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����� General 
���


An abstract de�nition of probability can be given by considering
a set S� called the sample space� and possible subsets A�B� � � �� the
interpretation of which is left open� The probability P is a real�valued
function de�ned by the following axioms due to Kolmogorov 
�
�

�� For every subset A in S� P �A� � ��
�� For disjoint subsets �i�e�� A � B � ��� P �A � B� � P �A� � P �B��

	� P �S� � ��

In addition one de�nes the conditional probability P �AjB� �read P of
A given B� as

P �AjB� � P �A �B�
P �B�

� �	����

From this de�nition and using the fact that A � B and B � A are the
same� one obtains Bayes� theorem�

P �AjB� � P �BjA�P �A�
P �B�

� �	����

From the three axioms of probability and the de�nition of conditional
probability� one obtains the law of total probability�

P �B� �
X
i

P �BjAi�P �Ai� � �	��	�

for any subset B and for disjoint Ai with �iAi � S� This can be
combined with Bayes� theorem Eq� �	���� to give

P �AjB� � P �BjA�P �A�P
i�BjAi�P �Ai�

� �	����

where the subset A could� for example� be one of the Ai�

The most commonly used interpretation of the subsets of the sample
space are outcomes of a repeatable experiment� The probability P �A�
is assigned a value equal to the limiting frequency of occurrence of A�
This interpretation forms the basis of frequentist statistics�

The subsets of the sample space can also be interpreted as
hypotheses� i�e�� statements that are either true or false� such as
�The mass of the W boson lies between ���	 and ���� GeV�� In the
frequency interpretation� such statements are either always or never
true� i�e�� the corresponding probabilities would be � or �� Using
subjective probability� however� P �A� is interpreted as the degree of
belief that the hypothesis A is true�

Subjective probability is used in Bayesian �as opposed to
frequentist� statistics� Bayes� theorem can be written

P �theoryjdata� � P �datajtheory�P �theory� � �	����

where �theory� represents some hypothesis and �data� is the outcome of
the experiment� Here P �theory� is the prior probability for the theory�
which re�ects the experimenter�s degree of belief before carrying out
the measurement� and P �datajtheory� is the probability to have gotten
the data actually obtained� given the theory� which is also called the
likelihood�

Bayesian statistics provides no fundamental rule for obtaining the
prior probability� this is necessarily subjective and may depend on
previous measurements� theoretical prejudices� etc� Once this has
been speci�ed� however� Eq� �	���� tells how the probability for the
theory must be modi�ed in the light of the new data to give the
posterior probability� P �theoryjdata�� As Eq� �	���� is stated as a
proportionality� the probability must be normalized by summing �or
integrating� over all possible hypotheses�

����� Random variables

A random variable is a numerical characteristic assigned to an
element of the sample space� In the frequency interpretation of
probability� it corresponds to an outcome of a repeatable experiment�
Let x be a possible outcome of an observation� If x can take on any
value from a continuous range� we write f�x� ��dx as the probability
that the measurement�s outcome lies between x and x � dx� The
function f�x� �� is called the probability density function �p�d�f��� which
may depend on one or more parameters �� If x can take on only
discrete values �e�g�� the non�negative integers�� then f�x� �� is itself a
probability�

The p�d�f� is always normalized to unit area �unit sum� if discrete��
Both x and � may have multiple components and are then often
written as vectors� If � is unknown� we may wish to estimate its
value from a given set of measurements of x� this is a central topic of
statistics �see Sec� 	���

The cumulative distribution function F �a� is the probability that
x � a�

F �a� �

Z a

��

f�x� dx � �	����

Here and below� if x is discrete�valued� the integral is replaced by a
sum� The endpoint a is expressly included in the integral or sum� Then
� � F �x� � �� F �x� is nondecreasing� and P �a � x � b� � F �b��F �a��
If x is discrete� F �x� is �at except at allowed values of x� where it has
discontinuous jumps equal to f�x��

Any function of random variables is itself a random variable� with
�in general� a di�erent p�d�f� The expectation value of any function
u�x� is

E
u�x�
 �

Z
�

��

u�x� f�x� dx � �	����

assuming the integral is �nite� For u�x� and v�x� any two functions of
x� E
u�v
 � E
u
�E
v
� For c and k constants� E
cu�k
 � cE
u
�k�

The nth moment of a random variable is

�n � E
xn
 �

Z
�

��

xnf�x� dx � �	���a�

and the nth central moment of x �or moment about the mean� ��� is

mn � E
�x� ���
n
 �

Z
�

��

�x� ���
nf�x� dx � �	���b�

The most commonly used moments are the mean � and variance
���

� � �� � �	���a�

�� � V 
x
 � m� � �� � �� � �	���b�

The mean is the location of the �center of mass� of the p�d�f�� and
the variance is a measure of the square of its width� Note that
V 
cx�k
 � c�V 
x
� It is often convenient to use the standard deviation
of x� �� de�ned as the square root of the variance�

Any odd moment about the mean is a measure of the skewness
of the p�d�f� The simplest of these is the dimensionless coe�cient of
skewness �� � m���

��

The fourth central moment m� provides a convenient measure of
the tails of a distribution� For the Gaussian distribution �see Sec� 	����
one has m� � 	�

�� The kurtosis is de�ned as �� � m���
� � 	� i�e��

it is zero for a Gaussian� positive for a leptokurtic distribution with
longer tails� and negative for a platykurtic distribution with tails that
die o� more quickly than those of a Gaussian�
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Besides the mean� another useful indicator of the �middle�
of the probability distribution is the median� xmed� de�ned by
F �xmed� � ���� i�e�� half the probability lies above and half lies below
xmed� �More rigorously� xmed is a median if P �x � xmed� � ��� and
P �x � xmed� � ���� If only one value exists it is called �the median���
Let x and y be two random variables with a joint p�d�f� f�x� y��

The marginal p�d�f� of x �the distribution of x with y unobserved� is

f��x� �

Z
�

��

f�x� y� dy � �	�����

and similarly for the marginal p�d�f� f��y�� The conditional p�d�f� of y
given �xed x �with f��x� �� �� is de�ned by f��yjx� � f�x� y��f��x�
and similarly f��xjy� � f�x� y��f��y�� From these we immediately
obtain Bayes� theorem �see Eqs� �	���� and �	������

f��xjy� � f��yjx�f��x�
f��y�

�
f��yjx�f��x�R

f��yjx��f��x�� dx�
� �	�����

The mean of x is

�x �

Z
�

��

Z
�

��

x f�x� y� dx dy �

Z
�

��

x f��x� dx � �	�����

and similarly for y� The covariance of x and y is

cov
x� y
 � E
�x� �x��y � �y�
 � E
xy
� �x�y � �	���	�

A dimensionless measure of the covariance of x and y is given by the
correlation coe�cient�

	xy � cov
x� y
��x�y � �	�����

where �x and �y are the standard deviations of x and y� It can be
shown that �� � 	xy � ��
Two random variables x and y are independent if and only if

f�x� y� � f��x�f��y� � �	�����

If x and y are independent then 	xy � �� the converse is not necessarily
true� If x and y are independent� E
u�x�v�y�
 � E
u�x�
E
v�y�
� and
V 
x� y
 � V 
x
 � V 
y
� otherwise� V 
x� y
 � V 
x
 � V 
y
 � �cov
x� y

and E
uv
 does not necessarily factorize�

Consider a set of n continuous random variables x � �x�� � � � � xn�
with joint p�d�f� f�x� and a set of n new variables y � �y�� � � � � yn��
related to x by means of a function y�x� that is one�to�one� i�e�� the
inverse x�y� exists� The joint p�d�f� for y is given by

g�y� � f�x�y��jJ j � �	�����

where jJ j is the absolute value of the determinant of the square matrix
Jij � 
xi�
yj �the Jacobian determinant�� If the transformation from
x to y is not one�to�one� the x�space must be broken in to regions
where the function y�x� can be inverted and the contributions to g�y�
from each region summed�

