i>et al.</i> (E A. Bandyopadhyay, S. Choubey, S. Goswar J. Bernabeu, J. Papavassiliou, J. Vidal Z. Daraktchieva <i>et al.</i>	Borexino Collab.) ni (SAHA+) (MUNU Collab.)
FUJIKAWA	03 03 R	hep-ph/0303188	K. Fujikawa, R. Shrock	EXONO Collab.)
BERNABEU	02	PRL 89 101802	J. Bernabeu, J. Papavassiliou, J. Vidal	Deconico construij
A Iso D ER BIN	02B 02B	JETPL 76 409	(J. Bernabeu, J. Papavassiliou, J. Vidal A.V. Derbin, O.Ju. Smirnov	
GRIMUS	02	Translated from ZETFP ' NP B648 376	76 483. W. Grimus et al.	
J OS HIPURA	02B 02	PR D66 113008 PR D65 063002	A.S. Joshipura, E. Masso, S. Mohanty T.L. Loredo, D.O. Lamb	
AUERBACH	01	PR D63 112001	L.B. Auerbach et al.	(LSND Collab.)
AYALA	00 99	PR D62 113012 PR D59 111901	J. Bernabeu <i>et al.</i> A. Ayala, J.C. D'Olivo, M. Torres	
BEACOM LOBASHEV	99 99	PRL 83 5222 PL 8460 227	J.F. Beacom, P. Vogel V.M. Lobashev et al	
RAFFELT	99	PRPL 320 319	G.G. Raffelt	
BILLER	99 98	PL 8460 219 PRL 80 2992	Ch. Weinheimer et al. S.D. Biller et al. (W	HIPPLE Collab.)
ELMFORS RELESEV	97 95	NP B503 3 PL B350 263	P. Elmfors et al.	
CHING	95	UMP A10 2841	C.R. Ching et al. (CST	BEIJT, CIAE)
KERNAN	95 95	JPG 21 639 NP B437 243	K.H. Hiddemann, H. Daniel, O. Schwentke P.J. Kernan, L.M. Krauss	CASE)
STOEFFL	95 04	PRL 75 3237	W. Stoeffl, D.J. Decman	(LLNL)
ALLEN	93	PR D47 11	R.C. Allen et al. (UCI	, LANL, ANL+)
DERBIN	93	JETPL 57 768 Translated from ZETFP !	A.V. Derbin et al. 57 755.	(PNPI)
SUN WEINHEIMER	93 93	CJNP 15 261 PL B300 210	H.C. Sun et al. (CIA C Weinheimer et al.	E, CST, BEIJT) (MANZ)
BLUDMAN	92	PR D45 4720	S.A. Bludman	(CFPA)
MOURAO	92 B 92	PL B287 361 PL B285 364	A.M. Mourao, J. Pulido, J.P. Ralston	(LISB, LISBT+)
VIDYAKIN	92	JETPL 55 206 Translated from ZETEP !	G.S. Vidyakin et al. 55 212	(KIAE)
ALLEN	91	PR D43 R1	R.C. Allen et al. (UC	I, LANL, UMD)
KRAKAUER	91 91	PR D44 R6	D.A. Krakauer et al. (LAMP	F E225 Collab.)
ROBERTSON	91 90	PRL 67 957 PR D41 682	R.G.H. Robertson <i>et al.</i> E.T. Avignone I.I. Collar	(LASL, LLL)
KRAKAUER	90	PL B252 177	D.A. Krakauer et al. (LAMP	F E225 Collab.)
VOLOSHIN	90 90	NPBPS 19 433	M. Voloshin	(MPIM) (ITEP)
Neutrino 90 CHUPP	Cont 89	erence PRI 62 505	EI Chupp W.T. Vestrand C. Reppin	(UNH MPIM)
COWSIK	89	PL B218 91	R. Cowsik, D.N. Schramm, P. Hoflich (WUSL, TATA+)
KOLB	89B	PRL 62 509	E.W. Kolb, M.S. Turner	(CHIC, FNAL)
LOREDO	89 89	ANYAS 571 601 PR D39 2066	T.J. Loredo, D.Q. Lamb G.G. Raffelt	(CHIC)
RAFFELT	89B	APJ 336 61	G. Raffelt, D. Dearborn, J. Silk	(UCB, LLL)
BORIS	88 88	PRL 61 27 PRL 61 245 erratum	R. Barbieri, R.N. Mohapatra S.D. Boris <i>et al.</i>	(PISA, UMD) (ITEP, ASCI)
FUKUGITA	88 88	PRL 60 879 PRL 60 1789	M. Fukugita et al. (KYOT) L. Goldman, et al.	J, MPIM, UCB) (TELA)
LATTIMER	88	PRL 61 23	J.M. Lattimer, J. Cooperstein	(STON, BNL)
Also NOT ZOLD	88B 88	PRL 61 2633 erratum PR D38 1658	J.M. Lattimer, J. Cooperstein D. Notzold	(STON, BNL) (MPIM)
RAFFELT	88B	PR D37 549	G.G. Raffelt, D.S.P. Dearborn D.N. Spormi, J.N. Rahsall	(UCB, LLL)
STODOLSKY	88	PL B201 353	L. Stodolsky	(MPIM)
VOLOSHIN Also	88 88B	PL B209 360 JETPL 47 501	M.B. Voloshin M.B. Voloshin	(ITEP) (ITEP)
VOLOSHIN	88 C	Translated from ZETFP	47 421. M.B. Voloshin	(ITEP)
VONFEILIT	88	PL B200 580	F. von Feilitzsch, L. Oberauer	(MUNT)
BORIS	87 87	PRL 58 2019	S.D. Boris et al.	(ITEP, ASCI)
Also B OR IS	88 87 B	PRL 61 245 erratum IETPI 45 333	S.D. Boris et al. S.D. Boris et al.	(ITEP, ASCI) (ITEP)
EUKUGITA	87	Translated from ZETFP	45 267. M. Fukugita S. Vazaki (k	
LONGO	87	PR D36 3276	M.J. Longo	(MICH)
L OSECCO OBERAUER	87 B 87	PR D35 2073 PL B198 113	J.M. LoSecco et al. L.F. Oberauer, F. von Feilitzsch, R.L. Mos	(IMB Collab.) isbauer
SPRINGER	87	PR A35 679	P.T. Springer et al.	(LLNL) (KIAE)
NETOV	00	Translated from ZETFP	44 114.	(NAL)
KAFFELI	85 84	NP B243 387	A.V. Kyuldjev	(MPIM) (SOFI)
VOGEL	84 81	PR D30 1505 PRI 47 618	P. Vogel P.C. Henry, P.D. Faldman	(IHII)
KIMBLE	81	PRL 46 80	R. Kimble, S. Bowyer, P. Jakobsen	(UCB)
FUJIKAWA	80	PRL 45 963	J.A. Morgan K. Fujikawa, R. Shrock	(SUSS) (ST ON)
LUBIMOV Also	80 80	PL 94B 266 SINP 32 154	V.A. Lyubimov et al. V.S. Kozik et al.	(ITEP)
Alex	0.1	Translated from YAF 32	301.	(17.50)
Also	81	Translated from ZETF 8:	V.A. Lyubimov et al. 1 1158	(ITEP)
SIECKER BEG	8U 78	РКL 45 1460 PR D17 1395	F.W. Stecker M.A.B. Beg, W.J. Marciano, M. Ruderma	(NASA) n (ROCK+)
LEE	77 C	PR D16 1444 PR D13 2700	B.W. Lee, R.E. Shrock P. Sutherland et al. (DEN)	(STON)
CLARK	74	PR D9 533	A.R. Clark et al.	(LBL)
K EINES Also	74 78	PRL 32 180 Private Comm.	F. Keines, H.W. Sobel, H.S. Gurr V.E. Barnes	(UCI) (PURD)
BECK BERNSTEIN	68 63	ZPHY 216 229 PR 132 1227	E. Beck, H. Daniel I. Bernstein M. Ruderman G. Feinberg	(MPIH) (NVII+)
C OWA N	57	PR 107 528	C.L. Cowan, F. Reines	(LANL)

 u_{μ}

 ν_{μ}

$J = \frac{1}{2}$

The following results are obtained using neutrinos associated with μ^+ or μ^- . See Note on "Electron, muon, and tau neutrino listings."

ν MASS

In the context of some models, it is possible that this weighted sum over mass eigenstates is the same as for the neutrinos produced in τ decay.

In some of the ASTR and COSM papers listed below, the authors did not distinguish between weak and mass eigenstates.

OUR EVALUATION is based on OUR AVERAGE for the π^\pm mass and the <code>ASSAMAGAN</code> 96 value for the muon momentum for the π^+ decay at rest. The limit is calculated using the unified classical analysis of FELDMAN 98 for a Gaussian distribution near a physical boundary. WARNING: since $m_{\nu_{\rm m}}^{2({\rm eff})}$ is calculated from the differences of large numbers, it and the u_{μ} corresponding limits are extraordinarily sensitive to small changes in the pion mass, the decay muon momentum, and their errors. For example, the limits obtained using the JECKELMANN 94, LENZ 98, and the weighted averages are 0.15, 0.29, and 0.19 MeV, respectively.

VALUE (MeV)	CL%	DOCUMENT ID		TECN	COMMENT
<0.19 (CL = 90%) OUI	REVALU	ATION			
< 0.17	90	¹ A SSAMAGAI	V 96	SPEC	$m_{\mu}^2 = -0.016 \pm 0.023$
• • • We do not use the	following	g data for averag	es, fits	s, limits,	etc. • • •
< 0.15		² dolgov	95	COSM	N ucleosynt hesis
< 0.48		³ ENQVIST	93	COSM	N ucleosynt hesis
< 0.3		⁴ FULLER	91	COSM	N ucleosynt hesis
< 0.42		⁴ LAM	91	COSM	N ucleosynt hesis

< 0.50 ⁵ ANDERHUB 82 SPEC $m_{\omega}^2 = -0.14 \pm 0.20$ 90 74 ASPK $\kappa_{\mu 3}^{\nu}$ decay < 0.65 90 CLARK

 $^1 {\rm ASSAMAGAN}$ 96 measurement of ρ_μ from $\pi^+ \to \ \mu^+ \nu$ at rest combined with JECK-ELMANN 94 Solution B pion mass yields $m_{\mu}^2 = -0.016 \pm 0.023$ with corresponding Bayesian limit listed above. If Solution A is used, $m_{_{\rm H}}^2 = -0.143 \pm 0.024 ~{\rm MeV}^2$. Replaces ASSAMAGAN 94.

places ASSAMIADAN 24. ² DOLGOV 95 removes earlier assumptions (DOLGOV 93) about thermal equilibrium below T_QCD for wrong-helicity Dirac neutrinos (ENQVIST 93, FULLER 91) to set more stringent limits.

³ENQVIST 93 bases limit on the fact that thermalized wrong-helicity Dirac neutrinos would speed up expansion of early universe, thus reducing the primordial abundance. FULLER 91 exploits the same mechanism but in the older calculation obtains a larger production rate for these states, and hence a lower limit. Neutrino lifetime assumed to exceed nucleosynthesis time. ~ 1 s.

Assumes neutrino lifetime >1 s. For Dirac neutrinos only. See also ENQVIST 93.

⁵ ANDERHUB 82 kinematics is insensitive to the pion mass.

$m_{\nu} - m_{\overline{\nu}}$

Test of CPT for a Dirac neutrino. (Not a very strong test.)

VALUE (MeV) CL% DOCUMENTID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • < 0.45 90 CLARK 74 ASPK K_{µ3} decay

ν (MEAN LIFE) / MASS

Measures $\left[\sum |U_{\ell j}|^2 \Gamma_j m_j\right]^{-1}$, where the sum is over mass eigenstates which cannot be resolved experimentally. Most of these limits apply to any ν within the indicated mass range.

VALUE (s/eV)	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
>15.4	90		⁶ KRAKAUER	91	CNTR	$ u_{\mu}, \overline{ u}_{\mu}$ at LAMPF
• • • We do not us	ethefoll	owing d	ata for averages, fits	, lim	its, etc.	• • •
			⁷ BILLER	98	ASTR	$m_{\nu} = 0.05 - 1 \text{ eV}$
$>$ 2.8 $ imes 10^{15}$			^{8,9} BLUDMAN	92	ASTR	$m_{\nu} < 50 \text{ eV}$
none 10 ^{-12} – 5 \times	104		¹⁰ DODELSON	92	ASTR	$m_{\nu} = 1 - 300 \text{ keV}$
$>$ 6.3 $ imes 10^{15}$			^{9,11} CHUPP	89	ASTR	$m_{ m v} < 20 { m eV}$
$> 1.7 \times 10^{15}$			⁹ KOLB	89	ASTR	$m_{ m u} <$ 20 eV
$>$ 3.3 $\times 10^{14}$		1	2,13 VONFEILIT	88	ASTR	
> 0.11	90	0	¹⁴ FRANK	81	CNTR	$\nu \overline{\nu} LAMPF$
			¹⁵ HENRY	81	ASTR	$m_{\nu} = 16-20 \text{ eV}$
			¹⁶ KIMBLE	81	ASTR	$m_{\nu} = 10 - 100 \text{ eV}$
			17 REPHAELI	81	ASTR	$m_{\nu} = 30 - 150 \text{ eV}$
			¹⁸ DERUJULA	80	ASTR	$m_{\nu} = 10 - 100 \text{ eV}$
$> 2 \times 10^{21}$			¹⁹ STECKER	80	ASTR	$m_{\nu} = 10 - 100 \text{ eV}$
$> 1.0 \times 10^{-2}$	90	0	¹⁴ BLIETSCHAU	78	HLBC	ν_{μ} , CERN GGM
$> 1.7 \times 10^{-2}$	90	0	¹⁴ BLIET SCHAU	78	HLBC	$\overline{\nu}_{\mu}$, CERN GGM
$> 2.2 \times 10^{-3}$	90	0	¹⁴ BARNES	77	DBC	ν, ANL 12-ft
$>$ 3. $\times 10^{-3}$	90	0	¹⁴ BELLOTTI	76	HLBC	ν , CERN GGM
$> 1.3 \times 10^{-2}$	90	1	¹⁴ BELLOTTI	76	HLBC	$\overline{\nu}$, CERN GGM

 6 KRAKAUER 91 quotes the limit $au/m_{
u_{1}}$ > (0.75 a^{2} + 21.65a + 26.3)s/eV, where ais a parameter describing the asymmetry in the neutrino decay defined as $dN_{\infty}/d\cos\theta$

is a parameter describing the asymmetry in the neutrino decay defined as $\delta v_{a_1}/\delta cos$ = (1/2)(1 + $a \cos \theta$) The parameter a = 0 for a Majorana neutrino, but can vary from -1 to 1 for a Dirac neutrino. The bound given by the authors is the most conservative (which applies for a = -1). ⁷BILLER 98 use the observed TeV γ -ray spectra to set limits on the mean life of a

radiatively decaying neutrino between 0.05 and 1 eV. Curve shows $\tau_{\nu}/B_{\gamma} > 0.15 \times 10^{21}$ s at 0.05 eV, $>1.2\times10^{21}$ s at 0.17 eV, $>3\times10^{21}$ s at 1 eV, where ${\rm B}_{\gamma}$ is the branching ratio to photons.

⁸BLUDMAN 92 sets additional limits by this method for higher mass ranges. Cosmological

limits are also obtained with the strength of figure must highly magnetized by the second strength of the second

star in SN 1987A decaying to ν 's that would have interacted in KAM2 or IMB detectors. ¹¹ CHUPP 89 should be multiplied by a branching ratio (about 1) and a detection efficiency (about 1/4), and pertains to radiative decay of any neutrino to a lighter or sterile neutrino. 12 Model-dependent theoretical analysis of SN 1987A neutrinos.

 $^{13}{\rm Limit}$ applies to ν_{τ} also.

¹⁴These experiments look for $\nu_k \rightarrow \nu_j \gamma$ or $\overline{\nu}_k \rightarrow \overline{\nu}_j \gamma$.

 15 HENRY 81 uses UV flux from clusters of galaxies to find au $>~1.1 imes10^{25}$ s for radiative decay.

accay. ¹⁶ KIMBLE 81 uses extreme UV flux limits to find $\tau > 10^{22} - 10^{23}$ s. ¹⁷ REPHAELI 81 consider the effect of radiative neutrino decay on neutral H in early universe based on M31 Hi. They conclude $\tau > 10^{24}$ s. ¹⁸ DERVJULA 80 finds $\tau > 3 \times 10^{23}$ s based on CDM neutrino decay contribution to UV

background. $^{19}\rm STECKER$ 80 limit based on UV background; result given is $\tau>4\times10^{22}\,\rm s$ at $m_{\nu}=20$ eV.

ν CHARGE

VALUE (units: electron charge)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	ng data for averag	es, fits	limits,	etc. • • •
$< 2 \times 10^{-14}$	²⁰ RAFFELT	99	ASTR	Red giant luminosity
$< 6 \times 10^{-14}$	²¹ RAFFELT	99	ASTR	Solar cooling
²⁰ This RAFFELT 99 limit appli	ies to all neutrinos	which	are lig	ht enough (<5 kEV) to be

emitted from globular-cluster red giants. ²¹ This RAFFELT 99 limit is derived from the helioseismological limit on a new energy-loss

channel of the Sun, and applies to all neutrinos which are light enough (<1 \mbox{keV}) to be emitted from the sun.

|(v - c) / c| (v = v VELOCITY)

Expected to be zero for massless neutrino, but also tests whether photons and neutrinos have the same limiting velocity in vacuum.

VALUE (units 10 ⁻⁴)	CL %	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not	use th	e following	data for averages	, fits	s, limits,	etc. •	••
< 0.4	95	9800	KALBFLEISCH	79	SPEC		
< 2.0	99	77	ALSPECTOR	76	SPEC	0	$>5~{ m GeV}~ u$
<4.0	99	26	ALSPECTOR	76	SPEC	0	<5 GeV $ u$

v **MAGNETIC MOMENT**

Must vanish for a purely chiral massless Dirac neutrino. A massive Dirac or Majorana neutrino can have a transition magnetic moment connecting one mass eigenstate to another one. The experimental limits below usually cannot distinguish between the true (diagonal, in mass) magnetic moment and a transition magnetic moment. The value of the magnetic moment for the standard $SU(2) \times U(1)$ electroweak theory extended to include massive neutrinos (see FUJIKAWA 80) is $\mu_{
u}=3eG_F\,m_{
u}/(8\pi^2\,\sqrt{2})$ (a) the statistical statistic for the extended standard electroweak theory, $\mu_{\nu}~<~6\times 10^{-14}~\mu_{B}$.

VAI	$UE(10^{-10} \mu_B)$	CL%	DOCUMENT ID TECN COMMENT	
<	6.8	90	²² AUERBACH 01 LSND $\nu_{\rho} e$ scatt.	
• •	• • We do not use th	he follow	ng data for averages, fits, limits, etc. • • •	
<	2	90	²³ GRIMUS 02 FIT solar + reactor (Majo- rana ν)	
<	0.03		²⁴ RAFFELT 99 ASTR Red giant luminosity	
<	4		²⁵ RAFFELT 99 ASTR Solar cooling	
<	0.62		²⁶ ELMFORS 97 COSM Depolarization in early universe plasma	
<	30	90	VILAIN 95B CHM2 $\nu_{\mu} e \rightarrow \nu_{\mu} e$	
<1	100	95	²⁷ DORENBOS 91 CHRM $\nu_{\mu} e \rightarrow \nu_{\mu} e$	
<	8.5	90	AHRENS 90 CNTR $\nu_{\mu} e \rightarrow \nu_{\mu} e$	
<	7.4	90	28 KRAKAUER 90 CNTR LAMPF $(u_{\mu}, \overline{ u}_{\mu})e$	
<	0.02		elast. ²⁹ RAFFELT 90 ASTR Red giant luminosity	
<	0.1		³⁰ RAFFELT 89B ASTR Cooling helium stars	
<	0.11		^{0,31} FUKUGITA 87 ASTR Cooling helium stars	
<	0.0006		³² NUSSINOV 87 ASTR Cosmic EM backgrounds	
<	0.85		³¹ BEG 78 ASTR Stellar plasmons	
<	81		³³ KIM 74 RVUE $\overline{\nu}_{\mu} e \rightarrow \overline{\nu}_{\mu} e$	
<	1		³⁴ BERNSTEIN 63 ASTR Solar cooling	

 $^{22}{\rm AUERBACH}$ 01 limit is based on the LSND ν_e and ν_u electron scattering measurements. The limit is slightly more stringent than KRAKAUER 90.

- ²³GRIMUS 02 obtain stringent bounds on all Majorana neutrino transition moments from Schword 22 obtain schieden bounds on all majorata fledt into transition moments from a simultaneous fit of LMA-MSW oscillation parameters and transition moments to global solar neutrino data + reactor data. Using only solar neutrino data, a 90% CL bound of $6.3 \times 10^{-10} \mu_B$ is obtained.
- $6.3 \times 10^{-10} \mu_B$ is obtained. 24 RAFFELT 99 is an update of RAFFELT 90. This limit applies to all neutrino flavors which are light enough (< 5 keV) to be emitted from globular-cluster red giants. This limit pertains equally to electric dipole moments and magnetic transition moments, and it applies to both Dirac and Majoran neutrinos. 25 RAFFELT 99 is essentially an update of BERNSTEIN 63, but is derived from the helioseismological limit on a new energy-loss channel of the Sun. This limit pretains equally to electric dipole and magnetic transition moments, and it applies to all neutrino flavors which are light enough (<1 keV) to be emitted from the Sun. This limit applies to both Dirac and Majorana neutrinos. 26 ELMFORS 97 calculate the rate of depolarization in a plasma for neutrinos with a magnetic moment and use the constraints from a bic hang nucleosuthesis on additional to the constraints form a dischangenet consultation and difference.
- degrees of freedom.
- To prevent the second - ²⁸KRAKAUER 90 experiment fully reported in ALLEN 93.
- $^{29}\text{RAFFELT}$ 90 limit applies for a diagonal magnetic moment of a Dirac neutrino, or for a transition magnetic moment of a Majorana neutrino. In the latter case, the same analysis gives $<1.4\times10^{-12}$. Limit at 95%CL obtained from δM_C .
- ³⁰ Significant dependence on details of stellar properties.
- 31 lf $m_{
 m \nu}~<$ 10 keV.
- 32 For $\stackrel{\nu}{m}_{\nu}$ = 8–200 eV. NUSSINOV 87 examines transition magnetic moments for ν_{μ} \rightarrow $u_{
 m e}$ and obtain < 3 imes10⁻¹⁵ for $m_{
 m v}$ > 16 eV and < 6 imes10⁻¹⁴ for $m_{
 m v}$ > 4 eV. 33 KIM 74 is a theoretical analysis of $\bar{\nu}_{\mu}$ reaction data.
- 34 lf m_{ν} < 1 keV.

NONSTANDARD CONTRIBUTIONS TO NEUTRINO SCATTERING

We report limits on the so-called neutrino charge radius squared. While the straight-forward definition of a neutrino charge radius has been proven to be gauge-dependent and, hence, unphysical (LEE 77C), there have been recent attempts to define a physically observable neutrino charge radius (BERNABEU 00, BERNABEU 02). The issue is still controversial (FU-JIKAWA 03, BERNABEU 03). A more general interpretation of the experimental results is that they are limits on certain nonstandard contributions to neutrino scattering.

VALUE (10 ⁻³² cm ²)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the	following d	ata for averages	, fits, limit	s, etc. • • •	•
< 0.68, > -0.53	90 35	HIRSCH	03	νe scat.	
< 0.6	90	VILAIN	95 B CH M	2 νeelastic	scat.
-1.1 ± 1.0	36	AHRENS	90 CNT	R νeelastic	scat.
-0.3 ± 1.5	36	DORENBOS	89 CHRI	Λ νeelastic	scat.
25					

³⁵ Based on analysis of CCFR 98 results. Limit is on $\langle r_L^2 \rangle + \langle r_A^2 \rangle$. The CHARM II and E734 at BNL results are reanalyzed, and weaker bounds on the charge radius squared than previously published are obtained. The NuTeV result is discussed; when tentatively interpreted as ν_μ charge radius it implies $\langle r_L^2 \rangle + \langle r_A^2 \rangle = (4.20 \pm 1.64) \times 10^{-33} \, {\rm cm}^2$. ³⁶ Result is obtained from reanalysis given in ALLEN 91, followed by our reduction to obtain the corresult. 1σ errors.

ν_{μ} REFERENCES

BERNABEU	03	hep-ph/0303202	J. Bernabeu, J. Papavassiliou, J. Vidal
FUJIKAWA	03	hep-ph/0303188	K. Fujikawa, R. Shrock
HIRSCH	03	PR D67 033005	M. Hirsch et al.
BERNABEU	02	PRL 89 101802	J. Bernabeu, J. Papavassiliou, J. Vidal
A Iso	02B	PRL 89 229902	(erratum)J. Bernabeu, J. Papavassiliou, J. Vidal
GRIMUS	02	NP B648 376	W. Grimus et al.
AUERBACH	01	PR D63 112001	L.B. Auerbach et al. (LSND Collab.)
BERNABEU	00	PR D62 113012	J. Bernabeu et al.
RAFFELT	99	PRPL 320 319	G.G. Raffelt
BILLER	98	PRL 80 2992	S.D. Biller et al. (WHIPPLE Collab.)
FELDMAN	98	PR D57 3873	G.J. Feldman, R.D. Cousins
LENZ	98	PL B416 50	S. Lenz et al.
ELMFORS	97	NP B503 3	P. Elmfors et al.
ASSAMAGAN	96	PR D53 6065	K.A. Assamagan et al. (PSI, ZURI, VILL+)
DOLGOV	95	PR D51 4129	A.D. Dolgov, K. Kainulainen, I.Z. Rothstein (MICH+)
VILAIN	95B	PL B345 115	P. Vilain et al. (CHARM IÌ Collab.)
ASSAMAGAN	94	PL B335 231	K.A. Assamagan et al. (PSI, ZURI, VILL+)
JECKELMANN	94	PL B335 326	B. Jeckelmann, P.F.A. Goudsmit, H.J. Leisi (WABRN+)
ALLEN	93	PR D47 11	R.C. Allen et al. (UCI, LANL, ANL+)
DOLGOV	93	PRL 71 476	A.D. Dolgov, I.Z. Rothstein (MICH)
ENQVIST	93	PL B301 376	K. Enqvist, H. Uibo (NORD)
BLUDMAN	92	PR D45 4720	S.A. Bludman (CFPA)
DODELSON	92	PRL 68 2572	S. Dodelson, J.A. Frieman, M.S. Turner (FNAL+)
ALLEN	91	PR D43 R1	R.C. Allen et al. (UCI, LANL, UMD)
DORENBOS	91	ZPHY C51 142	J. Dorenbosch et al. (CHARM Collab.)
FULLER	91	PR D43 3136	G.M. Fuller, R.A. Malaney (UCSD)
KRAKAUER	91	PR D44 R6	D.A. Krakauer et al. (LAMPF E225 Collab.)
LAM	91	PR D44 3345	W.P. Lam, K.W. Ng (AST)
AHRENS	90	PR D41 3297	L.A. Ahrens et al. (BNL, BROW, HIRO+)
KRAKAUER	90	PL B252 177	D.A. Krakauer et al. (LAMPF E225 Collab.)
RAFFELT	90	PRL 64 2856	G.G. Raffelt (MPIM)
CHUPP	89	PRL 62 505	E.L. Chupp, W.T. Vestrand, C. Reppin (UNH, MPIM)
DORENBOS	89	ZPHY C41 567	J. Dorenbosch et al. (CHARM Collab.)
KOLB	89	PRL 62 509	E.W. Kolb, M.S. Turner (CHIC, FNAL)
RAFFELT	8 9B	APJ 336 61	G. Raffelt, D. Dearborn, J. Silk (UCB, LLL)
VONFEILIT	88	PL B200 580	F. von Feilitzsch, L. Oberauer (MUNT)
FUKUGITA	87	PR D36 3817	M. Fukugita, S. Yazaki (KYOTU, TOKY)
NUSSINOV	87	PR D36 2278	S. Nussinov, Y. Rephaeli (TELA)

443 Lepton Particle Listings

 ν_{μ} , ν_{τ}

ANDERHUB	82	PL 114B 76	H.B. Anderhub et al.	(ETH, SIN)
FRANK	81	PR D24 2001	J.S. Frank et al. (LAS	L. YALE, MIT+)
HENRY	81	PRL 47 618	R.C. Henry, P.D. Feldman	(JHU)
KIMBLE	81	PRL 46 80	R. Kimble, S. Bowyer, P. Jakobsen	(UCB)
REPHAELI	81	PL 106B 73	Y. Rephaeli, A.S. Szalay	(UCSB, CHIC)
DERUJULA	80	PRL 45 942	A. De Rujula, S.L. Glashow	(MIT, HARV)
FUJIKAWA	80	PRL 45 963	K. Fujikawa, R. Shrock	(ST ON)
STECKER	80	PRL 45 1460	F.W. Stecker	(NASA)
KA LB FLEIS CH	79	PRL 43 1361	G.R. Kalbfleisch et al. (FNA	L, PURD, BELL)
BEG	78	PR D17 1395	M.A.B. Beg, W.J. Marciano, M. Ruderm	an (ROCK+)
BLIETSCHAU	78	NP B133 205	J. Blietschau et al. (G	argamelle Collab.)
BARNES	77	PRL 38 1049	V.E. Barnes et al.	(PURD, ANL)
LEE	77 C	PR D16 1444	B.W. Lee, R.E. Shrock	(ST ON)
A LS PECT OR	76	PRL 36 837	J. Alspector et al. (BN	L, PURD, CIT+)
BELLOTTI	76	LNC 17 553	E. Bellotti et al.	(MILA)
CLARK	74	PR D9 533	A.R. Clark et al.	(LBL)
KIM	74	PR D9 3050	J.E. Kim, V.S. Mathur, S. Okubo	(ROCH)
BERNSTEIN	63	PR 132 1227	J. Bernstein, M. Ruderman, G. Feinberg	(NYU+)

I

The following results are obtained using neutrinos associated with au^+ or au^- . See Note on "Electron, muon, and tau neutrino listings."

 $J = \frac{1}{2}$

The u_{τ} was directly observed by the DONUT Collaboration (KO-DAMA 01). Existence indirectly established from au decay data combined with ν reaction data. See for example FELDMAN 81. ALBRECHT 92Q rules out J = 3/2 by establishing that the ρ^- is not in a pure $H_{\rho} = -1$ helicity state in $\tau^- \rightarrow \rho^- \nu_{\tau}$

ν MASS

In the context of some models, it is possible that this weighted sum over mass eigenstates is the same as for the neutrinos produced in μ decay.

In some of the ASTR and COSM papers listed below, the authors did not distinguish between weak and mass eigenstates

VALUE (MeV)	CL %	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
< 18.2	95		¹ BARATE	98F	ALEP	1991-1995 LEP runs
• • • We do not	use the	followin	g data for averages	, fits	, limits,	etc. • • •
< 28	95		² ATHANAS	00	CLEO	<i>E</i> ^{<i>ee</i>} _{CM} = 10.6 GeV
< 27.6	95		³ ACKERSTAFF	98T	OPAL	1990-1995 LEP runs
< 30	95	473	⁴ AMMAR	98	CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$
< 60	95		⁵ ANASTASSOV	97	CLEO	$E_{\rm Cm}^{ee} = 10.6 {\rm GeV}$
$<$ 0.37 or $>\!22$			⁶ FIELDS	97	COSM	Nucleosynthesis
< 68	95		⁷ SWAIN	97	THEO	$m_{ au}, au_{ au}, au$ partial widths
< 29.9	95		⁸ ALEXANDER	96M	OPAL	1990-1994 LEP runs
<149			⁹ BOTTINO	96	THEO	$\pi,\ \mu,\ au$ leptonic decays
$<\!1$ or $>\!25$			¹⁰ HANNESTAD	96C	COSM	Nucleosynthesis
< 71	95		11 SOBIE	96	THEO	$m_{\tau}, \tau_{\tau}, B(\tau^- \rightarrow$
						$e^- \overline{\nu}_e \nu_\tau$)
< 24	95	25	¹² BUSKULIC	95 H	ALEP	1991-1993 LEP runs
< 0.19			¹³ DOLGOV	95	COSM	Nucleosynthesis
< 3			¹⁴ SIGL	95	ASTR	SN 1987A
< 0.4 or $>$ 30			¹⁵ DODELSON	94	COSM	Nucleosynthesis
< 0.1 or >50			¹⁶ KAWA SAKI	94	COSM	Nucleosynthesis
155-225			¹⁷ PERES	94	THEO	π, K, μ, au weak decays
< 32.6	95	113	¹⁸ CINABRO	93	CLEO	$E_{ m Cm}^{ee} pprox 10.6 { m GeV}$
< 0.3 or $>$ 35			¹⁹ DOLGOV	0.2	COSM	Nucleosynthesis
			001001	32	0.000	Nucleosynthesis
< 0.74			20 ENQVIST	93 93	COSM	Nucleosynthesis
< 0.74 < 31	95	19	²⁰ ENQVIST ²¹ ALBRECHT	93 93 92M	COSM	Nucleosynthesis $E_{cm}^{ee} = 9.4-10.6 \text{ GeV}$
< 0.74 < 31 < 0.3	95	19	²⁰ ENQVIST ²¹ ALBRECHT ²² FULLER	93 93 92M 91	COSM ARG COSM	Nucleosynthesis $E_{\rm Cm}^{ee} = 9.4 - 10.6 {\rm GeV}$ Nucleosynthesis
< 0.74 < 31 < 0.3 < 0.5 or > 25	95	19	20 ENQVIST 21 ALBRECHT 22 FULLER 23 KOLB	93 93 92M 91 91	COSM ARG COSM COSM	Nucleosynthesis $E_{\rm Cm}^{ee} = 9.4-10.6 {\rm GeV}$ Nucleosynthesis Nucleosynthesis
$< 0.74 \\ < 31 \\ < 0.3 \\ < 0.5 \text{ or } > 25 \\ < 0.42 $	95	19	20 ENQVIST 21 ALBRECHT 22 FULLER 23 KOLB 22 LAM	93 92M 91 91 91 91	COSM ARG COSM COSM COSM	Nucleosynthesis $E_{Cm}^{ee} = 9.4-10.6 \text{ GeV}$ Nucleosynthesis Nucleosynthesis Nucleosynthesis

 $^1\,{\rm BARATE}$ 98F result based on kinematics of 2939 $\tau^ \rightarrow$ $~2\pi^-\,\pi^+\,\nu_{\tau}$ and 52 $\tau^ \rightarrow$ $3\pi^-2\pi^+(\pi^0)\,\nu_\tau$ decays. If possible 2.5% excited a_1 decay is included in 3-prong sample analysis, limit increases to 19.2 MeV.

²ATHANAS 00 bound comes from analysis of $\tau^- \rightarrow \pi^- \pi^+ \pi^- \pi^0 \nu_{\tau}$ decays

 3 ACKERSTAFF 98T use au ightarrow $5\pi^\pm
u_ au$ decays to obtain a limit of 43.2 MeV (95%CL). They combine this with ALEXANDER 96M value using au ightarrow $3h^{\pm}$ $u_{ au}$ decays to obtain a uoted limit.

 $^{4}AMMAR$ 98 limit comes from analysis of $\tau^{-} \rightarrow 3\pi^{-} 2\pi^{+} \nu_{\tau}$ and $\tau^{-} \rightarrow 2\pi^{-} \pi^{+} 2\pi^{0} \nu_{\tau}$ decay modes

 $^5\,{\rm ANA}\,{\rm STASSOV}$ 97 derive limit by comparing their m_{τ} measurement (which depends on $m_{
u_{ au}}$) to BAI 96 $m_{ au}$ threshold measurement.

 6 FIELDS 97 limit for a Dirac neutrino. For a Majorana neutrino the mass region < 0.93 or >31 MeV is excluded. These bounds assume N_{ν} <4 from nucleosynthesis; a wider excluded region occurs with a smaller N_{ν} upper limit.

⁷ SWAIN 97 derive their limit from the Standard Model relationships between the tau mass, lifetime, branching fractions for $\tau^- \rightarrow e^- \overline{\nu}_e \nu_{\tau^+} \tau^- \rightarrow \mu^- \overline{\nu}_\mu \nu_{\tau^+} \tau^- \rightarrow \pi^- \nu_{\tau^+}$ and $\tau^- \to K^- \nu_\tau$, and the muon mass and lifetime by assuming lepton universality and using world average values. Limit is reduced to 48 MeV when the CLEO τ mass measurement (BALEST 93) is included; see CLEO's more recent m_{ν_τ} limit (ANASTASSOV 97). Consideration of mixing with a fourth generation heavy neutrino yields $\sin^2 \theta_L < 0.016$ (95%CL)

⁽¹⁾ $h^- h^- h^+ \nu_{\tau}$ decays.

ν_{τ}

- $^9\,\textsc{BOTTINO}$ 96 assumes three generations of neutrinos with mixing, finds consistency with massless neutrinos with no mixing based on 1995 data for masses, lifetimes, and leptonic partial with ths.
- partial widths. 19 HANNESTAD 96c limit is on the mass of a Majorana neutrino. This bound assumes $N_{\nu} < 4$ from nucleosynthesis. A wider excluded region occurs with a smaller N_{ν} up-per limit. This paper is the corrected version of HANNESTAD 96; see the erratum: HANNESTAD 96e.
- ¹¹ SOBIE 96 derive their limit from the Standard Model relationship between the tau mass, lifetime, and leptonic branching fraction, and the muon mass and lifetime, by assuming lepton universality and using world average values.
- ¹²BUSKULIC 95H bound comes from a two-dimensional fit of the visible energy and in-
- To be a solution of $\tau \to 5\pi$ (π^0) ν_τ decays. Replaced by BARATE 98. ¹³DOLGOV 95 removes earlier assumptions (DOLGOV 93) about thermal equilibrium below T_{QCD} for wrong-helicity Dirac neutrinos (ENQVIST 93, FULLER 91) to set more strin-gent limits. DOLGOV 96 argues that a possible window near 20 MeV is excluded.
- 14 SIGL 95 exclude massive Dirac or Majorana neutrinos with lifetimes between 10^{-3} and 10^8 seconds if the decay products are predominantly γ or e^+e^-
- 10° seconds if the decay products are predominantly γ or e : e : 15 poDELSON 94 calculate constraints on ν_{τ} mass and lifetime from nucleosynthesis for 4 generic decay modes. Limits depend strongly on decay mode. Quoted limit is valid for all decay modes of Majorana neutrinos with lifetime greater than about 300 s. For Dirac neutrinos limits change to < 0.3 or > 33.
- ¹⁶KAWASAKI 94 excluded region is for Majorana neutrino with lifetime >1000 s. Other limits are given as a function of $u_{ au}$ lifetime for decays of the type $u_{ au} o
 u_{\mu} \phi$ where ϕ a Nambu-Goldstone boson.
- is a Nambu-Goldstone boson. 17 PERES 94 used PDG 92 values for parameters to obtain a value consistent with mixing. Reexamination by BOTTINO 96 which included radiative corrections and 1995 PDG parameters resulted in two allowed regions, $m_3<$ 70 MeV and 140 MeV $m_3<$ 149 \cdots
- ¹⁸CINABRO 93 bound comes from analysis of $\tau^- \rightarrow 3\pi^- 2\pi^+ \nu_{\tau}$ and $\tau^ 2\pi^{-}\pi^{+}2\pi^{0}\nu_{\tau}$ decay modes.
- $2\pi^{-}\pi^{-}2\pi^{+}\nu_{p}$ decay modes. ¹⁹ POLGOV 93 assumes neutrino lifetime >100s. For Majorana neutrinos, the low mass limit is 0.5 MeV. KAWANO 92 points out that these bounds can be overcome for a Dirac neutrino if it possesses a magnetic moment. See also DOLGOV 96. ²⁰ ENQVIST 93 bases limit on the fact that thermalized wrong-helicity Dirac neutrinos would speed up expansion of early universe, thus reducing the primordial abundance. FULLER 91 exploits the same mechanism but in the older calculation obtains a larger production rate for these states, and hence a lower limit. Neutrino lifetime assumed to exceed nucleosynthesis time a 15 exceed nucleosynthesis time, $\sim 1\,{
 m s}$.
- 21 ALBRECHT 92M reports measurement of a slightly lower au mass, which has the effect of reducing the $u_{ au}$ mass reported in ALBRECHT 88B. Bound is from analysis of au $3\pi^{-} 2\pi^{+} \nu_{\tau}$ mode.
- ²²Assumes neutrino lifetime >1 s. For Dirac neutrinos. See also ENQVIST 93. 23 KOLB 91 exclusion region is for Dirac neutrino with lifetime >1 s; other limits are given.

v (MEAN LIFE) / MASS

Measures $\left[\sum |U_{\ell j}|^2 ~\Gamma_j ~m_j\right]^{-1}$, where the sum is over mass eigenstates which cannot be resolved experimentally. Most of these limits apply to any ν within the indicated mass range

DOCUMENT ID		TECN	COMMENT
ving data for averages	s, fits	, limits,	etc. • • •
²⁴ DOLGOV	99	COSM	
²⁵ BILLER	98	ASTR	$m_{\nu} = 0.05 - 1 \text{ eV}$
²⁶ SIGL	95	ASTR	m_{ν} > few MeV
^{27,28} BLUDMAN	92	ASTR	$m_{\mu} < 50 \text{ eV}$
²⁹ DODELSON	92	ASTR	$m_{\nu} = 1 - 300 \text{ keV}$
³⁰ GRANEK	91	COSM	Decaying L ⁰
³¹ WALKER	90	ASTR	$m_{\mu} = 0.03 - \sim 2 \text{ MeV}$
^{28,32} CHUPP	89	ASTR	$m_{\nu} < 20 \text{ eV}$
²⁸ KOLB	89	ASTR	$m_{\mu} < 20 \text{ eV}$
³³ TERA SAWA	88	COSM	$m_{\mu} = 30 - 70 \text{ MeV}$
³⁴ KAWASAKI	86	COSM	m_{μ} >10 MeV
³⁵ LINDLEY	85	COSM	$m_{\mu} > 10 \text{ MeV}$
³⁶ BINETRUY	84	COSM	$m_{\nu} \sim 1 \text{ MeV}$
³⁷ SARKAR	84	COSM	$m_{\nu} = 10 - 100 \text{ MeV}$
³⁸ HENRY	81	ASTR	$m_{\nu} = 16-20 \text{ eV}$
³⁹ KIMBLE	81	ASTR	$m_{\nu} = 10 - 100 \text{ eV}$
⁴⁰ REPHAELI	81	ASTR	$m_{\nu} = 30 - 150 \text{ eV}$
⁴¹ DERUJULA	80	ASTR	$m_{\nu} = 10 - 100 \text{ eV}$
42 STECKER	80	ASTR	$m_{\nu} = 10 - 100 \text{ eV}$
⁴³ DICUS	78	COSM	$m_{\nu} = 0.5 - 30 \text{ MeV}$
⁴⁴ FALK	78	ASTR	m_{ν} <10 MeV
⁴⁵ COWSIK	77	ASTR	-
	DOCUMENT ID DOCUMENT ID ving data for averages 24 DOLGOV 25 BILLER 26 SIGL 27.28 BLUDMAN 29 DODELSON 30 GRANEK 31 WALKER 28,32 CHUPP 28 KOLB 33 TERASAWA 34 KAWASAKI 35 LINDLEY 36 BINETRUY 37 SARKAR 38 HERNY 39 KIMBLE 40 REPHAELI 41 DERUJULA 42 STECKER 43 DICUS 44 FALK 45 COWSIK	DOCUMENT ID ving data for averages, fits 24 DOLGOV 99 25 BILLER 98 26 SIGL 95 27,28 BLUDMAN 92 29 DODESON 92 30 GRANEK 91 31 WALKER 90 28,32 CHUPP 89 33 TERASAWA 88 34 KAWASAKI 86 35 LINDEY 85 36 BINETRUY 84 39 KIMBLE 81 40 REPHAELI 81 41 DERUJULA 80 42 STECKER 80 43 DICUS 76 44 FALK 78 45 COWSIK 77	DOCUMENT ID TECN ving data for averages, fits, limits, 24 DOLGOV 99 COSM 24 DOLGOV 99 COSM 95 BLILER 98 ASTR 25 BILLER 98 ASTR 26 SILLER 92 ASTR 27.28 BLUDMAN 92 ASTR 30 GRANEK 91 COSM 31 WALKER 90 ASTR 28 KOLB 89 ASTR 28 KOLB 89 ASTR 31 TENASAWA 88 COSM 31 WALKER 90 ASTR 33 TENASAWA 88 COSM 33 TENASAWA 88 COSM 35 LINDLEY 5 COSM 36 BINETRUY 81 ASTR 39 KIMBLE 81 ASTR 39 KIMBLE 81 ASTR 41 DERUJULA 80 ASTR 39 KIMBLE 81 ASTR 42 STECKER </td

 24 DOLGOV 99 places limits in the (Majorana) au-associated u mass-lifetime plane based on

block of γ_{1} makes initial the (majorana) reasonated β mass-intenting plates initial based on nucleosynthesis. Results would be considerably modified if neutrino oscillations exist. ²⁵ BILLER 98 use the observed TeV γ_{-} ray spectra to set limits on the mean life of a radiatively decaying neutrino between 0.05 and 1 eV. Curve shows $au_{\mu}/B_{\gamma}>0.15 imes10^{21}$ s at 0.05 eV, $> 1.2 \times 10^{21}$ s at 0.17 eV, $> 3 \times 10^{21}$ s at 1 eV, where B_{α} is the branching ratio to photons.