Given a set of functions y � �y�� � � � � ym� with m � n� one can
construct n�m additional independent functions� apply the procedure
above� then integrate the resulting g�y� over the unwanted yi to �nd
the marginal distribution of those of interest�

To change variables for discrete random variables simply substitute�
no Jacobian is necessary because now f is a probability rather than a
probability density� If f depends on a set of parameters �� a change
to a di�erent parameter set ���� is made by simple substitution� no
Jacobian is used�

����� Characteristic functions

The characteristic function ��u� associated with the p�d�f� f�x� is
essentially its Fourier transform� or the expectation value of eiux�

��u� � E
h
eiux

i
�

Z
�

��

eiuxf�x� dx � �	�����

Once ��u� is speci�ed� the p�d�f� f�x� is uniquely determined and vice
versa� knowing one is equivalent to the other� Characteristic functions
are useful in deriving a number of important results about moments
and sums of random variables�

It follows from Eqs� �	���a� and �	����� that the nth moment of a
random variable x that follows f�x� is given by

i�n
dn�

dun

����
u��
�

Z
�

��

xnf�x� dx � �n � �	�����

Thus it is often easy to calculate all the moments of a distribution
de�ned by ��u�� even when f�x� cannot be written down explicitly�

If the p�d�f�s f��x� and f��y� for independent random variables
x and y have characteristic functions ���u� and ���u�� then the
characteristic function of the weighted sum ax � by is ���au����bu��
The addition rules for several important distributions �e�g�� that the
sum of two Gaussian distributed variables also follows a Gaussian
distribution� easily follow from this observation�

Let the �partial� characteristic function corresponding to the
conditional p�d�f� f��xjz� be ���ujz�� and the p�d�f� of z be f��z�� The
characteristic function after integration over the conditional value is

��u� �

Z
���ujz�f��z� dz � �	�����

Suppose we can write �� in the form

���ujz� � A�u�eig�u�z � �	�����

Then

��u� � A�u����g�u�� � �	�����

The semi�invariants �n are de�ned by

��u� � exp

�
�X
n��

�n
n�
�iu�n

�
� exp

�
i��u� �

�
��u

� � � � �
�
� �	�����

The values �n are related to the moments �n and mn� The �rst few
relations are

�� � �� �� �� the mean�

�� � m� � �� � ��� �� ��� the variance�

�� � m� � �� � 	���� � ���� � �	���	�
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Table ����� Some common probability density functions� with corresponding characteristic functions and
means and variances� In the Table� ��k� is the gamma function� equal to �k � ��� when k is an integer�

Probability density function Characteristic
Distribution f �variable� parameters� function ��u� Mean Variance ��

Uniform f�x� a� b� �

�
���b� a� a � x � b

� otherwise

eibu � eiau

�b� a�iu

a� b

�

�b� a��

��

Binomial f�r�N� p� �
N �

r��N � r��
prqN�r �q � peiu�N Np Npq

r � �� �� �� � � � � N � � � p � � � q � �� p

Poisson f�n� 
� �

ne��

n�
� n � �� �� �� � � � � 
 � � exp

�eiu � ��
 
 


Normal
�Gaussian�

f�x��� ��� �
�

�
p
��
exp���x� �������� exp�i�u� �

��
�u�� � ��

�	 � x �	 � �	 � � �	 � � � �

Multivariate
Gaussian

f�x��� V � �
�

����n��
pjV j exp

�
i� 
 u� �

�u
T V u

�
� Vjk

� exp ���
� �x� ��TV ���x� ��

�
�	 � xj �	� �	 � �j �	� detV � �

�� f�z�n� �
zn����e�z��

�n����n���
� z � � ��� �iu��n�� n �n

Student�s t f�t�n� �
�p
n�

�
�n� ����


��n���

�
� �

t�

n

	��n�����
 

�
for n � �

n��n� ��
for n � 	

�	 � t �	 � n not required to be integer

Gamma f�x��� k� �
xk���ke��x

��k�
� � � x �	 � ��� iu����k k�� k���

k not required to be integer

����� Some probability distributions

Table 	��� gives a number of common probability density functions
and corresponding characteristic functions� means� and variances�
Further information may be found in Refs� 
�� �
 and 
��
� Ref� 
��
 has
particularly detailed tables� Monte Carlo techniques for generating
each of them may be found in our Sec� 		��� We comment below on
all except the trivial uniform distribution�

������� Binomial distribution�

A random process with exactly two possible outcomes which occur
with �xed probabilities is called a Bernoulli process� If the probability
of obtaining a certain outcome �a �success�� in each trail is p� then
the probability of obtaining exactly r successes �r � �� �� �� � � � � N� in
N independent trials� without regard to the order of the successes and
failures� is given by the binomial distribution f�r�N� p� in Table 	����
If r and s are binomially distributed with parameters �Nr� p� and
�Ns� p�� then t � r� s follows a binomial distribution with parameters
�Nr �Ns� p��

������� Poisson distribution�

The Poisson distribution f�n� 
� gives the probability of �nding
exactly n events in a given interval of x �e�g�� space and time� when
the events occur independently of one another and of x at an average
rate of 
 per the given interval� The variance �� equals 
� It is the
limiting case p � �� N � 	� Np � 
 of the binomial distribution�
The Poisson distribution approaches the Gaussian distribution for
large 
�

������� Normal or Gaussian distribution�

The normal �or Gaussian� probability density function f�x��� ���
given in Table 	��� has mean E
x
 � � and variance V 
x
 � ���
Comparison of the characteristic function ��u� given in Table 	���
with Eq� �	����� shows that all semi�invariants �n beyond �� vanish�
this is a unique property of the Gaussian distribution� Some other
properties are�

P �x in range �
 �� � �������

P �x in range �
 �������� � ����
E
jx� �j
 �p���� � ��������
half�width at half maximum �

p
� ln �� � �������

For a Gaussian with � � � and �� � � �the standard Gaussian��
the cumulative distribution� Eq� �	����� is related to the error function
erf�y� by

F �x� �� �� � �
�

h
� � erf�x�

p
��
i
� �	�����

The error function and standard Gaussian are tabulated in many
references �e�g�� Ref� 
��
� and are available in libraries of computer
routines such as CERNLIB� For a mean � and variance ��� replace x
by �x� ����� The probability of x in a given range can be calculated
with Eq� �	���	��

For x and y independent and normally distributed� z � ax � by
follows f�z� a�x � b�y� a

���x � b���y�� that is� the weighted means and
variances add�

The Gaussian derives its importance in large part from the
central limit theorem� If independent random variables x�� � � � � xn are
distributed according to any p�d�f�s with �nite means and variances�
then the sum y �

Pn
i�� xi will have a p�d�f� that approaches a

Gaussian for large n� The mean and variance are given by the sums
of corresponding terms from the individual xi� Therefore the sum of a
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large number of �uctuations xi will be distributed as a Gaussian� even
if the xi themselves are not�

�Note that the product of a large number of random variables is not
Gaussian� but its logarithm is� The p�d�f� of the product is log�normal�
See Ref� 
�
 for details��

For a set of n Gaussian random variables x with means � and
corresponding Fourier variables u� the characteristic function for a
one�dimensional Gaussian is generalized to

��u��� V � � exp
h
i� 
 u� �

�
uTV u

i
� �	�����

From Eq� �	������ the covariance of xi and xj is

E
�
�xi � �i��xj � �j�

�
� Vij � �	�����

If the components of x are independent� then Vij � �ij�
�
i � and

Eq� �	����� is the product of the c�f�s of n Gaussians�

The covariance matrix V can be related to the correlation matrix
de�ned by Eq� �	����� �a sort of normalized covariance matrix� as
	ij � Vij��i�j � Note that by construction 	ii � �� since Vii � ��i �

The characteristic function may be inverted to �nd the correspond�
ing p�d�f��

f�x��� V � �
�

����n��
pjV j exp

h
� �

�
�x� ��T V ���x� ��

i
�	�����

where the determinant jV j must be greater than �� For diagonal V
�independent variables�� f�x��� V � is the product of the p�d�f�s of n
Gaussian distributions�

For n � �� f�x��� V � is

f�x�� x�� ��� ��� ��� ��� 	� �
�

������
p
�� 	�

� exp


 ��
���� 	��

�
�x� � ���

�

���
� �	�x� � ����x� � ���

����

�
�x� � ���

�

���

�

� �	�����

The marginal distribution of any xi is a Gaussian with mean �i and
variance Vii� V is n� n� symmetric� and positive de�nite� Therefore
for any vector X� the quadratic form XTV ��X � C� where C is
any positive number� traces an n�dimensional ellipsoid as X varies� If
Xi � xi � �i� then C is a random variable obeying the �

� distribution
with n degrees of freedom� discussed in the following section� The
probability that X corresponding to a set of Gaussian random
variables xi lies outside the ellipsoid characterized by a given value of
C �� ��� is given by �� F���C�n�� where F�� is the cumulative �

�

distribution� This may be read from Fig� 	���� For example� the �s�
standard�deviation ellipsoid� occurs at C � s�� For the two�variable
case �n � ��� the point X lies outside the one�standard�deviation
ellipsoid with ��! probability� The use of these ellipsoids as indicators
of probable error is described in Sec� 	��	���	� the validity of those
indicators assumes that � and V are correct�

������� �� distribution�

If x�� � � � � xn are independent Gaussian random variables� the
sum z �

Pn
i���xi � �i�

����i follows the �
� p�d�f� with n degrees of

freedom� which we denote by ���n�� Under a linear transformation to
n correlated Gaussian variables x�i� the value of z is invariant� then

z � X �T V ��X � as in the previous section� For a set of zi� each of
which follows ���ni��

P
zi follows �

��
P

ni�� For large n� the �
� p�d�f�

approaches a Gaussian with mean � � n and variance �� � �n�

The �� p�d�f� is often used in evaluating the level of compatibility
between observed data and a hypothesis for the p�d�f� that the data
might follow� This is discussed further in Sec� 	����� on tests of
goodness�of��t�

������� Student�s t distribution�

Suppose that x and x�� � � � � xn are independent and Gaussian
distributed with mean � and variance �� We then de�ne

z �

nX
i��

x�i and t �
xp
z�n

� �	�����

The variable z thus follows a ���n� distribution� Then t is distributed
according to Student�s t distribution with n degrees of freedom�
f�t�n�� given in Table 	����

The Student�s t distribution resembles a Gaussian with wide tails�
As n � 	� the distribution approaches a Gaussian� If n � �� it is
a Cauchy or Breit�Wigner distribution� The mean is �nite only for
n � � and the variance is �nite only for n � �� so the central limit
theorem is not applicable to sums of random variables following the t
distribution for n � � or ��

As an example� consider the sample mean x �
P

xi�n and the
sample variance s� �

P
�xi � x����n � �� for normally distributed

xi with unknown mean � and variance ��� The sample mean
has a Gaussian distribution with a variance ���n� so the variable

�x � ���
p
���n is normal with mean � and variance �� Similarly�

�n� ��s���� is independent of this and follows ���n� ��� The ratio

t �
�x� ���

p
���np

�n� ��s�����n� �� �
x� �p
s��n

�	��	��

is distributed as f�t�n � ��� The unknown variance �� cancels� and
t can be used to test the probability that the true mean is some
particular value ��

In Table 	���� n in f�t�n� is not required to be an integer� A
Student�s t distribution with non�integral n � � is useful in certain
applications�

������� Gamma distribution�

For a process that generates events as a function of x �e�g��
space or time� according to a Poisson distribution� the distance in
x from an arbitrary starting point �which may be some particular
event� to the kth event follows a gamma distribution� f�x��� k�� The
Poisson parameter � is � per unit x� The special case k � � �i�e��
f�x��� �� � �e��x� is called the exponential distribution� A sum of k�

exponential random variables xi is distributed as f�
P

xi��� k
���

The parameter k is not required to be an integer� For � � ��� and
k � n��� the gamma distribution reduces to the ���n� distribution�
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This chapter gives an overview of statistical methods used in High
Energy Physics� In statistics we are interested in using a given sample
of data to make inferences about a probabilistic model
 e�g�
 to assess
the model�s validity or to determine the values of its parameters�
There are two main approaches to statistical inference
 which we may
call frequentist and Bayesian� In frequentist statistics
 probability is
interpreted as the frequency of the outcome of a repeatable experiment�
The most important tools in this framework are parameter estimation

covered in Section 	���
 and statistical tests
 discussed in Section 	����
Frequentist con�dence intervals
 which are constructed so as to cover
the true value of a parameter with a speci�ed probability
 are treated
in Section 	��	��� Note that in frequentist statistics one does not
de�ne a probability for a hypothesis or for a parameter�

Frequentist statistics provides the usual tools for reporting
objectively the outcome of an experiment without needing to
incorporate prior beliefs concerning the parameter being measured or
the theory being tested� As such they are used for reporting essentially
all measurements and their statistical uncertainties in High Energy
Physics�

In Bayesian statistics
 the interpretation of probability is more
general and includes degree of belief� One can then speak of a
probability density fundtion �p�d�f�� for a parameter
 which expresses
one�s state of knowledge about where its true value lies� Bayesian
methods allow for a natural way to input additional information such
as physical boundaries and subjective information� in fact they require
as input the prior p�d�f� for the parameters
 i�e�
 the degree of belief
about the parameters� values before carrying out the measurement�
Using Bayes� theorem Eq� �	��
�
 the prior degree of belief is updated
by the data from the experiment� Bayesian methods for interval
estimation are discussed in Sections 	��	�� and 	��	����

Bayesian techniques are often used to treat systematic uncertainties

where the author�s subjective beliefs about
 say
 the accuracy of the
measuring device may enter� Bayesian statistics also provides a
useful framework for discussing the validity of di�erent theoretical
interpretations of the data� This aspect of a measurement
 however

will usually be treated separately from the reporting of the result�

For many inference problems
 the frequentist and Bayesian
approaches give the same numerical answers
 even though they are
based on fundamentally di�erent interpretations of probability� For
small data samples
 however
 and for measurements of a parameter
near a physical boundary
 the di�erent approaches may yield di�erent
results
 so we are forced to make a choice� For a discussion of Bayesian
vs� non�Bayesian methods
 see References written by a statistician���

by a physicist���
 or the more detailed comparison in Ref� �	��

Following common usage in physics
 the word �error� is often
used in this chapter to mean �uncertainty�� More speci�cally it can
indicate the size of an interval as in �the standard error� or �error
propagation�
 where the term refers to the standard deviation of an
estimator�

����� Parameter estimation

Here we review point estimation of parameters� An estimator b�
�written with a hat� is a function of the data whose value
 the estimate

is intended as a meaningful guess for the value of the parameter ��

There is no fundamental rule dictating how an estimator must be
constructed� One tries therefore to choose that estimator which has
the best properties� The most important of these are �a� consistency

�b� bias
 �c� e�ciency
 and �d� robustness�

�a� An estimator is said to be consistent if the estimate b� converges to
the true value � as the amount of data increases� This property is so
important that it is possessed by all commonly used estimators�

�b� The bias
 b � E� b� � � �
 is the di�erence between the expectation
value of the estimator and the true value of the parameter�
The expectation value is taken over a hypothetical set of similar
experiments in which b� is constructed in the same way� When b � �

the estimator is said to be unbiased� The bias depends on the chosen
metric
 i�e�
 if b� is an unbiased estimator of �
 then b� � is not in general
an unbiased estimator for ��� If we have an estimate bb for the bias
we can subtract it from b� to obtain a new b� � � b� � bb� The estimatebb may
 however
 be subject to statistical or systematic uncertainties
that are larger than the bias itself
 so that the new estimator may not
be better than the original�

�c� E�ciency is the inverse of the ratio of the variance V � b� � to
its minimum possible value� Under rather general conditions
 the
minimum variance is given by the Rao�Cram�er�Frechet bound


��min �

�
� �

�b

��

��

�I��� � �	����

where

I��� � E

��� �

��

X
i

ln f�xi� ��

��
�� �	����

is the Fisher information� The sum is over all data
 assumed
independent and distributed according to the p�d�f� f�x� ��
 b is the
bias
 if any
 and the allowed range of x must not depend on ��

The mean�squared error


MSE � E��b� � ���� � V �b�� � b� � �	��	�

is a convenient quantity which combines the uncertainties in an
estimate due to bias and variance�

�d� Robustness is the property of being insensitive to departures from
assumptions in the p�d�f� owing to factors such as noise�

For some common estimators the properties above are known
exactly� More generally
 it is possible to evaluate them by Monte
Carlo simulation� Note that they will often depend on the unknown ��

������� Estimators for mean� variance and median�

Suppose we have a set of N independent measurements xi assumed
to be unbiased measurements of the same unknown quantity � with a
common
 but unknown
 variance ��� Then

b� � �

N

NX
i��

xi �	��
�

c�� � �

N � �
NX
i��

�xi � b��� �	����

are unbiased estimators of � and ��� The variance of b� is ���N and

the variance of c�� is
V
hc��i � �

N

�
m� �

N � 	
N � ��

�
�

� �	����

where m� is the 
th central moment of x� For Gaussian distributed xi
this becomes �����N ��� for any N � �
 and for large N the standard
deviation of b� �the �error of the error�� is ��p�N � Again if the xi
are Gaussian
 b� is an e�cient estimator for � and the estimators b�
and c�� are uncorrelated� Otherwise the arithmetic mean �	��
� is not
necessarily the most e�cient estimator� this is discussed in more detail
in �
� Sec� ���

If �� is known
 it does not improve the estimate b�
 as can be
seen from Eq� �	��
�� however
 if � is known
 substitute it for b� in
Eq� �	���� and replace N � � by N to obtain a somewhat better
estimator of ���
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If the xi have di�erent
 known variances �
�
i 
 then the weighted

average

b� � �

w

NX
i��

wixi �	����

is an unbiased estimator for � with a smaller variance than an
unweighted average� here wi � ���

�
i and w �

P
i wi� The standard

deviation of b� is ��pw�
As an estimator for the median xmed one can use the value bxmed

such that half the xi are below and half above �the sample median��
If the sample median lies between two observed values
 it is set by
convention halfway between them� If the p�d�f� of x has the form
f�x � �� and � is both mean and median
 then for large N the
variance of the sample median approaches ���
Nf�����
 provided
f��� � �� Although estimating the median can often be more di�cult
computationally than the mean
 the resulting estimator is generally
more robust
 as it is insensitive to the exact shape of the tails of a
distribution�

������� The method of maximum likelihood�

�From a theoretical point of view
 the most important general
method of estimation so far known is the method of maximum
likelihood� ���� We suppose that a set of N independently measured
quantities xi came from a p�d�f� f�x���
 where � � ���� � � � � �n� is set
of n parameters whose values are unknown� The method of maximum
likelihood takes the estimators b� to be those values of � that maximize
the likelihood function


L��� �
NY
i��

f�xi��� � �	����

The likelihood function is the joint p�d�f� for the data
 evaluated with
the data obtained in the experiment and regarded as a function of the
parameters� Note that the likelihood function is not a p�d�f� for the
parameters �� in frequentist statistics this is not de�ned� In Bayesian
statistics one can obtain from the likelihood the posterior p�d�f� for �

but this requires multiplying by a prior p�d�f� �see Sec� 	��	����

It is usually easier to work with lnL
 and since both are maximized
for the same parameter values �
 the maximum likelihood �ML�
estimators can be found by solving the likelihood equations


� lnL

��i
� � � i � �� � � � � n � �	����

Maximum likelihood estimators are important because they are
approximately unbiased and e�cient for large data samples
 under
quite general conditions
 and the method has a wide range of
applicability�

In evaluating the likelihood function
 it is important that any
normalization factors in the p�d�f� that involve � be included� However

we will only be interested in the maximum of L and in ratios of L
at di�erent values of the parameters� hence any multiplicative factors
that do not involve the parameters that we want to estimate may be
dropped
 including factors that depend on the data but not on ��

Under a one�to�one change of parameters from � to �
 the
ML estimators b� transform to ��b��� That is
 the ML solution is
invariant under change of parameter� However
 other properties of
ML estimators
 in particular the bias
 are not invariant under change
of parameter�

The inverse V �� of the covariance matrix Vij � cov�b�i� b�j � for a set
of ML estimators can be estimated by using

�bV ���ij � � �� lnL

��i��j

����
b�

� �	�����

For �nite samples
 however
 Eq� �	����� can result in an underestimate
of the variances� In the large sample limit �or in a linear model with
Gaussian errors�
 L has a Gaussian form and lnL is �hyper�parabolic�
In this case it can be seen that a numerically equivalent way of

determining s�standard�deviation errors is from the contour given by
the �� such that

lnL���� � lnLmax � s��� � �	�����

where lnLmax is the value of lnL at the solution point �compare with
Eq� �	��
���� The extreme limits of this contour on the �i axis give
an approximate s�standard�deviation con�dence interval for �i �see
Section 	��	���	��

In the case where the size n of the data sample x�� � � � � xn is small

the unbinned maximum likelihood method
 i�e�
 use of equation �	����

is preferred since binning can only result in a loss of information and
hence larger statistical errors for the parameter estimates� The sample
size n can be regarded as �xed or the user can choose to treat it as
a Poisson�distributed variable� this latter option is sometimes called
�extended maximum likelihood� �see
 e�g�
 ��
 �
 ���� If the sample
is large it can be convenient to bin the values in a histogram
 so
that one obtains a vector of data n � �n�� � � � � nN � with expectation
values � � E�n� and probabilities f�n���� Then one may maximize
the likelihood function based on the contents of the bins �so i
labels bins�� This is equivalent to maximizing the likelihood ratio
���� � f�n�������f�n�n�
 or to minimizing the quantity ���

�� ln���� � �
NX
i��

	
	i���� ni � ni ln

ni
	i���



� �	�����

where in bins where ni � �
 the last term in �	����� is zero� In the
limit of zero bin width
 maximizing �	����� is equivalent to maximizing
the unbinned likelihood function �	�����

A bene�t of binning is that it allows for a goodness�of��t test �see
Sec� 	������� The minimum of �� ln� as de�ned by Eq� �	����� follows
a 
� distribution in the large sample limit� If there are N bins and
m �tted parameters
 then the number of degrees of freedom for the

� distribution is N �m� � if the data are treated as multinomially
distributed and N�m if the ni are Poisson variables with 	tot �

P
i 	i

�xed� If the ni are Poisson distributed and 	tot is also �tted
 then
by minimizing Eq� �	����� one obtains that the area under the
�tted function is equal to the sum of the histogram contents
 i�e�
P

i 	i �
P

i ni� This is not the case for parameter estimation methods
based on a least�squares procedure with traditional weights �see
 e�g�

Ref� �����

������� The method of least squares�

The method of least squares �LS� coincides with the method of
maximum likelihood in the following special case� Consider a set of N
independent measurements yi at known points xi� The measurement
yi is assumed to be Gaussian distributed with mean F �xi��� and
known variance ��i � The goal is to construct estimators for the
unknown parameters �� The likelihood function contains the sum of
squares


���� � �� lnL��� � constant �

NX
i��

�yi � F �xi����
�

��i
� �	���	�

The set of parameters � which maximize L is the same as those which
minimize 
��

The minimum of Equation �	���	� de�nes the least�squares

estimators b� for the more general case where the yi are not
Gaussian distributed as long as they are independent� If they are not
independent but rather have a covariance matrix Vij � cov�yi� yj �

then the LS estimators are determined by the minimum of


���� � �y � F ����T V ���y � F ���� � �	���
�

where y � �y�� � � � � yN � is the vector of measurements
 F ��� is the
corresponding vector of predicted values �understood as a column
vector in �	���
��
 and the superscript T denotes transposed �i�e�

row� vector�
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In many practical cases one further restricts the problem to the
situation where F �xi��� is a linear function of the parameters
 i�e�


F �xi��� �

mX
j��

�jhj�xi� � �	�����

Here the hj�x� are m linearly independent functions
 e�g�


�� x� x�� � � � � xm��
 or Legendre polynomials� We require m � N
and at least m of the xi must be distinct�

Minimizing 
� in this case with m parameters reduces to solving a
system of m linear equations� De�ning Hij � hj�xi� and minimizing


� by setting its derivatives with respect to the �i equal to zero gives
the LS estimators


b� � �HTV ��H���HTV ��y � Dy � �	�����

The covariance matrix for the estimators Uij � cov�b�i� b�j � is given by
U � DVDT � �HTV ��H��� � �	�����

or equivalently
 its inverse U�� can be found from

�U���ij �
�

�

��
�

��i��j

����
��b�

�

NX
k�l��

hi�xk��V
���klhj�xl� � �	�����

The LS estimators can also be found from the expression

b� � Ug � �	�����

where the vector g is de�ned by

gi �

NX
j�k��

yjhi�xk��V
���jk � �	�����

For the case of uncorrelated yi
 for example
 one can use �	����� with

�U���ij �
NX
k��

hi�xk�hj�xk�

��k
� �	�����

gi �

NX
k��

ykhi�xk�

��k
� �	�����

Expanding 
���� about b�
 one �nds that the contour in parameter
space de�ned by


���� � 
��b�� � � � 
�min � � �	���	�

has tangent planes located at plus or minus one standard deviation �
b�

from the LS estimates b��
In constructing the quantity 
����
 one requires the variances or


in the case of correlated measurements
 the covariance matrix� Often
these quantities are not known a priori and must be estimated from
the data� an important example is where the measured value yi
represents a counted number of events in the bin of a histogram� If

for example
 yi represents a Poisson variable
 for which the variance
is equal to the mean
 then one can either estimate the variance from
the predicted value
 F �xi���
 or from the observed number itself

yi� In the �rst option
 the variances become functions of the �tted
parameters
 which may lead to calculational di�culties� The second
option can be unde�ned if yi is zero
 and in both cases for small yi the
variance will be poorly estimated� In either case one should constrain
the normalization of the �tted curve to the correct value
 e�g�
 one
should determine the area under the �tted curve directly from the
number of entries in the histogram �see ��� Section ��
�� A further
alternative is to use the method of maximum likelihood� for binned
data this can be done by minimizing Eq� �	�����

As the minimum value of the 
� represents the level of agreement
between the measurements and the �tted function
 it can be used for
assessing the goodness�of��t� this is discussed further in Section 	������

������� Propagation of errors�

Consider a set of n quantities � � ���� � � � � �n� and a set of
m functions ���� � ������� � � � � �m����� Suppose we have estimatesb� � �b��� � � � � b�n�
 using
 say
 maximum likelihood or least squares
 and
we also know or have estimated the covariance matrix Vij � cov�b�i� b�j ��
The goal of error propagation is to determine the covariance matrix
for the functions
 Uij � cov�b�i� b�j �
 where b� � ��b� �� In particular
 the
diagonal elements Uii � V �b�i� give the variances� The new covariance
matrix can be found by expanding the functions ���� about the

estimates b� to �rst order in a Taylor series� Using this one �nds
Uij �

X
k�l

��i
��k

��j
��l

����
b�
Vkl � �	���
�

This can be written in matrix notation as U � AV AT where the
matrix of derivatives A is