- ²⁷ BLUDMAN 92 sets additional limits by this method for higher mass ranges. Cosmological
- limits are also obtained.
- limits are also obtained. 28 honobservation of γ 's in coincidence with ν 's from SN 1987A. Results should be divided by the $\nu \rightarrow \gamma X$ branching ratio.
- ²⁹DODELSON 92 range is for wrong-helicity keV mass Dirac v's from the core of neutron star in SN 1987A decaying to v's that would have interacted in KAM2 or IMB detectors.

- $^{30}\,{\rm GRANEK}$ 91 considers heavy neutrino decays to $\gamma\,\nu_L$ and $3\nu_L,$ where m_{ν_I} <100 keV. Lifetime is calculated as a function of heavy neutrino mass, branching ratio into $\gamma \nu_{I}$, and m.,
- 31 WALKER 90 uses SN 1987A γ flux limits after 289 d ays to find $\langle m/\tau
 angle > 1.1 imes 10^{15}$ eV s. ³²CHUPP 89 should be multiplied by a branching ratio (about 1) and a detection efficiency
- (about 1/4), and pertains to radiative decay of any neutrino to a lighter or sterile neutrino. 33 TERASAWA 88 finds only $10^2 < \tau < 10^4$ allowed for 30–70 MeV ν 's from primordial nucleosynthesis
- ³⁴KAWASAKI 86 concludes that light elements in primordial nucleosynthesis would be destroyed by radiative decay of neutrinos with 10 MeV $< m_{\nu} < 1$ GeV unless $\tau \lesssim 10^4$ s.
- 35 LINDLEY 85 considers destruction of cosmologically-produced light elements, and finds
- $\tau < 2 \times 10^3$ for 10 MeV $< m_{\nu} < 100$ MeV. See also LINDLEY 79. ³⁶ BINETRUY 84 finds $\tau < 10^8$ s for neutrinos in a radiation-dominated universe. ³⁷ SARKAR 84 finds $\tau < 20$ s at $m_{\mu} = 10$ MeV, with higher limits for other m_{ν} and claims that all masses between 1 MeV and 50 MeV are ruled out.
- That all masses between 1 meV and 50 meV are ruled out. ³⁸HENRY 81 uses UV flux from clusters of galaxies to find $\tau > 1.1 \times 10^{25}$ s for radiative decay.
- accay. ³⁹KIMBLE 81 uses extreme UV flux limits to find $\tau > 10^{22} 10^{23}$ s. ⁴⁰REPHAELI 81 consider ν decay γ effect on neutral *H* in early universe; based on M31 HI concludes $\tau > 10^{24}$ s. ⁴¹DERVJULA 80 finds $\tau > 1 \times 10^{23}$ s based on CDM neutrino decay contribution to UV
- background.
- 42 STECKER 80 limit based on UV background; result given is $au > 4 imes 10^{22}$ s at m = 20
- eV. 43 DICUS 78 considers effect of ν decay photons on light-element production, and finds lifetime must be less than "hours." See also DICUS 77. 44 FALK 78 finds lifetime constraints based on supernova energetics.
- 45 COWSIK 79 and GOLDMAN 79.

v **MAGNETIC MOMENT**

Must vanish for a purely chiral massless Dirac neutrino. A massive Dirac or Majorana neutrino can have a transition magnetic moment connecting one mass eigenstate to another one. The experimental limits below usually cannot distinguish between the true (diagonal, in mass) magnetic moment and a transition magnetic moment.

The value of the magnetic moment for the standard $SU(2) \times U(1)$ electroweak theory extended to include massive neutrinos (see FUJIKAWA 80) is $\mu_{\nu}=3eG_Fm_{\nu}/(8\pi^2\sqrt{2})=(3.20\times10^{-19})m_{\nu}\mu_B$ where m_{ν} is in eV and $\mu_B = e\hbar/2m_e$ is the Bohr magneton. Given the upper bound $m_v < 18$ MeV, it follows that for the extended standard electroweak theory, μ_v < $6 \times 10^{-12} \mu_B$

Most of the astrophysical limits pertain to any neutrino.

VALUE (µB)	CL%	DOCUMENT ID	TE	COMMENT
$< 3.9 \times 10^{-7}$	90	⁴⁶ SCHWIENHO	.01 D.C	ONU $\nu_{\tau} e^- \rightarrow \nu_{\tau} e^-$
• • • We do not use the	followin	ng data for averages	, fits, lir	mits, etc. • • •
$<2 \times 10^{-10}$	90	⁴⁷ GRIMUS	02 FI	T solar + reactor (Μajo- rana ν)
$< 8.0 \times 10^{-6}$	90	⁴⁸ талімото	00 R.V	VUE $e^+e^- \rightarrow \nu \overline{\nu} \gamma$
$<3 \times 10^{-12}$		49 RAFFELT	99 A S	STR Red giant luminosity
$<4 \times 10^{-10}$		⁵⁰ RAFFELT	99 A S	STR Solar cooling
$<4.4 \times 10^{-6}$	90	ABREU	971 DL	LPH $e^+e^- \rightarrow \nu \overline{\nu} \gamma$ at LEP
$< 3.3 \times 10^{-6}$	90	⁵¹ ACCIARRI	97Q L 3	$e^+e^- \rightarrow \nu \overline{\nu}\gamma$ at LEP
$< 6.2 \times 10^{-11}$		⁵² ELMFORS	97 C.C	OSM Depolarization in early universe plasma
$< 2.7 \times 10^{-6}$	95	⁵³ ESCRIBANO	97 R.V	VUE $\Gamma(Z \rightarrow \nu \nu)$ at LEP
$< 5.5 \times 10^{-6}$	90	GOULD	94 R∖	VUE $e^+e^- \rightarrow \nu \overline{\nu} \gamma$ at LEP
$< 5.4 \times 10^{-7}$	90	⁵⁴ COOPER	92 BE	EBC $\nu_{\tau} e^- \rightarrow \nu_{\tau} e^-$
$\gtrsim 10^{-8}$		⁵⁵ KAWANO	92 A S	STR Primodial ⁴ He abun- dance
$< 5.6 \times 10^{-6}$	90	DESHPANDE	91 R.V	VUE $e^+ e^- \rightarrow \nu \overline{\nu} \gamma$
$<2 \times 10^{-12}$		⁵⁶ RAFFELT	90 A S	STR Red giant luminosity
$<1 \times 10^{-11}$		⁵⁷ RAFFELT	896 A S	STR Cooling helium stars
$<4. \times 10^{-6}$	90	58 GROTCH	88 R.V	VUE $e^+e^- \rightarrow \nu \overline{\nu} \gamma$
$<1.1 \times 10^{-11}$	57	^{7,59} FUK UGITA	87 A S	STR Cooling helium stars
$< 6 \times 10^{-14}$		⁶⁰ NUSSINOV	87 A S	STR Cosmic EM backgrounds
$< 8.5 \times 10^{-11}$		⁵⁹ BEG	78 A S	STR Stellar plasmons

⁴⁶ SCHWIENHORST 01 guote an experimental sensitivity of 4.9×10^{-7} .

⁴⁷ GRIMUS 02 obtain stringent bounds on all Majorana neutrino transition moments from a simultaneous fit of LMA-MSW oscillation parameters and transition moments to global solar neutrino data + reactor data. Using only solar neutrino data, a 90% CL bound of 6.3 \times 10⁻¹⁰ μ_B is obtained.

⁴⁸TANIMOTO 00 combined $e^+e^- \rightarrow \nu \overline{\nu} \gamma$ data from VENUS, TOPAZ, and AMY. ⁴⁹RAFFELT 99 is an update of RAFFELT 90. This limit applies to all neutrino flavors

- Which are light enough (\leq 5 keV) to be emitted from globular-cluster red glants. This limit pertains equally to electric dipole moments and magnetic transition moments, and it applies to both Dirac and Majorana neutrinos.
- It applies to both Dries and majorana neutrinos. 50 RAFFELT 99 is derived from the helposisimological limit on a new energy-loss channel of the Sun. This limit applies to all neutrino flavors which are light enough (<1 keV)to be emitted from the Sun. This limit pertains equally to electric dipole and magnetic transition moments, and it applies to both Dirac and Majorana neutrinos.
- $^{51}\mathrm{ACCIARRI}$ 97Q result applies to both direct and transition magnetic moments and for $a^2 = 0.$
- 52 ELMFORS 97 calculate the rate of depolarization in a plasma for neutrinos with a mag-netic moment and use the constraints from a big-bang nucleosynthesis on additional degrees of freedom.

Lepton Particle Listings ν_{τ} , Number of Neutrino Types and Sum of Neutrino Masses

⁵³Applies to absolute value of magnetic moment.

 54 COOPER-SARKAR 92 assume $f_{D_S}/f_{\pi}=2$ and $D_S, \ \overline{D}_S$ production cross section = 2.6 μb to calculate ν flux.

- 55 KAWANO 92 lower limit is that needed to circumvent $^{4}{\rm He}$ production if m_{ν} is between 5 and \sim 30 MeV/ $c^{2}.$
- 56 RAFFELT 90 limit valid if $m_{p}<5$ keV. It applies for a diagonal magnetic moment of a Dirac neutrino, or for a transition magnetic moment of a Majorana neutrino. In the latter case, the same analysis gives $<1.4\times 10^{-12}$. Limit at 95%CL obtained from δM_{C} .
- ⁵⁷Significant dependence on details of stellar properties.
- 58 GROTCH 88 combined data from MAC, ASP, CELLO, and Mark J.

 $59 \text{ If } m_{\nu} < 10 \text{ keV}.$

 $^{11}m_{V}$ \sim 10 keV. 00 PG rm $_{V}$ = 8-200 eV. NUSSINOV 87 examines transition magnetic moments for ν_{τ} \rightarrow ν_{e} and obtain < 3 $\times 10^{-15}$ for m_{V} < 16 eV and < 6 $\times 10^{-14}$ for m_{V} > 4 eV.

ν ELECTRIC DIPOLE MOMENT

VALUE (ecm)	CL%	DOCUMENT ID		TECN	COMMENT			
<5.2 × 10 ⁻¹⁷	95	⁶¹ ESCRIBANO	97	RVUE	$\Gamma(Z \rightarrow \nu \nu)$ at LEP			
61 Applies to absolute value of electric dipole moment								

ν CHARGE

VALUE	(units: ele	ectron cha	rge)	DOCUMENT ID		TECN	COMMENT
	We do	not use	the	following data for averages	, fits	, limits,	etc. • • •
$< 2 \times$	10^{-14}			62 RAFFELT	99	ASTR	Red giant luminosity
$< 6 \times$	10^{-14}			⁶³ RAFFELT	99	ASTR	Solar cooling
$<$ 4 \times	10^{-4}			⁶⁴ BABU	94	RVUE	BEBC beam dump

$< 3 \times 10^{-4}$	⁶⁵ DAVIDSON	91	RVUE	SLAC electron beam	
				dump	
6.2					

 62 This RAFFELT 99 limit applies to all neutrino flavors which are light enough (<5 kEV) to be emitted from globular-cluster red giants.

 63 This RAFFELT 99 limit is derived from the helioseismological limit on a new energy-loss channel of the Sun, and applies to all neutrino flavors which are light enough (<1 keV) $_{\rm c}$ to be emitted from the sun.

⁶⁴ BABU 94 use COOPEN-SARKAR 92 limit on ν magnetic moment to derive quoted result. 5 DAVIDSON 91 use data from early SLAC electron beam dump experiment to derive

charge limit as a function of neutrino mass.

NONSTANDARD CONTRIBUTIONS TO NEUTRINO SCATTERING

We report limits on the so-called neutrino charge radius squared. While the straight-forward definition of a neutrino charge radius has been proven to be gauge-dependent and, hence, unphysical (LEE 77C), three have been recent attempts to define a physically observable neutrino charge radius (BERNABEU 00, BERNABEU 02). The issue is still controversial (FU-JIKAWA 03, BERNABEU 03). A more general interpretation of the experimental results is that they are limits on certain nonstandard contributions to neutrino scattering.

VALUE (10 - 32 cm ²)	CL%	DOCUMENT I	D	COMMENT
• • • We do not use f	he followin	g data for avera	ges, fit	s, limits, etc. • • •
< 9.9 and $> -$ 8.2	90	⁶⁶ HIRSCH	03	anomalous $e^+e^- \rightarrow \nu \overline{\nu} \gamma$
66 Results of LEP-2 a	are interpret	ted as limits on	the ax	ial-vector charge radius squared of
a Maiorana v S	lightly wea	ker limits for h	oth vec	tor and axial vector charge radius

a majoratia ν_{τ} . Singitty weaker limits for both vector and axia/vector charge ratios squared are obtained for the Dirac case, and somewhat weaker limits are obtained from the analysis of lower energy data (LEP-1.5 and TRISTAN).

ν_{τ} REFERENCES

BERNABEU	03	hep-ph/0303202	J. Bernabeu, J. Papavassiliou, J. Vidal	
FUJIKAWA	03	hep-ph/0303188	K. Fujikawa, R. Shrock	
HIRSCH	03	PR D67 033005	M. Hirsch et al.	
BERNABEU	02	PRL 89 101802	J. Bernabeu, J. Papavassiliou, J. Vidal	
A Iso	02B	PRL 89 229902 (erratum	U. Bernabeu, J. Papavassiliou, J. Vidal	
GRIMUS	02	NP B648 376	W. Grimus et al.	
KODAMA	01	PL B504 218	K. Kodama et al.	(DONUT Collab.)
SCHWIENHO	01	PL B513 23	R. Schwienhorst et al.	DONUT Collab.
ATHANAS	00	PR D61 052002	M. Athanas et al.	CLEO Collab.
BERNABEU	00	PR D62 113012	J. Bernabeu et al.	· · · · · · · · · · · · · · · · · · ·
TANIMOTO	00	PL B478 1	N. Tanimoto et al.	
DOLGOV	99	NP B548 385	A.D. Dolgov et al.	
RAFFELT	99	PRPL 320 319	G.G. Raffelt	
ACKERSTAFF	98T	EPJ C5 229	K. Ackerstaff et al.	(OPAL Collab.)
AMMAR	98	PL B431 209	R. Ammar et al.	CLEO Collab.)
BARATE	98F	EPJ C2 395	R. Barate et al.	(ALEPH Collab.)
BILLER	98	PRL 80 2992	S.D. Biller et al.	(WHIPPLE Collab.)
ABREU	97 J	ZPHY C74 577	P. Abreu et al.	DELPHI Collab.)
ACCIARRI	97 Q	PL B412 201	M. Acciarri et al.	L3 Collab.)
ANASTASSOV	97	PR D55 2559	A. Anastassov et al.	(CLEO Collab.)
A Iso	98B	PR D58 119903 (erratum	n'A. Anastassov <i>et al.</i>	CLEO Collab.)
ELMFORS	97	NP B503 3	P. Elmfors et al.	
ESCRIBANO	97	PL B395 369	R. Escribano, E. Masso	(BARC, PARIT)
FIELDS	97	ASP 6 169	B.D. Fields, K. Kainulainen, K.A. Olive	(NDAM+)
SWAIN	97	PR D55 R1	J. Swain, L. Taylor	(NEAS)
ALEXANDER	96M	ZPHY C72 231	G. Alexander et al.	(OPAL Collab.)
BAI	96	PR D53 20	J.Z. Bai et al.	(BES Collab.)
BOTTINO	96	PR D53 6361	A. Bottino et al.	
DOLGOV	96	PL B383 193	A.D. Dolgov, S. Pastor, J.W.F. Valle	(IFIC, VALE)
HANNESTAD	96	PRL 76 2848	S. Hannestad, J. Madsen	(AARH)
HANNESTAD	96B	PRL 77 5148 (erratum)	S. Hannestad, J. Madsen	(AARH)
HANNESTAD	96C	PR D54 7894	S. Hannestad, J. Madsen	(AARH)
SOBIE	96	ZPHY C70 383	R.J. Sobie, R.K. Keeler, I. Lawson	(VICT)
BUSKULIC	95 H	PL B349 585	D. Buskulic et al.	(ALEPH Collab.)
DOLGOV	95	PR D51 4129	A.D. Dolgov, K. Kainulainen, I.Z. Roth	stein (MICH+)
SIGL	95	PR D51 1499	G. Sigl, M.S. Turner	(FNAL, EFI)
RABI	0.0	DI B321 140	KS Robe T.M. Could 1.7 Pothetein	(BART+)

DICUS	77	PRL 39 168	D.A. Dicus, E.W. Kolb, V.L. Teplitz	(TEXA, VPI)
LEE	77 C	PR D16 1444	B.W. Lee, R.E. Shrock	(ST ON)
BEG	78	PR D17 1395	M.A.B. Beg, W.J. Marciano, M. Ruderr	nan (RÒCK+)
DICUS	78	PR D17 1529	D.A. Dicus <i>et al.</i> (T	EXA, VPI, STAN)
FALK	78	PL 79B 511	S.W. Falk, D.N. Schramm	(CHIC)
COWSIK	77	PRI 39 784	R. Cowsik	(MPIM TATA)
COWSIK	79	PR D19 2219	R. Cowsik	(TATA)
GOLDMAN	79	PR D19 2215	T. Goldman, G.J. Stephenson	(LASL)
LINDLEY	79	MNRAS 188 15P	D. Lindley	(SUSS)
FUJIKAWA	80	PRL 45 963	K. Fujikawa, R. Shrock	(ST ON)
STECKER	80	PRL 45 1460	F.W. Stecker	(NASA)
HENRY	81	PRL 47 618	R.C. Henry, P.D. Feldman	(JHU)
KIMBLE	81	PRL 46 80	R. Kimble, S. Bowyer, P. Jakobsen	(UCB)
REPHAELI	81	PL 106B 73	Y. Rephaeli, A.S. Szalay	(UCSB, CHIC)
DERUIULA	80	PRI 45 942	A. De Ruinta S. I. Glashow	(MIT HARV)
FELDMAN Santa Cruz	81 APS	SLAC-PUB-2839	G.J. Feldman	(ŠLAC, STAN)
LINDLEY	85	APJ 294 1	D. Lindley	(FNAL)
BINETRUY	84	PL 134B 174	P. Binetruy, G. Girardi, P. Salati	(LAPP)
SARKAR	84	PL 148B 347	S. Sarkar, A.M. Cooper	(OXF, CERN)
NUSSINOV	87	PR D36 2278	S. Nussinov, Y. Rephaeli	(TELA)
KAWASAKI	86	PL B178 71	M. Kawasaki, N. Terasawa, K. Sato	(TOKY)
GROTCH	88	ZPHY C39 553	H. Grotch, R.W. Robinett	(PSU)
TERASAWA	88	NP B302 697	N. Terasawa, M. Kawasaki, K. Sato	(TOKY)
FUKUGITA	87	PR D36 3817	M. Fukugita, S. Yazaki	(KYOTU, TOKY)
RAFFELT	89B 88B	APJ 336 61 PL B202 149	G. Raffelt, D. Dearborn, J. Silk H. Albrecht <i>et al.</i>	(UCB, LLL) (ARGUS Collab.)
WALKER CHUPP	90 8 9	PR D41 689 PRL 62 505 PRL 63 500	T.P. Walker E.L. Chupp, W.T. Vestrand, C. Reppin	(HARV) (UNH, MPIM)
KOLB	91	PRL 67 533	E.W. Kolb et al.	(FNAL, CHIC)
LAM	91	PR D44 3345	W.P. Lam, K.W. Ng	(AST)
RAFEFLT	90	PRI 64 2856	G.G. Raffelt	(MPIM)
DESHPANDE	91	PR D43 943	N.G. Deshpande, K.V.L. Sarma	(OREG, TATA)
FULLER	91	PR D43 3136	G.M. Fuller, R.A. Malaney	(UCSD)
GRANEK	91	IJMP A6 2387	H. Granek, B.H.J. McKellar	(MELB)
KAWANO	92	PL B275 487	L.H. Kawano <i>et al.</i> (C	IT. UCSD, LLL+)
PDG	92	PR D45, 1 June, Part	t II K. Hikasa <i>et al.</i> (KI	EK, LBL, BOST+)
DAVIDSON	91	PR D43 2314	S. Davidson, B.A. Campbell, D. Bailey	(ALBE+)
DODELSON	92 92 92 92	PR D45 4720 PL B280 153 PRL 68 2572	S.A. Bludman A.M. Cooper-Sarkar <i>et al.</i> (BE S. Dodelson, J.A. Frieman, M.S. Turner	(CFPA) BC WA66 Collab.) (FNAL+)
D OLG OV EN QVIST ALBRECHT	93 93 92 M	PRL 71 476 PL B301 376 PL B292 221 7PHX (55 339	A.D. Dolgov, I.Z. Rothstein K. Enqvist, H. Uibo H. Albrecht <i>et al.</i> H. Albrecht <i>et al.</i>	(MICH) (NORD) (ARGUS Collab.)
PERES BALEST CINABRO	94 94 93 93	NP B419 105 PR D50 513 PR D47 R3671 PRL 70 3700	M. Kawasaki <i>et al.</i> O.L.G. Peres, V. Pleitez, R. Zukanovich R. Balest <i>et al.</i> D. Cinabro <i>et al.</i>	(OSU) Funchal (CLEO Collab.) (CLEO Collab.)
GOULD	94	PL B333 545	T.M. Gould, I.Z. Rothstein	

Number of Neutrino Types and Sum of Neutrino Masses

I

The neutrinos referred to in this section are those of the Standard SU(2)×U(1) Electroweak Model possibly extended to allow nonzero neutrino masses. Light neutrinos are those with $m < m_Z/2$. The limits are on the number of neutrino mass eigenstates, including ν_1 , ν_2 , and ν_2 .

THE NUMBER OF LIGHT NEUTRINO TYPES FROM COLLIDER EXPERIMENTS

Revised August 2001 by D. Karlen (Carleton University).

The most precise measurements of the number of light neutrino types, N_{ν} , come from studies of Z production in $e^+e^$ collisions. The invisible partial width, $\Gamma_{\rm inv}$, is determined by subtracting the measured visible partial widths, corresponding to Z decays into quarks and charged leptons, from the total Z width. The invisible width is assumed to be due to N_{ν} light neutrino species each contributing the neutrino partial width Γ_{ν} as given by the Standard Model. In order to reduce the model dependence, the Standard Model value for the ratio of the neutrino to charged leptonic partial widths, $(\Gamma_{\nu}/\Gamma_{\ell})_{\rm SM} =$ 1.991 ± 0.001 , is used instead of $(\Gamma_{\nu})_{\rm SM}$ to determine the number of light neutrino types:

$$N_{\nu} = \frac{\Gamma_{\rm inv}}{\Gamma_{\ell}} \left(\frac{\Gamma_{\ell}}{\Gamma_{\nu}}\right)_{\rm SM} \,. \tag{1}$$

The combined result from the four LEP experiments is $N_{\nu} = 2.984 \pm 0.008$ [1].

In the past, when only small samples of Z decays had been recorded by the LEP experiments and by the Mark II at SLC,

445

446 Lepton Particle Listings Number of Neutrino Types and Sum of Neutrino Masses

the uncertainty in N_{ν} was reduced by using Standard Model fits to the measured hadronic cross sections at several centerof-mass energies near the Z resonance. Since this method is much more dependent on the Standard Model, the approach described above is favored.

Before the advent of the SLC and LEP, limits on the number of neutrino generations were placed by experiments at lower-energy e^+e^- colliders by measuring the cross section of the process $e^+e^- \rightarrow \nu \overline{\nu} \gamma$. The ASP, CELLO, MAC, MARK J, and VENUS experiments observed a total of 3.9 events above background [2], leading to a 95% CL limit of $N_{\nu} < 4.8$. This process has a much larger cross section at center-of-mass energies near the Z mass and has been measured at LEP by the ALEPH, DELPHI, L3, and OPAL experiments [3]. These experiments have observed several thousand such events, and the combined result is $N_{\nu} = 3.00 \pm 0.08$. The same process has also been measured by the LEP experiments at much higher center-of-mass energies, between 130 and 208 GeV, in searches for new physics [4]. Combined, the measured cross section is 0.982 ± 0.012 (stat) of that expected for three light neutrino generations [5].

Experiments at $p\overline{p}$ colliders also placed limits on N_{ν} by determining the total Z width from the observed ratio of $W^{\pm} \to \ell^{\pm} \nu$ to $Z \to \ell^{+} \ell^{-}$ events [6]. This involved a calculation that assumed Standard Model values for the total W width and the ratio of W and Z leptonic partial widths, and used an estimate of the ratio of Z to W production cross sections. Now that the Z width is very precisely known from the LEP experiments, the approach is now one of those used to determine the W width.

References

- 1. The LEP Collaborations and the LEP Electroweak Working Group, as reported by J. Dress at the XX International Symposium on Lepton and Photon Interactions at High Energy, Rome, Italy (July 2001).
- VENUS: K. Abe et al., Phys. Lett. B232, 431 (1989); ASP: C. Hearty et al., Phys. Rev. D39, 3207 (1989); CELLO: H.J. Behrend et al., Phys. Lett. B215, 186 (1988); MAC: W.T. Ford et al., Phys. Rev. D33, 3472 (1986); MARK J: H. Wu, Ph.D. Thesis, Univ. Hamburg (1986).
- 3. L3: M. Acciarri et al., Phys. Lett. B431, 199 (1998); DELPHI: P. Abreu et al., Z. Phys. C74, 577 (1997); OPAL: R. Akers et al., Z. Phys. C65, 47 (1995); ALEPH: D. Buskulic et al., Phys. Lett. B313, 520 (1993).
- 4. OPAL: G. Abbiendi et al., Eur. Phys. J. C18, 253 (2000); DELPHI: P. Abreu et al., Eur. Phys. J. C17, 53 (2000); L3: M. Acciarri et al., Phys. Lett. B470, 268 (1999); ALEPH: R. Barate et al., Phys. Lett. B429, 201 (1998).
- 5. The LEP Collaborations and the LEP SUSY Working Group, LEPSUSYWG/01-05.1.
- UA1: C. Albajar et al., Phys. Lett. B198, 271 (1987); 6. UA2: R. Ansari et al., Phys. Lett. B186, 440 (1987).

Number from e^+e^- Colliders

Number of Light ν Types

Our evaluation uses the invisible and leptonic widths of the Z boson from our combined fit shown in the Particle Listings for the Z Boson, and the Standard Model value $\Gamma_{
m
u}/\Gamma_{
m \ell}$ $= 1.9908 \pm 0.0015$. VALUE DOCUMENT ID TECN

2.994 ± 0.012 OUR EVALUATION	Combined fit to all LEP dat

••	• We do	not use the following data fo	r averages, fits, limits, etc. • • •
3.00	±0.05	¹ LEP	92 RVUE

¹ Simultaneous fits to all measured cross section data from all four LEP experiments.

Number of Light v Types from Direct Measurement of Invisible Z Width

In the following, the invisible Z width is obtained from studies of single-photon events from the reaction $e^+e^- \rightarrow \overline{\nu}\overline{\nu}\gamma$. All are obtained from LEP runs in the $E_{\rm CM}^{ee}$ range

88–209 GeV. VALUE	DOCUMENT ID	TECN	COMMENT
2.92±0.07 OUR AVERAGE			
2.86 ± 0.09	HEISTER	03C ALEP	√s=189-209 GeV
$2.69 \pm 0.13 \pm 0.11$	ABBIENDI,G	00D OPAL	1998 LEP run
$2.84 \pm 0.15 \pm 0.14$	ABREU	00Z DLPH	1997-1998 LEP runs
3.01 ± 0.08	ACCIARRI	99R L3	1991-1998 LEP runs
$2.89 \pm 0.32 \pm 0.19$	ABREU	97J DLPH	1993-1994 LEP runs
$2.68 \pm 0.20 \pm 0.20$	BUSKULIC	93L ALEP	1990-1991 LEP runs
• • • We do not use the following	data for averages	s, fits, limits,	etc. • • •
$3.1 \ \pm 0.6 \ \pm 0.1$	ADAM	96C DLPH	$\sqrt{s}=$ 130, 136 GeV

Limits from Astrophysics and Cosmology

Number of Light ν Types

("light" means < about 1 MeV). See also OLIVE 81. For a review of limits based on Nucleosynthesis, Supernovae, and also on terrestial experiments, see DENEGRI 90. Also see "Big-Bang Nucleosynthesis" in this Review.

VALUE	DOCUMENT ID		TECN	COMMENT
\bullet \bullet \bullet We do not	use the following data	for	averages,	fits, limits, etc. • • •
< 3.3	² barger	030	COSM	
$1.4 < N_{1.} < 6.8$	³ CROTTY	03	COSM	
< 3.6	⁴ CYBURT	03	COSM	
$1.9 < N_{y} < 7.0$	⁵ HANNESTAD	03B	COSM	
$1.9 < N_{\nu} < 6.6$	³ PIERPAOLI	03	COSM	
$2 < N_{\nu} < 4$	LISI	99		BBN
< 4.3	OLIVE	99		BBN
< 4.9	COPI	97		Cosmology
< 3.6	HATA	97B		High D/H quasar abs.
< 4.0	OLIVE	97		BBN; high ⁴ He and ⁷ Li
< 4.7	CARDALL	96B		Cosmology, High D/H quasar abs.
< 3.9	FIELDS	96		Cosmology, BBN; high ⁴ He and ⁷ Li
< 4.5	KERNAN	96		Cosmology, High D/H quasar abs.
< 3.6	OLIVE	95		BBN; \geq 3 massless ν
< 3.3	WALKER	91		Cosmology
< 3.4	OLIVE	90		Cosmology
< 4	YANG	84		Cosmology
< 4	YANG	79		Cosmology
< 7	STEIGMAN	77		Cosmology
	PEEBLES	71		Cosmology
<16	⁶ SH VART SM AN	69		Cosmology
	HOYLE	64		Cosmology

²Limit on the number of neutrino types based on combination of WMAP data bang nucleosynthesis. The limit from WMAP data alone is 8.3. See also KNELLER 01. $N_{\nu}\geq$ 3 is assumed to compute the limit.

 ³ 95% confidence level range on the number of neutrino flavors from WMAP data combined with other CMB measurements, the 2dfGRS data, and HST data.
 ⁴ Limit on the number of neutrino types based on ⁴He abundance assuming a baryon density fixed by the WMAP data. Limit relaxes to 5.2 if D/H is used instead of 4 He. See also CYBURT 01. $N_{\nu} \ge 3$ is assumed to compute the limit.

 5 95 % confidence level range on the number of neutrino flavors from WMAP data combined with other CMB measurements, the 2dfGRS data, HST data, and SN1a data. ⁶SHVARTSMAN 69 limit inferred from his equations.

Number Coupling with Less Than Full Weak Strength

VALUE	DOCUMENTID	TECN
$\bullet~\bullet~\bullet$ We do not use the follo	owing data for average	es, fits, limits, etc. • • •
<20	⁷ OLIVE	81C COSM
<20	⁷ STEIGMAN	79 COSM
⁷ Limit varies with strength	of coupling. See also	WALKER 91.

Lepton Particle Listings

Number of Neutrino Types and Sum of Neutrino Masses, Double- β Decay

Revised April 1998 by K.A. Olive (University of Minnesota).

The limits on low mass $(m_{\nu} \lesssim 1 \text{ MeV})$ neutrinos apply to $m_{\rm tot}$ given by

$$m_{
m tot} = \sum_{
u} (g_
u/2) m_
u \; ,$$

where g_{ν} is the number of spin degrees of freedom for ν plus $\overline{\nu}$: $g_{\nu} = 4$ for neutrinos with Dirac masses; $g_{\nu} = 2$ for Majorana neutrinos. Stable neutrinos in this mass range make a contribution to the total energy density of the Universe which is given by

$$\rho_{\nu} = m_{\rm tot} n_{\nu} = m_{\rm tot} (3/11) n_{\gamma}$$

where the factor 3/11 is the ratio of (light) neutrinos to photons. Writing $\Omega_{\nu} = \rho_{\nu}/\rho_c$, where ρ_c is the critical energy density of the Universe, and using $n_{\gamma} = 412 \text{ cm}^{-3}$, we have

$$\Omega_{\nu}h^2 = m_{\rm tot}/(94 \ {\rm eV})$$

Therefore, a limit on $\Omega_{
u}h^2$ such as $\Omega_{
u}h^2 < 0.25$ gives the limit

$$m_{
m tot} < 24~{
m eV}$$
 .

The limits on high mass $(m_{\nu} > 1 \text{ MeV})$ neutrinos apply separately to each neutrino type.

Limit on Total ν MASS, m_{tot} (Defined in the above note), of effectively stable neutrinos (i.e., those with mean lives (Defined in the above note), of effectively stable neutrinos (i.e., those with mean lives neutrinos). greater than or equal to the age of the universe). These papers assumed Dirac neutrinos. When necessary, we have generalized the results reported so they apply to m_{tot} . For other limits, see SZALAY 76, VYSOTSKY 77, BERNSTEIN 81, FREESE 84, SCHRAMM 84, and COWSIK 85.

VALUE (eV			DOCUMENT ID		TECN	COMMENT
• • • W	e do not use the fo	llowing d	ata for average	s, fits	, limits,	etc. • • •
< 1.0		8	HANNESTAD	03B	COSM	
< 0.7		9	SPERGEL	03	COSM	WMAP
< 1.8		10	ELGAROY	02	ASTR	2dF Galaxy Redshift Survey
< 0.9		11	LEWIS	02	COSM	,
< 4.2		12	WANG	02	COSM	CMB
< 2.7		13	FUKUGITA	00	COSM	
< 5.5		14	CROFT	99	ASTR	Ly α power spec
<180			SZALAY	74	COSM	
<132			COWSIK	72	COSM	
< 280			MARX	72	COSM	
< 400			GERSHTEIN	66	COSM	

⁸ Constrains the fractional contribution of neutrinos to the total matter density in the Universe from WMAP data combined with other CMB measurements, the 2dfGRS data, HST data, and SN1a data.

⁹Constrains the fractional contribution of neutrinos to the total matter density in the Universe from WMAP data combined with other CMB measurements, the 2dfGRS data, and Lyman α data. The limit does not noticeably change if the Lyman α data are not

used. 10 ELGAROY 02 constrains the fractional contribution of neutrinos to the total matter density in the Universe from the power spectrum of fluctuations derived from the 2 Degree Field Galaxy Redshift Survey. Assumes $\Omega_{\rm matter} < 0.5$ and a spectral index of 1.0. Limit softens to $m_{\nu} < 2.2\,{\rm eV}$ for $n{=}1.0\pm0.1$.

¹¹LEWIS 0.2 constrains the total mass of neutrinos from the power spectrum of fluctuations derived from the CMB, HST Key project, 2dF galaxy redshift survey, supernovae type la, and BBN.

- and BBN. $^{\rm 20}$ VANG 02 constrains the total mass of neutrinos from the power spectrum of fluctuations derived from the CMB and other cosmological data sets such as galaxy clustering and the Lyman α forest.
- ¹³FUKUGITA 00 is a limit on neutrino masses from structure formation. The constraint is based on the clustering scale σ_8 and the COBE normalization and leads to a conservative limit of 0.9 eV assuming 3 nearly degenerate neutrinos. The quoted limit is on the sum of the light neutrino masses.

14 CROFT 99 result based on the power spectrum of the Ly α forest. If $\Omega_{\rm matter}<$ 0.5, the limit is improved to $m_{\nu}<$ 2.4 ($\Omega_{\rm matter}/0.17\text{--}1)$ eV.

Limits on MASSES of Light Stable Right-Handed ν (with necessarily suppressed interaction strengths)

VALUE (eV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	following data for averages	, fits, limits,	etc. • • •
<100-200	¹⁵ OLIVE	82 COSM	Dirac v
<200-2000	¹⁵ OLIVE	82 COSM	Majorana $ u$
16			

¹⁵ Depending on interaction strength G_R where $G_R < G_F$.

Limits on MASSES of Hea (with necessarily suppresse	vy Stable Right-Han d interaction strengt	ldedν ths)		
VALUE (GeV)	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the follow	ing data for averages,	fits, limits,	etc. • • •	

• • We do not use the fo	nowing data for averages	, nes	minus		•	
> 10	¹⁶ OLIVE	82	COSM	G_R/G_F	< 0.1	
>100	¹⁶ OLIVE	82	COSM	G_R/G_F	< 0.01	
¹⁶ These results apply to h	eavy Majorana neutrinos	and	are sur	nmarized	by the equ	atio n:
$m_{\nu} > 1.2 \text{ GeV} (G_F / G_R)$). The bound saturates,	and	if G _R is	s too sma	ll no mass	range
is allowed.						