Aij �
��i
��j

����
b�

�	�����

and AT is its transpose� The approximation is exact if ���� is linear
�it holds
 for example
 in equation �	������� If this is not the case the
approximation can break down if
 for example
 ���� is signi�cantly

nonlinear close to b� in a region of a size comparable to the standard
deviations of b��
����� Statistical tests

In addition to estimating parameters
 one often wants to assess
the validity of certain statements concerning the data�s underlying
distribution� Hypothesis tests provide a rule for accepting or rejecting
hypotheses depending on the outcome of a measurement� In goodness�
of��t tests one gives the probability to obtain a level of incompatibility
with a certain hypothesis that is greater than or equal to the level
observed with the actual data�

������� Hypothesis tests�

Consider an experiment whose outcome is characterized by a vector
of data x� A hypothesis is a statement about the distribution of x� It
could
 for example
 de�ne completely the p�d�f� for the data �a simple
hypothesis� or it could specify only the functional form of the p�d�f�

with the values of one or more parameters left open �a composite
hypothesis��

A statistical test is a rule that states for which values of x a given
hypothesis �often called the null hypothesis
 H�� should be rejected�
This is done by de�ning a region of x�space called the critical region�
if the outcome if the experiment lands in this region
 H� is rejected�
Equivalently one can say that the hypothesis is accepted if x is
observed in the acceptance region
 i�e�
 the complement of the critical
region� Here �accepted� is understood to mean simply that the test
did not reject H��

Rejecting H� if it is true is called an error of the �rst kind� The
probability for this to occur is called the signi�cance level of the test



 which is often chosen to be equal to some pre�speci�ed value� It
can also happen that H� is false and the true hypothesis is given by
some alternative
 H�� If H� is accepted in such a case
 this is called an
error of the second kind� The probability for this to occur
 �
 depends
on the alternative hypothesis
 say
 H�
 and �� � is called the power
of the test to reject H��

In High Energy Physics the components of x might represent the
measured properties of candidate events
 and the acceptance region
is de�ned by the cuts that one imposes in order to select events
of a certain desired type� That is
 H� could represent the signal
hypothesis
 and various alternatives
 H�
 H�
 etc�
 could represent
background processes�

Often rather than using the full data sample x it is convenient
to de�ne a test statistic
 t
 which can be a single number or in any
case a vector with fewer components than x� Each hypothesis for the
distribution of x will determine a distribution for t
 and the acceptance
region in x�space will correspond to a speci�c range of values of t�
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In constructing t one attempts to reduce the volume of data without
losing the ability to discriminate between di�erent hypotheses�

In particle physics terminology
 the probability to accept the
signal hypothesis
 H�
 is the selection e�ciency
 i�e�
 one minus the
signi�cance level� The e�ciencies for the various background processes
are given by one minus the power� Often one tries to construct a test
to minimize the background e�ciency for a given signal e�ciency�
The Neyman�Pearson lemma states that this is done by de�ning the
acceptance region such that
 for x in that region
 the ratio of p�d�f�s
for the hypotheses H� and H�


��x� �
f�xjH��

f�xjH��
� �	�����

is greater than a given constant
 the value of which is chosen to give
the desired signal e�ciency� This is equivalent to the statement that
�	����� represents the test statistic with which one may obtain the
highest purity sample for a given signal e�ciency� It can be di�cult
in practice
 however
 to determine ��x�
 since this requires knowledge
of the joint p�d�f�s f�xjH�� and f�xjH��� Instead
 test statistics based
on neural networks or Fisher discriminants are often used �see ������

������� Goodness�of��t tests�

Often one wants to quantify the level of agreement between the data
and a hypothesis without explicit reference to alternative hypotheses�
This can be done by de�ning a goodness�of��t statistic
 t
 which is
a function of the data whose value re�ects in some way the level
of agreement between the data and the hypothesis� The user must
decide what values of the statistic correspond to better or worse levels
of agreement with the hypothesis in question� for many goodness�of��t
statistics there is an obvious choice�

The hypothesis in question
 say
 H�
 will determine the p�d�f�
g�tjH�� for the statistic� The goodness�of��t is quanti�ed by giving
the p�value
 de�ned as the probability to �nd t in the region of
equal or lesser compatibility with H� than the level of compatibility
observed with the actual data� For example
 if t is de�ned such that
large values correspond to poor agreement with the hypothesis
 then
the p�value would be

p �

Z
�

tobs

g�tjH�� dt � �	�����

where tobs is the value of the statistic obtained in the actual
experiment� The p�value should not be confused with the signi�cance
level of a test or the con�dence level of a con�dence interval
�Section 	��	�
 both of which are pre�speci�ed constants�

The p�value is a function of the data and is therefore itself a random
variable� If the hypothesis used to compute the p�value is true
 then
for continuous data
 p will be uniformly distributed between zero and
one� Note that the p�value is not the probability for the hypothesis�
in frequentist statistics this is not de�ned� Rather
 the p�value is the
probability
 under the assumption of a hypothesis H�
 of obtaining
data at least as incompatible with H� as the data actually observed�

When estimating parameters using the method of least squares

one obtains the minimum value of the quantity 
� �	���	�
 which can
be used as a goodness�of��t statistic� It may also happen that no
parameters are estimated from the data
 but that one simply wants
to compare a histogram
 e�g�
 a vector of Poisson distributed numbers
n � �n�� � � � � nN �
 with a hypothesis for their expectation values
	i � E�ni�� As the distribution is Poisson with variances �

�
i � 	i
 the


� �	���	� becomes Pearson�s 
� statistic



� �

NX
i��

�ni � 	i�
�

	i
� �	�����

If the hypothesis � � �	�� � � � � 	N � is correct and if the measured
values ni in �	����� are su�ciently large �in practice
 this will be a
good approximation if all ni � ��
 then the 


� statistic will follow the

� p�d�f� with the number of degrees of freedom equal to the number
of measurements N minus the number of �tted parameters� The same
holds for the minimized 
� from Eq� �	���	� if the yi are Gaussian�
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Figure ����� One minus the 
� cumulative distribution

� � F �
��n�
 for n degrees of freedom� This gives the p�value
for the 
� goodness�of��t test as well as one minus the coverage
probability for con�dence regions �see Sec� 	��	���	��

Alternatively one may �t parameters and evaluate goodness�of��t by
minimizing �� ln� from Eq� �	������ One �nds that the distribution
of this statistic approaches the asymptotic limit faster than does
Pearson�s 
� and thus computing the p�value with the 
� p�d�f� will in
general be better justi�ed �see ��� and references therein��

Assuming the goodness�of��t statistic follows a 
� p�d�f�
 the p�value
for the hypothesis is then

p �

Z
�

��
f�z�nd� dz � �	�����

where f�z�nd� is the 

� p�d�f� and nd is the appropriate number of

degrees of freedom� Values can be obtained from Fig� 	��� or from the
CERNLIB routine PROB� If the conditions for using the 
� p�d�f� do
not hold
 the statistic can still be de�ned as before
 but its p�d�f� must
be determined by other means in order to obtain the p�value
 e�g�

using a Monte Carlo calculation�

Since the mean of the 
� distribution is equal to nd
 one expects
in a �reasonable� experiment to obtain 
� � nd� Hence the quantity

��nd is sometimes reported� Since the p�d�f� of 


��nd depends on
nd
 however
 one must report nd as well in order to make a meaningful
statement� The p�values obtained for di�erent values of 
��nd are
shown in Fig� 	����
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����� Con�dence intervals and limits

When the goal of an experiment is to determine a parameter �

the result is usually expressed by quoting
 in addition to the point
estimate
 some sort of interval which re�ects the statistical precision
of the measurement� In the simplest case this can be given by the
parameter�s estimated value b� plus or minus an estimate of the
standard deviation of b�
 �

b�
� If
 however
 the p�d�f� of the estimator

is not Gaussian or if there are physical boundaries on the possible
values of the parameter
 then one usually quotes instead an interval
according to one of the procedures described below�

In reporting an interval or limit
 the experimenter may wish to

� communicate as objectively as possible the result of the
experiment�

� provide an interval that is constructed to cover the true value of
the parameter with a speci�ed probability�

� provide the information needed by the consumer of the result to
draw conclusions about the parameter or to make a particular
decision�

� draw conclusions about the parameter that incorporate stated
prior beliefs�

With a su�ciently large data sample
 the point estimate and
standard deviation �or for the multiparameter case
 the parameter
estimates and covariance matrix� satisfy essentially all of these goals�
For �nite data samples
 no single method for quoting an interval
will achieve all of them� In particular
 drawing conclusions about the
parameter in the framework of Bayesian statistics necessarily requires
subjective input�

In addition to the goals listed above
 the choice of method may
be in�uenced by practical considerations such as ease of producing
an interval from the results of several measurements� Of course the
experimenter is not restricted to quoting a single interval or limit�
one may choose
 for example
 �rst to communicate the result with
a con�dence interval having certain frequentist properties
 and then
in addition to draw conclusions about a parameter using Bayesian
statistics� It is recommended
 however
 that there be a clear separation
between these two aspects of reporting a result� In the remainder of
this section we assess the extent to which various types of intervals
achieve the goals stated here�

������� The Bayesian approach�

Suppose the outcome of the experiment is characterized by a vector
of data x
 whose probability distribution depends on an unknown
parameter �or parameters� � that we wish to determine� In Bayesian
statistics
 all knowledge about � is summarized by the posterior p�d�f�
p��jx�
 which gives the degree of belief for � to take on values in
a certain region given the data x� It is obtained by using Bayes�
theorem


p��jx� � L�xj������R
L�xj�������� d�� � �	��	��

where L�xj�� is the likelihood function
 i�e�
 the joint p�d�f� for the
data given a certain value of �
 evaluated with the data actually
obtained in the experiment
 and ���� is the prior p�d�f� for �� Note
that the denominator in �	��	�� serves simply to normalize the
posterior p�d�f� to unity�

Bayesian statistics supplies no fundamental rule for determining
����� this re�ects the experimenter�s subjective degree of belief about
� before the measurement was carried out� By itself
 therefore
 the
posterior p�d�f� is not a good way to report objectively the result of an
observation
 since it contains both the result �through the likelihood
function� and the experimenter�s prior beliefs� Without the likelihood
function
 someone with di�erent prior beliefs would be unable to
substitute these to determine his or her own posterior p�d�f� This
is an important reason
 therefore
 to publish wherever possible the
likelihood function or an appropriate summary of it� Often this can be
achieved by reporting the ML estimate and one or several low order
derivatives of L evaluated at the estimate�

In the single parameter case
 for example
 an interval �called a
Bayesian or credible interval� ��lo� �up� can be determined which
contains a given fraction �� 
 of the probability
 i�e�


�� 
 �

Z �up

�lo

p��jx� d� � �	��	��

Sometimes an upper or lower limit is desired
 i�e�
 �lo can be set to
zero or �up to in�nity� In other cases one might choose �lo and �up
such that p��jx� is higher everywhere inside the interval than outside�
these are called highest posterior density �HPD� intervals� Note that
HPD intervals are not invariant under a nonlinear transformation of
the parameter�

The main di�culty with Bayesian intervals is in quantifying the
prior beliefs� Sometimes one attempts to construct ���� to represent
complete ignorance about the parameters by setting it equal to a
constant� A problem here is that if the prior p�d�f� is �at in �

then it is not �at for a nonlinear function of �
 and so a di�erent
parametrization of the problem would lead in general to a di�erent
posterior p�d�f� In fact
 one rarely chooses a �at prior as a true
expression of degree of belief about a parameter� rather
 it is used as
a recipe to construct an interval
 which in the end will have certain
frequentist properties�

If a parameter is constrained to be non�negative
 then the prior
p�d�f� can simply be set to zero for negative values� An important
example is the case of a Poisson variable n which counts signal events
with unknown mean s as well as background with mean b
 assumed
known� For the signal mean s one often uses the prior

��s� �

�
� s � �
� s � � � �	��	��

As mentioned above
 this is regarded as providing an interval whose
frequentist properties can be studied
 rather than as representing a
degree of belief� In the absence of a clear discovery
 �e�g�
 if n � �
or if in any case n is compatible with the expected background�

one usually wishes to place an upper limit on s� Using the likelihood
function for Poisson distributed n


L�njs� � �s� b�n

n�
e��s�b� � �	��		�

along with the prior �	��	�� in �	��	�� gives the posterior density for
s� An upper limit sup at con�dence level � � 
 can be obtained by
requiring

�� 
 �

Z sup

��

p�sjn�ds �
R sup
��

L�njs���s� dsR
�

��
L�njs���s� ds � �	��	
�

where the lower limit of integration is e�ectively zero because of the
cut�o� in ��s�� By relating the integrals in Eq� �	��	
� to incomplete
gamma functions
 the equation reduces to