REFERENCES FOR Limits on Number of Neutrino Types and Sum of Neutrino Masses

BARGER CROTTY CYBURT HANNESTAD HEISTER PIERPAOLI SPERGEL ELGAROY LEWIS WANG CYBURT	03C 03 03B 03C 03C 03 03 02 02 02 02 02	PL B566 8 PR D67 123005 PL B567 227 JCAP 0305 004 EPJ C28 1 MNRAS 342 L63 APJS 148 175 PRL 89 061301 PR D66 103511 PR D66 123001 ASP 17.87	V. Barger et al. P. Cotty, J. Legourgues, S. Pastor R.H. Cyburt, B.D. Felds, K.A. Olive S. Hannestad A. Heister et al. E. Pierpaoli D.N. Spergel et al. O. Elganoy et al. A. Lewis, S. Bridle X. Wang, M. Tegmark, M. Zaklarniaga B.H. Cyburt, B.D. Felds K.A. Olive	(ALEPH Collab.)
KNELLER ABBIENDI, G	01 00 D	PR D64 123506 EPJ C18 253	J.P. Kneller et al. G. Abbiendi et al.	(OPAL Collab.)
ABREU	00 Z	EPJ C17 53	P. Abreu et al.	(DELPHI Collab.)
FUKUGITA	00	PRL 84 1082	M. Fukugita, G.C. Liu, N. Sugiyama	(10.0.0.1.)
CROFT	99K	PL B470 268 DPL 83 1002	M. Acciarri et al. R.A.C. Croft W. Hu, R. Dave	(L3 Collab.)
LISI	99	PR D59 123520	E Lisi S Sarkar EL Villante	
OLIVE	99	ASP 11 403	K.A. Olive. D. Thomas	
ABREU	97 J	ZPHY C74 577	P. Abreu et al.	(DELPHI Collab.)
COPI	97	PR D55 3389	C.J. Copi, D.N. Schramm, M.S. Turner	(CHIC)
HATA	97 B	PR D55 540	N. Hata et al.	(OSU, PENN)
OLIVE	97	ASP 7 27	K.A. Olive, D. Thomas	(MINN, FLOR)
ADAM	96C	PL B380 471	W. Adam et al.	(DELPHI Collab.)
CARDALL	96B	APJ 472 435	C.Y. Cardall, G.M. Fuller	(UCSD)
FIELDS	96	New Ast 1 77	B.D. Fields et al. (NDAM	(CASE OVET D)
OLIVE	90	PR D34 3001 D1 D254 357	K.A. Olivo, C. Stoigman	(MININ OF II)
BUSKUUC	931	PL B313 520	D. Buskulic et al.	(ALEPH Collab.)
LEP	92	PL B276 247	LEP Collabs (LEP ALEPH DE	TPHE 13 OPAL
WALKER	91	APJ 376 51	T.P. Walker et al. (HSC	A. OSU, CHIC+)
DENEGRI	90	RMP 62 1	D. Denegri, B. Sadoulet, M. Spiro	(CERN, UCB+)
OLIVE	90	PL B236 454	K.A. Olive et al. (MIN	N, CHIC, OSU+)
COWSIK	85	PL 151B 62	R. Cowsik	(TATA)
FREESE	84	NP B233 167	K. Freese, D.N. Schramm	(CHIC, FNAL)
SCHRAMM	84	PL 141B 337	D.N. Schramm, G. Steigman	(FNAL, BART)
YANG	84	APJ 281 493	J. Yang et al. K.A. Olivo, M.S. Turnor	(CHIC, BART)
REPNSTEIN	81	PR D25 215 DI 101B 30	R.A. Olive, M.S. Turner I Bernstein G Feinberg	(STEV COUI)
OLIVE	81	API 246 557	K A Olive et al	(CHIC BART)
OLIVE	81C	NP B180 497	K.A. Olive, D.N. Schramm, G. Steigman	(EFI+)
STEIGMAN	79	PRL 43 239	G. Steigman, K.A. Olive, D.N. Schramm	(BART+)
YANG	79	APJ 227 697	J. Yang et al. (Cl	HC, YALE, VIRG
S T EIG M A N	77	PL 66B 202	G. Steigman, D.N. Schramm, J.E. Gunn	(YALE, CHIC+)
VYSOTSKY	77	JETPL 26 188	M.I. Vysotsky, A.D. Dolgov, Y.B. Zeldov	ich (ITEP)
C 7 A L AY	-	Translated from ZETFP	26 200. A.C. Carden, C. Manu	(FOT)()
SZALAT SZALAV	7.6	AA 49 437 ADAH 35 8	A.S. Szalay, G. Marx	EOTV
COMSIK	72	PRI 29.669	R Cowsik I McClelland	(UCB)
MARX	72	Nu Conf. Budapest	G. Marx. A.S. Szalav	(EOTV)
PEEBLES	71	Physical Cosmology	P.Z. Peebles	(PRIN)
Princeton l	Jniv.	Press (1971)		
S H VA RT S MA N	69	JETPL 9 184	V.F. Shvartsman	(MOSU)
CEDCUTER		Translated from ZETFP	9 315.	(101211)
GERSHIEIN	00	JEIPL 4 120 Translated from ZETED	a.a. Gershtein, Y.B. Zeidovich 4 189	(KIAM)
HOYLE	64	NAT 203 1108	F. Hovie, R.J. Tavler	(CAMB)
				· · · · · ·

Double- β Decay

OMITTED FROM SUMMARY TABLE

LIMITS FROM NEUTRINOLESS DOUBLE- β DECAY

Revised September 2003 by P. Vogel (Caltech) and A. Piepke (University of Alabama).

Neutrinoless double-beta $(0\nu\beta\beta)$ decay, if observed, would signal violation of the total lepton number conservation. The process can be mediated by an exchange of a light Majorana neutrino, or by an exchange of other particles. However, the existence of $0\nu\beta\beta$ -decay requires Majorana neutrino mass, no matter what the actual mechanism is. As long as only a limit on the lifetime is available, limits on the effective Majorana neutrino mass, and on the lepton-number violating right-handed current can be obtained, independently on the actual mechanism. These limits are listed in the next three tables. In the following we assume that the exchange of light Majorana neutrinos $(m_{\nu_i} \leq \mathcal{O}(10 \text{ MeV}))$ contributes dominantly to the decay rate.

448 Lepton Particle Listings Double- β Decay

Besides a dependence on the phase space $(G^{0\nu})$ and the nuclear matrix element $(M^{0\nu})$, the observable $0\nu\beta\beta$ -decay rate is proportional to the square of the effective Majorana mass $(\langle m_{\beta\beta} \rangle)$, $(T_{1/2}^{0\nu})^{-1} = G^{0\nu} \cdot |M^{0\nu}|^2 \cdot |\langle m_{\beta\beta} \rangle|^2$, with $\langle m_{\beta\beta} \rangle = \sum_i U_{ei}^2 m_{\nu_i}$. The sum contains, in general, complex CP phases in U_{ei}^2 , i.e., cancelations may occur. For three neutrino flavors there are three physical phases for Majorana neutrinos and one for Dirac neutrinos. The two additional Majorana phases affect only total lepton number violating processes. Given the general 3×3 mixing matrix for Majorana neutrinos, one can construct other analogous lepton number violating quantities, $\sum_i U_{\ell i} U_{\ell i} m_{\nu_i}$. However, these are currently much less constrained than $\langle m_{\beta\beta} \rangle$.

Nuclear structure calculations are needed to deduce $\langle m_{\beta\beta} \rangle$ from the decay rate. While $G^{0\nu}$ can be calculated reliably, the computation of $M^{0\nu}$ is subject to considerable uncertainty. If the spread among different ways of evaluating the nuclear matrix elements is taken as a measure of error, then there is a factor of ~3 uncertainty in the derived $\langle m_{\beta\beta} \rangle$ values.

The particle physics quantities to be determined are thus nuclear model-dependent, so the half-life measurements are listed first. Where possible, we reference the nuclear matrix elements used in the subsequent analysis. Since rates for the more conventional $2\nu\beta\beta$ decay serve to calibrate the nuclear theory, results for this process are also given.

Neutrino oscillation experiments yield strong evidence that at least some neutrinos are massive. However, these findings shed no light on the mass hierarchy, the absolute neutrino mass values or the properties of neutrinos under CP conjugation (Dirac or Majorana). The atmospheric neutrino anomaly implies $\Delta m_{atm}^2 \sim (2-3) \times 10^{-3} \text{ eV}^2$ and a large mixing angle $\sin^2 \theta_{atm} \approx \sin^2 \theta_{23} \approx 0.5$. Oscillations of solar ν_e and reactor $\bar{\nu}_e$ neutrinos lead to the unique 'LMA solution' with $\Delta m_{sol}^2 \sim 7 \times 10^{-5} \text{ eV}^2$ and $\sin^2 \theta_{sol} \approx \sin^2 \theta_{12} \approx 0.3$. The investigation of reactor $\bar{\nu}_e$ at 1 km baseline indicates that electron type neutrinos couple only weakly to the third mass eigenstate with $\sin^2 \theta_{13} < 0.03$. The so called 'LSND evidence' for oscillations at short baseline requires $\Delta m^2 \sim 0.2 - 2 \text{ eV}^2$ and small mixing.

Based on these results (and neglecting the not yet confirmed LSND signal): $|\langle m_{\beta\beta} \rangle|^2 \approx |\cos^2 \theta_{sol} m_1 + e^{i\alpha_1} \sin^2 \theta_{sol} m_2 + e^{i\alpha_2} \sin^2 \theta_{13} m_3|^2$, with α_1, α_2 denoting *CP* phases. The apparent smallness of $\sin^2 \theta_{13}$ thus effectively shields $\langle m_{\beta\beta} \rangle$ from one of the *CP* phases. Given the present knowledge of the neutrino oscillation parameters, both of the Δm^2 values and of the mixing angles, one can derive the relation between the effective Majorana mass and the mass of the lightest neutrino, as illustrated in Fig. 1. The contribution of possible sterile neutrinos has been neglected.

If the neutrinoless double-beta decay is observed, it will be possible to fix a range of absolute values of the masses m_{ν_i} . However, if direct neutrino mass measurements, e.g. using beta decay (which is sensitive to $m_{\nu_e}^{2(\text{eff})} = \sum_i |U_{ei}|^2 m_{\nu_i}^2$), also yield positive results, we may learn something about the otherwise

Figure 1: Dependence of the effective Majorana mass $\langle m_{\beta\beta} \rangle$ derived from the rate of neutrinoless double-beta decay $(1/T_{1/2}^{0\nu} \sim |\langle m_{\beta\beta} \rangle|^2)$ on the absolute mass of the lightest neutrino. The arrows indicate the three possible neutrino mass patterns or "hierarchies." The curves are based on the 'LMA solution,' $\Delta m_{sol}^2 = 7 \times 10^{-5}$ eV², $\sin^2 \theta_{sol} = 0.3$, and $\Delta m_{atm}^2 = 2.4 \times 10^{-3}$ eV², $\theta_{13} = 0$. The cross-hatched region is covered if one σ errors on these oscillation parameters are included.

inaccessible CP phases. To do so we have to assume that the Majorana mass is responsible for the decay and that the calculations of $M^{0\nu}$ will be improved. Unlike the direct neutrino mass measurements, however, a limit on $\langle m_{\beta\beta} \rangle$ does not allow one to constrain the individual mass values m_{ν_i} even when the mass differences Δm^2 are known.

Depending on the pattern of neutrino mass, $0\nu\beta\beta$ -decay may be driven by the small Δm_{sol}^2 , "normal hierarchy" in Fig. 1 $(\langle m_{\beta\beta} \rangle \sim \sin^2 \theta_{sol} \sqrt{\Delta m_{sol}^2} \sim 5 \text{ meV})$, or by the larger Δm_{atm}^2 , "inverse hierarchy" in Fig. 1 ($\langle m_{\beta\beta} \rangle \sim \sqrt{\Delta m_{atm}^2} \sim 50 \text{ meV}$). In the so called "degenerate" scenario an overall mass offset exists and $\langle m_{\beta\beta} \rangle$ is relatively large.

Neutrino oscillation data imply the existence of a *lower limit* for the Majorana neutrino mass for some of the mass patterns. Several new double-beta searches have been proposed to probe the interesting $\langle m_{\beta\beta} \rangle$ mass range.

If lepton-number violating right-handed current weak interactions exist, the $0\nu\beta\beta$ decay rate also depends on the quantities $\langle\eta\rangle = \eta \sum_i U_{ei}V_{ei}$ and $\langle\lambda\rangle = \lambda \sum_i U_{ei}V_{ei}$, where V_{lj} is a matrix analogous to U_{lj} but describing the mixing with

the hypothetical right-handed neutrinos and the coupling constants η and λ characterize the strength of the corresponding right-right and right-left weak interactions. The $\langle \eta \rangle$ and $\langle \lambda \rangle$ vanish for massless or unmixed neutrinos due to the unitarity of the generalized mixing matrix containing both the U and V matrices. The limits on $\langle \eta \rangle$ are of order 10^{-8} , while the limits on $\langle \lambda \rangle$ are of order 10^{-6} . The reader is cautioned that a number of earlier experiments did not distinguish between nand λ . In addition, see the section on Majoron searches for additional limits set by these experiments.

Half-life Measurements and Limits for Double- β Decay

In all cases of double-beta decay, (Z,A) \rightarrow (Z+2,A) + 2 e^- + (0 or 2) $\overline{\nu}_e$. In the following Listings, only best or comparable limits or lifetimes for each isotope are reported. For 2ν decay, which is well established, only measured half-lives are reported.

$\frac{t_{1/2}(10^{21} \text{ yr})}{1}$	CL%	ISOTOPE	TR	ANSITION	METHOD	DOCUMENT ID	
• • • We do not u	se th	e follow	ing data	for averages	s, fits, limits, etc.	• • •	
> 21.0	90	130те	0ν		Cryog. det.	¹ ARNABOLDI	03
> 31	90	130 _{Te}	0ν	$0^+ \rightarrow 2^+$	Cryog. det.	² ARNABOLDI	03
$0.61 \pm 0.14 \pm 0.29$	90	130 _{Te}	2v		Cryog. det.	³ ARNABOLDI	03
- 0.35	0.0	128-	0		Criege det		02
(0.020 ± 0.004)	90	116 Ca	2		116 CAMO scint		03
(0.029 - 0.003)		116 c.	20		116 cuvo 4 scint	6	03
> 170	90	11664	0 2	o⊥ o⊥	116 curvo 4 scint	⁷ DANEVICH	03
> 29	90	116	0ν	$0 \rightarrow 2 \rightarrow 2 \rightarrow 1$	116 cuvo 4 scint	• DANEVICH	03
> 14	90	110 Cd	0ν	$0 \rightarrow 0_1$	110 CdWO ₄ scint	. ° DANEVICH	03
> 6	90	116Cd	0ν	$0^+ \rightarrow 0^+_2$	¹¹⁶ CdWO ₄ scint	⁹ DANEVICH	03
$>\!15700$	90	⁷⁶ Ge	0ν		Enriched HPGe	¹⁰ AALSETH	02B
> 58	90	¹³⁴ Xe	0ν		Liquid Xe Scint.	¹¹ BERNABEI	02D
> 1200	90	¹³⁶ Xe	0ν		Liquid Xe Scint.	¹² BERNABEI	02D
15000 + 168000		⁷⁶ Ge	0ν		Enriched HPGe	¹³ KLAPDOR-K	02D
$(7.2 \pm 0.9 \pm 1.8)$ E	3	¹⁰⁰ Mo	2ν		Lia. Ar ioniz.	¹⁴ ASHITKOV	01
> 4.9	90	¹⁰⁰ Mo	0ν		Lia. Ar ioniz.	¹⁵ ASHITKOV	01
> 1.3	90	¹⁶⁰ Gd	0ν		Gd ₂ SiO ₅ : Ce	¹⁶ DANEVICH	01
> 1.3	90	¹⁶⁰ Gd	0ν	$0^+ \rightarrow 2^+$	Gd SiO5 : Ce	¹⁷ DANEVICH	01
$0.59 \pm 0.17 \pm 0.06$		¹⁰⁰ Mo	$0\nu + 2\nu$	$0^+ \rightarrow 0^+$	Ge coinc.	¹⁸ DEBRAECKEL	.01
- 0.11	9.0	100 _{Mo}	0u/m	1	ELEGANT V	19 E IIRI	01
> 42	90	100Mo	0 1 ()	/	ELEGANT V	19 E IIRI	01
> 49	90	100Mo	01/20		ELEGANT V	19 E IIRI	01
>19000	90	76 Ge	021(47)		Enriched HPGe		01
$155 \pm 0.001 \pm 0.19$	90	76 Ge	211		Enriched HPGe	21 KLAPDOR-K	01
1.55 ± 0.001 - 0.15	0.0	96	0 10		Caraban Ge	22 MUECED	01
$(9.4 \pm 3.2)E^{-3}$	90	48 C-	$0\nu + 2\nu$		Geochem	23 DDUDANIN	01
0.042 - 0.013		oc Ca	20		Ge spectrometer	BRUDANIN	00
$0.021 + 0.000 \pm 0.000 \pm 0.000$	02	⁹⁰ Zr	2ν		NEMO-2	²⁴ ARNOLD	99
> 1.0	90	96 Zr	0ν		NEMO-2	²⁴ ARNOLD	99
$(8.3\pm1.0\pm0.7)E$	- 2	⁸² Se	2ν		NEMO-2	²⁵ ARNOLD	98
> 9.5	90	⁸² Se	0ν		NEMO-2	²⁶ ARNOLD	98
> 2.8	90	82 Se	0ν	$0^+ \rightarrow 2^+$	NEMO-2	27 ARNOLD	98
(7.6 ^{+2.2})E-3		100 Mo	2ν		Si(Li)	²⁸ ALSTON	97
$(6.82 \pm 0.38 \pm 0.68)$)E-3	¹⁰⁰ Mo	2ν		ТРС	²⁹ DESILVA	97
$(6.75 \pm 0.37) \pm 0.68$)E-3	¹⁵⁰ Nd	2ν		трс	³⁰ DESILVA	97
- 0.42	, 9.0	150 _{Nd}	0.11		TPC	31 DESUVA	97
$1.77 \pm 0.01 \pm 0.13$	50	76 Ge	211		Enriched HPGe	32 GUENTHER	97
$1.17 \pm 0.01 = 0.11$		116 ca	20	o+ o+	NEMO 2	33 ADNOLD	
$(3.75 \pm 0.35 \pm 0.2)$	1)E-2	48 6-	20	$0 \rightarrow 0$	NEMO 2	34 DALVOLD	96
$-0.043 - 0.011 \pm 0.0$	14	120	20		1 PC	25 BALYSH	96
$0.79 \pm 0.10 \pm 0.18$		100 e	$0\nu + 2\nu$	1 ±	Geochem	35 TAKAOKA	96
0.61 + 0.10 - 0.11		100 Mo	$0\nu + 2\nu$	$0^+ \rightarrow 0^+_1$	γ in HPGe	³⁰ BARABASH	95
$(9.5~\pm~0.4~\pm~0.9)E$	- 3	¹⁰⁰ Mo	2ν		NEMO 2	DASSIE	95
> 0.6	90	¹⁰⁰ Mo	0ν	$0^+ \rightarrow 0^+_1$	NEMO 2	DASSIE	95
0.026 + 0.009 - 0.005		¹¹⁶ Cd	2ν	$0^+ \rightarrow 0^+$	ELEGANT IV	EJIRI	95
$0.017 + 0.010 \pm 0.0$	035	¹⁵⁰ Nd	2ν	$0^+ \rightarrow 0^+$	ТРС	ARTEMEV	93
0.039 ± 0.009		⁹⁶ Zr	$0\nu + 2\nu$		Geochem	KAWASHIMA	93
2.7 ± 0.1		130 _{Te}	$0\nu + 2\nu$		Geochem	BERNATOW	92
7200 ± 400		¹²⁸ Te	$0\nu + 2\nu$		Geochem	³⁷ BERNATOW	92
> 27	68	⁸² Se	0ν	$0^+ \rightarrow 0^+$	трс	ELLIOTT	92
0.108 + 0.026	-	⁸² Se	2ν	$0^+ \rightarrow 0^+$	ТРС	ELLIOTT	92
-0.006 2.0 + 0.6		23811	0n + 2n		Radiochem	38 THRKEVICH	91
> 95	76	48 Ca	00		CaE _a scint	YOU	91
$0.12 \pm 0.01 \pm 0.04$	68	82 Se	$0 \nu + 2 \nu$		Geochem	39 _{1 IN}	88
$0.75 \pm 0.03 \pm 0.04$	68	130 _{Te}	$0\nu + 2\nu$		Geochem	40 L IN	88
1800 + 700	68	128Te	$0\nu + 2\nu$		Geochem.	41 L IN	88B
2 60 ± 0.28		130 Te	011-21		Geochem	42 KIRSTEN	83

Lepton Particle Listings Double- β Decay

 $^1\,{\rm Supersedes}$ ALESSANDRELLO 00. Array of TeO $_2$ crystals in high resolution cryogenic calorimeter. Some enriched in ¹³⁰Te. Ground state to ground state decay ²Decay into first excited state of daughter nucleus.

- ³Two neutrino decay into ground state. Relatively large error mainly due to uncertainties in background determination. Reported value is shorter than the geochemical measurements of KIRSTEN 83 and BERNATOWICZ 92 but in agreement with LIN 88 and TAKAOKA 96
- ⁴Supersedes ALESSANDRELLO 00. Array of TeO₂ crystals in high resolution cryogenic calorimeter. Some enriched in ¹²⁸Te. Ground state to ground state decay.
- ⁵ Calorimeter, some enteries in Te. Ground state to ground state decay. ⁵ Calorimetric measurement of 2 ν ground state decay of ¹¹⁶Cd using enriched CdWO₄ scintillators. Agrees with EJIRI 95 and ARNOLD 96. Supersedes DANEVICH 00. ⁶Limit on 0 ν decay of ¹¹⁶Cd using enriched CdWO₄ scintillators. Supersedes DANEVICE
- The construction of the case of the construction of the construction of the case of t
- ⁸Limit on 0ν decay of ¹¹⁶Cd into first excited 0⁺ state of daughter nucleus using enriched
- ¹⁰AALSETH 02B limit is based on 117 molyr of data using enriched Ge detectors. TALES I H Uze limit is based of 117 more of data using enriched Ge detectors. Background reduction by means of pulse shape analysis is applied to part of the data set. Reported limit is slightly less restrictive than that in KLAPDOR-KLEINGROTHAUS 01 However, it excludes part of the allowed half-life range reported in KLAPDOR-KLEINGROTHAUS 01B for the same nuclide. II BERNABEI 020 report a limit for the 00, 0⁺ \rightarrow 0⁺ decay of 134 ke, present in the source at 17%, by considering the maximum number of events for this mode compatible
- with the fitted smooth background. ¹²BERNABEI 02D report a limit for the 0ν , $0^+ \rightarrow 0^+$ decay of ¹³⁶Xe, by considering the maximum number of events for this mode compatible with the fitted smooth background. The quoted sensitivity is 450×10^{21} yr. The Feldman and Cousins method is used to obtain the quoted limit.
- ¹³KLAPDOR-KLEINGROTHAUS 02D expanded an version of KLAPDOR-KLEINGROTHAUS 01B. The authors re-evaluate the data col-lected by the Heidelberg-Moscow experiment (KLAPDOR-KLEINGROTHAUS 01) and present a more detailed description of their analysis of an excess of counts at the energy present a more detailed description of their analysis of an excess of counts at the energy expected for neutrinoless double-bet adecay. They interpret this excess, which has a sig-nificance of 2.2 to 3.1 σ depending on the data analysis, as evidence for the observation of Lepton Number violation and violation of Baryon minus Lepton Number. The analysis has been criticized by AALSETH 02 and others. The criticisms have been addressed in KLAPDOR-KLEINGROTHAUS 02. See also KLAPDOR-KLEINGROTHAUS 028. ¹⁴ASHITKOV 01 result for 2 ν of ¹⁰⁰ Mo is in agreement with other determinations of that barblice.
- halflife

- hallife. 15 ASHIT KOV 01 result for 0 ν of 100 Mo is less stringent than EJIRI 01. 16 DANEVICH 01 place limit on 0 ν decay of 160 Gd using Gd₂SiO₅:Ce crystal scintillators. The limit is more stringent than KOBAYASHI 95. 17 DANEVICH 01 place limits on 0 ν decay of 160 Gd into excited 2⁺ state of daughter nucleus using Gd₂SiO₅:Ce crystal scintillators.
- $^{18}\mathsf{DEBRAECKELEER}$ 01 performed an inclusive measurement of the $\beta\beta$ decay into the second excited state of the daughter nucleus. A novel coincidence technique counting the de-excitation photons is employed. The result agrees with BARABASH 95.
- The Detection of the product of the
- ²⁰KLAPDOR-KLEINGROTHAUS 01 is a continuation of the work published in BAUDIS 99. Isotopically enriched Ge detectors are used in calorimetric measurement. The most stringent bound is derived from the data set in which pulse-shape analysis has been used to reduce background. Exposure time is 35.5 kg y. Supersedes BAUDIS 99 as most stringent result
- result. ²¹KLAPDOR-KLEINGROTHAUS 01 is a measurement of the $\beta\beta 2\nu$ -decay rate with higher statistics than GUENTHER 97. The reported value has a worse systematic error than ³¹ their previous result.
- WIESER 01 reports an inclusive geochemical measurement of 96 Zr $\beta\beta$ half life. Their result agrees within 2σ with ARNOLD 99 but only marginally, within 3σ , with KAWASHIMA 93. 22 WIESER 01 reports
- 23 BRUDANIN 00 determine the 2 ν halflife of 48 Ca. Their value is less accurate than
- BALYSH 96. 2^4 ARNOLD 99 measure directly the 2 ν decay of Zr for the first time, using the NEMO-2 tracking detector and an isotopically enriched source. The lifetime is more accurate than the geochemical result of KAWASHIMA 93.
- 25 ARNOLD 98 measure the 2p decay of 82 Se by comparing the spectra in an enriched and natural selenium source using the NEMO-2 tracking detector. The measured half-life is in agreement, perhaps slightly shorter, than ELLIOTT 92.
- ²⁶ARNOLD 98 determine the limit for 0*v* decay to the ground state of ⁸²Se using the NEMO-2 tracking detector. The half-life limit is in agreement, but less stringent, than
- $^{27}_{\rm ARNOLD~98}$ determine the limit for 0 ν decay to the excited 2^+ state of $^{82}{\rm Se}$ using the NEM O-2 tracking detector.
- NEMO-2 tracking detector.
 2⁹ALSTON-GARN JOST 97 report evidence for 2ν decay of ¹⁰⁰Mo. This decay has been also observed by EJIRI 91, DASSIE 95, and DESILVA 97.
 2⁹DESILVA 97 result for 2ν decay of ¹⁰⁰Mo is in agreement with ALSTON-GARNJOST 97 and DASSE 95. This measurement has the smallest errors.
 3⁰DESILVA 97 result for 2ν decay of ¹⁵⁰Nd is in marginal agreement with ARTEMEV 93.
- It has smaller errors. ³¹ DESILVA 97 do not explain whether their efficiency for 0ν decay of ¹⁵⁰Nd was calculated
- ³² GUENTHER 97 half-life for the 2ν decay of 7^6 Ge is not in good agreement with the previous measurements of BALYSH 94, AVIGNONE 91, and MILEY 90. ³³ ARNOLD 96 measure the 2ν decay of 1^{16} Gd. This result is in agreement with EJIRI 95, but has smaller errors. Supersedes ARNOLD 96.

- $_{35}^{35}$ TAKAOKA 96 measure the geochemical half-life of 130 Te. Their value is in disagreement with the quoted values of BERNATOWICZ 92 and KIRSTEN 83; but agrees with several other unquoted determinations, e.g., MANUEL 91.

450 Lepton Particle Listings Double- β Decay

 36 BARABASH 95 cannot distinguish 0u and 2u, but it is inferred indirectly that the 0u⁴⁷ BARABISH 95 cannot distinguish of and 20, but it is interred indirectly that the op-mode accounts for less than 0.026% of their event sample. They also note that their result disagrees with the previous experiment by the NEMO group (BLUM 92). ³⁷ BERNATOWICZ 92 finds ¹²⁸ Te/¹³⁰ Te activity ratio from slope of ¹²⁸ Xe/¹³² Xe vs

 130 xe/ 132 xe ratios during extraction, and normalizes to lead-dated ages for the 130 Te lifetime. The authors state that their results imply that "(a) the double beta decay of 128 Te has been firmly established and its half-life has been determined ... without of 129 Te has been firmly established and its half-life has been determined ... without any ambiguity due to trapped Xe interfreences... (b) Theoretical calculations... under-estimate the [long half-lives of 128 Te 130 Te] by 1 or 2 orders of magnitude, pointing to a real suppression in the 2ν decay rate of these isotopes. (c) Despite [this], most $\beta\beta$ -models predict a ratio of $^{2}\nu$ decay widths... in fair agreement with observation." Further details of the experiment are given in BERNATOWICZ 93. Our listed half-life has been revised downward from the published value by the authors, on the basis of reevaluated cosmic-ray 128 Xe production corrections.

Revealated control of the production content of the second production of the second productio range as deduced for ¹³⁰Te and ⁷⁶Ge. On the other hand, the latest theoretical estimates range as deduced to ²⁻⁵ te and ²⁻⁵Ge. Unto other other hand, the latest theoretical estimates (STAUDT 90) give an upper limit this 10 times lower. This large discrepancy implies either a defect in the calculations or the presence of a faster path than the standard two-neutrino mode in this case.³ See BOEHM 87 and STAUDT 90. ³³Result agrees with direct determination of ELLIOTT 92. ⁴⁰Inclusive half life inferred from mass spectroscopic determination of abundance of $\beta\beta$ -decay product ¹³⁰Te in mineral kitkate (NiTeSe). Systematic uncertainty reflects variations in Uk e are retention are determined from different unplic Arreent with reno

- decay product ¹³⁰ Te in mineral kitkaite (NITeSe). Systematic uncertainty reflects varia-tions in U-xe gas-retention-age derived from different urante samples. Agrees with geo-chemical determination of TAKAOKA 96 and direct measurement of ARNABOLDI 03. Inconsistent with results of KIRSTEN 83 and BERNATOWICZ 92. ⁴¹ Ratio of inclusive double beta half lives of ¹²⁶ Te and ¹³⁰ Te determined from minerals meionite (NITe₂) and atlate (PbTe) by means of mass spectroscopic measurement of abundance of $\beta\beta$ -decay products. As gas-retention-age could not be determined the authors use half life of ¹³⁰ Te (LIN 88) to infer the half life of ¹²⁸ Te. No estimate of the systematic uncertainty of this method is given. The directly determined half life ratio agrees with BERNATOWICZ 92. However, the inferred ¹²⁸ Te half life disagrees with KIRSTEN 83 reports "2e" error. References are given to earlier determinations of the
- 42 KIRSTEN 83 reports " 2σ " error. References are given to earlier determinations of the ¹³⁰Te lifetime.

$\langle m_{\mu} \rangle_{\rm L}$ The Effective Weighted Sum of Majorana Neutrino Masses Contributing to Neutrinoless Double- β Decay

 $\langle m_{
u}
angle = |\Sigma \ U_{1\,j}^2 m_{
u_j}|$, where the sum goes from 1 to *n* and where *n* = number of neutrino generations, and ν_i is a Majorana neutrino. Note that $U_{e,i}^2$, not $|U_{e,i}|^2$, occurs in the sum. The possibility of cancellations has been stressed. In the following Listings, only best or comparable limits or lifetimes for each isotope are reported.

VALUE (eV)	<u>CL%</u>	ISOTOPE	E <u> </u>	ANSITION	METHOD		DOCUMENT ID	
• • • We do n	ot use th	ie follow	ing data	for avera	ges, fits, limits, etc.	•	••	
< 1.1-2.6	90	¹³⁰ Te			Cryog. det.	43	ARNABOLDI	03
< 1.5 - 1.7	90	116Cq	0ν		¹¹⁶ CdWO ₄ scint.	44	DANEVICH	03
< 0.33 - 1.35	90				Enriched HPGe	45	AALSETH	02B
< 2.9	90	¹³⁶ Xe	0ν		Liquid Xe Scint.	46	BERNABEI	02D
0.39 + 0.17 - 0.28		⁷⁶ Ge	0ν		Enriched HPGe	47	KLAPDOR-K	.02D
< 2.1-4.8	90	¹⁰⁰ Mo	0ν		ELEGANT V	48	EJIRI	01
< 0.35	90	⁷⁶ Ge			Enriched HPGe	49	KLAPDOR-K	. 01
<23	90	⁹⁶ Zr			NEM O-2	50	ARNOLD	99
< 1.1-1.5		¹²⁸ Te			Geochem	51	BERNATOW	92
< 5	68	82 Se			ТРС	52	ELLIOTT	92
< 8.3	76	⁴⁸ Ca	0ν		CaF ₂ scint.		YOU	91
43 cuporcodor	ALE 66A		10.00	Chungan	is colorimeter coord	de la	Deported a rar	

Supersedes ALESSANDRELLO 00. Cryogenic calorimeter search. Reported a range reflecting uncertainty in nuclear matrix element calculations. is based on the nuclear matrix elements of STAUDT 90 and ARNOLD 96.

- Supersees DANEVICH UU. 45 AALSETH 028 reported range of limits on $\langle m_{\nu'} \rangle$ reflects the spread of theoretical nuclear matrix elements. Excludes part of allowed mass range reported in KLAPDOR-KLEINGROTHAUS 018. 46 BERNABEI 02D limit is based on the matrix elements of SIMKOVIC 02. The range of

⁴⁷ BERNABEL 020 influt is based on the matrix elements of SIMKOVIC 02. The fange of neutrino masses based on a variety of matrix elements is 1.1–2.9 eV.
 ⁴⁷ KLAPDOR-KLEINGROTHAUS 02D is a detailed description of the analysis of the data collected by the Heldelberg-Moscow experiment, previously presented in KLAPDOR-KLEINGROTHAUS 01B. Matrix elements in STAUDT 90 have been used. See the footnote in the preceding table for further details. See also KLAPDOR-& KLEINGROTHAUS 02B.

KLEINGKOTHAGS U2E. 43 The range of the reported $\langle m_{y} \rangle$ values reflects the spread of the nuclear matrix elements. On axis value assuming $\langle \lambda \rangle {=} \langle \eta \rangle {=} 0$.

 4^{9} KLAPDOR-KLEINGROTHAUS 01 uses the calculation by STAUDT 90. Using several other models in the literature could worsen the limit up to 1.2 eV. This is the most stringent experimental bound on m_{p} . It supersedes BAUDIS 998.

ARNOLD 99 limit based on the nuclear matrix elements of STAUDT 90.

^{5 U}ARNOLD 99 limit based on the nuclear matrix elements of 51AUU1 90. ⁵¹ BERNATOWICZ 92 finds these majorana neutrino mass limits assuming that the measured geochemical decay width is a limit on the 0*v* decay width. The range is the range found using matrix elements from HAXTON 84, TOMODA 87, and SUHONEN 91. Further details of the experiment are given in BERNATOWICZ 93. ⁵² Control and the submitted for the MAXTON 84.

⁵²ELLIOTT 92 uses the matrix elements of HAXTON 84.

Limits on Lepton-Number Violating (V+A) Current Admixture

For reasons given in the discussion at the beginning of this section, we list only results from 1989 and later. $\langle \lambda \rangle = \lambda \sum U_{ej} V_{ej}$ and $\langle \eta \rangle = \eta \sum U_{ej} V_{ej}$, where the sum is over the number of neutrino generations. This sum vanishes for massless or unmixed neutrinos. In the following Listings, only best or comparable limits or lifetimes for each isotone are reported.

(λ) (10 ⁻⁶)	CL%	$\langle \eta \rangle (10^{-8})$	CL%	ISO TO PE	METHOD	DOCUMENT ID	
• • We	do not	use the fo	llowin	g data for a	verages, fits, limit	s, etc. • • •	
< 1.6-2.4	90	< 0.9-5.3	90	¹³⁰ Te	Cryog. det.	⁵³ ARNABOLDI	03
<2.2	90	<2.5	90	116Cd	¹¹⁶ CdWO ₄ scint.	⁵⁴ DANEVICH	03
< 3.2-4.7	90	< 2.4-2.7	90	¹⁰⁰ Mo	ELEGANT V	⁵⁵ EJIRI	01
< 1.1	90	<0.64	90	⁷⁶ Ge	Enriched HPGe	⁵⁶ GUENTHER	97
<4.4	90	<2.3	90	¹³⁶ Xe	ТРС	⁵⁷ VUILLEUMIER	93
		<5.3		¹²⁸ Te	Geochem	58 BERNATOW	92

⁵³Supersedes ALESSANDRELLO 00. Cryogenic calorimeter search. Reported a range reflecting uncertainty in nuclear matrix element calculations.

Telecting uncertainty in notice matrix content constraints of STAUDT 90. Supersedes $\sum_{e=0}^{e}$ DANEVICH 00.

DANEVICH 00. So the reported $\langle \lambda \rangle$ and $\langle \eta \rangle$ values reflects the spread of the nuclear matrix elements. On axis value assuming $\langle m_{\nu} \rangle = 0$ and $\langle \lambda \rangle = \langle \eta \rangle = 0$, respectively. ⁵⁶ GUENTHER 97 limits use the matrix elements of STAUDT 90. Supersedes BALYSH 95

and BALYSH 92. The matrix elements of MUTO 89. Based on a half-life limit $_2$.2.6 $\times 10^{23}$ y at 90% CL.

 5^{58} BERNATOWICZ 92 takes the measured geochemical decay width as a limit on the 0 ν width, and uses the SUHONEN 91 coefficients to obtain the least restrictive limit on η . Further details of the experiment are given in BERNATOWICZ 93.

Double-β Decay REFERENCES

ARNABOLDI DANEVICH AALSETH BERNABEI KLAPDOR-K KLAPDOR-K SIMKOVIC ASHITKOV DANEVICH	03 02 02B 02D 02D 02D 02D 02D 02D 02 01 01	PL B557 167 PR C68 035501 MPL A17 1475 PR D55 09207 PL B546 23 hep.ph/0205228 JINRRC 110 57 FP 32 1181 hep.ph/0204278 JETPL 74 529 Translated from ZETFP NP A694 375	C. Anaboli et al. F.A. Darevic et al. C.E. Aabeth et al. C.E. Aabeth et al. (IGEX Collab.) R. Bernabei et al. (DAMA Collab.) H.V. Klapdor.Kleingrothaus, A. Dietz, I.V. Krivosheina H.V. Klapdor.Kleingrothaus, A. Dietz, I.V. Krivosheina F. Simkovic, P. Domin, A. Faessler V.D. Ashitikuv et al.	
DEBRAECKEL. EJIRI KLAPDOR-K KLAPDOR-K WIESER	.U1 01 01 01B 01B	PRL 86 3510 PR C63 065501 EPJ A12 147 MPL A16 2409 PR C64 024308	L. De Braeckeleer et al. H. Ejiri et al. H.V. Klapdor-Kleingrothaus et al. H.V. Klapdor-Kleingrothaus et al. M.E. Wieser, J.R. De Laeter	
ALESSAND BRUDANIN DANEVICH ARNOLD BAUDIS	00 00 00 99 99	PL B486 13 PL B495 63 PR C62 045501 NP A658 299 PR D59 022001	A. Alessandrello et al. V.B. Brudanin et al. F.A. Danevich et al. R. Arnold et al. I. Baudis et al. (Heidelberg: Moscow Collab.))
BAUDIS ARNOLD ALSTON DESILVA GUENTHER	99B 98 97 97 97 97	PRL 83 41 NP A 636 209 PR C55 474 PR C56 2451 PR D55 54	L. Baudis et al. (Heidelberg-Moscow Collab.) R. Arnold et al. (NEMO-2 Collab.) M. Alston-Garnjost et al. (LBL, MTHO+) A. de Silva et al. (UCI) M. Gunther et al (Heidelberg-Moscow Collab.)	
ARNOLD BALYSH EJIRI TAKAOKA ARNOLD	96 96 96 96 95	ZPHY C72 239 PRL 77 5186 NP A611 85 PR C53 1557 JETPL 61 170	R. Arnold et al. (BCEN, CAEN, JINR+) A. Balysh et al. (KIAE, UCI, CIT) H. Ejiri et al. (OSAK) N. Takaoka, Y. Motomura, K. Nagao (KYUSH, OKAY) (NFMO Collab.)	
BALYSH BARABASH DASSIE EJIRI KOBAYASHI	95 95 95 95 95	Translated from ZETFP PL B356 450 PL B345 408 PR D51 2090 JPSJ 64 339 NP A586 457	61 168. A. Balysh <i>et al.</i> (Heidelberg-Moscow Collab.) A.S. Barabash <i>et al.</i> (ITEP, SCUC, PNL+) D. Dassie <i>et al.</i> (NEMO Collab.) H. Ejiri <i>et al.</i> (OSAK, KIEV) M. Kobayashi, M. Kobayashi (KEK, SAGA)))
BALYSH ARTEMEV BERNATOW	94 93 93	PL B322 176 JETPL 58 262 Translated from ZETFP PR C47 806	A. Balysh <i>et al.</i> (Heidelberg-Moscow Collab.) V.A. Artemiev <i>et al.</i> (ITEP, INRM) 58 256. T. Bernatowicz <i>et al.</i> (WUSL, TATA)	
KAWASHIMA VUILLEUMIER BALYSH BERNAT OW BLUM	93 93 92 92 92	PR C47 R2452 PR D48 1009 PL B283 32 PRL 69 2341 PL B275 506	A. Kawashima, K. Takahashi, A. Masuda (TOKYC+) J.C. Vuilleumier et al. (NEUC, CIT, VILL) A. Balysh et al. (MPIH, KIAE, SASSO) T. Bernatowicz et al. (WUSL, TATA) D. Blum et al. (NEMO Collab.)	
ELLIOTT AVIGNONE EJIRI MANUEL SUHONEN	92 91 91 91 91 91	PR C46 1535 PL B256 559 PL B258 17 JPG 17 S221 NP A535 509	S.R. Elliott et al. (UCI) F.T. Avignone et al. (SCUC, PNL, ITEP+) H. Ejiri et al. (OSAK) O.K. Manuel (MISSR) J. Subonen, S.B. Khadkikar, A. Faessler (JYV+)	
TURKEVICH YOU MILEY STAUDT MUTO LIN	91 91 90 90 89 88	PRL 67 3211 PL B265 53 PRL 65 3092 EPL 13 31 ZPHY A334 187 NP A481 477	A. Turkevich, T.E. Economou, G.A. Cowan (CHIC+) K. You et al. (BHEP: CAST+) H.S. Miley et al. (SCUC, PNL) A. Staudt, K. Muto, H.V. Klapdor-Kleingrothaus K. Muto, E. Bender, H.V. Klapdor (TINT, MPIH) W.J. Lin et al.)
B OEH M Cambridge	88B 87 Univ	NP A481 484 Massive Neutrinos Press Cambridge	W.J. Lin et al. F. Bohm, P. Vogel (CIT)	J
T OMODA HAXTON KIRSTEN	87 84 83	PL B199 475 PPNP 12 409 PRL 50 474	T. Tornoda, A. Faesskr (TUBIN) W.C. Haxton, G.J. Stevenson T. Kirsten, H. Richter, E. Jessberger (MPIH))

UNDERSTANDING TWO-FLAVOR OSCILLATION PARAMETERS AND LIMITS

Revised March 2002 by D.E. Groom (LBNL).

As discussed in Boris Kayser's Review "Neutrino Mass, Mixing, and Flavor Change," there are several conditions under which the two-neutrino mixing approximation is valid. Many results have been published with this assumption, whether it is valid or not. In this context, and in the context of vacuum oscillations, the probability that a neutrino with original flavor ℓ , for example, oscillates into a flavor ℓ' over a distance L in vacuum is given by

$$P(\nu_{\ell} \rightarrow \nu_{\ell'}) = \sin^2 2\theta \sin^2 (\Delta m_{ij}^2 L/4\hbar cE)$$

= $\sin^2 2\theta \sin^2 (1.27\Delta m_{ij}^2 (eV^2) L(km)/E(GeV))$ (1)

where we assume that mass eigenstates i and j are involved. Although this equation is frequently quoted and is used in Monte Carlo calculations, the function is badly behaved for arguments larger than about one, where it oscillates more and more rapidly between $\sin^2 2\theta = P$ and $\sin^2 2\theta = 0$ as the argument increases. It is difficult to relate this function to the exclusion curves in the literature.

In a real experiment, E, and sometimes L, have some spread due to various effects, but in a subset of these experiments there is a well-defined $\langle L/E \rangle$ about which the events distribute. It is instructive to make a toy model in which $b \equiv 1.27L/E$ has a Gaussian distribution with standard deviation σ_b about a central value b_0 . The convolution of this Gaussian with P as given in Eq. (1) is analytic, with the result

$$\langle P \rangle = \frac{1}{2} \sin^2 2\theta [1 - \cos(2b_0 \Delta m_{ij}^2) \exp(-2\sigma_b^2 (\Delta m_{ij}^2)^2)] .$$
 (2)

The value of $\langle P \rangle$ is set by the experiment. For example, if 230 interactions of the expected flavor are detected and none of the wrong flavor are seen, then P = 0.010 at the 90% CL (slightly subject to one's way of calculating the CL). Then with fixed $\langle P \rangle$ we can find $\sin^2 2\theta$ as a function of Δm_{ij}^2 . This function is shown in Fig. 1(a) and (c) for particular parameter choices. The resulting parameter exclusion region boundary has the following features:

- For large Δm²_{ij} the fast oscillations are completely washed out by the resolution, and sin² 2θ = 2⟨P⟩ in this limit;
- (2) the maximum excursion of the curve to the left is to sin² 2θ = ⟨P⟩ if the resolution is very good, and somewhat smaller if it is not. This "bump" to the left occurs at Δm²_{ii} = π/2b₀;
- (3) For large $\sin^2 2\theta$, $\Delta m_{ij}^2 \approx \sqrt{\langle P \rangle} / (b_0 \sqrt{\sin^2 2\theta})$; and, consequently,
 - (a) the nearly straight-line segment at the bottom is described by $\Delta m_{ij}^2 \approx \langle P \rangle / b_0 \sqrt{\sin^2 2\theta}$
 - (b) the intercept at $\sin^2 2\theta = 1$ is at $\Delta m_{ij}^2 = \sqrt{\langle P \rangle}/b_0 = \sqrt{\langle P \rangle}/1.27 \langle L/E \rangle$.

The intercept for large Δm_{ij}^2 is a measure of running time and backgrounds, while the intercept at $\sin^2 2\theta = 1$ also depends upon $\langle L/E \rangle$. The wiggles depend upon the experimental

451 Lepton Particle Listings Neutrino mixing

Figure 1: Neutrino oscillation parameter ranges excluded by three experiments. The dotted line in (a) is from an older Los Alamos appearance experiment (DURKIN 88), while the solid line is obtained from Eq. (2) using the parameters $\langle P \rangle = 0.0065, \ \Delta m^2 = 0.095 \ \text{eV}^2 \ \text{at} \ \sin^2 2\theta =$ 1, and $\sigma_b/b_0 = 0.23$; (b) is a disappearance experiment with the flux obtained from the data in a long detector (DYDAK 84); and for (c) the Palo Verde reactor experiment result (BOEHM 01) is shown by the dotted line. In this experiment the flux at production is known. The solid line is calculated from Eq. (2) using $\langle P \rangle =$ 0.084, $\Delta m^2 = 0.0011 \text{ eV}^2$ at $\sin^2 2\theta = 1$, and $\sigma_b/b_0 = 0.3$. The experiments have been chosen for illustrative purposes, and none represents a current best limit. See full-color version on color pages at end of book.

features such as the size of the source, the neutrino energy distribution, detector resolution (*L* and *E*), and analysis details. Aside from such details, the two intercepts completely describe the exclusion region: For large Δm_{ij}^2 , $\sin^2 2\theta$ is constant and equal to $2\langle P \rangle$, and for large $\sin^2 2\theta$ the slope and intercept are known. For these reasons, it is (nearly) sufficient to summarize the results of an experiment by stating the two intercepts, as is done in our Listings in cases where two-neutrino analyses of this sort have been published.

While there is no reason for such a naïve 3-parameter function to describe all real experiments, the function actually does give a remarkably good description of *some* experimental results, underscoring the usefulness of the way we report results in the Listings. In example (a) in Fig. 1, the dotted curve shows the result obtained in an old Los Alamos appearance experiment (DURKIN 88). DURKIN 88 reports $\Delta m^2 = 0.11 \text{ eV}^2$ for maximal mixing and $\sin^2 2\theta = 2 \times 0.070$ for large Δm^2 . The solid curve is obtained using Eq. (2), with parameters $\langle P \rangle = 0.0065$, $\Delta m^2 = 0.095 \text{ eV}^2$ at $\sin^2 2\theta = 1$, and $\sigma_b/b_0 = 0.23$.

If a positive effect is claimed, then the excluded region is replaced by an allowed band. However, in a real experiment there is usually other information, such as estimators of L and E for each event. The likelihood function is formed using this

event-by-event information. The CL is not uniform along the allowed band, resulting in "islands" of high confidence.

In a "disappearance" experiment, one looks for the attenuation of the initial lepton eigenstate ν_{ℓ} beam in transit to a detector, where the ν_{ℓ} flux is measured. (We label such experiments as $\nu_{\ell} \not\rightarrow \nu_{\ell}$.) In the two-neutrino mixing approximation, the probability that a lepton eigenstate remains unscathed from the production point to the detector is given by

$$P(\nu_{\ell} \rightarrow \nu_{\ell}) = 1 - P(\nu_{\ell} \rightarrow \nu_{\ell'}) , \qquad (3)$$

where mixing occurs between the ν_{ℓ} and $\nu_{\ell'}$, with $P(\nu_{\ell} \rightarrow \nu_{\ell'})$ given by Eq. (1) or Eq. (2).

The disappearance of a small fraction of the "right-flavor" neutrinos in such an experiment can go unobserved because of statistical fluctuations—if 100 events are expected and 95 events are observed, nothing is proven.* For this reason, disappearance experiments usually cannot establish small-probability (small $\sin^2 2\theta$) mixing.

Disappearance experiments fall into several classes:

- Those in which attenuation or oscillation of the beam neutrino flux is measured in the apparatus itself (two detectors, or a "long" detector). Above some minimum Δm²_{ij} the equilibrium is established upstream, and there is no change in intensity over the length of the apparatus. As a result, sensitivity is lost at high Δm²_{ij}, as can be seen by the CDHSW curve, Fig. 1(b) (DYDAK 84). Such experiments have not been competitive for a long time. However, a new generation of long-baseline experiments will use this strategy to advantage.
- (2) Accelerator and reactor experiments in which the beam neutrino flux is known, from theory or from other measurements. Although such experiments cannot establish very small sin² 2θ mixing, they can establish small limits on Δm²_{ij} for large sin² 2θ because L/E can be very large. Results of the Palo Verde experiment (BOEHM 01) are shown by the dotted curve (c) in Fig. 1. The solid curve has been calculated via Eq. (2), with parameters ⟨P⟩ = 0.084, Δm² = 0.0011 eV² at sin² 2θ = 1 (very nearly the values reported in BOEHM 01), and σ_b/b₀ = 0.3.
- (3) Atmospheric neutrino experiments, in which ν_e and ν_μ are detected over a large range of L (the diameter of the earth). This is a subset of (1) above, and the resulting curves, in this case showing a positive effect, are similar.

This discussion has so far been limited to "vacuum oscillations," where the mixing probability is described Eq. (1). In the solar neutrino case it is likely that interactions between the neutrinos and solar electrons affect the oscillation probability ("matter oscillations," the MSW effect). This effect is described in the Review "Neutrino Mass, Mixing, and Flavor Change," by Boris Kayser. In this situation the formalism discussed above is not applicable. Eq. (1) depends on the mixing angle only through $\sin^2 2\theta$, giving the false impression that physically distinct possibilities map one-to-one onto the interval [0,1] in $\sin^2 2\theta$.[†] The relationship between mass eigenstates, *e.g.*, ν_1 , ν_2 , and weak eigenstates, *e.g.*, ν_e , ν_μ , is given by

$$\begin{pmatrix} |\nu_1\rangle\\ |\nu_2\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} |\nu_e\rangle\\ |\nu_\mu\rangle \end{pmatrix} .$$
 (4)

By convention, we can take ν_2 always heavier than ν_1 , *i.e.*, $\Delta m_{21}^2 = m_2^2 - m_1^2 > 0$, without a loss of generality. The $\theta \to 0$ limit is relevant when there is no mixing and ν_e is lighter, while $\theta \rightarrow \pi/2$ is needed to describe the possibility where ν_e is heavier with no mixing. Therefore, θ needs to be varied between 0 and $\pi/2$, which makes $\sin^2 2\theta$ fold at 1 back down to 0. In the case of oscillation in vacuum, θ and $\pi/2 - \theta$ happen to give identical oscillation probabilities, even though they are physically inequivalent. In this case, the use of $\sin^2 2\theta$ is misleading, but acceptable from practical point of view. In presence of matter effects, even the oscillation probabilities are different, and $\sin^2 2\theta$ is not an appropriate parameter in oscillation parameter plots. One common choice is $\tan^2 \theta$, because it can cover the whole range of $0 < \theta < \pi/2$, while showing the same probabilities for $\theta \leftrightarrow \pi/2 - \theta$ in the absence of matter effects as a reflection symmetry around $\tan^2 \theta = 1$ if plotted on log scale.[‡]

Neutrino Mixing

INTRODUCTION TO NEUTRINO MIXING LIST-INGS

Based on the discussion in the previous review "Understanding Two-Flavor Oscillation Parameters and Limits" by Don Groom, most results in the neutrino mixing listings are presented as Δm^2 limits (or ranges) for $\sin^2 2\theta = 1$, and $\sin^2 2\theta$ limits (or ranges) for large Δm^2 . Together, they summarize most of the information contained in the usual Δm^2 vs $\sin^2 2\theta$ plots in the experiments' papers. The neutrino mixing listings are divided into four sub-sections:

(A) Accelerator neutrino experiments: shows Δm^2 and $\sin^2 2\theta$ limits for, successively, $\nu_e \rightarrow \nu_\tau$ and $\overline{\nu}_e \rightarrow \overline{\nu}_\tau$ appearance, $\nu_e \not\rightarrow \nu_e$ disappearance, $\nu_\mu \rightarrow \nu_e$, $\overline{\nu}_\mu \rightarrow \overline{\nu}_e$, $\nu_\mu \rightarrow \nu_\tau$ and $\overline{\nu}_\mu \rightarrow \overline{\nu}_\tau$ appearance, and $\nu_\mu \not\rightarrow \nu_\mu$ and $\overline{\nu}_\mu \not\rightarrow \overline{\nu}_\mu$ disappearance. They are all limits, except for the positive $\nu_\mu \not\rightarrow \nu_\mu$ signal from the K2K collaboration reported in AHN 03.

(B) Reactor $\overline{\nu}_{\mathbf{e}}$ disappearance experiments: has Δm^2 and $\sin^2 2\theta$ limits for $\overline{\nu}_e \not\rightarrow \overline{\nu}_e$ disappearance, together with the ratios of measured to expected rates of events. It also contains

^{*} In contrast, if 5 golden "wrong-flavor" events are seen among 100 "right-flavor" events, a great deal is learned.

[†] For example, see G.L. Fogli, E. Lisi, and D. Montanino, Phys. Rev. **D54**, 2048 (1996), and A. de Gouvêa, A. Friedland, and H. Murayama, Phys. Lett. **B490**, 125 (2000)

[‡] This discussion of the $\pi/4 \le \theta \le \pi/2$ region was contributed by H. Murayama.

the positive signal from the KamLAND collaboration (EGUCHI 03).

(C) Atmospheric neutrino observations: lists the ratio of measured to expect ν_{μ} rate, the double ratio of measured ν_{μ}/ν_{e} rates over expected, and the up/down ratio of measured over expected for both ν_{μ} and ν_{e} . It also gives Δm^{2} and $\sin^{2} 2\theta$ limits for $\nu_e \leftrightarrow \nu_\mu$ and $\overline{\nu}_e \leftrightarrow \overline{\nu}_\mu$, as well as the Kamiokande, SuperKamiokande and MACRO measurements of both $\sin^2 2\theta$ and Δm^2 for $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations, together with limits on ν_{μ} oscillations to a sterile neutrino.

(D) Solar ν experiments: is organized differently, showing first the results from radiochemical experiments and moving then to results of ⁸B fluxes from elastic scattering, charged current and neutral current. From these, the solar fluxes for all three neutrino flavors combined and for only ν_{μ} and ν_{τ} are derived and listed. The day/night asymmetry for ⁸B is also listed. Finally, the Kamiokande limit on the "hep" ν_e flux from the sun as measured in elastic scattering is given.

(A) Accelerator neutrino experiments

$-\nu_e \rightarrow \nu_\tau \Delta(m^2)$ for $\sin^2(2\theta) = 1$ VALUE (eV²) CL% DOCUMENT ID TECN COMMENT ¹ ARMBRUSTER98 KARM < 0.77 90 • • We do not use the following data for averages, fits, limits, etc. • • ² ASTIER < 5.9 90 01B NOMD CERN SPS < 7.5 ³ ESKUT 01 CHRS CERN SPS 90 <17 NAPLES 99 CCFR FNAL 90 TALEBZADEH 87 HLBC BEBC < 44 90 86C EMUL FNAL < 9 90 USHIDA

 $^1\mathrm{ARMBRUSTER}$ 98 use KARMEN detector with ${m
u}_e$ from muon decay at rest and observe $^{12}\mathsf{C}(\nu_e,e^-)^{12}\mathsf{N}_{gS}.$ This is a disappearance experiment which is almost insensitive to $\nu_e \rightarrow \nu_\mu$ oscillation. Results are presented as limits to $\nu_e \rightarrow \nu_\tau$ oscillation, although the (non)oscillation could be to a non-visible flavor. A three-flavor analysis is also presented. $^2\rm{\dot{A}STIER}$ 01B searches for the appearance of ν_{τ} with the NOMAD detector at CERN's SPS. The limit is based on an oscillation probability 0.74×10^{-2} , whereas the quoted sensitivity was 1.1×10^{-2} . The limit was obtained following the statistical prescriptions of FELDMAN 98. See also the footnote to ESKUT 01. ³ ESKUT 01 searches for the appearance of the ν_{μ} with the CHORUS detector at CERN's SPS. The limit is obtained following the statistical prescriptions in JUNK 99. The limit is

would have been 6 eV^2 if the prescriptions in FELDMAN 98 had been followed, as they were in ASTIER 01B.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
< 0.015	90	⁴ ASTIER	01B NOMD	CERN SPS
• • • We do not use the	following	g data for averages,	$fits,\ limits,$	etc. • • •
< 0.052	90	⁵ ESKUT	01 CHRS	CERN SPS
< 0.21	90	NAPLES	99 CCFR	FNAL
< 0.338	90	⁶ ARMBRUSTER	98 KARM	
< 0.36	90	TALEBZADEH	87 HLBC	BEBC
< 0.25	90	⁷ USHIDA	86CEMUL	FNAL

 4 ASTIER 01B limit is based on an oscillation probability $<0.74\times10^{-2}$, whereas the quoted sensitivity was 1.1×10^{-2} . The limit was obtained following the statistical prescriptions of FELDMAN 98. See also the footnote to ESKUT 01.

⁵ ESKUT 01 limit obtained following the statistical prescriptions in JUNK 99. The limit would have been 0.03 if the prescriptions in FELDMAN 98 had been followed, as they

were in ASTER 018. ⁶ See footnote in preceding table (ARMBRUSTER 98) for further details, and see the paper for a plot showing allowed regions. A three-flavor analysis is also presented here. ⁷ USHIDA 86C published result is $\sin^2 2\theta < 0.12$. The quoted result is corrected for a nu-Control of purposed result is sin-20 < 0.12. The quoted result is corrected for a numerical mistake incurred in calculating the expected number of ν_e CC events, normalized to the total number of neutrino interactions (3886) rather than to the total number of ν_μ CC events (1870).

$\overline{\nu}_e \rightarrow \overline{\nu}_\tau$

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$ VALUE DOCUMENT ID TECN COMMENT CL% ⁸ FRIT ZE 80 HYBR BEBC CERN SPS < 0.7 90

 $^{8}\,{\rm Authors}$ give P(ν_{e} \rightarrow $~\nu_{\tau}$) <0.35, equivalent to above limit.

453 Lepton Particle Listings Neutrino mixing

$\nu_e \not\rightarrow \nu_e$

$\Delta(m^2)$ for s	$\sin^2(2\theta) = 1$				
VALUE (eV ²)	CL %	DOCUMENT ID		TECN	COMMENT
< 0.18	90	⁹ HAMPEL	98	GALX	⁵¹ Cr source
• • • We do	not use the follo	wing data for averag	es, fits	, limits,	etc. • • •
<40	90	¹⁰ BORISOV	96	CNTR	IHEP-JINR detector
<14.9	90	BRUCKER	86	HLBC	15-ft FNAL
< 8	90	BAKER	81	HLBC	15-ft FNAL
< 56	90	DEDEN	81	HLBC	BEBC CERN SPS
<10	90	ERRIQUEZ	81	HLBC	BEBC CERN SPS
$<\!2.3$ OR $>\!8$	90	NEMETHY	81B	CNTR	LAMPF
9HAMPEL	98 analyzed the	GALLEX calibration	result	s with !	51Cr neutrino sources and

updates the BAHCALL 95 analysis result. They also gave 95% and 99% CL limits of < 0.2 and < 0.22, respectively.

the right curvature in this region

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<7 × 10 ⁻²	90	¹¹ ERRIQUEZ	81	HLBC	BEBC CERN SPS
• • • We do not use the	followin	g data for averages	, fit	s, limits,	etc. • • •
< 0.4	90	¹² HAMPEL	98	GALX	⁵¹ Cr source
< 0.115	90	¹³ BORISOV	96	CNTR	$\Delta(m^2) = 175 \text{ eV}^2$
< 0.54	90	BRUCKER	86	HLBC	15-ft FNAL
< 0.6	90	BAKER	81	HLBC	15-ft FNAL
< 0.3	90	¹¹ DEDEN	81	HLBC	BEBC CERN SPS
11 Obtained from a Cau	ccian con	tored in the unable	el e e l	rogion	

¹² UDtained from a Gaussian centered in the unphysical region. ¹² HAMPEL 98 analyzed the GALLEX calibration results with ⁵¹Cr neutrino sources and updates the BAHCALL 95 analysis result. They also gave 95% and 99% CL limits of < 0.45 and < 0.56, respectively. $^{13}{\rm BORISOV}$ 96 sets less stringent limits at large $\Delta(m^2)$, but exclusion curve does not have

clear asymptotic behavior.

 $-\nu_e \rightarrow (\overline{\nu}_e)_L -$

This is a limit on lepton family-number violation and total lepton-number violation. $(\overline{\nu}_e)_L$ denotes a hypothetical left-handed $\overline{\nu}_e$. The bound is quoted in terms of Δ (m^2), sin(2 θ), and α , where α denotes the fractional admixture of (V+A) charged current.

$\alpha \Lambda(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
< 0.14	90 14	FREEDMAN	93	CNTR	LAMPF
• • • We do not use the	following of	lata for averages	, fits	, limits,	etc. • • •
<7	90 15	COOPER	82	HLBC	BEBC CERN SPS

 14 FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types $\nu_{\mu}, \tau_{\mu},$ and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e\rho \rightarrow e^+ n$.
¹⁵ COOPER 28 states that existing bounds on V+A currents require α to be small.

$\alpha^2 \sin^2(2\theta)$ for "Large" $\Delta(m^2)$

()	•	,		
VALUE	CL%	DOCUMENT ID	TECN	COMMENT
< 0.032	90	¹⁶ FREEDMAN 93	CNTR	LAMPF
• • • We do not use the	followi	ng data for averages, fit	s, limits,	etc. • • •
< 0.05	90	¹⁷ COOPER 82	HLBC	BEBC CERN SPS

 $^{16}\text{FREEDMAN 93}$ is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types $\nu_{\mu}, \overline{\nu}_{\mu},$ and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e p \rightarrow e^+ n$.

¹⁷COOPER 82 states that existing bounds on V+A currents require α to be small.

$$- \nu_{\mu} \rightarrow \nu_{e} - -$$

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
< 0.09	90	ANGELINI	86	HLBC	BEBC CERN PS
• • • We do not use the	following	data for averages	, fits	, limits,	etc. • • •
< 0.4	90	ASTIER	03	NOMD	CERN SPS
< 2.4	90	AVVAKUNOV	02	NTEV	NUTEV FNAL
	18	³ AGUILAR	01	LSND	$\nu \mu \rightarrow \nu_{\rho} \text{ osc.prob.}$
0.03 to 0.3	95 19	ATHANASSO	.98	LSND	$\nu_{\mu} \rightarrow \nu_{e}$
< 2.3	90 20	LOVERRE	96		CHARM/CDHS
< 0.9	90	VILAIN	94 C	CHM 2	CERN SPS
< 0.1	90	BLUMENFELD	89	CNTR	
<1.3	90	AMMOSOV	88	HLBC	SKAT at Serpukhov
< 0.19	90	BERGSMA	88	CHRM	
	21	LOVERRE	88	RVUE	
< 2.4	90	AHRENS	87	CNTR	BNL AGS
<1.8	90	BOFILL	87	CNTR	FNAL
< 2.2	90 22	² BRUCKER	86	HLBC	15-ft FNAL
< 0.43	90	AHRENS	85	CNTR	BNL AGS E734
< 0.20	90	BERGSMA	84	CHRM	
<1.7	90	ARMENISE	81	HLBC	GGM CERN PS
< 0.6	90	BAKER	81	HLBC	15-ft FNAL
<1.7	90	ERRIQUEZ	81	HLBC	BEBC CERN PS
<1.2	95	BLIETSCHAU	78	HLBC	GGM CERN PS
<1.2	95	BELLOTTI	76	HLBC	GGM CERN PS

- $^{18}{\rm AGUILAR}$ 01 is the final analysis of the LSND full data set. Search is made for the $\nu_\mu \to ~\nu_e$ oscillations using ν_μ from π^+ decay in flight by observing beam-on electron events from $\nu_e C \rightarrow e^- X$. Present analysis results in 8.1 \pm 12.2 \pm 1.7 excess events events from $v_{\rm g}\,C \to e^-\,X$. Present analysis results in 8.1 \pm 12.2 \pm 1.7 excess events in the 60
 $E_{\rm g}<$ 200 MeV energy range, corresponding to oscillation probability of 0.10 \pm 0.16 \pm 0.04%. This is consistent, though less significant, with the previous result of ATHANASSOPOULOS 98, which it supersedes. The present analysis uses selection criteria developed for the decay at rest region, and is less effective in removing the background above 60 MeV than ATHANASSOPOULOS 98.
- background above on we with an ATTAINASSOF OCLESS. ¹⁹ATTAINASSOFOLLOS 98 is a search for the $\nu_{\mu} \rightarrow \nu_{e}$ oscillations using ν_{μ} from π^+ decay in flight. The 40 observed beam-on electron events are consistent with $\nu_{e} C \rightarrow 0$ decay in figure the observation term of the sector of the
- from μ^+ decay at rest. See also ATHANASSOPOULOS 988.
- LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986. 20 LOVERRE 96
- ²¹ LOVERRE 88 reports a less stringent, indirect limit based on theoretical analysis of neutral to charged current ratios.
- 22 15ft bubble chamber at FNAL.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

		• •					
VAL	UE (units 10 ⁻³)	<u>CL%</u>		DOCUMENT ID		TECN	COMMENT
<	1.4	90		ASTIER	03	NOMD	CERN SPS
• •	• We do not use the	following	g d	ata for averages	, fits	, limits,	etc. • • •
<	1.6	90		AVVAKUNOV	02	NTEV	NUTEV FNAL
			23	AGUILAR	01	LSND	$\nu \mu \rightarrow \nu_{\rho} \text{ osc.prob.}$
	0.5 to 30	95	24	ATHANASSO	98	LSND	$\nu_{\mu} \rightarrow \nu_{e}$
<	3.0	90	25	LOVERRE	96		CHARM/CDHS
<	9.4	90		VILAIN	94C	CHM2	CERN SPS
<	5.6	90	26	VILAIN	94C	CHM2	CERN SPS
<	16	90		BLUMENFELD	89	CNTR	
<	2.5	90		AMMOSOV	88	HLBC	SKAT at Serpukhov
<	8	90		BERGSMA	88	CHRM	$\Delta(m^2) \geq 30 \mathrm{eV}^2$
			27	LOVERRE	88	RVUE	
<	10	90		AHRENS	87	CNTR	BNL AGS
<	15	90		BOFILL	87	CNTR	FNAL
<	20	90	28	ANGELINI	86	HLBC	BEBC CERN PS
	20 to 40		29	BERNARDI	86B	CNTR	$\Delta(m^2) = 5 - 10$
<	11	90	30	BRUCKER	86	HLBC	15-ft FNAL
<	3.4	90		AHRENS	85	CNTR	BNL AGS E734
<2	240	90		BERGSMA	84	CHRM	
<	10	90		ARMENISE	81	HLBC	GGM CERN PS
<	6	90		BAKER	81	HLBC	15-ft FNAL
<	10	90		ERRIQUEZ	81	HLBC	BEBC CERN PS
<	4	95		BLIETSCHAU	78	HLBC	GGM CERN PS
<	10	95		BELLOTTI	76	HLBC	GGM CERN PS

 23 AGUILAR 01 is the final analysis of the LSND full data set of the search for the $u_{\mu} \rightarrow$ r_e oscillations. See footnote in preceding table for further details.

- 2^{24} ATHANASSOPOULOS 98 report (0.26 ± 0.10 ± 0.05)% for the oscillation probability; the value of sin²2 θ for large Δm^2 is deduced from this probability. See footnote in preceding table for further details, and see the paper for a plot showing allowed regions. If effect is due to oscillation, it is most likely to be intermediate $\sin^2 2\theta$ and Δm^2 . See also ATHANASSOPOULOS 988. ²⁵LOVERE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.
- 26 VILAIN 94C limit derived by combining the ν_{μ} and $\overline{\nu}_{\mu}$ data assuming CP conservation. 27 LOVERRE 88 reports a less stringent, indirect limit based on theoretical analysis of neutral to charged current ratios.

 28 ANGELINI 86 limit reaches 13 \times 10⁻³ at $\Delta(m^2) \approx 2 \text{ eV}^2$.

²⁹BERNARDI 866 is a typical fit to the data, assuming mixing between two species. As the authors state, this result is in conflict with earlier upper bounds on this type of neutrino oscillations.

³⁰15ft bubble chamber at FNAL.

$- \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} -$

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

ALUE [eV ²]	<u>CL%</u>		DOCUMENTID		TECN	COMMENT	
< 0.055	90	31	ARMBRUSTER	02	KAR2	Liquid Sci. calor.	
• • We do not use the	following	d	ata for averages	, fits	, limits,	etc. • • •	
< 2.6	90		AVVAKUNOV	02	NTEV	NUTEV FNAL	I
).03–0.05	1	32	AGUILAR	01	LSND	LAMPF	
0.05-0.08	90	33	ATHANASSO	96	LSND	LAMPF	
0.048-0.090	80	34	ATHANASSO	95			
< 0.07	90	35	HILL	95			
< 0.9	90		VILAIN	94C	CHM2	CERN SPS	
< 0.14	90	36	FREEDMAN	93	CNTR	LAMPF	
< 3.1	90		BOFILL	87	CNTR	FNAL	
< 2.4	90		TAYLOR	83	HLBC	15-ft FNAL	
< 0.91	90	37	NEMETHY	81B	CNTR	LAMPF	
<1	95		BLIETSCHAU	78	HLBC	GGM CERN PS	
<0.07 <0.9 <0.14 <3.1 <2.4 <0.91 <1	90 90 90 90 90 90 95	36 37	HILL VILAIN FREEDMAN BOFILL TAYLOR NEMETHY BLIETSCHAU	95 94C 93 87 83 81B 78	CHM2 CNTR CNTR HLBC CNTR HLBC	CERN SPS LAMPF FNAL 15-ft FNAL LAMPF GGM CERN PS	

- 31 ARMBRUSTER 02 is the final analysis of the KARMEN 2 data for 17.7 m distance from ARMSROSTER 0.5 the limit analysis of the ARMER 2 data for 17.7 m distance from the ISIS stopped pion and muon neutrino source. It is a search for $\overline{\nu}_e$, detected by the inverse β -decay reaction on protons and 12 C. 15 candidate events are observed, and 15.8 \pm 0.5 background events are expected, hence no oscillation signal is detected. The
- results exclude large regions of the parameter area favored by the LSND experiment. ³²AGUILAR 01 is the final analysis of the LSND full data set. It is a search for $\overline{\nu}_a$ 30 m from LAMPF beam stop. Neutrinos originate mainly for π^+ decay at rest. $\overline{\nu}_e$ are detected LAMPH beam stop. Neutrinos originate mainly for π^+ decay at rest. ν_e are detected through $\overline{\nu}_e p \to e^+ n$ ($20 \le e_e + < 60$ MeV) in delayed coincidence with $n p \to d_7$. A Uthors observe 87.9 \pm 22.4 \pm 6.0 total excess events. The observation is attributed to $\overline{\nu}_\mu \to \overline{\nu}_e$ oscillations with the oscillation probability of 0.264 \pm 0.067 \pm 0.045%, the most favored allowed region of oscillation parameters is a band of $\Delta(m^2)$ from cute indict around another region of oscination parameters is a balance $\Delta(m)$ from (1.2-2.0 eV². Supersedes ATHANASSOPOULOS 96, and ATHANASSOPOULOS 98. ³³ATHANASSOPOULOS 98.
- originate mainly from π^+ decay at rest. $\bar{\overline{
 u}}_e$ could come from either $\overline{
 u}_\mu o \ \overline{
 u}_e$ or $ightarrow \, m{
 u}_e$; our entry assumes the first interpretation. They are detected through $m{
 u}_e \, m{
 ho}
 ightarrow$ e^+n (20 MeV $< E_{e^+} <$ 60 MeV) in delayed coincidence with $np \rightarrow d\gamma$. Authors observe 51 \pm 20 \pm 8 total excess events over an estimated background 12.5 \pm 2.9. ATHANASSOPOULOS 96B is a shorter version of this paper.
- ATHANASOFOLIOS 706 is a shorter version of the peptit. 3 ATHANASSOFOLIOS 96 error corresponds to the 1.6 σ band in the plot. The ex-pected background is 2.7 \pm 0.4 events. Corresponds to an oscillation probability of $(0.34 + 0.20 0.18 \pm 0.07)$ %. For a different interpretation, see HILL 95. Replaced by ATHANASSOPOULOS 96.
- ATHANASSOPOULOS 96. 35 HILL 95 is a report by one member of the LSND Collaboration, reporting a different con-clusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95). Contrary to the rest of the LSND Collaboration, Hill finds no evidence for the neutrino oscillation $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ and obtains only upper limits.
- 36 FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types $\nu_\mu, \overline{\nu}_\mu$, and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by
- the reaction $\overline{\nu}_e p \rightarrow e^+ n$. FREEDMAN 93 replaces DURKIN 88.

$\sin^2(2\theta)$ for "large" $\Lambda(m^2)$

VALUE	CL%		DOCUMENT ID		TECN	COMMENT	
< 0.0011	90		AVVAKUNOV	02	NTEV	NUTEV FNAL	I
• • • We do not use the	followin	g d	ata for averages	fits	, limits,	etc. • • •	
< 0.0017	90	38	ARMBRUSTER	02	KAR2	Liquid Sci. calor.	I
$0.0053 \pm 0.0013 \pm 0.009$		39	AGUILAR	01	LSND	LAMPF	
$0.0062 \pm 0.0024 \pm 0.0010$		40	ATHANASSO	96	LSND	LAMPF	
0.003-0.012	80	41	ATHANASSO	95			
< 0.006	90	42	HILL	95			
<4.8	90		VILAIN	94 C	CHM 2	CERN SPS	
<5.6	90	43	VILAIN	94 C	CHM2	CERN SPS	
< 0.024	90	44	FREEDMAN	93	CNTR	LAMPF	
< 0.04	90		BOFILL	87	CNTR	FNAL	
< 0.013	90		TAYLOR	83	HLBC	15-ft FNAL	
< 0.2	90	45	NEMETHY	81B	CNTR	LAMPF	
< 0.004	95		BLIETSCHAU	78	HLBC	GGM CERN PS	

³⁸ARMBRUSTER 02 is the final analysis of the KARMEN 2 data. See footnote in the

³⁹ARMBRUSTER 02 is the final analysis of the KARMEN 2 data. See tootnote in the preceding table for further details, and the paper for the exclusion plot. ³⁹AGUILAR 01 is the final analysis of the LSND full data set. The deduced oscillation probability is 0.264 \pm 0.067 \pm 0.045%; the value of sin²2 θ for large $\Delta(m^2)$ is twice this probability (although these values are excluded by other constraints). See footnote in preceding table for further details, and the paper for a plot showing allowed regions. Supersedes ATHANASOPOULOS 96, and ATHANASOPOULOS 98.

- 40 ATHANASSOPOULOS 35, ATHANASSOF 00COS 35, and ATHANASSOF 00COS 36 40 ATHANASSOPOULOS 96 reports (0.31 ± 0.12 ± 0.05)% for the oscillation probability; the value of sin²2θ for large $\Delta(m^2)$ should be twice this probability. See footnote in preceding table for further details, and see the paper for a plot showing allowed regions.
- preceding table for further details, and see the paper for a plot showing allowed regions. ⁴¹ATHANASOPOULOS 95 error corresponds to the 1.6 σ band in the plot. The expected background is 2.7 \pm 0.4 events. Corresponds to an oscillation probability of $(0.34 \pm 0.20 \pm 0.07)$ %. For a different interpretation, see HILL 95. Replaced by ATHANASOPOULOS 96. ⁴²AILL 95 is a report by one member of the LSND Collaboration, reporting a different conclusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95). Contrary to the rest of the LSND Collaboration, Hill finds no evidence for the neutrino excillation $\nabla \rightarrow \nabla_{-}$ and obtains only upper limits.
- oscillation $\overline{
 u}_{\mu}
 ightarrow \overline{
 u}_{e}$ and obtains only upper limits.
- 43 VILAIN 94C limit derived by combining the u_{μ} and $\overline{
 u}_{\mu}$ data assuming $C\!P$ conservation.
- ⁴⁴ FREEDMAN 93 is a search at LAMP for $\overline{\nu_e}$ generated from any of the three neutrino types ν_μ , $\overline{\nu}_\mu$, and ν_e which come from the beam stop. The $\overline{\nu_e}$'s would be detected by the reaction $\overline{
 u}_e p
 ightarrow e^+$ n. FREEDMAN 93 replaces DURKIN 88.

⁴⁵ In reaction $\overline{\nu_e p} \rightarrow e^+ n$.

$$- \nu_{\mu}(\overline{\nu}_{\mu}) \rightarrow \nu_{e}(\overline{\nu}_{e}) -$$

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV ²)	CL%	DOCUMENT ID	TECN	COMMENT
< 0.075	90	BORODOV 92	CNTR	BNL E776
• • • We do not use the	following c	lata for averages, fits	, limits,	etc. • • •
<1.6	90 46	ROMOSAN 97	CCFR	FNAL
⁴⁶ ROMOSAN 97 uses v	videband be	am with a 0.5 km de	cay regio	on.

³⁷In reaction $\overline{\nu}_e p \rightarrow e^+ n$.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VALUE (units 10 ⁻³)	CL%	DOCUMENT ID		TECN	COMMENT
<1.8	90	47 ROMOSAN	97	CCFR	FNAL
• • • We do not use the	following	g data for averages	, fits	, limits,	etc. • • •
< 3.8	90	48 M CFARLAND	95	CCFR	FNAL
< 3	90	BORODOV	92	CNTR	BNL E776
47 ROMOSAN 97 uses v	videband	beam with a 0.5 k	m de	cav regi	on.

 48 MCFARLAND 95 state that "This result is the most stringent to date for 250 < $\Delta(m^2)$ < 460 eV² and also excludes at 90%CL much of the high $\Delta(m^2)$ region favored by the recent LSND observation." See ATHANASSOPOULOS 95 and ATHANASSOPOU-

$-\nu_{\mu} \rightarrow \nu_{\tau} -$

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$

1.0.5.96

VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
< 0.6	90 49	⁹ ESKUT	01	CHRS	CERN SPS
• • • We do not use the	following	data for averages	, fits	, limits,	etc. • • •
< 0.7	90 50	ASTIER	01B	NOMD	CERN SPS
< 1.4	90 51	¹ ALTEGOER	98B	NOMD	CERN SPS
< 1.5	90 52	² ESKUT	98	CHRS	CERN SPS
< 1.1	90 53	³ ESKUT	98B	CHRS	CERN SPS
< 3.3	90 54	⁴ LOVERRE	96		CHARM/CDHS
< 1.4	90	MCFARLAND	95	CCFR	FNAL
< 4.5	90	BATUSOV	90B	EMUL	FNAL
<10.2	90	BOFILL	87	CNTR	FNAL
< 6.3	90	BRUCKER	86	HLBC	15-ft FNAL
< 0.9	90	USHIDA	86C	EMUL	FNAL
< 4.6	90	ARMENISE	81	HLBC	GGM CERN SPS
< 3	90	BAKER	81	HLBC	15-ft FNAL
< 6	90	ERRIQUEZ	81	HLBC	BEBC CERN SPS
< 3	90	USHIDA	81	EMUL	FNAL

 $^{49}{
m ESKUT}$ 01 limit obtained following the statistical prescriptions in JUNK 99. The limit would have been 0.5 eV 2 if the prescriptions in FELDMAN 98 had been followed, as they were in ASTIER 01B.

were in ASTIER 01B. 50^{-4} ASTIER 01B limit is based on an oscillation probability $< 1.63 \times 10^{-4}$, whereas the quoted sensitivity was 2.5 $\times 10^{-4}$. The limit was obtained following the statistical prescriptions of FELDMAN 98. See also the footnote to ESKUT 01.

⁵¹ALTEGOER 98B is the NOMAD 1995 data sample result, searching for events with

The local variable is the normal 153 data sample result, scaling to even s with $\tau^- \rightarrow e^- \nu_{\tau} \tau_{\theta_{c}}$, had norm ν_{τ} , or $\pi^- \pi^+ \pi^-$ decay imodes using classical CL approach of FELDMAN 98. 5^{2} ESKUT 98 search for events with one μ^- with indication of a kink from τ^- decay in the nuclear emulsion. No candidates were found in a 31,423 event subsample.

⁵³ESKUT 98B search for $\tau^- \rightarrow \mu^- \nu_\tau \overline{\nu}_\mu$ or $h^- \nu_\tau \overline{\nu}_\mu$, where h^- is a negatively charged hadron. The μ^- sample is somewhat larger than in ESKUT 98, which this result supersedes. Bayesian limit.

⁵⁴LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
< 0.00033	90 55	ASTIER	01B	NOMD	CERN SPS
\bullet \bullet \bullet We do not use the	following c	lata for averages	, fits	, limits,	etc. • • •
< 0.00068	90 56	ESKUT	01	CHRS	CERN SPS
< 0.0042	90 57	ALTEGOER	98B	NOMD	CERN SPS
< 0.0035	90 58	ESKUT	98	CHRS	CERN SPS
< 0.0018	90 59	ESKUT	98B	CHRS	CERN SPS
< 0.006	90 60	LOVERRE	96		CHARM/CDHS
< 0.0081	90	MCFARLAND	95	CCFR	FNAL
< 0.06	90	BATUSOV	90B	EMUL	FNAL
< 0.34	90	BOFILL	87	CNTR	FNAL
< 0.088	90	BRUCKER	86	HLBC	15-ft FNAL
< 0.004	90	USHIDA	86C	EMUL	FNAL
< 0.11	90	BALLAGH	84	HLBC	15-ft FNAL
< 0.017	90	ARMENISE	81	HLBC	GGM CERN SPS
< 0.06	90	BAKER	81	HLBC	15-ft FNAL
< 0.05	90	ERRIQUEZ	81	HLBC	BEBC CERN SPS
< 0.013	90	USHIDA	81	EMUL	FNAL

 55 ASTIER 01B limit is based on an oscillation probability $< 1.63 \times 10^{-4}$, whereas the quoted sensitivity was 2.5 $\times 10^{-4}$. The limit was obtained following the statistical prescriptions of FELDMAN 98. See also the footnote to ESKUT 01. Second 56 ESKUT 01 limit obtained following the statistical prescriptions in JUNK 99. The limit

would have been 0.00040 if the prescriptions in FELDMAN 98 had been followed, as they ere in ASTIER 01B.

⁵⁷ALTEGOER 98B is the NOMAD 1995 data sample result, searching for events with $\tau^- \to e^- \nu_\tau \overline{\nu_e}$, hadron $^- \nu_\tau$, or $\pi^- \pi^+ \pi^-$ decay modes using classical CL approach of FELDMAN 98.

 58 ESKUT 98 search for events with one μ^- with indication of a kink from τ^- decay in the nuclear emulsion. No candidates were found in a 31,423 event subsample.

 $^{5\,9}{\rm ESKUT}$ 98B search for $\tau^-\,\rightarrow\,\mu^-\,\nu_\tau\,\overline{\nu}_\mu$ or $h^-\,\nu_\tau\,\overline{\nu}_\mu,$ where h^- is a negatively charged hadron. The μ^- sample is somewhat larger than in ESKUT 98, which this result supersedes. Bayesian limit.

⁶⁰LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.

Lepton Particle Listings Neutrino mixing

$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$

ALUE (eV ²)	CL %	DOCUMENT ID		TECN	COMMENT
< 2.2	90	A SRAT YA N	81	HLBC	FNAL
• • We do not us	e the followir	ng data for average	s, fit	s, limits,	etc. • • •
<1.4	90	MCFARLAND	95	CCFR	FNAL
< 6.5	90	BOFILL	87	CNTR	FNAL
<7.4 in ² (20) for "Larg	90 ge"Δ(m ²)	TAYLOR	83	HLBC	15-ft FNAL
<7.4 i n²(29) for " Larg ^{ALUE}	90 ge"∆(m²)	DOCUMENT ID	83	HLBC TECN	15-ft FNAL
<7.4 in ² (20) for "Larg A <u>LUE</u> <4.4 × 10 ^{—2}	90 ge" Δ(m ²) 	TAYLOR <u>Document ID</u> A SRATYAN	83	HLBC <u>TECN</u> HLBC	15-ft FNAL <u>COMMENT</u> FNAL
<7.4 in ² (29) for "Larg <u>ALUE</u> <4.4 × 10 ⁻² • We do not us <0.0081	90 ge" (m²) <u>CL%</u> 90 e the followir 90	TAYLOR <u>DOCUMENT ID</u> ASRATYAN Ig data for average: MCFARLAND	83 81 5, fit 95	HLBC <u>TECN</u> HLBC s, limits, CCFR	15-ft FNAL <u>COMMENT</u> FNAL etc. • • • FNAL
<7.4 in ² (20) for "Larg <u>ALUE</u> <4.4 × 10 ⁻² • We do not us <0.0081 <0.15	90 ge" (m²) <u>CL%</u> 90 e the followir 90 90	TAYLOR <u>DOCUMENT ID</u> ASRATYAN ng data for average: MCFARLAND BOFILL	83 81 5, fit 95 87	HLBC <u>TECN</u> HLBC s, limits, CCFR CNTR	15-ft FNAL <u>COMMENT</u> FNAL etc. • • • FNAL FNAL

$\Lambda(m^2)$ for $\sin^2(2^2) = 1$

	- 1				
VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT
<1.5	90	⁶¹ GRUWE	93	CHM 2	CERN SPS
⁶¹ GRUWE 93 is a s neutrino beam for a	earch usir $\nu_{\mu} \rightarrow \nu_{\tau}$	ing the CHARM II and $\overline{ u}_{\mu} ightarrow \overline{ u}_{ au}$ osc	deteo illatio	tor in t: ns signal	he CERN SPS wide-ban led by quasi-elastic v_{τ} and
π interactions fol	powed by t	be decay $\tau \rightarrow v$	π]	- he max	imum sensitivity in sin ² 2

 $(< 6.4 \times 10^{-3}$ at the 90% CL) is reached for $\Delta(m^2) \simeq 50 \text{ eV}^2$.

$\sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VALUE (units 10 ⁻³)	CL%	DOCUMENT ID		TECN	COMMENT
<8	90	62 GRUWE	93	CHM 2	CERN SPS
62 CRUWE 93 is a	search usin	a the CHARM II	detec	tor in t	he CERN SPS wide har

GRUWE 93 is a search using the CHARM II detector in the CERN SPS wide-band neutrino beam for $\nu_{\mu} \rightarrow \nu_{\tau}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$ oscillations signalled by quasi-elastic ν_{τ} and $\overline{
u}_{ au}$ interactions followed by the decay au ightarrow $u_{ au}$ π . The maximum sensitivity in sin $^2 2 heta$ $(< 6.4 imes 10^{-3}$ at the 90% CL) is reached for $\Delta(m^2) \simeq 50$ eV².

$-\nu_{\mu} \not\rightarrow \nu_{\mu} -$

VALUE (eV ²)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
>0.0015 AND < 0.003	90	⁶³ AHN	03	K2K	KEK to Super-K
• • • We do not use th	ne following	data for averages, f	its, li	mits, etc	
< 0.29 OR > 22	90	BERGSMA	88	CHRM	
<7	90	BELIKOV	85	CNTR	Serpukhov
< 8.0 OR > 1250	90	STOCKDALE	85	CNTR	
<0.29 OR > 22	90	BERGSMA	84	CHRM	
<0.23 OR >100	90	DYDAK	84	CNTR	
<13 OR >1500	90	STOCKDALE	84	CNTR	
< 8.0	90	BELIKOV	83	CNTR	

oscillations. The measured oscillation parameters are consistent with the ones suggested by atmospheric neutrino observations

$\sin^2(2\theta)$ for $\Delta(m^2) = 0.003 \text{ eV}^2$

VA	LUE				CL%	DOCUN	1ENT ID		TECN	COMM	ΕN	Т	
•		We do	not	use the	following	data for	averages,	fits,	limits,	etc. •	•	•	

⁶⁴ AHN > 0.35 90 03 K2K KEK to Super-K

 64 K2K is a 250 km long-baseline disappearance experiment. The result indicates neutrino oscillations. The measured oscillation parameters are consistent with the ones suggested by atmospheric neutrino observations

$\sin^2(2\theta)$ for $\Delta(m^2) = 100 \text{eV}^2$

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
< 0.02	90	65 STOCKDALE	85	CNTR	FNAL
• • • We do not us	e the follow	ing data for average	s, fite	s, limits,	etc. • • •
< 0.17	90	⁶⁶ BERGSMA	88	CHRM	
< 0.07	90	⁶⁷ BELIKOV	85	CNTR	Serpukhov
< 0.27	90	⁶⁶ BERGSMA	84	CHRM	CERN PS
< 0.1	90	⁶⁸ DYDAK	84	CNTR	CERN PS
< 0.02	90	⁶⁹ STOCKDALE	84	CNTR	FNAL
< 0.1	90	⁷⁰ BELIKOV	83	CNTR	Serpukhov
65		5			

This bound applies for $\Delta(m^2) = 100 \text{ eV}^2$. Less stringent bounds apply for other $\Delta(m^2)$; This bound applies for $\Delta(m^2) = 100 \text{ eV}^2$. Less stringent bounds apply for other $\Delta(m^2)$, these are nontrivial for $8 < \Delta(m^2) < 1250 \text{ eV}^2$. ⁶⁶This bound applies for $\Delta(m^2) = 0.7-9$. eV².

 $\Delta(m^2);$ these are nontrivial for 0.23 $< \Delta(m^2) <$ 90 eV 2 .

⁶⁹This bound applies for $\Delta(m^2) = 110 \text{ eV}^2$. Less stringent bounds apply for other $\Delta(m^2)$; these are nontrivial for 13 $<\Delta(m^2)$ $<15\,00$ eV 2 70 Bound holds for $\Delta(m^2)$ = 20–1000 eV 2

455

Neutrino mixing

 $\overline{\nu}_{\mu} \neq \overline{\nu}_{\mu}$

DOCUMENT ID TECN

 $\Delta(m^2)$ for $\sin^2(2\theta) = 1$

 $VALUE (eV^2)$ CL% <7 OR >1200 OUR LIMIT

STOCKDALE 85 CNTR <7 OR >1200 9.0

$\sin^2(2\theta)$ for 190 eV² < $\Delta(m^2)$ < 320 eV²

VALIIF CL%
 DOCUMENT ID
 TECN
 COMMENT

 71
 STOCKDALE
 85
 CNTR
 FNAL
 < 0.02 90

 71 This bound applies for $\Delta(m^2)$ between 190 and 320 or $= 530 \, {\rm eV}^2$. Less stringent bounds

apply for other $\Delta(m^2)$; these are nontrivial for 7 < $\Delta(m^2)$ <1200 eV².

 $-\nu_{\mu} \rightarrow (\overline{\nu}_{e})_{l} -$

See note above for $\nu_{\rho} \rightarrow (\overline{\nu}_{\rho})_I$ limit

$\alpha \Delta(m^2)$ for $\sin^2(2\theta) = 1$

VALUE (eV ²)	CL%	DOCUMENT ID	TECN	COMMENT
< 0.16	90 72	FREEDMAN	93 CNTR	LAMPF
 We do not use the 	following d	ata for averages	, fits, limits,	etc. • • •
< 0.7	90 73	COOPER	82 HLBC	BEBC CERN SPS
72 FREEDMAN 93 is a :	search at LA	MPE for \overline{v}_{*} ge	nerated from	any of the three neut

types ν_{μ} , $\overline{\nu}_{\mu}$, and ν_{e} which come from the beam stop. The $\overline{\nu}_{e}$'s would be detected by the reaction $\overline{\nu}_e p \rightarrow e^+ n$. The limit on $\Delta(m^2)$ is better than the CERN BEBC experiment, but the limit on $\sin^2\theta$ is almost a factor of 100 less sensitive.

⁷³COOPER 82 states that existing bounds on V+A currents require α to be small.

$\alpha^2 \sin^2(2\theta)$ for "Large" $\Delta(m^2)$

VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
< 0.001	90 74	COOPER	82	HLBC	BEBC CERN SPS
• • • We do not use the	following o	lata for averages	, fits	, limits,	etc. • • •
< 0.07	90 75	FREEDMAN	93	CNTR	LAMPF
7.4					

⁷⁴ COOPER 82 states that existing bounds on V+A currents require α to be small. ⁷⁵ FREEDMAN 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types ν_μ , $\overline{\nu}_\mu$, and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e p \rightarrow e^+ n$. The limit on $\Delta(m^2)$ is better than the CERN BEBC experiment, but the limit on $\sin^2\theta$

(B) Reactor \overline{v}_e disappearance experiments

In most cases, the reaction $\overline{
u}_e\, p o \ e^+\, n$ is observed at different distances from one or more reactors in a complex.

Events (Observed/Expected) from Reactor $\overline{\nu}_{e}$ Experiments

VALUE		DOCUMENT ID		TECN	COMMENT				
• • • We do not use the follo	wing d	ata for averages	, fits	, limits,	etc. • • •				
$0.611 \pm 0.085 \pm 0.041$	76	EGUCHI	03	KLND	Japanese react ~ 180				
$1.01\ \pm 0.024\pm 0.053$	77	военм	01		Palo Verde react.				
$1.04\ \pm 0.03\ \pm 0.08$	78	BOEHM	00C		Palo Verde react. 0.75-0.89 km				
$1.01\ \pm 0.028\pm 0.027$	79	APOLLONIO	99	CHOZ	Chooz reactors 1 km				
$0.987 \pm 0.006 \pm 0.037$	80	GREENWOOD	96		Savannah River, 18.2 m				
$0.988 \pm 0.004 \pm 0.05$		ACHKAR	95	CNTR	Bugey reactor, 15 m				
$0.994 \pm 0.010 \pm 0.05$		ACHKAR	95	CNTR	Bugey reactor, 40 m				
$0.915 \pm 0.132 \pm 0.05$		ACHKAR	95	CNTR	Bugey reactor, 95 m				
$0.987 \pm 0.014 \pm 0.027$	81	DECLAIS	94	CNTR	Bugey reactor, 15 m				
$0.985 \pm 0.018 \pm 0.034$		KUVSHINN	91	CNTR	Rovno reactor				
$1.05\ \pm 0.02\ \pm 0.05$		VUILLEUMIER	82		Gösgen reactor				
$0.955 \pm 0.035 \pm 0.110$	82	KWON	81		$\overline{\nu}_{e} p \rightarrow e^{+} n$				
0.89 ± 0.15	82	BOEHM	80		$\overline{\nu}_{e} p \rightarrow e^{+} n$				
0.38 ± 0.21	83,84	REINES	80		-				
0.40 ±0.22	83,84	REINES	80						

 76 EGUCHI 03 observe reactor neutrino disappearance at \sim 180 km baseline to various Japanese nuclear power reactors. See the footnote in the following table for further __details, and the paper for the inclusion/exclusion plot.

- 77 BOEHM 01 search for neutrino oscillations at 0.75 and 0.89 km distance from the Palo Verde reactors. 78 BOEHM 00C search for neutrino oscillations at 0.75 and 0.89 km distance from the Palo
- Verde reactors. 79APOLLONIO 99, APOLLONIO 98 search for neutrino oscillations at 1.1 km fixed distance from Chooz reactors. They use $\overline{\nu}_e p \rightarrow e^+ n$ in Gd-loaded scintillator target. APOLLONIO 99 supersedes APOLLONIO 98. See also APOLLONIO 03 for detailed
- description ⁸⁰GREENWOOD 96 search for neutrino oscillations at 18 m and 24 m from the reactor at
- Savaniah River. ⁶¹ DECLAIS 94 result based on integral measurement of neutrons only. Result is ra-tio of measured cross section to that expected in standard V-A theory. Replaced by
- ACHKAR 95. 82 KWON 81 represents an analysis of a larger set of data from the same experiment as
- BOEHM 80. ⁸³REINES 80 involves comparison of neutral- and charged-current reactions $\overline{\nu}_{\rho} d \rightarrow n \rho \overline{\nu}_{\rho}$, and $\overline{\nu}_e d \to n p \overline{\nu}_e$ and $\overline{\nu}_e d \to n p \overline{\nu}_e$ and $\overline{\nu}_e d \to n e^+$ respectively. Combined analysis of reactor $\overline{\nu}_e$ experiments was performed by SILVERMAN 81.
- 84 The two REINES 80 values correspond to the calculated $\overline{\nu}_{a}$ fluxes of AVIGNONE 80 and DAVIS 79 respectively.

$\overline{\nu}_e \neq \overline{\nu}_e$

$\Delta(m^2)$ for sin ²	$\Delta(m^2)$ for $\sin^2(2\theta) = 1$												
VALUE (eV ²)	CL%	DOCUMENT ID		TECN	COMMENT								
>8 × 10 ⁻⁶	95	⁸⁵ EGUCHI	03	KLND	Japanese react \sim 180 km								
• • • We do not	use the	following data for	avera	ages, fits	, limits, etc. • • •								
< 0.0011	90	⁸⁶ BOEHM	01		Palo Verde react. 0.75-0.89 km								
< 0.0011	90	⁸⁷ BOEHM	00		Palo Verde react. 0.8 km								
< 0.0007	90	⁸⁸ APOLLONIO	99	CHOZ	Chooz reactors 1 km								
< 0.01	90	⁸⁹ ACHKAR	95	CNTR	Bugey reactor								
< 0.0075	90	⁹⁰ VIDYAKIN	94		Krasnoyarsk reactors								
< 0.04	90	⁹¹ AFONIN	88	CNTR	Rovno reactor								
< 0.014	68	⁹² VIDYAKIN	87		$\overline{\nu}_e p \rightarrow e^+ n$								
< 0.019	90	⁹³ ZACEK	86		Gösgen reactor								

I

I

 $^{85}\,\text{EGUCHI}$ 03 observe reactor neutrino disappearance at $\,\sim\,$ 180 km baseline to various Japanese nuclear power reactors. This is the lower limit on the mass difference spread, unlike all other entries in this table. Observation is consistent with neutrino oscillations, with mass-mixing and mixing-angle parameters in the Large Mixing Angle Solution region of the solar neutrino problem

60 the solar neutrino problem: 66 BOEHM 01, a continuation of BOEHM 00, is a disappearance search for neutrino oscilla-tions at 0.75 and 0.89 km distance from the Palo Verde reactors. Result is less restrictive than APOLLONIO 99

- ⁸⁷BOEHM 00 is a disappearance search for neutrino oscillations at 0.75 and 0.89 km distance from Palo Verde reactors. The detection reaction is $\overline{\nu}_{e}p \rightarrow e^{+}n$ in a segmented Gd loaded scintillator target. Result is less restrictive than APOLLONIO 99.
- G0 loaded sciniliator target. Never a restriction contract that an observation of the target of supersedes APOLLONIO 98. This is the most sensitive search in terms of $\Delta(m^2)$ for $\overline{\nu}_e$ disappearance. See also APOLLONIO 03 for detailed description.
- ⁸⁹ACHKAR 95 bound is for L=15, 40, and 95 m.

⁹⁰VIDYAKIN 94 bound is for L=57.0 m, 57.6 m, and 231.4 m. Supersedes VIDYAKIN 90. 91 AFONIN 86 and AFONIN 87 also give limits on $\sin^2(2 heta)$ for intermediate values of $\Delta(m^2)$. (see also KETOV 92). Supersedes AFONIN 87, AFONIN 86, AFONIN 85, AFONIN 83, and BELENKII 83. 92 VIDYAKIN 87 bound is for L = 32.8 and 92.3 m distance from two reactors.

 93 This bound is from data for L=37.9 m, 45.9 m, and 64.7 m.

$\sin^2(2\theta)$ for "large" $\Lambda(m^2)$

	- 0 -	-()			
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
>0.4	95	⁹⁴ EGUCHI	03	KLND	Japanese react \sim 180 km
•••We do not	use the	e following data for	avera	ages, fits,	limits, etc. • • •
< 0.17	90	⁹⁵ BOEHM	01		Palo Verde react. 0.75–0.89 km
< 0.21	90	⁹⁶ BOEHM	00		Palo Verde react. 0.8 km
< 0.10	90	⁹⁷ APOLLONIO	99	CHOZ	Chooz reactors 1 km
< 0.24	90	⁹⁸ GREENWOOD	96		
< 0.04	90	98 GREENWOOD	96		For $\Delta(m^2) = 1.0 \text{ eV}^2$
< 0.02	90	⁹⁹ ACHKAR	95	CNTR	For $\Delta(m^2) = 0.6 \text{ eV}^2$
< 0.087	68	¹⁰⁰ vyrodov	95	CNTR	For $\Delta(m^2) > 2 \text{ eV}^2$
< 0.15	90	¹⁰¹ VIDYAKIN	94		For $\Delta(m^2) > 5.0 \times 10^{-2} \text{ eV}^2$
< 0.2	90	¹⁰² AFONIN	88	CNTR	$\overline{\nu}_{e} p \rightarrow e^{+} n$
< 0.14	68	¹⁰³ VIDYAKIN	87		$\overline{\nu}_{e} p \rightarrow e^{+} n$
< 0.21	90	¹⁰⁴ ZACEK	86		$\overline{\nu}_{\rho} p \rightarrow e^{+} n$
< 0.19	90	¹⁰⁵ ZACEK	85		Gösgen reactor
< 0.16	90	¹⁰⁶ GABATHULER	84		$\overline{\nu}_e p \rightarrow e^+ n$

 $^{94}\,\text{EGUCHI}$ 03 observe reactor neutrino disappearance at \sim 180 km baseline to various Japanese nuclear power reactors. This is the lower limit on $\sin^2 2\theta$, unlike all other entries in this table. It is based on the observed rate only; consideration of the spectrum shape results in somewhat more restrictive limit. Observation is consistent with neutrino oscillations, with mass-mixing and mixing-angle parameters in the Large Mixing Angle Solution region of the solar neutrino problem.

96 BOEHM 01 search for neutrino oscillations at 0.75 and 0.89 km distance from the Palo Verde reactors. Continuation of BOEHM 00. 96 BOEHM 00 search for neutrino oscillations at 0.75 and 0.89 km distance from Palo Verde

- preactors. 97APDLLONIO 99 search for neutrino oscillations at 1.1 km fixed distance from Chooz reactors. See also APOLLONIO 03 for detailed description.
- 98 GREENWOOD 96 service for neutrino oscillations at 18 m and 24 m from the reactor at Savannah River by observing $\overline{\nu}_e p \rightarrow e^+ n$ in a Gd loaded scintillator target. Their region of sensitivity in $\Delta(m^2)$ and $\sin^2 2\theta$ is already excluded by ACHKAR 95.

⁹⁹ACHKAR 95 bound is from data for L=15, 40, and 95 m distance from the Bugey reactor. 100 The VYRODOV 95 bound is from data for L=15 m distance from the Bugey-5 reactor.

 101 The VIDYAKIN 94 bound is from data for L=57.0 m, 57.6 m, and 231.4 m from three reactors in the Krasnoyarsk Reactor complex.

- 2 Several different methods of data analysis are used in AFONIN 88. We quote the most stringent limits. Different upper limits on sin²20 apply at intermediate values of $\Delta(m^2)$. Supersedes AFONIN 87, AFONIN 85, and BELENKIN 83. 103 VIDYAKIN 87 bound is for L = 32.8 and 92.3 m distance from two reactors.
- ¹⁰³ VIDYAKIN 87 bound is for L = 32.8 and 92.3 m distance from two reactors. ¹⁰⁴ This bound is from data for L = 37.9 m, 45.9 m, and 64.7 m distance from Gosgen reactor. ¹⁰⁵ ZACEK 85 gives two sets of bounds depending on what assumptions are used in the data analysis. The bounds in figure 3(a) of ZACEK 85 are progressively poorer for large $\Delta(m^2)$ whereas those of figure 3(b) approach a constant. We list the latter. Both sets of bounds use combination of data from 37.9, 45.9, and 64.7m distance from reactor. ZACEK 85 states "Our experiment excludes this area (the oscillation parameter region regions the back was data (GAUGINAC 84) almost completely. thus disproving the allowed by the Bugey data, CAVAIGNAC 84) almost completely, thus disproving the indications of neutrino oscillations of CAVAIGNAC 84 with a high degree of confidence."
- ¹⁰⁶This bound comes from a combination of the VUILLEUMIER 82 data at distance 37.9m from Gosgen reactor and new data at 45.9m.

(C) Atmospheric neutrino observations

Neutrinos and antineutrinos produced in the atmosphere induce μ -like and e-like events in underground detectors. The ratio of the numbers of the two kinds of events is defined as μ/e . It has the advantage that systematic effects, such as flux uncertainty, tend to cancel, for both experimental and theoretical values of the ratio. The "ratio of the ratios" of experimental to theoretical μ/e , $R(\mu/e)$, or that of experimental to theoretical $\mu/$ total, $R(\mu/\text{total})$ with total = $\mu + e_{\text{t}}$ is reported below. If the actual value is not unity, the value obtained in a given experiment may depend on the experimental conditions.

$R(\mu/e) = (Measured Ratio \mu/e) / (Expected Ratio \mu/e)$

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follow	ing data for average	s, fits	, limits,	etc. • • •
$0.64 \pm 0.11 \pm 0.06$	¹⁰⁷ ALLISON	99	SOU2	Calorimeter
$0.61 \pm 0.03 \pm 0.05$	¹⁰⁸ FUKUDA	98	SKAM	s ub - Ge V
$0.66 \pm 0.06 \pm 0.08$	¹⁰⁹ FUKUDA	98E	SKAM	multi-GeV
	¹¹⁰ FUKUDA	96B	KAMI	Water Cherenkov
$1.00 \pm 0.15 \pm 0.08$	¹¹¹ DAUM	95	FREJ	Calorimeter
$0.60 \mathop{-}^+_{-} 0.05 \mathop{\pm}^0_{-} 0.05$	¹¹² FUKUDA	94	камі	sub-GeV
$0.57 + \begin{array}{c} 0.08 \\ - 0.07 \end{array} \pm 0.07$	¹¹³ FUKUDA	94	камі	multi-Gev
	¹¹⁴ BECKER-SZ	92B	IMB	Water Cherenkov

¹⁰⁷ALLISON 99 result is based on an exposure of 3.9 kton yr, 2.6 times the exposure reported in ALLISON 97, and replaces that result. 108FUKUDA 98 result is based on an exposure of 25.5 kton yr. The analyzed data sam-

ple consists of fully-contained e-like events with 0.1 GeV/c< p_e and μ -like events with 0.2 GeV/c< p_μ , both having a visible energy < 1.33 GeV. These criteria match the definition used by FUKUDA 94.

On the set of POCOLA set. 109 FUKUDA 98E result is based on an exposure of 25.5 kton yr. The analyzed data sample consists of fully-contained single-ring events with visible energy > 1.33 GeV and partially contained events. All partially contained events are classified as μ-like.

Confidince events. An partially contained events are closified as p inc. 110 FUK UDA 966 studied neutron background in the atmospheric neutrino sample observed in the Kamiokande detector. No evidence for the background contamination was found.

In the remnorance detector, no ensure of the trading of the tradi

- also report $\mathcal{R}(\mu/e) = 0.99 \pm 0.13 \pm 0.08$ for the total neutrino induced data sample which includes upward going stopping muons and horizontal muons in addition to the contained and semicontained events. 112 FUKUDA 94 result is based on an exposure of 7.7 kton yr and updates the HIRATA 92 result. The analyzed data sample consists of fully-contained *e*-like events with 0.1 < $p_e < 1.33$ GeV/c and fully-contained μ -like events with 0.2 < $p_\mu < 1.5$ GeV/c.
- ¹¹³FUKUDA 94 analyzed the data sample consisting of fully contained events with visible energy > 1.33 GeV and partially contained µ-like events.
 ¹¹⁴BECKER-SZENDY 928 reports the fraction of nonshowering events (mostly muons from
- atmospheric neutrinos) as $0.36\pm0.02\pm0.02$, as compared with expected fraction $0.51\pm0.01\pm0.05$. After cutting the energy range to the Kamiokande limits, BEIER 92 finds $R(\mu/e)$ every close to the Kamiokande value.

$R(\nu_{\mu}) = (Measured Flux of \nu_{\mu}) / (Expected Flux of \nu_{\mu})$

VALUE	DOCUMENT ID		TEC N	COMMENT
• • • We do not use	the following data	for a	verages,	fits, limits, etc. • • •
$0.72 \pm 0.026 \pm 0.13$	¹¹⁵ AMBROSIO	01	MCRO	upward through-going
$0.57\pm 0.05\ \pm 0.15$	¹¹⁶ AMBROSIO	00	MCRO	upgoing partially contained
$0.71 \pm 0.05 \pm 0.19$	¹¹⁷ AMBROSIO	00	MCRO	downgoing partially contained + upgoing stopping
$0.74 \pm 0.036 \pm 0.046$	¹¹⁸ AMBROSIO	98	MCRO	Streamer tubes
	¹¹⁹ CASPER	91	IMB	Water Cherenkov
	¹²⁰ AGLIETTA	89	NUSX	
0.95 ± 0.22	¹²¹ BOLIEV	81		Baksan
0.62 ± 0.17	CROUCH	78		Case Western/UCI

 $^{115}
m AMBROSIO$ 01 result is based on the upward through-going muon tracks with E_{μ} > 1 GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration, is 6.17 years. The first error is the statistical error, the second is the systematic error, dominated by the theoretical error in the predicted flux.

- in the predicted flux. ¹¹⁶ AMBROSIO 00 result is based on the upgoing partially contained event sample. It came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to this sample is 4 GeV. The first error is statistical, the second is the systematic error, dominated by the 25% theoretical error in the rate (20% in the flux and 15% in the cross section, added in quadrature). Within statistics, the observed deficit is uniform over the zenith angle.
- in quadrature). Within statistics, the observed detict is uniform over the Zehnan angle. ¹¹⁷ AMBROSIO 00 result is based on the combined samples of downgoing partially contained events and upgoing stopping events. These two subsamples could not be distinguished due to the lack of timing information. The result came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to this sample is 4 GeV. The first error is interfaced the scenario the scenario detector from the sample and the 25% theoretical error in or statistical, the second is the systematic error, dominated by the 25% theoretical error in the rate of the second is the systematic error, dominated by the 25% theoretical error in the rate (20% in the second is the intervence of the second s
- statistics, the observed deficit is uniform over the zemiun angle. 118 AMBROSIO 98 result is for all nadiir angles and updates AHLEN 95 result. The lower cutoff on the muon energy is 1 GeV. In addition to the statistical and systematic errors, there is a Monte Carlo flux error (theoretical error) of ± 0.13 . With a neutrino oscil-lation hypothesis, the fit either to the flux or zenith distribution independently yields $\sin^2 2\theta = 1.0$ and $\Delta(m^2) \sim$ a few times 10^{-3} eV^2 . However, the fit to the observed zenith distribution gives a maximum probability for χ^2 of only 5% for the best oscillation hypothesis
- mypounds. 119 CASPER 91 correlates showering/nonshowering signature of single-ring events with parent atmospheric-neutrino flavor. They find nonshowering ($\approx \nu_{\mu}$ induced) fraction is 0.41 \pm 0.03 \pm 0.02, as compared with expected 0.51 \pm 0.05 (syst).

457 Lepton Particle Listings Neutrino mixing

- 120 AGLIETTA 89 finds no evidence for any anomaly in the neutrino flux. They define $\rho = (\text{measured number of } \nu_e's)/(\text{measured number of } \nu_\mu's)$. They report $\rho(\text{measured}){=}\rho(\text{expected}) = 0.96^{+0.32}_{-0.28}$
- 121 From this data BOLIEV 81 obtain the limit $\Delta(m^2)~\leq~6 imes 10^{-3}~{
 m eV}^2$ for maximal mixing, $u_{\mu}
 eq
 u_{\mu}$ type oscillation.

$R(\mu/total) = (Measured Ratio \mu/total) / (Expected Ratio \mu/total)$

VALUE	DOCUMENT I	D	TECN	COMMENT	
• • We do not use the follow	wing data for avera	ges, fits	limits	etc • • •	
$1.1 + 0.07 \pm 0.11$	¹²² CLARK	97	IMB	multi-GeV	

 $^{1\,22}\,\text{CLARK}$ 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cherenkov detector with visible energy > 0.95 GeV

$N_{\rm up}(\mu)/N_{\rm down}(\mu)$

V	4 L L	ΙE			DOCUMENT ID	TECN	COMMENT
•	•	•	We do	not use the follo	wing data for averages,	fits, limits,	etc. • • •

¹²³ FUK UDA $0.52 + 0.07 \pm 0.01$ 98E SKAM multi-GeV

 $^{-2.50}$ Sec. Sec. 2019 Sec. The state of the sec. 10.50 sec. 1

$N_{up}(e)/N_{down}(e)$

VAL	UΕ					DO	СИМЕ	ENT ID		TECN	CON	1MI	ENT	
•••	•	We do no	ot use	the	following	; data	for a	averages	fits,	limits,	etc.	•	•••	

 124 FUK UDA 0.84 + 0.14 = 0.0298E SKAM multi-GeV

¹²⁴ FUKUDA 98E result is based on an exposure of 25.5 ktonyr. The analyzed data sam-FUR UDA yet result is based on an exposure of 25.5 ktonyr. The analyzed data sample consists of fully-contained single-ring e-like events with visible energy > 1.33 GeV. Upward-going events are those with $-1 < \cos (\text{zenith angle}) < -0.2$ and downward-going events are those with $-1 < \cos (\text{zenith angle}) < 1$. FUK UDA 98E result is compared to an expected value of $1.01 \pm 0.06 \pm 0.03$.

sin²(2 θ) for given $\Delta(m^2)$ ($\nu_e \leftrightarrow \nu_{\mu}$) For a review see BAHCALL 89.

VALUE	CL /0	DOCOMENTID		TECN	COWINENT
• • • We do not	use the	following data for	avera	ges, fits,	limits, etc. • • •
< 0.6	90	¹²⁵ ОҮАМА	98	камі	$\Delta(m^2) > 0.1 \text{ eV}^2$
< 0.5		¹²⁶ CLARK	97	IMB	$\Delta(m^2) > 0.1 \text{ eV}^2$
>0.55	90	¹²⁷ FUKUDA	94	KAMI	$\Delta(m^2) = 0.007 - 0.08 \text{ eV}^2$
< 0.47	90	¹²⁸ BERGER	90B	FREJ	$\Delta(m^2) > 1 \text{ eV}^2$
< 0.14	90	LOSECCO	87	IMB	$\Delta(m^2) = 0.00011 \text{ eV}^2$

 $^{1\,25}$ OYAMA 98 obtained this result by an analysis of upward-going muons in Kamiokande. The data sample used is essentially the same as that used by HATAKEYAMA 98.

¹²⁶ CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cherenkov detector with visible energy > 0.95 GeV. events in the timb water contention detector with visible events / 0.53 dev. 127 FUKUDA 94 obtained this result by a combined analysis of sub- and multi-GeV atmos-pheric neutrino events in Kamiokande.

128 BERGER 90B uses the Frejus detector to search for oscillations of atmospheric neutrinos.

Bounds are for both neutrino and antineutrino oscillations

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$ ($\nu_e \leftrightarrow \nu_\mu$)

VALUE (10 ⁻⁵ eV ²)	CL%	DOCUMENT ID		TECN
• • • We do not use the	followi	ing data for averages,	fits	, limits, etc. • • •
<560	90	¹²⁹ OYAMA	98	КАМІ
< 980		¹³⁰ CLARK	97	IMB
$700 < \Delta(m^2) < 7000$	90	¹³¹ FUK UDA	94	КАМІ
<150	90	¹³² BERGER	90B	FREJ

¹²⁹ OYAMA 98 obtained this result by an analysis of upward-going muons in Kamiokande. The data sample used is essentially the same as that used by HATAKEYAMA 98.
¹³⁰ CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water Cherenkov detector with visible energy > 0.95 GeV.

131 FUKUDA 94 obtained this result by a combined analysis of sub- and multi-GeV atmospheric neutrino events in Kamiokande

¹³²BERGER 90B uses the Frejus detector to search for oscillations of atmospheric neutrinos. Bounds are for both neutrino and antineutrino oscillations

$\sin^2(2\theta)$ for given $\Delta(m^2)$ ($\overline{\nu}_e \leftrightarrow \overline{\nu}_{\mu}$)

VALUE (10 ⁻⁵ eV ²)	CL%	DOCUMENT ID	TECN	COMMENT
• • We do not use the	following d	ata for averages, f	fits, limits,	etc. • • •
< 0.9	99 133	SMIRNOV 9	4 THEO	$\Delta(m^2) > 3 \times 10^{-4} \text{ eV}^2$
< 0.7	99 133	SMIRNOV 9	4 THEO	$\Delta(m^2) < 10^{-11} \text{ eV}^2$

 $^{133}\,\text{SMIRNOV}$ 94 analyzed the data from SN 1987A using stellar-collapse models. They also give less stringent upper limits on $\sin^2 2\theta$ for $10^{-11} < \Delta(m^2) < 3 \times 10^{-7} \ \text{eV}^2$ and $10^{-5} < \Delta(m^2) < 3 \times 10^{-4} \ \text{eV}^2$. The same results apply to $\overline{\nu}_e \leftrightarrow \overline{\nu}_\tau$, ν_μ , and ν_τ .

$\sin^2(2\theta)$ for given $\Delta(m^2)$ ($\nu_{\mu} \leftrightarrow \nu_{\tau}$)

VALUE	<u>CL%</u>		DOCUMENT ID		TECN	COMMENT
• • • We do not	use the	e foll	owing data for a	overa	ges, fits,	limits, etc. • • •
> 0.45	90	134	AMBROSIO	03	MCRO	$\Delta(m^2) = 0.00025 - 0.009 \text{ eV}^2$
> 0.77	90	1 35	AMBROSIO	03	MCRO	$\Delta(m^2) = 0.0006 - 0.007 \text{ eV}^2$
> 0.8	90	136	AMBROSIO	01	MCRO	$\Delta(m^2) = 0.0006 - 0.015 \text{ eV}^2$
> 0.82	90	137	AMBROSIO	01	MCRO	$\Delta(m^2) = 0.001 - 0.006 \text{ ev}^2$
> 0.25	90	138	AMBROSIO	00	MCRO	$\Delta(m^2) > 3 \times 10^{-4} \text{ eV}^2$
> 0.4	90	139	FUKUDA	99 C	SKAM	$\Delta(m^2) = 0.001 - 0.1 \text{ eV}^2$
> 0.7	90	140	FUKUDA	99D	SKAM	$\Delta(m^2) = 0.0015 - 0.015 \text{ eV}^2$
> 0.82	90	141	AMBROSIO	98	MCRO	$\Delta(m^2) \sim 0.0025 \text{ eV}^2$
> 0.82	90	142	FUKUDA	98 C	SKAM	$\Delta(m^2) = 0.0005 - 0.006 \text{ eV}^2$
> 0.3	90	143	ΗΑΤΑΚΕΥΑΜΑ	98	KAMI	$\Delta(m^2) = 0.00055 - 0.14 \text{ eV}^2$
> 0.73	90	144	ΗΑΤΑΚΕΥΑΜΑ	98	KAMI	$\Delta(m^2) = 0.004 - 0.025 \text{ eV}^2$
< 0.7		145	CLARK	97	IMB	$\Delta(m^2) > 0.1 \text{ eV}^2$
> 0.65	90	146	FUKUDA	94	KAMI	$\Delta(m^2) = 0.005 - 0.03 \text{ eV}^2$
< 0.5	90	147	BECKER-SZ	92	IMB	$\Delta(m^2) = 1 - 2 \times 10^{-4} \text{ eV}^2$
< 0.6	90	148	BERGER	90 B	FREJ	$\Delta(m^2) > 1 \text{ eV}^2$

 $^{134} \rm AMBROSIO$ 03 obtained this result on the basis of the ratio ${\it R=N_{IOW}/N_{high}}$, where $\it N_{IOW}$ and $\it N_{high}$ are the number of upward through-going muon events with reconstructed

- and N_{high} are the number of upward through-going muon events with reconstructed neutrino energy <30 GeV and >130 GeV, respectively. The data came from the full detector run started in 1994. The method of FELDMAN 98 is used to obtain the limits. 135 AMBROSIO 3 obtained this result by using the ratio R and the angular distribution of the upward through-going muons. R is given by N_{low}/N_{high} , where N_{low} and N_{high} are the number of events with reconstructed neutrino energy <30 and >130 GeV, respectively. The angular distribution is reported in AMBROSIO 01. The method of FELDMAN 98 is used to obtain the limits. s used to obtain the limits.
- is used to obtain the innus. 164 AMBROSIG 01 result is based on the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration, is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits. AMBROSIO 01 result is based on the angular distribution and normalization of upward
- 137 through-going muon tracks with $E_{\mu} > 1$ GeV. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits. See the previous footnote.
- ¹³⁸AMBROSIO 00 obtained this result by using the upgoing partially contained event sample and the combined sample and source jung study of the junt term to manife the sample stopping in the sample stopping stop corresponding to these samples is 4 GeV. The maximum of the χ^2 probability (97%) occurs at maximal mixing and $\Delta(m^2)=(1\sim 20)\times 10^{-3} \text{ eV}^2$.
- OCLUS at maxima many and A(m) (-2-2 of E_{\mu} > 1.6 GeV, the observed flux of upward through going muons is (1.74 \pm 0.07 \pm $0.02 \times 10^{-13} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$. The zenith-angle dependence of the flux does not agree with no-oscillation predictions. For the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis, FUKUDA 99C obtained the best fit at $\sin^2 2\theta = 0.95$ and $\Delta(m^2) = 5.9 \times 10^{-3} \text{ eV}^2$. FUKUDA 99C also reports 68% and 99% confidence-level allowed regions for the same hypothesis.
- 68% and 99% confidence-level allowed regions for the same hypothesis. 140 FUKUDA 99D obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is $(0.39 \pm 0.04 \pm 0.02) \times 10^{-13} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$. This is compared to the expected flux of $(0.73 \pm 0.16 \text{ (theoretical error)}) \times 10^{-13} \text{ cm}^{-2} \text{ sr}^{-1}$. The flux of upward-through-going muons is taken from FUKUDA 99C. For the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis, FUKUDA 99D for $\nu_{\mu} \rightarrow \nu_{\tau}$ obtained the best fit in the physical region at $\sin^2 \mu = 1$. and $\Delta(m^2)=3.9 \times 10^{-3} \text{ eV}^2$. FUKUDA 99D also reports 68% and 99% confidence-level allowed regions for the same hypothesis. FUKUDA 99D further reports the result of the oscillation analysis using the zenith-angle dependence of upward-stopping/through-going flux ratio. The best fit in the physical region is obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 3.1 imes 10^{-3} \, {\rm eV}^2$.
- ¹⁴¹AMBROSIO 98 result is only 17% probable at maximum because of relatively low flux - 0.8.
- for $\cos\theta < -0.8$. ¹⁴²FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheric-neutrino FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheric-neutrino data which include the 25.5 kton yr data used by FUKUDA 98 (sub-GeV) and FUKUDA 98E (multi-GeV). Inside the physical region, the best fit was obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 2.2 \times 10^{-3} \text{ eV}^2$. In addition, FUKUDA 98C gave the 99% confidence interval, $\sin^2 2\theta > 0.73$ and $3 \times 10^{-4} < \Delta(m^2) < 8.5 \times 10^{-3} \text{ eV}^2$. FUKUDA 99C also tested the $\nu_{\mu} \rightarrow \nu_{e}$ hypothesis, and concluded that it is not favored.
- ¹⁴³ HATAKEYAMA 98 obtained this result from a total of 2456 live days of upward-going muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muon is $(1.94 \pm 0.10^{+0.06}_{-0.06}) \times 10^{-13}$ cm⁻² s⁻¹ sr⁻¹. This is compared to the expected flux of (2.46 \pm 0.54 (theoretical error)) \times 10⁻¹³ cm⁻²s⁻¹ sr⁻¹. For the $\nu_{\mu} \rightarrow$ $u_{ au}$ hypothesis, the best fit inside the physical region was obtained at $\sin^2 2 heta = 1.0$ and $\Delta(m^2) = 3.2 \times 10^{-3} \text{ eV}^2$.
- A(m) = 3.2 × 10 eV 14 HATAKEYMAN 98 obtained this result from a combined analysis of Kamiokande's con-tained events (FUKUDA 94) and upward going muon events. The best fit was obtained at $\sin^2 2\theta = 0.95$ and $\Delta(m^2) = 1.3 \times 10^{-2} \text{ eV}^2$
- 145 CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cherenkov detector with visible energy > 0.95 GeV.
- 146 FUKUDA 94 obtained this result by a combined analysis of sub-and multi-GeV atmos-pheric neutrino events in Kamiokande.
- pheric neutrino events in κ-annowance. 17 BECKER-SZENDY 92 uses upward-going muons to search for atmospheric $ν_μ$ oscilla-tions. The fraction of muons which stop in the detector is used to search for deviations in the expected spectrum. No evidence for oscillations is found.
- 148 BERGER 90B uses the Frejus detector to search for oscillations of atmospheric neutrinos Bounds are for both neutrino and antineutrino oscillations.

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$ ($\nu_{\mu} \leftrightarrow \nu_{\tau}$)

VALUE (10-5 eV2)	CL%	DOCUMENT ID		TECN
• • • We do not use the	followi	ng data for averages,	fits	, limits, etc. • • •
$25 < \Delta(m^2) < 900$	90	¹⁴⁹ AMBROSIO	03	MCRO
$60 < \Delta(m^2) < 700$	90	¹⁵⁰ AMBROSIO	03	MCRO
$60 < \Delta(m^2) < 1500$	90	¹⁵¹ AMBROSIO	01	MCRO
$100 < \Delta(m^2) < 600$	90	¹⁵² AMBROSIO	01	MCRO
> 35	90	¹⁵³ AMBROSIO	00	MCRO
$100 < \Delta(m^2) < 5000$	90	¹⁵⁴ FUK UDA	99C	SKAM
$150 < \Delta(m^2) < 1500$	90	¹⁵⁵ FUK UDA	99D	SKAM
$50 < \Delta(m^2) < 600$	90	¹⁵⁶ AMBROSIO	98	MCRO
$50 < \Delta(m^2) < 600$	90	¹⁵⁷ FUK UDA	98C	SKAM
$55 < \Delta(m^2) < 5000$	90	158 HATAK EYAMA	98	КАМІ
$400 < \Delta(m^2) < 2300$	90	159 HATAK EYAMA	98	КАМІ
<1500		¹⁶⁰ CLARK	97	IMB
$500 < \Delta(m^2) < 2500$	90	¹⁶¹ FUK UDA	94	КАМІ
< 35 0	90	¹⁶² BERGER	90B	FREJ
140				

 $^{149} {\sf AMBROSIO}$ 03 obtained this result on the basis of the ratio $R{=}N_{\sf low}/N_{\sf high}$, where $N_{\sf low}$ and $N_{\sf high}$ are the number of upward through-going muon events with reconstructed

- and Whigh are the number of upward through-going much events with reconstructed neutrino energy <30 GeV and >130 GeV, respectively. The data came from the full detector run started in 1994. The method of FELDMAN 98 is used to obtain the limits. 150 AMBROSIO 03 obtained this result by using the ratio R and the angular distribution of the upward through-going muons. R is given by $N_{\rm low}/N_{\rm high}$, where $\bar{N}_{\rm low}$ and $N_{\rm high}$ are the number of events with reconstructed neutrino energy <30 and >130 GeV, respectively. The angular distribution is reported in AMBROSIO 01. The method of FELDMAN 98
- The angular distribution is reported in AMBROSIO 11. The method of FELDMAN 96 is used to obtain the limits. ¹³¹ AMBROSIO 01 result is based on the angular distribution of upward through going muon tracks with $E_{\mu} > 1$ GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration, is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits.
- used to obtain the imits. 152 AMBROSIO 01 result is based on the angular distribution and normalization of upward through-going muon tracks with $E_{\mu} > 1$ GeV. The best fit is obtained outside the through-going muon tracks with E_{μ} > 1 GeV. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits. See the previous footnote.
- ¹⁵³ AM BROSIO 00 obtained this result by using the upgoing partially contained event sample and the combined samples of downgoing partially contained events and upgoing stopping events. These data came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to these samples is 4 GeV. The maximum of the χ^2 probability (97%) occurs at maximal mixing and $\Delta(m^2) = (1 \sim 20) \times 10^{-3} \text{ eV}^2$.
- 154 FUKUDA 99c obtained this result from a total of 537 live days of upward through going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold of $E_{\mu}>1.6$ GeV, the observed flux of upward through-going muon is (1.74 \pm 0.07 \pm $(0.02) \times 10^{-13}$ cm⁻²s⁻¹ sr⁻¹. The zenith-angle dependence of the flux does not agree
- with no-oscillation predictions. For the $u_{\mu}
 ightarrow
 u_{ au}$ hypothesis, FUKUDA 99C obtained
- with no-oscillation predictions. For the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis, FUKUDA 99C obtained the best fit at $\sin^2 2\theta = 0.95$ and $\Delta(m^2) = 5.9 \times 10^{-3} \text{ eV}^2$. FUKUDA 99C also reports 68% and 99% confidence-level allowed regions for the same hypothesis. ¹⁵⁵ FUKUDA 99D obtained this result from a simultaneous fitting to zenith angle distri-butions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is $(0.39 \pm 0.04 \pm 0.02) \times 10^{-13} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$. The flux of upward through-ration from the through and through 2005 for the same hypothesis. Further the through-ratio from the through the form FUKUDA 0005 for the hypothesis. (0.73 ± 0.16 (incorrect entrol)) × 10 cm s si . The not of upward through going muons is taken from FUKUDA 99C. For the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis, FUKUDA 99D obtained the best fit in the physical region at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 3.9 \times 10^{-3} \text{ eV}^2$. FUKUDA 90 also reports 68% and 99% confidence-level allowed regions for the same hypothesis. FUKUDA 99D further reports the result of the oscillation analysis using the zenith-angle dependence of upward-stopping/through-going flux ratio. The best fit in the physical region is obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 3.1 \times 10^{-3} \, {\rm eV}^2$
- 156 AMBROSIO 98 result is only 17% probable at maximum because of relatively low flux
- for $\cos\theta < -0.8$ 157 EUKUDA 98c obtained this result by an analysis of 33.0 kton yr atmospheric-neutrino data which include the 25.5 kton yr data used by EUKUDA 98 (sub-GeV) and FUKUDA 98E (multi-GeV). Inside the physical region, the best fit was obtained at $\sin^2 2\theta = 1.0$ and $\Delta(m^2) = 2.2 \times 10^{-3} \text{ eV}^2$. In addition, FUKUDA 98C gave the 99% confidence interval, $\sin^2 2\theta > 0.73$ and $3 \times 10^{-4} < \Delta(m^2) < 8.5 \times 10^{-3}$ eV². FUKUDA 980 also tested the $u_{\mu}
 ightarrow
 u_{e}$ hypothesis, and concluded that it is not favored.
- 158 HATAKEYAMA 98 obtained this result from a total of 2456 live days of upward-going muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muon is $(1.94 \pm 0.10^{+0.06}_{-0.06}) \times 10^{-13}$ cm⁻²s⁻¹sr⁻¹. This is compared to the expected flux of (2.46 \pm 0.54 (theoretical error)) $\times 10^{-13}$ cm⁻² s⁻¹ sr⁻¹. For the $\nu_{\mu} \rightarrow$ $u_{ au}$ hypothesis, the best fit inside the physical region was obtained at $\sin^2 2 heta = 1.0$ and $\dot{\Delta}(m^2) = 3.2 \times 10^{-3} \text{ eV}^2$.
- ¹⁵⁹HATAKEYAMA 98 obtained this result from a combined analysis of Kamiokande's contained events (FUKUDA 94) and upward-going muon events. The best fit was obtained at $\sin^22\theta{=}0.95$ and $\Delta(m^2){=}1.3\times10^{-2}\,eV^2.$
- 160 CLARK 97 obtained this result by an analysis of fully contained and partially contained events in the IMB water-Cherenkov detector with visible energy > 0.95 GeV.
- 161 FUKUDA 94 obtained this result by a combined analysis of sub-and multi-GeV atmospheric neutrino events in Kamiokande. ¹⁶²BERGER 90B uses the Frejus detector to search for oscillations of atmospheric neutrinos.
- Bounds are for both neutrino and antineutrino oscillations

$\Delta(m^2) \text{ for sin}^2(2\theta) = 1 \ (\nu_{\mu} \rightarrow \nu_s)$ $\nu_s \text{ means } \nu_{\nu} \text{ or any sterile (noninteracting) } \nu.$					
VALUE (10 - 5 eV2)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	ne follo∖	wing data for average:	s, fit	s, limits,	etc. • • •
<3000 (or <550)	90	¹⁶³ ОҮАМА	89	камі	Water Cherenkov
< 4.2 or > 54.	90	BIONTA	88	IMB	Flux has $\nu_{\mu}, \overline{\nu}_{\mu}, \nu_{e}$
1/3					and \overline{v}_e

 163 OYAMA 89 gives a range of limits, depending on assumptions in their analysis. They argue that the region $\Delta(m^2)=(100-1000)\times 10^{-5}~{\rm eV}^2$ is not ruled out by any data for large mixing.

Search for $\nu_{\mu} \rightarrow \nu_s$

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follow	ving data for average	s, fits	, limits,	etc. • • •
	¹⁶⁴ AMBROSIO	01	MCRO	matter effects
	¹⁶⁵ FUKUDA	00	SKAM	neutral currents + mat- ter effects

- ¹⁶⁴AMBROSIO 01 tested the pure 2-flavor $\nu_{\mu} \rightarrow \nu_{s}$ hypothesis using matter effects which change the shape of the zenith-angle distribution of upward through-going muons. With maximum mixing and $\Delta(m^2)$ around 0.0024 eV², the $\nu_{\mu} \rightarrow \nu_{s}$ oscillation is disfavored with 99% confidence level with respect to the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis.
- ¹⁶⁵ FUKUDA 00 tested the pure 2-flavor $\nu_{\mu} \rightarrow \nu_{s}$ hypothesis using three complementary atmospheric-neutrino data samples. With this hypothesis, zenith-angle distributions are expected to show characteristic behavior due to neutral currents and matter effects. In the $\Delta(m^2)$ and $\sin^2 2\theta$ region preferred by the Super-Kamiokande data, the $\nu_{\mu} \rightarrow \nu_{s}$ hypothesis is rejected at the 99% confidence level, while the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis consistently fits all of the data sample.

(D) Solar v Experiments

SOLAR NEUTRINOS

Revised November 2003 by K. Nakamura (KEK, High Energy Accelerator Research Organization, Japan).

1. Introduction

The Sun is a main-sequence star at a stage of stable hydrogen burning. It produces an intense flux of electron neutrinos as a consequence of nuclear fusion reactions whose combined effect is

$$4p \rightarrow {}^{4}\text{He} + 2e^{+} + 2\nu_{e}.$$
 (1)

Positrons annihilate with electrons. Therefore, when considering the solar thermal energy generation, a relevant expression is

$$4p + 2e^- \rightarrow {}^4\text{He} + 2\nu_e + 26.73 \text{ MeV} - E_{\nu}$$
, (2)

where E_{ν} represents the energy taken away by neutrinos, with an average value being $\langle E_{\nu} \rangle \sim 0.6$ MeV. The neutrinoproducing reactions which are at work inside the Sun are enumerated in the first column in Table 1. The second column in Table 1 shows abbreviation of these reactions. The energy spectrum of each reaction is shown in Fig. 1.

Observation of solar neutrinos directly addresses the theory of stellar structure and evolution, which is the basis of the standard solar model (SSM). The Sun as a well-defined neutrino source also provides extremely important opportunities to investigate nontrivial neutrino properties such as nonzero mass and mixing, because of the wide range of matter density and the great distance from the Sun to the Earth.

A pioneering solar neutrino experiment by Davis and collaborators using ³⁷Cl started in the late 1960's. From the very beginning of the solar-neutrino observation [1], it was recognized that the observed flux was significantly smaller than the SSM prediction, provided nothing happens to the electron neutrinos after they are created in the solar interior. This deficit has been called "the solar-neutrino problem."

459 Lepton Particle Listings Neutrino mixing

In spite of the challenges by the chlorine and gallium radiochemical experiments (GALLEX, SAGE, and GNO) and water-Cherenkov experiments (Kamiokande and Super-Kamiokande), the solar-neutrino problem had persisted for more than 30 years. However, there have been remarkable developments in the past few years and now the solar-neutrino problem has been finally solved.

In 2001, the initial result from SNO (Sudbury Neutrino Observatory) [2], a water Cherenkov detector with heavy water, on the solar-neutrino flux measured via charged-current (CC) reaction, $\nu_e d \rightarrow e^- pp$, combined with the Super-Kamiokande's high-statistics flux measurement via νe elastic scattering [3], provided direct evidence for flavor conversion of solar neutrinos [2]. Later in 2002, SNO's measurement of the neutral-current (NC) rate, $\nu d \rightarrow \nu pn$, and the updated CC result further strengthened this conclusion [4].

The most probable explanation which can also solve the solar-neutrino problem is neutrino oscillation. At this stage, the LMA (large mixing angle) solution was the most promising. However, at 3σ confidence level, LOW (low probability or low mass) and/or VAC (vacuum) solutions were allowed depending on the method of analysis (see Sec. 3.6). LMA and LOW are solutions of neutrino oscillation in matter [5,6] and VAC is a solution of neutrino oscillation in vacuum. Subsequently, experiments have excluded vacuum oscillations and there exists strong evidence that matter effects are required in the solution to the solar-neutrino problem.

In December 2002, KamLAND (Kamioka Liquid Scintillator Anti-Neutrino Detector), a terrestrial $\bar{\nu}_e$ disappearance experiment using reactor neutrinos, observed clear evidence of neutrino oscillation with the allowed parameter region overlapping with the parameter region of the LMA solution [7]. Assuming CPT invariance, this result directly implies that the true solution of the solar ν_e oscillation has been determined to be LMA. A combined analysis of all the solar-neutrino data and KamLAND data significantly constrained the allowed parameter region. Inside the LMA region, the allowed region splits into two bands with higher Δm^2 and lower Δm^2 .

More recently, in September, 2003, SNO reported [8] results on solar-neutrino fluxes observed with NaCl added in heavy water: this improved the sensitivity for the detection of the NC reaction. A global analysis of all the solar neutrino data combined with the KamLAND data further reduced the allowed region to the lower Δm^2 band with the best fit point of $\Delta m^2 = 7.1 \times 10^{-5} \text{ eV}^2$ and $\theta = 32.5$ degrees [8].

2. Solar Model Predictions

A standard solar model is based on the standard theory of stellar evolution. A variety of input information is needed in the evolutionary calculations. The most elaborate SSM, BP2000 [9], is presented by Bahcall *et al.* who define their SSM as the solar model which is constructed with the best available physics and input data. Though they used no helioseismological constraints in defining the SSM, the calculated sound speed as a function

of the solar radius shows an excellent agreement with the helioseismologically determined sound speed to a precision of 0.1% rms throughout essentially the entire Sun. This greatly strengthens the confidence in the solar model. The BP2000 predictions [9] for the flux and contributions to the event rates in chlorine and gallium solar-neutrino experiments from each neutrino-producing reaction are listed in Table 1. The solarneutrino spectra shown in Fig. 1 also resulted from the BP2000 calculations [9].

Other recent solar-model predictions for solar-neutrino fluxes were given by Turck-Chieze *et al.* [10] Their model is based on the standard theory of stellar evolution where the best physics available is adopted, but some fundamental inputs such as the *pp* reaction rate and the heavy-element abundance in the Sun are seismically adjusted within the commonly estimated errors aiming at reducing the residual differences between the helioseismologically-determined and the model-calculated sound speeds. Their predictions for the event rates in chlorine and gallium solar-neutrino experiments as well as ⁸B solar-neutrino flux are shown in the last line in Table 2, where the BP2000 predictions [9] are also shown in the same format. As is apparent from this table, the predictions of the two models are remarkably consistent.

The SSM predicted ⁸B solar-neutrino flux is proportional to the low-energy cross section factor $S_{17}(0)$ for the ⁷Be(p, γ)⁸B reaction. The BP2000 [9] and Turck-Chieze *et al.* [10] models adopted $S_{17}(0) = 19^{+4}_{-2}$ eV-b. Inspired by the recent precise measurement of the low-energy cross section for the ⁷Be(p, γ)⁸B reaction by Junghans *et al.* [11], Bahcall *et al.* [12] calculated the (BP2000 + New ⁸B) SSM predictions using $S_{17}(0) =$ (22.3 ± 0.9) eV-b. The results are: a ⁸B solar-neutrino flux of $5.93(1.00^{+0.14}_{-0.15}) \times 10^{6}$ cm⁻² s⁻¹, a chlorine capture rate of $8.59^{+1.1}_{-1.2}$ SNU, and a gallium capture rate of 130^{+9}_{-7} SNU.

Table 1: Neutrino-producing reactions in the Sun (first column) and their abbreviations (second column). The neutrino fluxes and event rates in chlorine and gallium solar-neutrino experiments predicted by Bahcall, Pinsonneault and Basu [9] are listed in the third, fourth, and fifth columns respectively.

		BP2000 [9]				
Reaction	Abbr.	$Flux (cm^{-2} s^{-1})$	$Cl (SNU^*)$	$Ga (SNU^*)$		
$pp ightarrow d e^+ u$	pp	$5.95(1.00^{+0.01}_{-0.01}) \times 10^{10}$	_	69.7		
$pe^-p \rightarrow d \nu$	pep	$1.40(1.00\substack{+0.015\\-0.015})\times10^{8}$	0.22	2.8		
$^{3}\mathrm{He}~p ightarrow {}^{4}\mathrm{He}~e^{+} u$	hep	9.3×10^3	0.04	0.1		
⁷ Be $e^- \rightarrow$ ⁷ Li $\nu + (\gamma)$	$^7\mathrm{Be}$	$4.77(1.00^{+0.10}_{-0.10}) \times 10^{9}$	1.15	34.2		
$^8\mathrm{B}$ \rightarrow $^8\mathrm{Be}^*$ $e^+\nu$	$^{8}\mathrm{B}$	$5.05(1.00^{+0.20}_{-0.16}) \times 10^{6}$	5.76	12.1		
$^{13}\mathrm{N} \rightarrow ^{13}\mathrm{C}~e^+\nu$	$^{13}\mathrm{N}$	$5.48(1.00^{+0.21}_{-0.17}) \times 10^{8}$	0.09	3.4		
$^{15}\mathrm{O} \rightarrow ^{15}\mathrm{N}~e^+\nu$	$^{15}\mathrm{O}$	$4.80(1.00^{+0.25}_{-0.19}) \times 10^{8}$	0.33	5.5		
${}^{17}\mathrm{F} \rightarrow {}^{17}\mathrm{O}~e^+\nu$	$^{17}\mathrm{F}$	$5.63(1.00^{+0.25}_{-0.25}) \times 10^{6}$	0.0	0.1		
Tot al			$7.6^{+1.3}_{-1.1}$	128^{+9}_{-7}		

* 1 SNU (Solar Neutrino Unit) = 10^{-36} captures per atom per second.

Figure 1: The solar neutrino spectrum predicted by the standard solar model. The neutrino fluxes from continuum sources are given in units of number $\rm cm^{-2}s^{-1}MeV^{-1}$ at one astronomical unit, and the line fluxes are given in number $\rm cm^{-2}s^{-1}$. Spectra for the *pp* chain, shown by the solid curves, are courtesy of J.N. Bahcall (2001). Spectra for the CNO chain are shown by the dotted curves, and are also courtesy of J.N. Bahcall (1995). See full-color version on color pages at end of book.

3. Solar Neutrino Experiments

So far, seven solar-neutrino experiments have published results. The most recent published results on the average event rates or flux from these experiments are listed in Table 2 and compared to the two recent solar-model predictions.

3.1. Radiochemical Experiments

Radiochemical experiments exploit electron neutrino absorption on nuclei followed by their decay through orbital electron capture. Produced Auger electrons are counted.

The Homestake chlorine experiment in USA uses the reaction

$$^{37}\text{Cl} + \nu_e \rightarrow ^{37}\text{Ar} + e^- \text{ (threshold 814 keV)}.$$
 (3)

Three gallium experiments (GALLEX and GNO at Gran Sasso in Italy and SAGE at Baksan in Russia) use the reaction

$$^{71}\text{Ga} + \nu_e \rightarrow ^{71}\text{Ge} + e^- \text{ (threshold 233 keV)}.$$
 (4)

The produced ³⁷Ar and ⁷¹Ge atoms are both radioactive, with half lives ($\tau_{1/2}$) of 34.8 days and 11.43 days, respectively. After an exposure of the detector for two to three times $\tau_{1/2}$, the reaction products are chemically extracted and introduced into a low-background proportional counter, where they are counted for a sufficiently long period to determine the exponentially decaying signal and a constant background.

Solar-model calculations predict that the dominant contribution in the chlorine experiment comes from $^8{\rm B}$ neutrinos, but

Table 2: Recent results from the seven solar-neutrino experiments and a comparison with standard solar-model predictions. Solar model calculations are also presented. The first and the second errors in the experimental results are the statistical and systematic errors, respectively.

	$^{37}\mathrm{Cl}{\rightarrow}^{37}\mathrm{Ar}$	$^{71}\mathrm{Ga}{\rightarrow}^{71}\mathrm{Ge}$	${}^{8}\mathrm{B} \ \nu \ \mathrm{flux}$
	(SNU)	(SNU)	$(10^6 {\rm cm}^{-2} {\rm s}^{-1})$
Homestake			
(CLEVELAND 98)[13]	$2.56 \pm 0.16 \pm 0.1$	6 —	—
GALLEX			
(HAMPEL 99)[14]	—	$77.5 \pm 6.2^{+4.5}_{-4.5}$	-
GNO			
(ALTMANN 00)[15]	—	$65.8^{+10.2+3.4}_{-9.6-3.6}$	—
SAGE			
(ABDURASHI02)[16]	—	$70.8^{+5.3+3.7}_{-5.2-3.2}$	—
Kamiokande			
(FUKUDA 96)[17]	—	_	$2.80 \pm 0.19 \pm 0.33^{\circ}$
Super-K amiokande			
(FUKUDA 02)[18]	_	_	$2.35 \pm 0.03^{+0.07}_{-0.06}{}^{\dagger}$
SNO (pure D ₂ O)			
(AHMAD 02)[4]	—	_	$1.76^{+0.06}_{-0.05}\pm0.09^{\ddagger}$
	—	_	$2.39^{+0.24}_{-0.23}\pm0.12^{\dagger}$
	—	_	$5.09^{+0.44+0.46}_{-0.43-0.43}$
SNO (NaCl in D ₂ O)			
(AHMED 03)[8]	—	_	$1.59^{+0.08}_{-0.07}^{+0.06}_{-0.08}$
	—	_	$2.21^{+0.31}_{-0.26}\pm0.10^{\dagger}$
	—	—	$5.21 \pm 0.27 \pm 0.38$
(BAHCALL 01)[9]	$7.6^{+1.3}_{-1.1}$	128^{+9}_{-7}	$5.05(1.00\substack{+0.20\\-0.16})$
(TURCK-CHIEZE 01)[10	$]$ 7.44 \pm 0.96	127.8 ± 8.6	4.95 ± 0.72

* Flux measured via the neutral-current reaction.

^{\dagger} Flux measured via νe elastic scattering.

[‡] Flux measured via the charged-current reaction.

⁷Be, *pep*, ¹³N, and ¹⁵O neutrinos also contribute. At present, the most abundant *pp* neutrinos can be detected only in gallium experiments. Even so, according to the solar-model calculations, almost half of the capture rate in the gallium experiments is due to other solar neutrinos.

The Homestake chlorine experiment was the first to attempt the observation of solar neutrinos. Initial results obtained in 1968 showed no events above background with upper limit for the solar-neutrino flux of 3 SNU [1]. After introduction of an improved electronics system which discriminates signal from background by measuring the rise time of the pulses from proportional counters, a finite solar-neutrino flux has been observed since 1970. The solar-neutrino capture rate shown in Table 2 is a combined result of 108 runs between 1970 and 1994 [13]. It is only about 1/3 of the BP2000 prediction [9].

GALLEX presented the first evidence of pp solar-neutrino observation in 1992 [19]. Here also, the observed capture rate is significantly less than the SSM prediction. SAGE initially reported very low capture rate, $20^{+15}_{-20} \pm 32$ SNU, with a 90% confidence-level upper limit of 79 SNU [20]. Later, SAGE observed similar capture rate to that of GALLEX [21]. Both

461 Lepton Particle Listings Neutrino mixing

GALLEX and SAGE groups tested the overall detector response with intense man-made 51 Cr neutrino sources, and observed good agreement between the measured 71 Ge production rate and that predicted from the source activity, demonstrating the reliability of these experiments. The GALLEX Collaboration formally finished observations in early 1997. Since April, 1998, a newly defined collaboration, GNO (Gallium Neutrino Observatory) resumed the observations.

3.2 Kamiokande and Super-Kamiokande

Kamiokande and Super-Kamiokande in Japan are real-time experiments utilizing νe scattering

$$\nu_x + e^- \to \nu_x + e^- \tag{5}$$

in a large water-Cherenkov detector. It should be noted that the reaction Eq. (5) is sensitive to all active neutrinos, x = e, μ , and τ . However, the sensitivity to ν_{μ} and ν_{τ} is much smaller than the sensitivity to ν_{e} , $\sigma(\nu_{\mu,\tau}e) \approx 0.16 \sigma(\nu_{e}e)$. The solar-neutrino flux measured via ν_{e} scattering is deduced assuming no neutrino oscillations.

These experiments take advantage of the directional correlation between the incoming neutrino and the recoil electron. This feature greatly helps the clear separation of the solar-neutrino signal from the background. Due to the high thresholds (7 MeV in Kamiokande and 5 MeV at present in Super-Kamiokande) the experiments observe pure ⁸B solar neutrinos because *hep* neutrinos contribute negligibly according to the SSM.

The Kamiokande-II Collaboration started observing ⁸B solar neutrinos at the beginning of 1987. Because of the strong directional correlation of νe scattering, this result gave the first direct evidence that the Sun emits neutrinos [22] (no directional information is available in radiochemical solar-neutrino experiments). The observed solar-neutrino flux was also significantly less than the SSM prediction. In addition, Kamiokande-II obtained the energy spectrum of recoil electrons and the fluxes separately measured in the daytime and nighttime. The Kamiokande-II experiment came to an end at the beginning of 1995.

Super-Kamiokande is a 50-kton second-generation solarneutrino detector, which is characterized by a significantly larger counting rate than the first-generation experiments. This experiment started observation in April 1996. The solar-neutrino flux was measured as a function of zenith angle and recoil-electron energy [18]. The average solar-neutrino flux was smaller than, but consistent with, the Kamiokande-II result [17]. The observed day-night asymmetry was $A_{\rm DN} = \frac{{\rm Day} - {\rm Night}}{0.5({\rm Day} + {\rm Night})} =$ $-0.021 \pm 0.020^{+0.013}_{-0.012}$. No indication of spectral distortion was observed.

In November 2001, Super-Kamiokande suffered from an accident in which substantial number of photomultiplier tubes were lost. The detector was rebuilt within a year with about half of the original number of photomultiplier tubes. The experiment

with the detector before the accident is now called Super-Kamiokande-I, and that after the accident is called Super-Kamiokande-II.

3.3 SNO

In 1999, a new real time solar-neutrino experiment, SNO, in Canada started observation. This experiment uses 1000 tons of ultra-pure heavy water (D₂O) contained in a spherical acrylic vessel, surrounded by an ultra-pure H₂O shield. SNO measures ⁸B solar neutrinos via the reactions

$$\nu_e + d \to e^- + p + p \tag{6}$$

 and

$$\nu_x + d \to \nu_x + p + n, \tag{7}$$

as well as νe scattering, Eq. (5). The CC reaction, Eq. (6), is sensitive only to electron neutrinos, while the NC reaction, Eq. (7), is sensitive to all active neutrinos.

The Q-value of the CC reaction is -1.4 MeV and the electron energy is strongly correlated with the neutrino energy. Thus, the CC reaction provides an accurate measure of the shape of the ⁸B solar-neutrino spectrum. The contributions from the CC reaction and νe scattering can be distinguished by using different $\cos \theta_{\odot}$ distributions where θ_{\odot} is the angle of the electron momentum with respect to the direction from the Sun to the Earth. While the νe scattering events have a strong forward peak, CC events have an approximate angular distribution of $1 - 1/3 \cos \theta_{\odot}$.

The threshold of the NC reaction is 2.2 MeV. In the pure D₂O, the signal of the NC reaction is neutron capture in deuterium, producing a 6.25-MeV γ -ray. In this case, the capture efficiency is low and the deposited energy is close to the detection threshold of 5 MeV. In order to enhance both the capture efficiency and the total γ -ray energy (8.6 MeV), 2 tons of NaCl were added to the heavy water in the second phase of the experiment. In addition, installation of discrete ³He neutron counters is planned for the NC measurement in the third phase.

In 2001, SNO published the initial results on the measurement of the ⁸B solar-neutrino flux via CC reaction [2]. The electron energy spectrum and the $\cos\theta_{\odot}$ distribution were also measured. The spectral shape of the electron energy was consistent with the expectations for an undistorted ⁸B solar-neutrino spectrum.

SNO also measured the ⁸B solar-neutrino flux via νe scattering. Though the latter result had poor statistics, it was consistent with the high-statistics Super-Kamiokande result. Thus, the SNO group compared their CC result with Super-Kamiokande's νe scattering result, and obtained evidence of an active non- ν_e component in the solar-neutrino flux, as further described in Sec. 3.5.

Later, in April, 2002, SNO reported the first result on the ${}^{8}B$ solar-neutrino flux measurement via NC reaction [4]. The total flux measured via NC reaction was consistent with the solar-model predictions (see Table 2). Also, the SNO's CC and νe scattering results were updated [4]. These results were consistent with the earlier results [2].

Further, the day and night energy spectra were measured and the day-night asymmetry of the ν_e flux measured with CC events was presented [23]. Assuming an undistorted ⁸B spectrum, the asymmetry was $A_{\rm DN} = \frac{\rm Day - Night}{0.5(\rm Day + Night)} =$ $-0.140 \pm 0.063^{+0.015}_{-0.014}$. With an additional constraint of no asymmetry for the total flux of active neutrinos, the asymmetry was found to be $-0.070 \pm 0.049^{+0.013}_{-0.012}$.

The SNO Collaboration made a global analysis (see Sect. 3.6) of the SNO's day and night energy spectra together with the data from other solar-neutrino experiments. The results strongly favored the LMA solution, with the LOW solution allowed at 99.5% confidence level [23]. (In most of the similar global analyses, the VAC solution was also allowed at 99.9 \sim 99.73% confidence level, see Sect. 3.6.) For the LMA solution (and also for the LOW solution), the maximal mixing was excluded at $> 3\sigma$.

Recently, in September, 2003, SNO has released the results of solar-neutrino flux measurements with dissolved NaCl in the heavy water. The results from the "salt phase" are described in Sect. 5.

Figure 2: Fluxes of ⁸B solar neutrinos, $\phi(\nu_e)$, and $\phi(\nu_{\mu \text{ or } \tau})$, deduced from the SNO's charged-current (CC), ν_e elastic scattering (ES), and neutral-current (NC) results for pure D₂O. The standard solar model prediction [9] is also shown. The bands represent the 1 σ error. The contours show the 68%, 95%, and 99% joint probability for $\phi(\nu_e)$ and $\phi(\nu_{\mu \text{ or } \tau})$. This figure is courtesy of K.T. Lesko (LBNL). See full-color version on color pages at end of book.

3.4 Comparison of Experimental Results with Solar-Model Predictions

It is clear from Table 2 that the results from all the solarneutrino experiments, except the SNO's NC result, indicate significantly less flux than expected from the BP2000 SSM [9] and the Turck-Chieze *et al.* solar model [10].

There has been a consensus that a consistent explanation of all the results of solar-neutrino observations is unlikely within the framework of astrophysics using the solar-neutrino spectra given by the standard electroweak model. Many authors made solar model-independent analyses constrained by the observed solar luminosity [24–28], where they attempted to fit the measured solar-neutrino capture rates and ⁸B flux with normalization-free, undistorted energy spectra. All these attempts only obtained solutions with very low probabilities.

The data therefore suggest that the solution to the solarneutrino problem requires nontrivial neutrino properties.

3.5 Evidence for Solar Neutrino Oscillations

Denoting the ⁸B solar-neutrino flux obtained by the SNO's CC measurement as $\phi_{\text{SNO}}^{\text{CC}}(\nu_e)$ and that obtained by the Super-Kamiokande νe scattering as $\phi_{\text{SK}}^{\text{ES}}(\nu_x)$, $\phi_{\text{SNO}}^{\text{CC}}(\nu_e) = \phi_{\text{SK}}^{\text{ES}}(\nu_x)$ is expected for the standard neutrino physics. However, SNO's initial data [2] indicated

$$\phi_{\rm SK}^{\rm ES}(\nu_x) - \phi_{\rm SNO}^{\rm CC}(\nu_e) = (0.57 \pm 0.17) \times 10^6 \ {\rm cm}^{-2} {\rm s}^{-1}.$$
(8)

The significance of the difference was $> 3\sigma$, implying direct evidence for the existence of a non- ν_e active neutrino flavor component in the solar-neutrino flux. A natural and most probable explanation of neutrino flavor conversion is neutrino oscillation. Note that both the SNO [2] and Super-Kamiokande [3] flux results were obtained by assuming the standard ⁸B neutrino spectrum shape. This assumption was justified by the measured energy spectra in both of the experiments.

The SNO's results for pure D_2O , reported in 2002 [4], provided stronger evidence for neutrino oscillation than Eq. (8). The fluxes measured with CC, ES and NC events were

$$\phi_{\rm SNO}^{\rm CC}(\nu_e) = (1.76^{+0.06}_{-0.05} \pm 0.09) \times 10^6 \rm cm^{-2} \rm s^{-1} , \qquad (9)$$

$$\phi_{\text{SNO}}^{\text{ES}}(\nu_x) = (2.39^{+0.24}_{-0.23} \pm 0.12) \times 10^6 \text{cm}^{-2} \text{s}^{-1}$$
, (10)

$$\phi_{\rm SNO}^{\rm NC}(\nu_x) = (5.09^{+0.44}_{-0.43}^{+0.46}_{-0.43}) \times 10^6 \rm cm^{-2} \rm s^{-1} \ . \tag{11}$$

Eq. (11) is a mixing-independent result and therefore tests solar models. It shows very good agreement with the ⁸B solarneutrino flux predicted by the BP2000 SSM [9] and that predicted by Turck-Chieze *et al.* model [10]. The fluxes $\phi(\nu_e)$ and $\phi(\nu_{\mu \text{ or } \tau})$ deduced from these results were remarkably consistent as can be seen in Fig. 2. The resultant flux of non- ν_e active neutrinos, $\phi(\nu_{\mu \text{ or } \tau})$, was

$$\phi(\nu_{\mu \text{ or } \tau}) = \left(3.41^{+0.66}_{-0.64}\right) \times 10^{6} \text{cm}^{-2} \text{s}^{-1}$$
(12)

where the statistical and systematic errors were added in quadrature. This $\phi(\nu_{\mu \text{ or } \tau})$ was 5.3 σ above 0.

3.6. Pre-KamLAND Global Analyses of the Solar Neutrino Data

A global analysis of the solar-neutrino data essentially uses all the independent solar-neutrino data that are available when the analysis is made to determine the globally allowed regions in terms of two neutrino oscillations either in vacuum or in matter. A number of pre-SNO global analyses of the solar-neutrino data yielded various solutions. (For example, see Ref. [29].) With the SNO's CC and NC measurements, various global analyses [30–36] showed that LMA was the most favored solution, but either or both of the two other solutions, LOW (low probability or low mass) and VAC (vacuum), were marginally allowed at 99.9 \sim 99.73% confidence level. These global analyses mostly differ in the statistical treatment of the data.

Typical parameter values $\left[34\right]$ corresponding to these solutions are

- LMA: $\Delta m^2 = 5.5 \times 10^{-5} \text{ eV}^2$, $\tan^2 \theta = 0.42$
- LOW: $\Delta m^2 = 7.3 \times 10^{-8} \text{ eV}^2$, $\tan^2 \theta = 0.67$
- VAC: $\Delta m^2 = 6.5 \times 10^{-10} \text{ eV}^2$, $\tan^2 \theta = 1.33$.

It should be noted that all these solutions have large mixing angles. SMA (small mixing angle) solution (typical parameter values [34] are $\Delta m^2 = 5.2 \times 10^{-6} \text{ eV}^2$ and $\tan^2 \theta = 1.1 \times 10^{-3}$) was once favored, but after SNO it was excluded at $> 3\sigma$ [30-36].

4. KamLAND and Combined Oscillation Analysis

KamLAND is a 1-kton ultra-pure liquid scintillator detector located at the old Kamiokande's site in Japan. Although the ultimate goal of KamLAND is observation of ⁷Be solar neutrinos with much lower energy threshold, the initial phase of the experiment is a long baseline (flux-weighted average distance of ~ 180 km) neutrino oscillation experiment using $\bar{\nu}_e$'s emitted from power reactors. The reaction $\bar{\nu}_e + p \rightarrow e^+ + n$ is used to detect reactor $\bar{\nu}_e$'s and delayed coincidence with 2.2 MeV γ -ray from neutron capture on a proton is used to reduce the backgrounds.

With the reactor $\bar{\nu}_e$'s energy spectrum (< 8 MeV) and an analysis threshold of 2.6 MeV, this experiment has a sensitive Δm^2 range down to ~ 10^{-5} eV². Therefore, if the LMA solution is the real solution of the solar neutrino problem, Kam-LAND should observe reactor $\bar{\nu}_e$ disappearance, assuming CPT invariance.

The first KamLAND results [7] with live time of 145 days were reported in December 2002. The ratio of observed to expected (assuming no neutrino oscillation) number of events was

$$\frac{N_{\rm obs} - N_{\rm BG}}{N_{\rm NoOsc}} = 0.611 \pm 0.085 \pm 0.041.$$
(13)

with obvious notation. This result shows clear evidence of event deficit expected from neutrino oscillation. The 95% confidence level allowed regions shown in Fig. 3 are obtained from the oscillation analysis with the observed event rates and positron spectrum shape. In this figure, the allowed region for the LMA solution from a global analysis [34] of the solar-neutrino data is also shown. There are two bands of regions allowed by both solar and KamLAND data. The LOW and VAC solutions are excluded by the KamLAND results.

A combined global solar and KamLAND analysis shows that the LMA is a unique solution to the solar neutrino problem with $> 5\sigma$ confidence level [37]. The 99% confidence

Figure 3: Excluded regions of neutrino oscillation parameters for the rate analysis and allowed regions for the combined rate and shape analysis from KamLAND at 95% confidence level. The 95% confidence-level allowed region of the LMA solution taken from a global analysis by Fogli *et al.* [34] is also shown. The star shows the best fit to the KamLAND data in the physical region: $\sin^2 2\theta = 1.0$ and $\Delta m^2 = 6.9 \times 10^{-5}$ eV². All regions look identical under $\theta \leftrightarrow (\pi/2 - \theta)$ except for the LMA region from solar-neutrino experiments. This figure is courtesy of K. Inoue (Tohoku University).

level allowed region from combined analyses [37–45] splits into two subregions. At $> 3\sigma$ these subregions become connected.

5. SNO Salt Phase Results

The SNO Collaboration recently reported the total ⁸B solarneutrino flux measured via NC reaction with NaCl dissolved in the detector heavy water [8]. The accuracy in the flux measurement has improved compared to the previous measurements thanks to the enhanced sensitivity to NC reactions (see Table 2). These results further constrain the allowed region of the LMA solution (see Fig. 4). A global analysis of the solarneutrino data combined with the KamLAND data has shrunk the allowed region to the lower Δm^2 band at 99% confidence level with the best fit point at $\Delta m^2 = 7.1^{+1.2}_{-0.6} \times 10^{-5}$ eV² and $\theta = 32.5^{+2.4}_{-2.3}$ degrees [8]. The maximal mixing is now excluded at $> 5\sigma$ confidence level [8]. Other combined analyses give consistent results [46–51].

Figure 4: Global neutrino oscillation contours given by the SNO Collaboration assuming that the ⁸B neutrino flux is free and the *hep* neutrino flux is fixed. (a) Solar global analysis. (b) Solar global + KamLAND. For details, see Ref. [8]. See full-color version on color pages at end of book.

6. Future Prospects

Now that the solar-neutrino problem has been essentially solved, what are the future prospects of the solar-neutrino experiments?

From the particle-physics point of view, precise determination of the oscillation parameters and search for non-standard physics such as a small admixture of a sterile component in the solar-neutrino flux will be still of interest. To determine Δm^2 more precisely, further KamLAND exposure to the reactor neutrinos will be most powerful [46,53]. More precise NC measurements by SNO will contribute in reducing the uncertainty of the mixing angle [51,53]. Measurements of the pp flux to an accuracy comparable to the quoted accuracy (±1%) of the SSM calculation will significantly improve the precision of the mixing angle [46,53].

An important task of the future solar neutrino experiments is further tests of the SSM by measuring monochromatic ⁷Be neutrinos and fundamental pp neutrinos. The ⁷Be neutrino flux will be measured by a new experiment, Borexino, at Gran Sasso via νe scattering in 300 tons of ultra-pure liquid scintillator with a detection threshold as low as 250 keV. KamLAND will also observe ⁷Be neutrinos if the detection threshold can be lowered to a level similar to that of Borexino.

For the detection of *pp* neutrinos, various ideas for the detection scheme have been presented. However, no experiments have been approved yet, and extensive R&D efforts are still needed for any of these ideas to prove its feasibility.

References

- D. Davis, Jr., D.S. Harmer, and K.C. Hoffman, Phys. Rev. Lett. 20, 1205 (1968).
- 2. Q.R. Ahmad et al., Phys. Rev. Lett. 87, 071301 (2001).
- 3. Y. Fukuda et al., Phys. Rev. Lett. 86, 5651 (2001).
- 4. Q.R. Ahmad et al., Phys. Rev. Lett. 89, 011301 (2002).
- 5. L. Wolfenstein, Phys. Rev. D17, 2369 (1978).

- S.P. Mikheyev and A. Yu. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985).
- 7. K. Eguchi et al., Phys. Rev. Lett. 90, 021802 (2003).
- 8. S.N. Ahmed *et al.*, nucl-ex/03090034.
- J.N. Bahcall, M.H. Pinsonneault, and S. Basu, Astrophys. J. 555, 990 (2001).
- 10. S. Turck-Chieze et al., Astrophys. J. 555, L69 (2001).
- 11. A.R. Junghans et al., Phys. Rev. Lett. 88, 041101 (2002).
- J.N. Bahcall, M.C. Gonzalez-Garcia, and C. Peña-Garay, JHEP 04, 007 (2002).
- 13. B.T. Cleveland et al., Ap. J. 496, 505 (1998).
- 14. W. Hampel et al., Phys. Lett. B447, 127 (1999).
- 15. M. Altmann et al., Phys. Lett. B490, 16 (2000).
- 16. J.N. Abdurashitov et al., Sov. Phys. JETP 95, 181 (2002).
- 17. Y. Fukuda et al., Phys. Rev. Lett. 77, 1683 (1996).
- 18. Y. Fukuda et al., Phys. Lett. B539, 179 (2002).
- 19. P. Anselmann et al., Phys. Lett. B285, 376 (1994).
- 20. A.I. Abazov et al., Phys. Rev. Lett. 67, 3332 (1991).
- 21. J.N. Abdurashitov et al., Phys. Lett. B328, 234 (1994).
- 22. K.S. Hirata et al., Phys. Rev. Lett. 63, 16 (1989).
- 23. Q.R. Ahmad *et al.*, Phys. Rev. Lett. **89**, 011302 (2002).
- N. Hata, S. Bludman, and P. Langacker, Phys. Rev. D49, 3622 (1994).
- 25. N. Hata and P. Langacker, Phys. Rev. D52, 420 (1995).
- 26. N. Hata and P. Langacker, Phys. Rev. D56, 6107 (1997).
- 27. S. Parke, Phys. Rev. Lett. 74, 839 (1995).
- K.M. Heeger and R.G.H. Robertson, Phys. Rev. Lett. 77, 3720 (1996).
- J.N. Bahcall, P.I. Krastev, and A.Yu. Smirnov, JHEP, 05, 015 (2001).
- 30. V. Barger et al., Phys. Lett. B537, 179 (2002).
- 31. A. Bandyopadhyay et al., Phys. Lett. B540, 14 (2002).
- J.N. Bahcall, C.M. Gonzalez-Garcia, and C. Peña-Garay, JHEP 07, 054 (2002).
- 33. A. Strumia et al., Phys. Lett. B541, 327 (2002).
- 34. G.L. Fogli et al., Phys. Rev. D66, 053010 (2002).
- P.C. de Holanda and A. Yu Smirnov, Phys. Rev. D66, 113005 (2002).
- 36. M. Maltoni et al., Phys. Rev. D67, 013011 (2003).
- J.N. Bahcall, M.C. Gonzalez-Garcia, and C. Peña-Garay, JHEP 02, 009 (2003).
- 38. G.L. Fogli et al., Phys. Rev. D67, 073002 (2003).
- 39. V. Barger and D. Marfatia Phys. Lett. B555, 144 (2003).
- 40. M. Maltoni et al., Phys. Rev. D67, 093003 (2003).
- 41. A. Bandyopadhyay et al., Phys. Lett. B559, 121 (2003).
- 42. P.C. de Holanda and A. Yu Smirnov, JCAP 02, 001 (2003).
- 43. A.B. Balantekin and H. Yüksel, J. Phys. G29, 665 (2003).
- 44. H. Nunokawa, W.J.C. Tevas, and R. Zukanovich Funchal, Phys. Lett. **B562**, 28 (2003).
- 45. P. Aliani et al., hep-ph/0212212.
- 46. J.N. Bahcall and C. Peña-Garay, hep-ph/0305159.
- 47. A.B. Balantekin and H. Yüksel, hep-ph/0309079.
- 48. G.L. Fogli et al., hep-ph/0309100.
- 49. M. Maltoni *et al.*, hep-ph/0309130.
- 50. P. Aliani *et al.*, hep-ph/0309156.
- 51. A. Bandyopadhyay et al., hep-ph/0309174.
- 52. P.C. de Holanda and A. Yu Smirnov, hep-ph/0309299.

 A. Bandyopadhyay, S. Choubey, and S. Goswami, Phys. Rev. D67, 113011 (2003).

ν_e Capture Rates from Radiochemical Experiments 1 SNU (Solar Neutrino Unit) = 10^{-36} captures per atom per second.

VALUE (SNU)	DOCUMENT ID	TECN	COMMENT	
70.8 + 5.3 + 3.7 - 5.2 - 3.2	¹⁶⁶ ABDURASHI 02	SAGE	$^{71}\text{Ga} \rightarrow ~^{71}\text{Ge}$	
65.8 + 10.2 + 3.4 - 9.6 - 3.6	¹⁶⁷ ALTMANN 00	GN O	$^{71}\text{Ga} \rightarrow ~^{71}\text{Ge}$	
74.1 + 6.7 - 6.8	¹⁶⁸ ALTMANN 00	GN O	GNO + $GALX$ combined	
$77.5 \pm 6.2 + 4.3 - 4.7$	¹⁶⁹ HAMPEL 99	GALX	$^{71}\text{Ga}\rightarrow~^{71}\text{Ge}$	
$2.56\pm\ 0.16\pm 0.16$	170 CLEVELAND 98	номе	$^{37}CI \rightarrow ^{37}Ar$	

¹⁶⁶ ABDURASHITOV 02 report a combined analysis of 92 runs of the SAGE solar-neutrino experiment during the period January 1990 through December 2001, and updates the ABDURASHITOV 998 result. A total of 406.4 "71 Ge events were observed. No evidence was found for temporal variations of the neutrino capture rate over the entire observation period."

167 OLTMANN 00 report the first result from the GNO solar-neutrino experiment (GNO I), which is the successor project of GALLEX. Experimental technique of GNO is essentially the same as that of GALLEX. The run data cover the period 20 May 1998 through 12 January 2000.

¹⁶⁸ Combined result of GALLEX I+II+II+IV (HAMPEL 99) and GNOI. The indicated errors include systematic errors. 169 HAMPEL 99 report the combined result for GALLEX I+II+II+IV (65 runs in total),

⁶⁹ HAMPEL 99 report the combined result for GALLEX |+||+|||+|||+|V (65 runs in total), which update the HAMPEL 96 result. The GALLEX IV result (12 runs) is 118.4 ± 17.8 ± 6.6 SNU. (HAMPEL 99 discuss the consistency of partial results with the mean.) The GALLEX experimental program has been completed with these runs. The total run data cover the period 14 May 1991 through 23 January 1997. A total of 300 ⁷¹ Ge events were observed.

were observed. 170 CLEVELAND 98 is a detailed report of the ³⁷Cl experiment at the Homestake Mine. The average solar neutrino-induced ³⁷Ar production rate from 108 runs between 1970 and 1994 updates the DAVIS 89 result.

φ_{ES} (⁸B)

 $^8{\rm B}$ solar-neutrino flux measured via νe elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_μ, ν_τ due to the cross-section difference, $\sigma(\nu_\mu, e) \sim 0.16\sigma(\nu_e\,e)$. If the $^8{\rm B}$ solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is ~ 0.16 times of $\nu_e.$

VALUE (10 ⁶ cm ⁻² s ⁻¹)	DOCUMENT ID		TECN	COMMENT	
2.35 + 0.07 - 0.06 OUR AVERAGE					
$2.39 + 0.24 \\ - 0.23 \pm 0.12$	¹⁷¹ AHMAD	02	SNO	average flux	
$2.35 \pm 0.03 \stackrel{+}{-} \stackrel{0.07}{-} \stackrel{0.06}{-} 0.06$	¹⁷² FUK UDA	02	SKAM	average flux	
• • • We do not use the follow	ing data for averages	s, fits	s, limits,	etc. • • •	
$2.39 \pm 0.34 + 0.16 - 0.14$	¹⁷³ AHMAD	01	SNO	average flux	
$2.80 \pm 0.19 \pm 0.33$	¹⁷⁴ FUK UDA	96	KAMI	average flux	
2.70 ± 0.27	¹⁷⁴ FUK UDA	96	KAMI	day flux	
2.87 + 0.27 - 0.26	¹⁷⁴ FUK UDA	96	KAMI	night flux	
171 AHMAD 02 reports the 8P	solar neutrino flux m	0.0011	red via •	e electic scattering abo	

¹⁴ AHMAD 02 reports the °B solar-neutrino flux measured via *ve* elastic scattering above the kinetic energy threshold of 5 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001, and updates AHMAD 01 results.

- ¹⁷² FUK UDA 02 results are for 1496 live days with Super-Kamiokande between May 31, 1996 and July 15, 2002, and replace FUK UDA 01 results. The analysis threshold is 5 MeV except for the first 280 live days (6.5 MeV).
 ¹⁷³ AHMAD 01 reports the ⁸B solar-neutrino flux measured via *ve* elastic scattering above
- ¹¹³ AHMAD 01 reports the ⁹B solar-neutrino flux measured via *ve* elastic scattering above the kinetic energy threshold of 6.75 MeV. The data correspond to 241 live days with SNO between November 2, 1999 and January 15, 2001.
- SNO between NOVEMBER 2, 1979 and January 19, 2004. 174 FUK UDA 96 results are for a total of 2079 live days with Kamiokande II and III from January 1987 through February 1995, covering the entire solar cycle 22, with threshold $E_e > 9.3$ MeV (first 449 days), > 7.5 MeV (middle 794 days), and > 7.0 MeV (last 836 days). These results update the HIRATA 90 result for the average ⁸B solar-neutrino flux. The total data sample was also analyzed for short-term variations: within experimental errors, no strong correlation of the solar-neutrino flux with the sunspot numbers was found.

¢сс (⁸В)

 $^8{\rm B}$ solar-neutrino flux measured with charged-current reaction which is sensitive exclusively to $\nu_e.$

VALUE (10 ⁶ cm ⁻² s ⁻¹)	DOCUMENT ID		TECN	COMMENT
$1.76 + 0.06 \pm 0.09$	¹⁷⁵ AHMAD	02	SNO	average flux
• • • We do not use the follow	ing data for average	es, fits	, limits,	etc. • • •
$1.75 \pm 0.07 \stackrel{+}{-} \stackrel{0.12}{-} \pm 0.05$	¹⁷⁶ AHMAD	01	SNO	average flux

¹⁷⁵ AHMAD 02 reports the SNO result of the ⁸B solar-neutrino flux measured with charged-

 175 AHMAD 02 reports the SNO result of the 9 B solar-neutrino flux measured with charged-current reaction on deuterium, $v_{eq} \ d \rightarrow pp e^{-}$, above the kinetic energy threshold of 5 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 26, 2001, and updates AHMAD 01 results. 176 AHMAD 01 reports the first SNO result of the 8 B solar-neutrino flux measured with the charged-current reaction on deuterium, $v_{e} \ d \rightarrow pp e^{-}$, above the kinetic energy thresh-old of 6.75 MeV. The data correspond to 241 live days with SNO between November 2, 1999 and January 15, 2001.

 ϕ_{NC} (⁸B) ⁸B solar neutrino flux measured with neutral-current reaction, which is equally sensitive

VALUE (10 ⁶ cm ⁻² s ⁻¹)	DOCUMENT ID		TECN	COMMENT
5.09 + 0.44 + 0.46 - 0.43 - 0.43	177 AHMAD	02	SNO	average flux

177 AHMAD 02 reports the first SNO result of the ⁸B solar-neutrino flux measured with the neutral-current reaction on deuterium, $\nu_{II} d \rightarrow n \rho \nu_{I}$, above the neutral-current reaction threshold of 2.2 MeV. The data correspond to 306.4 live days with SNO between November 2, 1999 and May 28, 2001.

$\phi_{\nu_{\mu}+\nu_{\tau}} \ (^8{\rm B})$

Nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) in the $^{8}{\rm B}$ solar-neutrino flux.

VALUE (10 ⁶ cm ⁻² s ⁻¹)	DOCUMENTIL	DOCUMENT ID		COMMENT	
$3.41 \pm 0.45 \mathop{+}_{-} 0.48 \\ -0.45$	¹⁷⁸ AHMAD	02	SNO	Derived from SNO ϕ_{CC} , ϕ_{FS} , and ϕ_{NC}	
• • • We do not use the fo	llowing data for avera	ges, fits	, limits	etc. • • •	
3.69±1.13	¹⁷⁹ AHMAD	01		Derived from SNO+SuperKam, water Cherenkov	

 $^{178}{\rm AHMAD}$ 02 deduced the nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) in the 8 B solar-neutrino flux, by combining the charged-current result, the $u\,e$ elastic-scattering

result and the neutral-current result. 179AHMAD 01 deduced the nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) in

the 8 B solar-neutrino flux, by combining the SNO charged-current result (AHMAD 01) and the Super-Kamiokande $\nu\,e\,$ elastic-scattering result (FUKUDA 01).

Total Flux of Active ⁸B Solar Neutrinos

Total flux of active neutrinos (ν_e , ν_μ , and ν_τ).

VALUE (10 ⁶ cm ⁻² s ⁻¹)	DOCUMENT ID		TECN	COMMENT
5.09 + 0.44 + 0.46 - 0.43 - 0.43	¹⁸⁰ AHMAD	02	SNO	Direct measurement
5.44 ± 0.99	¹⁸¹ AHMAD	01		Derived from SNO+SuperKam, water Cherenkov

¹⁸⁰AHMAD 02 determined the total flux of active ⁸B solar neutrinos by directly measuring the neutral-current reaction, $\nu_\ell d \to n\rho \nu_\ell$, which is equally sensitive to ν_e , ν_μ , and ν_τ . 181 AHMAD 01 deduced the total flux of active 8 B solar neutrinos by combining the SNO

charged-current result (AHMAD 01) and the Super-Kamiokande νe elastic-scattering result (FUKUDA 01).

Day-Night Asymmetry (⁸B)

 $A = (\phi_{night} - \phi_{day}) / \phi_{average}$

VALUE	DOCUMENT ID		TECN	COMMENT
$0.14 \ \pm 0.063 {+0.015 \atop -0.014}$	¹⁸² AHMAD	02B	SNO	Derived from SNO ϕ_{CC}
$0.07 \ \pm 0.049 {+0.013 \\ -0.012}$	¹⁸³ AHMAD	02B	SNO	Constraint of no ϕ_{NC} asymmetry
$0.021 \pm 0.020 + 0.013 - 0.012$	¹⁸⁴ FUKUDA	02	SKAM	Based on ϕ_{ES}

I

¹⁸²AHMAD 02B results are based on the charged-current interactions recorded between November 2, 1999 and May 28, 2001, with the day and night live times of 128.5 and 177.9 days, respectively.

183 AHMAD 02B results are derived from the charged-current interactions, neutral-current interactions, and *ve* elastic scattering, with the total flux of active neutrinos constrained to have no asymmetry. The data were recorded between November 2, 1999 and May 28,

Determine by and night live times of 128.5 and 177.9 days, respectively.
 EUKUDA 02 results are for 1496 live days with Super-Kamiokande between May 31, 1996 and July 15, 2002, and replace FUKUDA 10 results. The analysis threshold is 5 MeV except for the first 280 live days (6.5 MeV).

 ϕ_{ES} (hep) hep solar-neutrino flux measured via νe elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ} , ν_{τ} due to the crosssection difference, $\sigma(\nu_{\mu,\tau} e) \sim 0.16\sigma(\nu_e e)$. If the hep solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is ~ 0.16 times of ν_e

VALUE (10 ³ cm ⁻² s ⁻¹)	CL%	DOCUMENT ID		TECN
<40	90	¹⁸⁵ FUKUDA	01	SKAM

¹⁸⁵ FUKUDA 01 result is obtained from the recoil electron energy window of 18–21 MeV, and the obtained 90% confidence level upper limit is 4.3 times the BP2000 Standard-Solar-Model prediction.

REFERENCES FOR Neutrino Mixing

AHN	03	PRL 90 041801	M.H. Ahn et al.	(K2K	Collab.)
A M BR OSIO	03	PL B566 35 EPL C27 331	M. Ambrosio <i>et al.</i> M. Anollonio <i>et al</i>	(MACRO ICHOOZ	Collab.)
ASTIER	03	PL B570 19	P. Astier et al.	(NOMAD	Collab.)
ABDURASHI	03	JETP 95 181	K. Eguchi et al. J.N. Abdurashitov et al.	(Kam LAN D (SAGE	Collab.) Collab.)
AHMAD	02	Translated from ZET PRL 89 011301	F 122 211. Q.R. Ahmad et al.	(SNO	Collab.)
AHMAD	02B	PRL 89 011302 PR D65 112001	Q.R. Ahmad et al. B. Armbruster et al.	(SNO (KARMEN 2	Collab.)
AVVAKUNOV	02	PRL 89 011804	S. Avvakumov et al.	(NuTeV	Collab.)
FUKUDA AGUILAR	02	PL B539 179 PR D64 112007	S. Fukuda et al. A Aguilar et al	(Super-Kamiokande) (LSND)	Collab.) Collab.)
AHMAD	01	PRL 87 071301	Q.R. Ahmad et al. M. Ambrocia at al.	(SNO	Collab.)
ANTIER	01B	NP B611 3	P. Astier et al.	(NOMAD	Collab.)
BOEHM	01	PR D64 112001 PI B497 8	F. Boehm <i>et al.</i> E. Eskut <i>et al</i>	(CHORUS	Collab)
FUKUDA	01	PRL 86 5651	S. Fukuda et al.	(Super-Kamiokande	Collab.)
AMBROSIO	00	PL B478 5	M. Ambrosio et al.	(MACRO	Collab.)
B OEHM B OEHM	00 00C	PRL 84 3764 PR D62 072002	F. Boehm <i>et al.</i> F. Boehm <i>et al.</i>		
FUKUDA	00	PRL 85 3999	S. Fukuda et al.	(Super-Kamiokande	Collab.)
ALLIS ON	99B	PL B449 137	W.W.M. Allison et al.	(Soudan 2	Collab.)
A POLLONIO Also	99 00	PL B466 415 PL B472 434 erratur	M. Apollonio <i>et al.</i> n. M. Apollonio <i>et al.</i>	(CHOOZ (CHOOZ	Collab.) Collab.)
FUKUDA	99C	PRL 82 2644	Y. Fukuda et al.	(Super-Kamiokande	Collab.)
HAMPEL	99D	PL B467 185 PL B447 127	Y. FUKUda et al. W. Hampel et al.	(Super-Kamiokande (GALLEX	Collab.)
JUNK NAPLES	99 99	NIM A434 435 PR D59 031101	T.Junk D.Naples <i>et al</i>	(CCER	Collab 1
ALTEGOER	98 B	PL B431 219	S. Altegoer et al.	(NOMAD	Collab.)
APOLLONIO	98 98	PL B434 451 PL B420 397	M. Ambrosio et al. M. Apollonio et al.	(MACRO (CHOOZ	Collab.)
ARMBRUSTER	98 98	PR C57 3414 PRI 81 1774	B. Armbruster et al.	(KARMEN (ISND	Collab.)
AT HANASS O	98 B	PR C58 2489	C. Athanassopoulos et al.	LSND	Collab.)
CLEVELAND	98 98	APJ 496 505 PL B424 202	B.T. Cleveland <i>et al.</i> E. Eskut <i>et al.</i>	(Homestake (CHORUS	Collab.) Collab.)
ESKUT	98 B	PL B434 205	E. Eskut et al.	CHORUS	Co Ila b.j
FUKUDA	98 98	PL B433 9	Y. Fukuda et al.	(Super-Kamiokande	Collab.)
FUKUDA	98 C 98 F	PRL 81 1562 PL 8436 33	Y. Fukuda et al. Y. Fukuda et al	(Super-Kamiokande (Super-Kamiokande	Collab.) Collab.)
HAMPEL	98	PL B420 114	W. Hampel et al.	(GALLEX	Collab.)
OYAMA	98 98	PR D57 R6594	Y. Oyama	(Kamb kande	conab.j
A LLIS ON CLARK	97 97	PL B391 491 PRI 79 345	W.W.M. Allison et al. R. Clark et al.	(Soudan 2 (IMB	Collab.) Collab.)
ROMOSAN	97	PRL 78 2912	A. Romosan et al.	(CCFR	Collab.)
ATHANASSO	96 96B	PR C54 2685 PRL 77 3082	C. Athanassopoulos et al. C. Athanassopoulos et al.	(LSND	Collab.)
BORISOV	96 96	PL B369 39	A.A. Borsov et al. V. Eukuda et al.	(SERF	2. JINR) Collab
FUKUDA	96B	PL B388 397	Y. Fukuda et al.	(Kamio kande	Collab.)
HAMPEL	96 96	PR D53 6054 PL B388 384	Z.D. Greenwood et al. W. Hampel et al.	(UCI, SVR, (GALLEX	Collab.)
LOVERRE	96 95	PL B370 156	P.F. Loverre B. Achkar et al.	SING SACED CREM (DEE+)
AHLEN	95	PL B357 481	S.P. Ahlen et al.	(MACRO	Collab.)
ATHANASSO BAHCALL	95 95	PRL 75 2650 PL B348 121	C. Athanassopoulos et al. J.N. Bahcall, P.I. Krastev	(LSND , E. Lisi	Collab.) (IAS)
DAUM	95 95	ZPHY C66 417 PPL 75 2654	K. Daum et al.	(FREJ US	Collab.)
MCFARLAND	95	PRL 75 3993	K.S. McFarland et al.	(CCFR	Collab.)
VYRODOV	95	JETPL 61 163 Translated from ZET	V.N. Vyrodov et al. FP 61 161.	(KIAE, LAPP,	CDEF)
D EC LAIS F U KUDA	94 94	PL B338 383 PL B335 237	Y. Declais et al. Y. Fukuda et al.	(Kaminkande	Collab)
SMIRNOV	94	PR D49 1389	A.Y. Smirnov, D.N. Sperg	gel, J.N. Bahcall	(IAS+)
VIDYAKIN	94	Translated from ZET	G.S. Vidyakin <i>et al.</i> FP 59 364.		(KIAE)
VILAIN FREEDMAN	94 C 93	ZPHY C64 539 PR D47 811	P. Vilain et al. S.J. Freedman et al.	(CHARM II (LAMPF E645	Collab.) Collab.)
GRUWE	93 92	PL B309 463	M. Gruwe et al. P.A. Becker Szendy et al.	CHARM II	Collab.)
BECKER-SZ	92 B	PR D46 3720	R.A. Becker-Szendy et al.	(IMB	Collab.)
B E I E R Also	92 94	PL B283 446 PTRSL A346 63	E.W. Beier <i>et al.</i> E.W. Beier, E.D. Frank	(KA M2	Collab.) (PENN)
B OR OD OV	92 92	PRL 68 274 PL 8280 146	L. Borodovsky et al. K.S. Hiroto et al.	(COLU, JF (Kamiokande II	ÌU, ILL) Collab
KET OV	92	JETPL 55 564	S.N. Ketov et al.	(Italilo kalide li	(KIAE)
CASPER	91	PRL 66 2561	D. Casper <i>et al.</i>	(IMB	Collab.)
HIRATA	91 91	PRL 66 9 JETPI 54 253	K.S. Hirata et al. Δ.Δ. Kuvshinnikov et al.	(Kamiokande II	Collab.)
BATUSOV	90 B	ZPHY C48 209	Y.A. Batusov et al.	(JINR, ITEP,	SERP)
HIRATA	90 B	PRL 65 1297	C. Berger et al. K.S. Hirata et al.	(Kamiokande II	Collab.)
VIDYAKIN	90	JETP 71 424 Translated from ZET	G.S. Vidyakin <i>et al.</i> F 98 764.		(KIAE)
A GLIET TA	89	EPL 8 611 Neutrine Astrophysics	M. Aglietta <i>et al.</i>	(FREJ US	Collab.)
Cambridge	Univer	sity Press	Di Di Cili	(60)	(143)
DAVIS	89 89	ARNPS 39 467	R. Davis, A.K. Mann, L.	Wolfenstein (BNL, F	PENN+)
OYA MA A FONIN	89 88	PR D39 1481 JETP 67 213	Y. Oyama et al. Δ L Δfonin et al.	(Kamiokande II	Collab.)
AUDIOCOV	00	Translated from ZET	F 94 1, issue 2.	(CKAT	(Hine)
BERGSMA	88 88	ZPHY C40 487 ZPHY C40 171	F. Bergsma et al.	(CHARM	Collab.)
BION TA DURKIN	88 88	PR D38 768 PRL 61 1811	R.M. Bionta <i>et al.</i> L.S. Durkin <i>et al</i>	(IMB (OSU_ANI	Collab.) CIT +)
LOVERRE	88	PL B206 711	P.F. Loverre	(000, 446	(INFN)
	07	Translated from ZET	FP 45 201.	((NAE)
A HRENS B OF ILL	87 87	PR D36 702 PR D36 3309	L.A. Ahrens et al. J. Bofill et al.	(BNL, BROW (MIT, FNAL	. UCI+) MSU)
LOSECCO	87 87	PL B184 305 NP B291 502	J.M. LoSecco et al. M. Talebradeb et al.	(IMB	Collab.)
VIDYAKIN	87	JETP 66 243	G.S. Vidyakin et al.	(DEDC WA00	(KIAE)
A B RA M OWIC Z	86	PRL 57 298	r 95-424. H. Abramowicz et al.	(CDHS	Collab.)
AFONIN	86	JEFPL 44 142 Translated from ZET	A.I. Afonin <i>et al.</i> FP 44 111.		(KIAE)

467 Lepton Particle Listings Neutrino mixing, Heavy Neutral Leptons, Searches for

ALLABY ANGELINI BERNARDI	86 86 86B	PL B177 446 PL B179 307 PL B181 173 PR D24 3182		J.V. Allaby et al. C. Angelini et al. G. Bernardi et al.	(CHARM Collab.) (PISA, ATHU, PADO+) (CURIN, INFN, CDEF+) (PUTC, PNN, COLU)
USHIDA	8.6C	PRI 57 2897		N Ushida et al	(ENAL E531 Collab.)
ZACEK	86	PR D34 2621		G. Zacek et al.	(CIT-SIN-TUM Collab.)
AFONIN	85	JETPL 41 435		A.I. Afonin et al.	(KIAE)
A Iso	85B	Translated from JET PL 42 285 Translated from	ZET FP	41 355. A.I. Afonin et al. 42 230.	(KIAE)
AHRENS	85	PR D31 2732		L.A. Ahrens et al.	(BNL, BROW, KEK+)
BELIKOV	85	SJNP 41 589		S.V. Belikov et al.	(S ER P)
STOCKDALE	85	ZPHY C27 53	YAF 41	I.E. Stockdale et al.	(ROCH, CHIC, COLU+)
DALLACH	00	PL 104 D 195		V. Zalek et al.	(UCD LDL ENALL)
RERGSMA	84	PK D30 2271 PL 1/2B 103		F Berrema et al.	(CHARM Collab.)
CAVAIGNAC	84	PL 148B 387		I E Cavaignac et al	(ISNG LAPP)
DYDAK	84	PL 134B 281		F Dydak et al	(CERN DORT HEIDH SACL+)
GABATHULER	84	PL 138B 449		K Gabathuler <i>et al</i>	(CIT_SIN_MUNI)
STOCKDALE	84	PRL 52 1384		I.E. Stockdale et al.	(ROCH, CHIC, COLU+)
A FON IN	83	JETPL 38 436 Translated from	ZETFP	A.I. Afonin <i>et al.</i> 38 361.	(KIAE)
B ELEN KII	83	JET PL 38 493 Translated from	7ET ED	S.N. Belenky et al.	(KIAE)
BELIKOV	83	JETPL 38 661 Translated from	ZETFP	S.V. Belikov et al. 38 547.	(SERP)
TAYLOR	83	PR D28 2705		G.N. Taylor et al.	(HAWA, LBL, FNAL)
COOPER	82	PL 112B 97		A.M. Cooper et al.	(RL)
VUILLEUMIER	82	PL 114B 298		J.L. Vuilleumier et al.	(CIT, SIN, MUNI)
ARMENISE	81	PL 100B 182		N. Armenise et al.	(BARI, CERN, MILA+)
ASRALYAN	81	PL 105B 301		A.E. Asratyan et al.	(ILEP, FNAL, SERP+)
BAKER	81	PRL 47 1576		N.J. Baker <i>et al.</i>	(BNL, COLU)
A ISO ROUEV	78	PKL 40 144 SIND 24 707		A.M. Chops et al.	(BNL, COLU)
BOLIEV	01	Translated from	YAF 34	1418.	(IN KM)
DEDEN	81	PL 98B 310		H. Deden et al.	(BEBC Collab.)
ERRIQUEZ	81	PL 102B 73		O. Erriquez et al.	(BARI, BIRM, BRUX+)
KWON	81	PR D24 1097		H. Kwon et al.	(CIT, ISNG, MUNI)
NEMETHY	81B	PR D23 262		P. Nemethy et al.	(YALE, LBL, LASL+)
SILVERMAN	81	PRL 46 467		D. Silverman, A. Soni	(UCI, UCLA)
USHIDA	81	PRL 47 1694		N. Ushida et al.	(AICH, FNAL, KOBE, SEOU+)
AVIGNONE	80	PR C22 594		F.I. Avignone, Z.D. Gre	enwood (SCUC)
BOEHM EDIT 7E	80	PL 9/B 310		P. Boenm et al.	ILLEG, CIT, ISNG, MUNT
PEINES	80	DRI 45 1307		F Paines HW Sobel	= Design (IICI)
Also	5.9	DR 113 973		E Paines CI Cowan	L Pasielo (OCI)
A Iso	66	PR 142 852		FA Nezrick F Reines	(CASE)
Also	76	PRL 37 315		F. Reines, H.S. Gurr, H.	W. Sobel (UCI)
DAVIS	79	PR C19 2259		R. Davis et al.	CIT
BLIETSCHAU	78	NP B133 205		J. Blietschau et al.	(Gargamelle Collab.)
CROUCH	78	PR D18 2239		M.F. Crouch et al.	(ČASĚ, UCI, WITW)
BELLOTTI	76	LNC 17 553		E. Bellotti <i>et al.</i>	(MILA)

Heavy Neutral Leptons, Searches for

(A) Heavy Neutral Leptons

— Stable Neutral Heavy Lepton MASS LIMITS ——

Note that LEP results in combination with REUSSER 91 exclude a fourth stable neutrino with m < 2400 GeV.

VALUE (GeV)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
>45.0	95	ABREU	928 DLPH	Dirac
> 39.5	95	ABREU	928 DLPH	M ajorana
>44.1	95	ALEXANDER	91F OPAL	Dirac
> 37.2	95	ALEXANDER	91F OPAL	M ajorana
none 3-100	90	SATO	91 KAM2	Kamiokande II
>42.8	95	¹ A DEVA	905 L3	Dirac
> 34.8	95	¹ ADEVA	905 L3	Majorana
>42.7	95	DECAMP	90F ALEP	Dirac

 $^1\mathrm{ADEVA}$ 905 limits for the heavy neutrino apply if the mixing with the charged leptons satisfies $|U_{1\,j}|^2+|U_{2\,j}|^2+|U_{3\,j}|^2>$ 6.2×10⁻⁸ at m_{L^0} =20 GeV and > 5.1×10⁻¹⁰ for m_{L^0} =40 GeV.

— Heavy Neutral Lepton MASS LIMITS ———

Limits apply only to heavy lepton type given in comment at right of data Listings. See review above for description of types.

See the "Quark and Lepton Compositeness, Searches for" Listings for limits on radiatively decaying excited neutral leptons, i.e. $\nu^* \to \nu \gamma.$

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>101.3	95	ACHARD	01B	L 3	Dirac coupling to e
>101.5	95	ACHARD	01B	L 3	Dirac coupling to μ
> 90.3	95	ACHARD	01B	L 3	Dirac coupling to τ
> 89.5	95	ACHARD	01B	L 3	Majorana coupling to e
> 90.7	95	ACHARD	01B	L 3	Majorana coupling to μ
> 80.5	95	ACHARD	01B	L 3	Majorana coupling to $ au$
• • • We do not use the	following	data for averages	s, fits,	, limits,	etc. • • •
> 76.0	95	ABBIENDI	0.01	OPAL	Majorana, coupling to e
> 88.0	95	ABBIENDI	0.01	OPAL	Dirac, coupling to e
> 76.0	95	ABBIENDI	0.01	OPAL	Majorana, coupling to μ
> 88.1	95	ABBIENDI	0.01	OPAL	Dirac, coupling to μ
> 53.8	95	ABBIENDI	0.01	OPAL	Majorana, coupling to $ au$
> 71.1	95	ABBIENDI	0.01	OPAL	Dirac, coupling to $ au$
> 76.5	95	ABREU	990	DLPH	Dirac coupling to e
> 79.5	95	ABREU	990	DLPH	Dirac coupling to μ
> 60.5	95	ABREU	990	DLPH	Dirac coupling to $ au$
> 63	95 2,3	BUSKULIC	96S	ALEP	Dirac
> 54.3	95 2,4	¹ BUSKULIC	96S	ALEP	Majorana

 2 BUSKULIC 965 requires the decay length of the heavy lepton to be <1 cm, limiting the square of the mixing angle $|U_{\ell\,j}|^2$ to $10^{-10}.$ 3 BUSKULIC 965 limit for mixing with τ . Mass is > 63.6 GeV for mixing with e or $\mu.$ 4 BUSKULIC 965 limit for mixing with τ . Mass is > 55.2 GeV for mixing with e or μ .

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT		
• • • We do not use the	following	data for averages	s, fits	, limits,	etc. • • •		
none 60-115		⁵ FARGION	95	ASTR	Dirac		
none 9.2-2000		⁶ GARCIA	95	COSM	Nucleosynthesis		
none 26-4700		⁶ BECK	94	COSM	Dirac		
none 6 – hundreds	7	^{,8} MORI	92B	KAM2	Dirac neutrino		
none 24 – hundreds	7	⁸ MORI	92B	KAM2	Majorana neutrino		
none 10-2400	90	⁹ REUSSER	91	CNTR	HPGe search		
none 3-100	90	SATO	91	KAM2	Kamiokande II		
	1	¹⁰ ENQVIST	89	COSM			
none 12-1400		⁶ CALDWELL	88	COSM	Dirac $ u$		
none 4–16	90 6	⁷ OLIVE	88	COSM	Dirac $ u$		
none 4–35	90	OLIVE	88	COSM	Majorana $ u$		
>4.2 to 4.7		SREDNICKI	88	COSM	Dirac $ u$		
>5.3 to 7.4		SREDNICKI	88	COSM	Majorana $ u$		
none 20-1000	95	⁶ AHLEN	87	COSM	Dirac v		
>4.1		GRIEST	87	COSM	Dirac $ u$		
⁵ FARGION 95 bound is sensitive to assumed ν concentration in the Galaxy. See also KONOPLICH 94. ⁶ These results assume that neutrinos make up dark matter in the galactic halo. 7 Limits based on annihilations in the sun and are due to an absence of high energy.							
neutrinos detected in	undergrou	und experiments					

 9 MORI 92B results assume that neutrinos make up dark matter in the galactic halo. Limits based on annihilations in earth are also given. 9 REUSSER 91 uses existing $\beta\beta$ detector (see FISHER 89) to search for CDM Dirac

neutrinos. ¹⁰ENQVIST 89 argue that there is no cosmological upper bound on heavy neutrinos.

(B) Other Bounds from Nuclear and Particle Decays

------ Limits on $|U_{ex}|^2$ as Function of m_{ν_x} -Peak and kink search tests

Limits on $|U|^2$ as function (

	Linnus	on ve x v	as function		ν_i			
VALU	E		<u>CL%</u>		DOCUMENT ID		TECN	COMMENT
<1	× 10	7	90 1	1	BRITTON	92B	CNTR	50 MeV $< m_{{m u}_{\chi}}$ $<$ 130
••	• We d	o not use the	following	d	ata for averages	, fits	, limits,	MeV etc. ● ● ●
<5	$\times 10^{-1}$	6	90		DELEENER	91		$m_{\nu_{\chi}} = 20 \text{ MeV}$
< 5	$\times 10^{-1}$	7	90		DELEENER	91		$m_{\nu_{\chi}} = 40 \text{ MeV}$
< 3	$\times 10^{-1}$	7	90		DELEENER	91		$m_{\nu_v} = 60 \text{ MeV}$
< 1	$\times 10^{-1}$	6	90		DELEENER	91		$m_{\nu_{\chi}}^{\prime}$ =80 MeV
< 1	$\times 10^{-1}$	6	90		DELEENER	91		$m_{\nu_{\chi}} = 100 \text{ MeV}$
<5	$\times 10^{-1}$	7	90		AZUELOS	86	CNTR	$m_{\nu_{\chi}} = 60 \text{ MeV}$
$<\!2$	$\times 10^{-1}$	7	90		AZUELOS	86	CNTR	$m_{\nu_{\chi}} = 80 \text{ MeV}$
< 3	$\times 10^{-1}$	7	90		AZUELOS	86	CNTR	$m_{\nu_{\nu}} = 100 \text{ MeV}$
< 1	$\times 10^{-1}$	6	90		AZUELOS	86	CNTR	$m_{\nu_{\nu}} = 120 \text{ MeV}$
$<\!2$	$\times 10^{-1}$	7	90		AZUELOS	86	CNTR	$m_{\nu_{\nu}} = 130 \text{ MeV}$
< 1	$\times 10^{-1}$	4	90 1	. 2	BRYMAN	83B	CNTR	$m_{\nu_{\nu}} = 5 \text{ MeV}$
<1.5	×10 ⁻	6	90		BRYMAN	83B	CNTR	$m_{\nu_{\nu}} = 53 \text{ MeV}$
< 1	$\times 10^{-1}$	5	90		BRYMAN	83B	CNTR	$m_{\nu_{\nu}} = 70 \text{ MeV}$
< 1	$\times 10^{-1}$	4	90		BRYMAN	83B	CNTR	$m_{\nu_{\rm o}} = 130 {\rm MeV}$
< 1	×10-	4	68 1	3	SHROCK	81	THEO	$m_{\nu_{\rm e}} = 10 \text{ MeV}$
<5	×10 ⁻	6	68 1	3	SHROCK	81	THEO	$m_{\nu_{\nu}} = 60 \text{ MeV}$
< 1	×10 ⁻	5	68 1	4	SHROCK	80	THEO	m_v_= 80 MeV
< 3	×10 ⁻	6	68 1	4	SHROCK	80	THEO	$m_{\nu_{\chi}} = 160 \text{ MeV}$

 11 BRITTON 92B is from a search for additional peaks in the e^+ spectrum from $\pi^+ \to e^+ \nu_e$ decay at TRIUMF. See also BRITTON 92.

 $^{12}\text{BRYMAN}$ as as obtain upper limits from both direct peak search and analysis of B($\pi \to e\nu)/B(\pi \to \mu\nu)$. Latter limits are not listed, except for this entry (i.e. — we list the most stringent limits for given mass).

Table 3 Analysis of $(\pi^+ \to e^+ \nu_e)/(\pi^+ \to \mu^+ \nu_\mu)$ and $(\kappa^+ \to e^+ \nu_e)/(\kappa^+ \to \mu^+ \nu_\mu)$ decay ratios.

¹⁴Analysis of $(K^+ \rightarrow e^+ \nu_e)$ spectrum.

Kink search in nuclear β decay

High-sensitivity follow-up experiments show that indications for a neutrino with mass 17 keV (Simpson, Hime, and others) were not valid. Accordingly, we no longer list the experiments by these authors and some others which made positive claims of 17 keV neutrino emission. Complete listings are given in the 1994 edition (Physical Review **D50** 1173 (1994)) and in the 1998 edition (The European Physical Journal **C3** 1 (1998)). We list below only the best limits on $|U_{ex}|^2$ for each $m_{\nu_{\chi}}$. See WIETFELDT 96 for a comprehensive review.

units 10-3)	CL%	m_{ν_j} (keV)	ISO TO PE	METHOD	DOCUMENT ID

468 Lepton Particle Listings Heavy Neutral Leptons, Searches for

 • • We do not 	use th	e following data fo	or average	es, fits, limits, etc.	• •	• •		
< 4-20	90	700-3500	^{38m} K	Trap	15	TRINCZEK	03	
< 9-116	95	1-0.1	¹⁸⁷ Re	cryog.	16	GALEAZZI	01	
< 1	95	10-90	³⁵ S	Mag spect	17	HOLZSCHUH	00	
< 4	95	14-17	²⁴¹ Pu	Electrostatic spec	18	DRAGOUN	99	
< 1	95	4-30	⁶³ Ni	Mag spect	19	HOLZSCHUH	99	
< 10-40	90	370-640	37 A r	EC ion recoil	20	HINDI	98	
< 10	95	1	³ H	SPEC	21	HIDDEMANN	95	
< 6	95	2	³ H	SPEC	21	HIDDEMANN	95	
< 2	95	3	3 _H	SPEC	21	HIDDEMANN	95	
< 0.7	99	16.3-16.6	³ H	Prop chamber	22	KALBFLEISCH	93	
< 2	95	13-40	³⁵ S	Si(Li)	23	MORTARA	93	
< 0.73	95	17	63 _{Ni}	Mag spect		OHSHIMA	93	
< 1.0	95	10-24	63 _{Ni}	Mag spect		KAWAKAMI	92	
< 0.9-2.5	90	1200-6800	²⁰ F	beta spectrum	24	DEUTSCH	90	
< 8	90	80	35 S	Mag spect	25	A PALIK OV	85	
< 1.5	90	60	³⁵ S	Mag spect		A PALIK OV	85	
< 3.0	90	5-50		Mag spect		MARKEY	85	
< 0.62	90	48	35 S	Si(Li)		оні	85	
< 0.90	90	30	³⁵ S	Si(Li)		оні	85	
< 4	90	140	⁶⁴ Cu	Mag spect	26	SCHRECK	83	
< 8	90	440	⁶⁴ Cu	Mag spect	26	SCHRECK	83	
<100	90	0.1-3000		THEO	27	SHROCK	80	
< 0.1	68	80		THEO	28	SHROCK	80	

- 15 TRINCZEK 03 is a search for admixture of heavy neutrino to ν_{ϱ_1} in contrast to $\overline{\nu}_{\varrho}$ used in many other searches. Full kinematic reconstruction of the neutrino momentum by use of a magneto optical trap.
- of a magneto optical trap. 16 GALEAZI 01 use an cryogenic microcalorimeter to search for mass 50–1000 eV neutrino admixtures using the 187 Re beta spectrum with 2.4 keV endpoint. They derive limits for the admixture of heavy neutrinos, ranging from 9 \times 10⁻³ for mass 1 keV to 0.116 for mass 100 eV. This is a significant improvement with respect to HIDDEMANN 95, especially for masses below \sim 500 MeV, where the limit is about a factor of \sim 2 higher. 17 HOLZSCHUH 00 use an iron-free β spectrometer to measure the 35 S β decay spectrum. An analysis of the spectrum in the energy range 56–173 keV is used to derive limits for the admixture of heavy neutrinos. This extends the range of neutrino masses explored in HOLZSCHUH 9.
- n HOLZSCHUH 99
- 18 DRAGOUN 99 analyze the β decay spectrum of 241 Pu in the energy range 0.2–9.2 keV to derive limits for the admixture of heavy neutrinos. It is not competitive with HOLZSCHUH 99
- ¹⁹HOLZSCHUH 99 use an iron-free β spectrometer to measure the ⁶³Ni β decay spectrum. An analysis of the spectrum in the energy rage 33–67.8 keV is used to derive limits for the admixture of heavy neutrinos.
- the admixture of neavy neutrinos. ²⁰HIND1980btain a limit on heavy neutrino admixture from EC decay of ³⁷Ar by measuring the time-of-flight distribution of the recoiling ions in coincidence with x-rays or Auger electrons. The authors report upper limit for $|U_{ex}|^2$ of $\approx 3\%$ for $m_{\nu_x} = 500$ keV, 1% for $m_{\nu_x} = 550$ keV, 2% for $m_{\nu_x} = 600$ keV, and 4% for $m_{x} = 650$ keV. Their reported limits for $m_{\nu_{\chi}} \leq$ 450 keV are inferior to the limits of SCHRECKENBACH 83.
- 21 In the beta spectrum from tritium eta decay nonvanishing or mixed $m_{\overline{
 u}_1}$ state in the mass region 0.01–4 keV. For $m_{\nu_{\chi}}$ <1 keV, their upper limit on $|U_{e\chi}|^2$ becomes less
- 22 KALBFLEISCH 93 extends the 17 keV neutrino search of BAHRAN 92, using an im-FALSPLEISCH 33 extends the 17 keV neutrino search of BAHRAN 92, using an improved proportional chamber to which a small amount of ³H is added. Systematics are significantly reduced, allowing for an improved upper limit. The authors give a 99% confidence limit on $|u_{e_X}|^2$ as a function of m_{p_X} in the range from 13.5 keV to 17.5 keV. See also the related papers BAHRAN 93, BAHRAN 93, and BAHRAN 96 on theoretical
- The early of the feated papers BARAN 93, BARAN 936, and BARAN 936 in - spectral analysis of the electrons. ²⁵ This limit was taken from the figure 3 of APALIKOV 85; the text gives a more restrictive
- limit of 1.7×10^{-3} at CL = 90%
- ²⁶SCHRECKENBACH 83 is a combined measurement of the β^+ and β^- spectrum.
- $^{27}\,\mathrm{SHROCK}$ 80 was a retroactive analysis of data on several superallowed eta decays to search for kinks in the Kurie plot.
- ²⁸Application of test to search for kinks in β decay Kurie plots.

Searches for Decays of Massive ν

	$ U_{ex} ^{-1}$	as runction	nc	ν_{χ}			
VALUE		<u>CL%</u>		DOCUMENT ID		TECN	COMMENT
• • •	We do not use the	following	d	ata for averages	fits	, limits,	etc. • • •
$<\!1.5$	$\times 10^{-3}$	95		ACHARD	01	L 3	$m_{\nu_{\gamma}} = 80 \text{ GeV}$
< 2	$\times 10^{-2}$	95		ACHARD	01	L 3	$m_{\nu_{\chi}} = 175 \text{ GeV}$
< 0.3		95		ACHARD	01	L 3	$m_{\nu_{\chi}} = 200 \text{ GeV}$
< 4	$\times 10^{-3}$	95		ACCIARRI	99K	L 3	$m_{\nu_{\chi}} = 80 \text{ GeV}$
<5	$\times 10^{-2}$	95		ACCIARRI	99K	L 3	$m_{\nu_{\chi}} = 175 \text{ GeV}$
< 2	$\times 10^{-5}$	95	29	ABREU	971	DLPH	$m_{\nu_{\chi}} = 6 \text{ GeV}$
< 3	$\times 10^{-5}$	95	29	ABREU	971	DLPH	$m_{\nu_{\chi}} = 50 \text{ GeV}$
<1.8	$\times 10^{-3}$	90	30	HAGNER	95	MWPC	$m_{\nu_h} = 1.5 \text{ MeV}$
< 2.5	$\times 10^{-4}$	90	30	HAGNER	95	MWPC	$m_{\nu_h} = 4 \text{ MeV}$
<4.2	$\times 10^{-3}$	90	30	HAGNER	95	MWPC	$m_{\nu_h} = 9 \text{ MeV}$
< 1	$\times 10^{-5}$	90	31	BARANOV	93		$m_{\nu_{\gamma}} = 100 \text{ MeV}$
< 1	$\times 10^{-6}$	90	31	BARANOV	93		$m_{\nu_{\gamma}} = 200 \text{ MeV}$

<3 × 10-7	90	31	RADANOV	03		m = 300 MeV
<2 ×10 ⁻⁷	90	31	BARANOV	93		$m_{\nu_{\chi}} = 300 \text{ MeV}$
<6.2 × 10 - 8	95			9.J	1.2	$m_{\nu_{\chi}} = 400 \text{ MeV}$
<5.110=10	95 05		ADEVA	903	1.0	$m_{\nu_{\chi}} = 20 \text{ GeV}$
< 5.1 × 10	95	32	ADEVA	905	LJ	$m_{\nu_{\chi}} = 40 \text{ GeV}$
all values ruled out	95	32	BURCHAT	90	MRK2	$m_{\nu_{\chi}} < 19.6 \text{ GeV}$
<1 ×10 10	95	32	BURCHAI	90	WIRK2	$m_{\nu_{\chi}} = 22 \text{ GeV}$
<1 ×10 **	95	52	BURCHAI	90	MRK2	$m_{\nu_{\chi}} = 41 \text{ GeV}$
all values ruled out	95		DECAMP	90F	ALEP	$m_{\nu_{\chi}} = 25.0 - 42.7 \text{ GeV}$
<1 ×10 ⁻¹³	95		DECAMP	90F	ALEP	$m_{\nu_{\chi}} = 42.7 - 45.7 \text{ GeV}$
<5 × 10 ⁻⁵	90		AKERLOF	88	HRS	$m_{\nu_{\chi}} = 1.8 \text{ GeV}$
$<2 \times 10^{-5}$	90		AKERLOF	88	HRS	$m_{\nu_{\chi}} = 4 \text{ GeV}$
<3 × 10 ⁻⁶	90		AKERLOF	88	HRS	$m_{\nu_{\chi}} = 6 \text{ GeV}$
$<1.2 \times 10^{-7}$	90		BERNARDI	88	CNTR	$m_{\nu_{\chi}} = 100 \text{ MeV}$
$<1 \times 10^{-8}$	90		BERNARDI	88	CNTR	$m_{\nu_{\chi}} = 200 \text{ MeV}$
$<$ 2.4 $ imes$ 10 $^{-9}$	90		BERNARDI	88	CNTR	$m_{\nu_{\chi}} = 300 \text{ MeV}$
$< 2.1 \times 10^{-9}$	90		BERNARDI	88	CNTR	$m_{\nu_{\chi}} = 400 \text{ MeV}$
$<2 \times 10^{-2}$	68	33	OBERAUER	87		$m_{\nu_{\nu}} = 1.5 \text{ MeV}$
$< 8 \times 10^{-4}$	68	33	OBERAUER	87		$m_{\nu} = 4.0 \text{ MeV}$
<8 ×10 ⁻³	90		BADIER	86	CNTR	$m_{y}^{2} = 400 \text{ MeV}$
$< 8 \times 10^{-5}$	90		BADIER	86	CNTR	$m_{\mu} = 1.7 \text{ GeV}$
$< 8 \times 10^{-8}$	90		BERNARDI	86	CNTR	$m_{11} = 100 \text{ MeV}$
$<4 \times 10^{-8}$	90		BERNARDI	86	CNTR	$m_{\nu_{X}} = 200 \text{ MeV}$
$< 6 \times 10^{-9}$	90		BERNARDI	86	CNTR	$m_{}^{\nu_{\chi}} = 400 \text{ MeV}$
$<3 \times 10^{-5}$	90		DORENBOS	86	CNTR	$m_{\nu_{X}}^{\nu_{X}} = 150 \text{ MeV}$
$<1 \times 10^{-6}$	90		DORENBOS	86	CNTR	$m_{\nu_{X}} = 500 \text{ MeV}$
<1 ×10 ⁻⁷	90		DORENBOS	86	CNTR	$m_{\nu_{\chi}} = 1.6 \text{ GeV}$
<7 × 10 ⁻⁷	90	34	COOPER	85	нівс	m = 0.4 GeV
<8 ×10 ⁻⁸	90	34	COOPER	85	HLBC	m = 1.5 GeV
<1 × 10 ⁻²	90	35	BERGSMA	83B	CNTR	m = 10 MeV
<1 × 10-5	90	35	REPOSMA	030	CNTR	$m_{\nu_{\chi}} = 10 \text{ MeV}$
<6 <10-7	90	35	REPOSMA	030	CNTR	$m_{\nu_{\chi}} = 10 \text{ MeV}$
<1 . 10-5	20		CRONAL	035	CHIR	$m_{\nu_{\chi}} = 410 \text{ MeV}$
<1 × 10 - 6	30		GRONAU	03		$m_{\nu_{\chi}} = 100 \text{ MeV}$
<1 ×10 ~	90		GRUNAU	రవ		$m_{\nu_{\gamma}} = 480 \text{ MeV}$

 $^{29} \rm ABREU$ 971 long-lived ν_{χ} analysis. Short-lived analysis extends limit to lower masses with decreasing sensitivity except at 3.5 GeV, where the limit is the same as at 6 GeV. $^{30} \rm HAGNER$ 95 obtain limits on heavy neutrino admixture from the decay $\nu_h \rightarrow \nu_e \, e^+ e^$ at a nuclear reactor for the ν_h mass range 2–9 MeV.

- at a nuclear reactor for the ν_h mass range 2=9 MeV. ³¹ BARANOV 93 is a search for neutrino decays into $e^+e^-\nu_e$ using a beam dump experiment at the 70 GeV Serpukhov proton synchrotron. The limits are not as good as those achieved earlier by BERGSMA 83 and BERNARDI 86, BERNARDI 88.
- ³²BURCHAT 90 includes the analyses reported in JUNG 90, ABRAMS 89C, and WENDT 87.
- ³³OBERAUER 87 bounds from search for $\nu \rightarrow \nu' e e$ decay mode using reactor
- ³³OBERAUER 87 bounds from search for $\nu \rightarrow \nu e e$ decay mode using reactor (anti)neutrinos. ³⁴COPER-SARKAR 85 also give limits based on mode/dependent assumptions for ν_p flux. We do not list these. Note that for this bound to be nontrivial, x is not equal to 3, i.e. ν_x cannot be the dominant mass eigenstate in ν_p since $m_{\nu_3} < 70$ MeV (ALBRECHT 85)). Also, of course, x is not equal to 1 or 2, so a fourth generation would construct to be nontrivial.
- (ALBKECH 1851). Also, of course, x is not equal to 1 or 2, so a fourth generation would be required for this bound to be nontrivial. ³⁵ BERGSMA 83B also quote limits on $|U_{e_3}|^2$ where the index 3 refers to the mass eigenstate dominantly coupled to the τ . Those limits were based on assumptions about the D_s mass and $D_s \to \tau \nu_{\tau}$ branching ratio which are no longer valid. See COOPER-SARKAR 85.

- Limits on Coupling of μ to ν_x as Function of m_{ν_x} -

Peak search test

Limits	on	B(π	(or	K

L	imits on B	(π (οι	$\kappa \rightarrow \mu$	ν_{χ})·			
VALUE		<u>CL %</u>	EVTS		DOCUMENT ID		TECN	COMMENT
• • •	We do not	use the	e followin	g d	ata for averages,	fits	, limits,	etc. • • •
				36	ASTIER	02	NOMD	$\pi \rightarrow \mu X$ for $m_X = 33.9$
< 6.0	$ imes 10^{-10}$	95	0	37	DAUM	00	CNTR	$\pi \rightarrow \mu x$, for $m_{\nu} = 33.905 \text{ MeV}$
				38	FORMAGGIO	00	CNTR	$\pi \rightarrow \mu x$, for $m_x = 33.905 \text{ MeV}$
< 0.22		90		39	ASSAMAGAN	98	SILI	$m_{\nu_{\nu}} \stackrel{\wedge}{=} 0.53 \text{ MeV}$
< 0.02	9	90		39	ASSAMAGAN	98	SILI	$m_{\mu_{e}} = 0.75 \text{ MeV}$
< 0.01	6	90		39	ASSAMAGAN	98	SILI	$m_{\nu_{\perp}} = 1.0 \text{ MeV}$
< 4-6	$\times 10^{-5}$			40	BRYMAN	96	CNTR	$m_{\nu_{\chi}} = 30-33.91 \text{ MeV}$
$\sim 1 imes$	10-16			41	ARMBRUSTER	95	KARM	$m_{\nu_{\nu}} = 33.9 \text{ MeV}$
<4	$\times 10^{-7}$	95		42	BILGER	95	LEPS	$m_{\overline{\nu}_{\nu}} = 33.9 \text{ MeV}$
<7	$\times 10^{-8}$	95		42	BILGER	95	LEPS	$m_{\mu} = 33.9 \text{ MeV}$
< 2.6	$\times 10^{-8}$	95		42	DAUM	95 B	TOF	$m_{\mu}^{r_{\chi}} = 33.9 \text{ MeV}$
<2	imes 10 ⁻²	90			DAUM	87		$m_{\nu_{\star}} = 1 \text{ MeV}$
< 1	imes 10 ⁻³	90			DAUM	87		$m_{\nu_{\chi}}^{\prime} = 2 \text{ MeV}$
< 6	$\times 10^{-5}$	90			DAUM	87		3 $ m \dot{MeV} < m_{ m u_{\chi}} < 19.5$
								MeV

Lepton Particle Listings Heavy Neutral Leptons, Searches for

< 3	$\times 10^{-2}$	90	⁴³ MINEHART	84	$m_{\nu_{\rm v}} = 2 {\rm MeV}$
< 1	$\times 10^{-3}$	90	⁴³ MINEHART	84	$m_{\nu_{\nu}}^{A} = 4 \text{ MeV}$
< 3	$\times 10^{-4}$	90	⁴³ MINEHART	84	$m_{\nu_{\nu}} = 10 \text{ GeV}$
< 5	$\times 10^{-6}$	90	⁴⁴ hayano	82	<i>m</i> _ν =330 MeV
< 1	$\times 10^{-4}$	90	⁴⁴ hayano	82	
< 9	$\times 10^{-7}$	90	⁴⁴ hayano	82	m _v = 250 MeV
< 1	$\times 10^{-1}$	90	⁴³ ABELA	81	$m_{\nu_{\nu}} = 4 \text{ MeV}$
< 7	$\times 10^{-5}$	90	⁴³ ABELA	81	$m_{\nu_{\nu}}^{A} = 10.5 \text{ MeV}$
< 2	$\times 10^{-4}$	90	⁴³ ABELA	81	
< 2	$\times 10^{-5}$	90	⁴³ ABELA	81	m_v_=16-30 MeV
36	ASTIER 02 s evidence was	earch found	for anomalous pion decay and the sensitivity to the	into a branch	33.9 MeV neutral particle. No ing ratio $B(\pi \rightarrow \mu X) \cdot B(X \rightarrow X)$

 $\nu e^+ e^-$) is as low as 3.7 $\times 10^{-15}$, depending on the X lifetime.

³⁷DAUM 00 search for anomalous pion decay into a 33.9 MeV neutral particle that might be

⁵³ DOM 00 search for anomalous poin decay into a 33.9 MeV neutral particle that might be responsible for the time-distribution anomaly observed by the KARMEN Collaboration. ³³ DOMAGGIO 00 search for anomalous pion decay into a 33.9 MeV neutral particle Q⁰ that might be responsible for the time-distribution anomaly observed by the KARMEN Collaboration. In the E815 (NuTeV) experiment at Fermilab no evidence was found, with sensitivity for the pion branching ratio B($\pi \rightarrow \mu Q^0$) B($Q^0 \rightarrow v$ isible) as low as $i \sim -13$. 10 - 13

 $^{10^{-13}}$. 39 ASSAMAGAN 98 obtain a limit on heavy neutrino admixture from π^+ decay essentially at rest, by measuring with good resolution the momentum distribution of the muons. at rest, by measuring with good resolution the momentum distribution of the momentum between the search uses an ad hoc shape correction. The authors report upper limit for $|U_{\mu\chi}|^2$ of 0.22 for m_{ν} = 0.53 MeV, 0.029 for m_{ν} = 0.75 MeV, and 0.016 for m_{ν} = 1.0 MeV at 90%CL.

 10 BRYMAN 96 search for massive unconventional neutrinos of mass $m_{\nu_{\gamma}}$ in π^+ decay.

⁴¹ARMBRUSTER 95 study the reactions ${}^{12}C(\nu_e, e^-){}^{12}N$ and ${}^{12}C(\nu, \nu'){}^{7\chi}{}^{12}C^*$ induced by neutrinos from π^+ and μ^+ decay at the ISIS neutron spallation source at the Rutherford-Appleton laboratory. An anomaly in the time distribution can be interpreted as the decay $\pi^+ \to \mu^+ v_{\chi}$, where v_{χ} is a neutral weakly interacting particle with mass $\approx 3.9~{\rm MeV}$ and spin 1/2. The lower limit to the branching ratio is a function of the lifetime of the new massive neutral particle, and reaches a minimum of a few $\times 10^{-16}$ for $\tau_X \sim 5$ s.

 42 From experiments of π^+ and π^- decay in flight at PSI, to check the claim of the KARMEN Collaboration quoted above (ARMBRUSTER 95).

 ${}^{43}\pi^+ \rightarrow \mu^+ \nu_\mu$ peak search experiment.

${}^{44}\kappa^+ \rightarrow \mu^+ \overset{\sim}{\nu_{\mu}}$ peak search experiment.

Peak search test

Limits on $|U_{\mu x}|^2$ as function of m_{ν} .

	ιματι			νx			
VALUE		<u>CL%</u>		DOCUMENT ID		TECN	COMMENT
•••We do no	t use the	following	; d	ata for averages	, fits	, limits,	etc. • • •
$< 1 - 10 \times 10^{-4}$			45	BRYMAN	96	CNTR	$m_{\nu_{\chi}} = 30-33.91$ MeV
$<\!2 imes10^{-5}$		95	46	ASANO	81		$m_{\nu_x} = 70 \text{ MeV}$
$< 3 imes 10^{-6}$		95	46	ASANO	81		$m_{\nu_{\chi}} = 210 \text{ MeV}$
$< 3 imes 10^{-6}$		95	46	ASANO	81		$m_{\nu_{\chi}} = 230 \text{ MeV}$
$< 6 imes 10^{-6}$		95	47	ASANO	81		$m_{\nu_{\chi}} = 240 \text{ MeV}$
$<5 imes10^{-7}$		95	47	ASANO	81		$m_{\nu_{\chi}} = 280 \text{ MeV}$
$< 6 \times 10^{-6}$		95	47	ASANO	81		$m_{\nu_{\chi}} = 300 \text{ MeV}$
$< 1 \times 10^{-2}$		95		CALAPRICE	81		$m_{\nu_{\chi}} = 7 \text{ MeV}$
$< 3 imes 10^{-3}$		95	48	CALAPRICE	81		$m_{\nu_{\gamma}} = 33 \text{ MeV}$
$< 1 \times 10^{-4}$		68	49	SHROCK	81	THEO	$m_{\nu_{\chi}} = 13 \text{ MeV}$
< 3 $ imes$ 10 ⁻⁵		68	49	SHROCK	81	THEO	$m_{\nu_{\chi}} = 33 \text{ MeV}$
$< 6 \times 10^{-3}$		68	50	SHROCK	81	THEO	$m_{\nu_{\chi}} = 80 \text{ MeV}$
$<5 imes10^{-3}$		68	50	SHROCK	81	THEO	$m_{\nu_{\chi}} = 120 \text{ MeV}$

 $^{45}\,{\rm BRYMAN}$ 96 search for massive unconventional neutrinos of mass $m_{\nu_{\rm v}}$ in π^+ decay. They interpret the result as an upper limit for the admixture of a heavy sterile or otherwise

 ${}^{46}\kappa^+ \to \mu^+ \nu_\mu$ peak search experiment. 47 Analysis of experiment on $K^+ \rightarrow \mu^+ \nu_\mu \nu_X \overline{\nu}_X$ decay.

 ${}^{48}\pi^+
ightarrow \, \mu^+
u_\mu$ peak search experiment.

 $^{4\,9}\,A$ nalysis of magnetic spectrometer experiment, bubble chamber experiment, and emulsion experiment on $\pi^+ \rightarrow \mu^+ \nu_\mu$ decay.

 $^{5\,0}{\rm A}\,{\rm nalysis}$ of magnetic spectrometer experiment on ${\cal K}$ \rightarrow $~\mu,~\nu_{\mu}$ decay.

Peak Search in Muon Capture

Limits on $ U_{\mu x} ^2$ as function of m_{ν_x}										
VALUE	DOCUMENT ID		<u>COMMENT</u>							
• • • We do not use the follow	wing data for average	s, fits	, limits, etc. • • •							
$<1 \times 10^{-1}$	DEUTSCH	83	$m_{\nu_{\chi}} = 45 \text{ MeV}$							
$< 7 \times 10^{-3}$	DEUTSCH	83	$m_{\nu_{\chi}} = 70 \text{ MeV}$							
$<1 \times 10^{-1}$	DEUTSCH	83	$m_{\nu_{\chi}} = 85 \text{ MeV}$							

Searches	for	Decays	of	Massive	v
Jearches	101	Decava	01	141033146	v

	Limits on $ U_{\mu x} ^2$:	as functio	on	of $m_{\nu_{\chi}}$			
VALUE		CL%		DOCUMENT ID		TECN	COMMENT
•••	• We do not use the	followin	g d	ata for averages	, fits	, limits,	etc. • • •
<5	$\times 10^{-7}$	90	51	VAITAITIS	99	CCFR	$m_{\nu_{\gamma}} = 0.28 \text{ GeV}$
< 8	$\times 10^{-8}$	90	51	VAITAITIS	99	CCFR	$m_{\nu_{\gamma}} = 0.37 \text{ GeV}$
<5	$\times 10^{-7}$	90	51	VAITAITIS	99	CCFR	$m_{\nu_{\gamma}} = 0.50 \text{ GeV}$
<6	$\times 10^{-8}$	90	51	VAITAITIS	99	CCFR	$m_{\nu_{v}} = 1.50 \text{ GeV}$
< 2	$\times 10^{-5}$	95	52	ABREU	971	DLPH	$m_{\nu_{\nu}} = 6 \text{ GeV}$
< 3	$\times 10^{-5}$	95	52	ABREU	971	DLPH	$m_{\nu_{\chi}} = 50 \text{ GeV}$
< 3	$\times 10^{-6}$	90		GALLAS	95	CNTR	$m_{\nu_{\chi}} = 1 \text{ GeV}$
< 3	$\times 10^{-5}$	90	53	VILAIN	95 C	CHM 2	$m_{\nu_{\chi}} = 2 \text{ GeV}$
<6.2	$\times 10^{-8}$	95		ADEVA	90s	L 3	$m_{\nu_{\chi}} = 20 \text{ GeV}$
<5.1	$\times 10^{-10}$	95		ADEVA	90s	L 3	$m_{\nu_v} = 40 \text{ GeV}$
all va	lues ruled out	95	54	BURCHAT	90	MRK2	$m_{\nu_{\chi}}^{\prime}$ < 19.6 GeV
< 1	$\times 10^{-10}$	95	54	BURCHAT	90	MRK2	$m_{\nu_{\chi}} = 22 \text{ GeV}$
< 1	$\times 10^{-11}$	95	54	BURCHAT	90	MRK2	$m_{\nu_{\chi}} = 41 \text{ GeV}$
all va	lues ruled out	95		DECAMP	90F	ALEP	$m_{\nu_{\chi}} = 25.0-42.7 \text{ GeV}$
< 1	$\times 10^{-13}$	95		DECAMP	90F	ALEP	$m_{\nu_{\chi}} = 42.7 - 45.7 \text{ GeV}$
<5	$\times 10^{-3}$	90		AKERLOF	88	HRS	$m_{\nu_{\chi}} = 1.8 \text{ GeV}$
$<\!2$	$\times 10^{-5}$	90		AKERLOF	88	HRS	$m_{\nu_{\chi}} = 4 \text{ GeV}$
< 3	$\times 10^{-6}$	90		AKERLOF	88	HRS	$m_{\nu_{\chi}} = 6 \text{ GeV}$
< 1	$\times 10^{-7}$	90		BERNARDI	88	CNTR	$m_{\nu_{\chi}} = 200 \text{ MeV}$
< 3	$\times 10^{-9}$	90		BERNARDI	88	CNTR	$m_{\nu_{\gamma}} = 300 \text{ MeV}$
<4	$\times 10^{-4}$	90	55	MISHRA	87	CNTR	$m_{\nu_{\gamma}} = 1.5 \text{ GeV}$
<4	$\times 10^{-3}$	90	55	MISHRA	87	CNTR	$m_{\nu_{\gamma}} = 2.5 \text{ GeV}$
< 0.9	$\times 10^{-2}$	90	55	MISHRA	87	CNTR	$m_{\nu_{\chi}} = 5 \text{ GeV}$
< 0.1		90	55	MISHRA	87	CNTR	$m_{\nu_{\gamma}} = 10 \text{ GeV}$
< 8	$\times 10^{-4}$	90		BADIER	86	CNTR	$m_{\nu_{\gamma}} = 600 \text{ MeV}$
<1.2	$\times 10^{-5}$	90		BADIER	86	CNTR	$m_{\nu_{\gamma}} = 1.7 \text{ GeV}$
< 3	$\times 10^{-8}$	90		BERNARDI	86	CNTR	$m_{\nu_{\chi}} = 200 \text{ MeV}$
$<\!6$	$\times 10^{-9}$	90		BERNARDI	86	CNTR	$m_{\nu_{\chi}} = 350 \text{ MeV}$
< 1	$\times 10^{-6}$	90		DORENBOS	86	CNTR	$m_{\nu_{\gamma}} = 500 \text{ MeV}$
< 1	$\times 10^{-7}$	90		DORENBOS	86	CNTR	$m_{\nu_{\chi}} = 1600 \text{ MeV}$
< 0.8	$\times 10^{-5}$	90	56	COOPER	85	HLBC	$m_{\nu_{\chi}} = 0.4 \text{ GeV}$
<1.0	$\times 10^{-7}$	90	56	COOPER	85	HLBC	$m_{\nu_{\chi}} = 1.5 \text{ GeV}$

⁵¹VAITAITIS 99 search for $L^0_\mu
ightarrow \mu X$. See paper for rather complicated limit as function of $m_{\nu_{\gamma}}$

 $\sum_{\mu_X} \sum_{\nu_X} \sum_{\nu$

with decreasing sensitivity except at 3.5 GeV, where the limit is the same as at 0 GeV. 5^{3} VILAIN 95C is a search for the decays of heavy isosinglet neutrinos produced by neutral current neutrino interactions. Limits were quoted for masses in the range from 0.3 to 24 GeV. The best limit is listed above. 5^{4} BURCHAT 90 includes the analyses reported in JUNG 90, ABRAMS 89C, and WENDT 87. 5^{5} cooper_SABKAP 83. also give limits based on model dependent assumptions for ν_{-}

See as mints on p_{3x} from were 1 or ν_{τ} 56 CODER-SARKAR 83 as also give limits based on model-dependent assumptions for ν_{τ} flux. We do not list these. Note that for this bound to be nontrivial, x is not equal to 3, i.e. ν_{x} cannot be the dominant mass eigenstate in ν_{τ} since $m_{\nu_{3}} < 70$ MeV (ALBRECHT 851). Also, of course, x is not equal to 1 or 2, so a fourth generation would be required for this bound to be nontrivial.

Limits on $|U_{\tau,x}|^2$ as a Function of $m_{\mu_{\tau}}$

VALUE			<u>CL%</u>		DOCUMENT ID		TECN	COMMENT
• • •	We do not	use the	followin	g d	ata for averages	fits	, limits,	etc. • • •
< 1	$\times 10^{-2}$		90	57	ORLOFF	02	CHRM	$m_{\nu_{\gamma}} = 45 \text{ MeV}$
<1.4	$\times 10^{-4}$		90	57	ORLOFF	02	CHRM	$m_{\nu_{\gamma}} = 180 \text{ MeV}$
< 0.02	5		90		ASTIER	01		$m_{\nu_{\gamma}} = 45 \text{ MeV}$
< 0.00	2		90		ASTIER	01		$m_{\nu_{\nu}} = 140 \text{ MeV}$
<2	$\times 10^{-5}$		95	58	ABREU	971	DLPH	$m_{\nu_{v}} = 6 \text{ GeV}$
< 3	$\times 10^{-5}$		95	58	ABREU	971	DLPH	$m_{\nu_{v}} = 50 \text{ GeV}$
< 6.2	$ imes 10^{-8}$		95		ADEVA	90s	L 3	$m_{\nu_{\chi}} = 20 \text{ GeV}$
<5.1	$\times 10^{-10}$		95		ADEVA	90s	L 3	$m_{\nu_{\chi}} = 40 \text{ GeV}$
all valu	ies ruled ou	ıt	95	59	BURCHAT	90	MRK2	$m_{\nu_{\chi}} < 19.6 \text{GeV}$
< 1	$\times 10^{-10}$		95	59	BURCHAT	90	MRK2	$m_{\nu_{\chi}} = 22 \text{ GeV}$
< 1	$\times 10^{-11}$		95	59	BURCHAT	90	MRK2	$m_{\nu_{\nu}} = 41 \text{ GeV}$
all valu	ies ruled ou	ıt	95		DECAMP	90F	ALEP	$m_{\nu_{\chi}} = 25.0-42.7 \text{ GeV}$
< 1	$\times 10^{-13}$		95		DECAMP	90F	ALEP	$m_{\nu_{\chi}} = 42.7 - 45.7 \text{ GeV}$
<5	$\times 10^{-2}$		80		AKERLOF	88	HRS	$m_{\nu_{v}} = 2.5 \text{ GeV}$
< 9	$ imes 10^{-5}$		80		AKERLOF	88	HRS	$m_{\nu_{\chi}} = 4.5 \text{ GeV}$

⁵⁷ORLOFF 02 use the negative result of a search for neutral particles decaying into two electrons performed by CHARM to get these limits for a mostly isosinglet heavy neutrino

electrons performed by CHARM to get these limits of a mostly bisometer limit to lower masses with decreasing sensitivity. 59 BURCHAT 90 includes the analyses reported in JUNG 90, ABRAMS 89c, and WENDT 87.

470 Lepton Particle Listings Heavy Neutral Leptons, Searches for

Limits on $|U_{ax}|^2$

Where $a = e, \mu$ from	$m \rho$ parame	eter in μ decay.		
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	following d	ata for averages	, fits, limits,	etc. • • •
$< 1 \times 10^{-2}$	68	SHROCK	81B THEO	$m_{\nu_{\gamma}} = 10 \text{ GeV}$
$< 2 \times 10^{-3}$	68	SHROCK	81B THEO	$m_{\nu_{\chi}} = 40 \text{ MeV}$
$< 4 \times 10^{-2}$	68	SHROCK	81B THEO	$m_{\nu_{\chi}} = 70 \text{ MeV}$

Limits on $|U_{1j} \times U_{2j}|$ as Function of m_{ν_i}

VALUE	E			<u>CL%</u>		DOCUMENT ID		TECN	COMMENT
• • •	• We do	not use	the	followin	g d	ata for average	s, fits	, limits,	etc. • • •
< 3	$ imes 10^{-5}$			90	60	BARANOV	93		$m_{\nu_i} = 80 \text{ MeV}$
< 3	$ imes 10^{-6}$			90	60	BARANOV	93		$m_{\nu_i} = 160 \text{ MeV}$
< 6	$\times 10^{-7}$			90	60	BARANOV	93		$m_{\nu_i} = 240 \text{ MeV}$
< 2	imes 10 ⁻⁷			90	60	BARANOV	93		$m_{\nu_i} = 320 \text{ MeV}$
< 9	$ imes 10^{-5}$			90		BERNARDI	86	CNTR	$m_{\nu_i} = 25 \text{ MeV}$
< 3.6	× 10 ⁻⁷			90		BERNARDI	86	CNTR	$m_{\nu_i} = 100 \text{ MeV}$
< 3	$ imes 10^{-8}$			90		BERNARDI	86	CNTR	$m_{\nu_i} = 200 \text{ MeV}$
< 6	$ imes 10^{-9}$			90		BERNARDI	86	CNTR	$m_{\nu_i} = 350 \text{ MeV}$
< 1	imes 10 ⁻²			90		BERGSMA	83B	CNTR	$m_{\nu_i} = 10 \text{ MeV}$
< 1	$ imes 10^{-5}$			90		BERGSMA	83B	CNTR	$m_{\nu_i} = 140 \text{ MeV}$
<7	$\times 10^{-7}$			90		BERGSMA	83B	CNTR	$m_{\nu_i} = 370 \text{ MeV}$
⁶⁰ BARANOV 93 is a search for neutrino decays into $e^+e^-\nu_e$ using a beam dump exper-									

iment at the 70 GeV Serpukhov proton synchrotron.

REFERENCES FOR Heavy Neutral Leptons, Searches for

T RIN C Z EK	0.3	PRI 90 012501	M. Trinczek <i>et al</i>	
ASTIER	02	PL B527 23	P. Astier et al.	(NOMAD Collab.)
ORLOFF	02	PL B550 8	J. Orloff et al.	,
ACHARD	01	PL B517 67	P. Achard et al.	(L3 Collab.)
ACHARD	01B	PL B517 75	P. Achard et al.	(L3 Collab.)
ASTIER	01	PL B506 27	P. Astier et al.	(NOMÀD Collab.)
G A L EA Z Z I	01	PRL 86 1978	M. Galeazzi <i>et al.</i>	
ABBIENDI	001	EPJ C14 73	G. Abbiendi et al.	(OPAL Collab.)
DAUM	00	PRL 85 1815	M. Daum et al.	
FORMAGGIO	00	PRL 84 4043	J.A. Formaggio et al.	
HOLZSCHUH	00	PL B482 1	E. Holzschuh et al.	
ABREU	99O	EPJ C8 41	P. Abreu et al.	(DELPHI Collab.)
A C CIAR RI	99K	PL B461 397	M. Acciarri et al.	(L3 Collab.)
DRAGOUN	99	JPG 25 1839	O. Dragoun et al.	
HOLZSCHUH	99	PL B451 247	E. Holzschuh et al.	
VAITAITIS	99	PRL 83 4943	A. Vaitaitis et al.	(CCFR Collab.)
ASSAMAGAN	98	PL B434 158	K. Assamagan et al.	
HINDI	98	PR C58 2512	M.M. Hindi et al.	
PDG	98	EPJ C3 1	C. Caso et al.	
ABREU	971	ZPHY C74 57	P. Abreu et al.	(DELPHI Collab.)
A Iso	97L	ZPHY C75 580 erratum	P. Abreu et al.	(DELPHI Collab.)
BRYMAN	96	PR D53 558	D.A. Bryman, T. Numao	(T RIU)
BUSKULIC	96S	PL B384 439	D. Buskulic et al.	(ALEPH Collab.)
WIETFELDT	96	PRPL 273 149	F.E. Wietfeldt, E.B. Norman	(LBL)
ARMBRUSTER	95	PL B348 19	B. Armbruster et al.	(KARMEN Collab.)
BAHRAN	95	PL B354 481	M.Y. Bahran, G.R. Kalbfleisch	(OKLA)
BILGER	95	PL B363 41	R. Bilger et al.	(TUBIN, KARLE, PSI)

DAUM	95 B	PL B361 179	M. Daum et al. (PSI, VIRG)
FARGION	95	PR D52 1828	D. Fargion et al. (ROMA, KIAM, MPEI)
GALLAS	95	PR D52 6	E. Gallas et al. (MSU, FNAL, MIT, FLOR)
GARCIA	95	PR D51 1458	E. Garcia et al. (ZARA, SCUC, PNL)
HAGNER	95	PR D52 1343	C Hagner et al. (MUNT LAPP CPPM)
HIDDEMANN	05	IDC 01 620	KH Hidomaan H Daniel O Schwantker (MUNT)
AUD DEMANN	5J	DI D251 207	D. Miller et al. (Chapman, H. Daniel, O. Schweitker (WONT)
VILAIN	95 C	PL B351 387	P. Vilain et al. (CHARM II Collab.)
Also	95	PL B343 453	P. Vilain et al. (CHARM II Collab.)
BECK	94	PL B336 141	M. Beck et al. (MPIH, KIAE, SASSO)
KONOPLICH	94	PAN 57 425	R.V. Konoplich, M.Y. Khlopov (MPEI)
PDG	94	PR D50 1173	L. Montanet et al. (CERN, LBL, BOST+)
BAHRAN	93	PR D47 R754	M. Bahran, G.R. Kalbfleisch (OKLA)
BAHRAN	93 B	PR D47 R759	M Bahran G.R. Kalbflekch (OKLA)
BARANOV	03	PI B302 336	S.A. Baranov et al. (IINP SEPP BIIDA)
KALDELEICCU	00	DL D302 350	C.D. Kelkelerk, M.V. Debres (OKLA)
MODIADA	95	PL B303 300	G.R. Kaldiescii, M.Y. Bairaii (ANI J.D. UCD)
MORTARA	95	PRL 70 394	J.L. MOITATA et al. (ANL, EDL, OCD)
OHSHIMA	93	PR D47 4840	 Ohshima et al. (KEK, TUAT, RIKEN+)
ABREU	92 B	PL B274 230	P. Abreu et al. (DELPHI Collab.)
BAHRAN	92	PL B291 336	M.Y. Bahran, G.R. Kalbfleisch (OKLA)
BRITTON	92	PRL 68 3000	D.I. Britton et al. (TRIU, CARL)
Also	94	PR D49 28	D.I. Britton et al. (TRIU, CARL)
BRITTON	92 B	PR D46 R885	D L Britton et al. (TRILL CARL)
KAMAKAMI	02	PI 8287 45	H Kawakami et al. (INUS KEK SCUC+)
MORI	02 R	DI B280 462	M. Mori et al. (KAM2 Collab.)
ALEVANDED	015	70104 652 175	C Aleverder et el (ODAL Celleb.)
ALEXANDER	911	ZPHY C52 175	G. Alexander et al. (OPAL CONAD.)
DELEENER	91	PR D43 3611	N. de Leener-Rosier et al. (LOUV, ZURI+)
REUSSER	91	PL B255 143	D. Reusser et al. (NEUC, CIT, PSI)
SATO	91	PR D44 2220	N. Sato et al. (Kamiokande Collab.)
A DEVA	90 S	PL B251 321	B. Adeva et al. (L3 Collab.)
BURCHAT	90	PR D41 3542	P.R. Burchat et al. (Mark II Collab.)
DECAMP	90 F	PL B236 511	D Decamp et al (ALEPH Collab)
DEUTSCH	90	NP A518 149	L Deutsch M Lehrun R Prieels
LUNG	90	PRI 64 10.91	Clung et al. (Mark II Collab.)
ARRAMS	sor	DRI 63 2447	G.S. Abrams et al. (Mark II Collab.)
ENOVICE	0.00	ND D217 (47	K English K Kalaulalaan I Maalamal (UELC)
ENQVIST	0.9	NP D31/ 04/	N. Engvist, N. Kanutanieli, J. Maaiampi (nELS)
LISTER	0.9	PL B210 257	P.H. FEIEF & C. (CIT, NEUC, PSI)
AKERLOF	88	PR D37 577	C.W. Akerlot et al. (HRS Collab.)
BERNARDI	88	PL B203 332	G. Bernardi et al. (PARIN, CERN, INFN+)
CALDWELL	88	PRL 61 510	D.O. Caldwell et al. (UCSB, UCB, LBL)
OLIVE	88	PL B205 553	K.A. Olive, M. Srednicki (MINN, UCSB)
SREDNICKI	88	NP B310 693	M. Srednicki, R. Watkins, K.A. Olive (MINN, UCSB)
AHLEN	87	PL B195 603	S.P. Ahlen et al. (BOST, SCUC, HARV+)
DAUM	87	PR D36 2624	M Daum et al. (SIN_VIRG)
GRIEST	87	ND B283 681	K Griest D Seckel (UCSC CERN)
Also	88	NP B205 1034 errstum	K Griest D Seckel (UCSC CERN)
MICUDA	07	DPI 50 1207	S.B. Mishra et al. (COLLI CIT. ENALL)
ODEDAUED	07	PIL 0 0 110	J.C. Observes E. use E-liberate D.L. Masshauer
OBERAUER	07	PL B190 115	E.F. Oberatier, F. Volt Felilizsch, R.E. Mossbatter
WENDT	87	PRL 58 1810	C. Wendt et al. (Mark II Collab.)
AZUELOS	86	PRL 56 2241	G. Azuelos et al. (TRIU, CNRC)
BADIER	86	ZPHY C31 21	J. Badier et al. (NA3 Collab.)
BERNARDI	86	PL 166B 479	G. Bernardi et al. (CURIN, INFN, CDEF+)
D OREN B OS	86	PL 166B 473	J. Dorenbosch et al. (CHARM Collab.)
ALBRECHT	851	PL 163B 404	H. Albrecht et al. (ARGUS Collab.)
APALIKOV	85	JETPL 42 289	A.M. Apalikov et al. (ITEP)
		Translated from ZETFP	42 233
C OOP ER	85	PL 160B 207	A.M. Cooper-Sarkar et al. (CERN, LOIC+)
MARKEY	85	PR C32 2215	I Markey E Boehm (CIT)
OHI	85	PL 160 B 322	T Objetal (TOKY INUS KEK)
MINEUADT	0.0	DDI ED 904	P.C. Minchart at al. (VIRC SIN)
DEDCEMA	0.4	DI 100 P 4 65	E Borrema et al. (CHARM Collab.)
DERGSWA	0.0	FL 122B 465	F. Beigsmalet al. (CHARM CONSD.)
DEKGSMA	838	PL 128B 361	r beigsmaler al. (CHARM Collab.)
BRYMAN	83B	PKL 50 1546	D.A. Bryman et al. (FRIU, CNRC)
DEUTSCH	83	PR D27 1644	J.P. Deutsch, M. Lebrun, R. Prieels (LOUV)
GRONAU	83	PR D28 2762	M. Gronau (HAIF)
SCHRECK	83	PL 129B 265	K. Schreckenbach et al. (ISNG, ILLG)
HAYANO	82	PRL 49 1305	R.S. Hayano et al. (TOKY, KEK, TSUK)
ABELA	81	PL 105B 263	R. Abela et al. (SIN)
ASANO	81	PL 104 B 84	Y Asano et al. (KEK TOKY INUS OSAK)
CALAPRICE	81	PL 106B 175	E.P. Calantice et al. (PRIN_IND)
SHROCK	81	PR D24 1232	R E Shrock (STON)
SUBOCK	010	DD D04 1075	R E Shrock (STON)
SHROCK	010	DI 060 150	R.E. Shock (STON)
211151-01-02	00	LF 20D 12.2	N.E. SHOLK [SION]