 � e�sup
Pn

m���sup � b�m�m�Pn
m�� b

m�m�
� �	��	��

This must be solved numerically for the limit sup� For the special

case of b � �
 the sums can be related to the quantile F��
��

of the 
�

distribution �inverse of the cumulative distribution� to give

sup �
�
�F

��
��
��� 
�nd� � �	��	��

where the number of degrees of freedom is nd � ��n���� The quantile
of the 
� distribution can be obtained using the CERNLIB routine
CHISIN� It so happens that for the case of b � �
 the upper limits from
Eq� �	��	�� coincide numerically with the values of the frequentist
upper limits discussed in Section 	��	���
� Values for � � 
 � ���
and ���� are given by the values 	up in Table 	��	� The frequentist
properties of con�dence intervals for the Poisson mean obtained in
this way are discussed in Refs� ��� and �����
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Bayesian statistics provides a framework for incorporating sys�
tematic uncertainties into a result� Suppose
 for example
 that a
model depends not only on parameters of interest � but on nuisance
parameters �
 whose values are known with some limited accuracy�
For a single nuisance parameter 	
 for example
 one might have a p�d�f�
centered about its nominal value with a certain standard deviation
�� � Often a Gaussian p�d�f� provides a reasonable model for one�s
degree of belief about a nuisance parameter� in other cases more
complicated shapes may be appropriate� The likelihood function
 prior
and posterior p�d�f�s then all depend on both � and � and are related
by Bayes� theorem as usual� One can obtain the posterior p�d�f� for �
alone by integrating over the nuisance parameters
 i�e�


p��jx� �
Z

p����jx� d� � �	��	��

If the prior joint p�d�f� for � and � factorizes
 then integrating the
posterior p�d�f� over � is equivalent to replacing the likelihood function
by �see Ref� �����


L��xj�� �
Z

L�xj�������� d� � �	��	��

The function L��xj�� can also be used together with frequentist
methods that employ the likelihood function such as ML estimation
of parameters� The results then have a mixed frequentist�Bayesian
character
 where the systematic uncertainty due to limited knowledge
of the nuisance parameters is built in� Although this may make it
more di�cult to disentangle statistical from systematic e�ects
 such a
hybrid approach may satisfy the objective of reporting the result in a
convenient way�

Even if the subjective Bayesian approach is not used explicitly

Bayes� theorem represents the way that people evaluate the impact
of a new result on their beliefs� One of the criteria in choosing a
method for reporting a measurement
 therefore
 should be the ease
and convenience with which the consumer of the result can carry out
this exercise�

������� Frequentist con�dence intervals�

The unquali�ed phrase �con�dence intervals� refers to frequentist
intervals obtained with a procedure due to Neyman ��	�
 described
below� These are intervals �or in the multiparameter case
 regions�
constructed so as to include the true value of the parameter with
a probability greater than or equal to a speci�ed level
 called the
coverage probability� In this section we discuss several techniques for
producing intervals that have
 at least approximately
 this property�

��������� The Neyman construction for con�dence intervals�

Consider a p�d�f� f�x� �� where x represents the outcome of the
experiment and � is the unknown parameter for which we want
to construct a con�dence interval� The variable x could �and often
does� represent an estimator for �� Using f�x� �� we can �nd for a
pre�speci�ed probability �� 
 and for every value of � a set of values
x���� 
� and x���� 
� such that

P �x� � x � x�� �� � �� 
 �

Z x�

x�

f�x� �� dx � �	��	��

This is illustrated in Fig� 	��	� a horizontal line segment
�x���� 
�� x���� 
�� is drawn for representative values of �� The
union of such intervals for all values of �
 designated in the �gure as
D�
�
 is known as the con�dence belt� Typically the curves x���� 
�
and x���� 
� are monotonic functions of �
 which we assume for this
discussion�

Upon performing an experiment to measure x and obtaining a value
x�
 one draws a vertical line through x�� The con�dence interval for �
is the set of all values of � for which the corresponding line segment
�x���� 
�� x���� 
�� is intercepted by this vertical line� Such con�dence
intervals are said to have a con�dence level �CL� equal to �� 
�
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Figure ����� Construction of the con�dence belt �see text��

Now suppose that the true value of � is ��
 indicated in the �gure�
We see from the �gure that �� lies between ���x� and ���x� if and
only if x lies between x����� and x������ The two events thus have
the same probability
 and since this is true for any value ��
 we can
drop the subscript � and obtain

�� 
 � P �x���� � x � x����� � P ����x� � � � ���x�� � �	��
��

In this probability statement ���x� and ���x�
 i�e�
 the endpoints of
the interval
 are the random variables and � is an unknown constant�
If the experiment were to be repeated a large number of times
 the
interval ���� ��� would vary
 covering the �xed value � in a fraction
�� 
 of the experiments�

The condition of coverage Eq� �	��	�� does not determine x� and
x� uniquely and additional criteria are needed� The most common
criterion is to choose central intervals such that the probabilities
excluded below x� and above x� are each 
��� In other cases one
may want to report only an upper or lower limit
 in which case the
probability excluded below x� or above x� can be set to zero� Another
principle based on likelihood ratio ordering for determining which
values of x should be included in the con�dence belt is discussed in
Sec� 	��	����

When the observed random variable x is continuous
 the coverage
probability obtained with the Neyman construction is ��

 regardless
of the true value of the parameter� If x is discrete
 however
 it is
not possible to �nd segments �x���� 
�� x���� 
�� that satisfy �	��	��
exactly for all values of �� By convention one constructs the con�dence
belt requiring the probability P �x� � x � x�� to be greater than or
equal to � � 
� This gives con�dence intervals that include the true
parameter with a probability greater than or equal to �� 
�

��������� Relationship between intervals and tests�

An equivalent method of constructing con�dence intervals is to
consider a test �see Sec� 	���� of the hypothesis that the parameter�s
true value is �� One then excludes all values of � where the hypothesis
would be rejected at a signi�cance level less than 
� The remaining
values constitute the con�dence interval at con�dence level �� 
�

In this procedure one is still free to choose the test to be used� this
corresponds to the freedom in the Neyman construction as to which
values of the data are included in the con�dence belt� One possibility
is use a test statistic based on the likelihood ratio


� �
f�x� ��

f�x� b� � � �	��
��

where b� is the value of the parameter which
 out of all allowed values

maximizes f�x� ��� This results in the intervals described in ��
� by
Feldman and Cousins� The same intervals can be obtained from the
Neyman construction described in the previous section by including in
the con�dence belt those values of x which give the greatest values of
��
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Table ����� Area of the tails 
 outside �� from the mean of a
Gaussian distribution�


 � � � 
 � � �

	���	 �� �� �����


��� �� �� ���
�

���� 	� � �����

��	����� 
� � �����

�������	 �� ��� 	����

�������
 �� ���� 	����

Another technique that can be formulated in the language of
statistical tests has been used to set limits on the Higgs mass from
measurements at LEP ���
���� For each value of the Higgs mass
 a
statistic called CLs is determined from the ratio

CLs �
p�value of signal plus background hypothesis

�� p�value of hypothesis of background only
� �	��
��

The p�values in �	��
�� are themselves based on a goodness�of��t
statistic which depends in general on the signal being tested
 i�e�

on the hypothesized Higgs mass� Smaller CLs corresponds to a lesser
level of agreement with the signal hypothesis�

In the usual procedure for constructing con�dence intervals
 one
would exclude the signal hypothesis if the probability to obtain a value
of CLs less than the one actually observed is less than 
� The LEP
Higgs group has in fact followed a more conservative approach and
excludes the signal at a con�dence level � � 
 if CLs itself �not the
probability to obtain a lower CLs value� is less than 
� This results
in a coverage probability that is in general greater than �� 
� The
interpretation of such intervals is discussed in ���
����

��������� Gaussian distributed measurements�

An important example of constructing a con�dence interval is when
the data consists of a single random variable x that follows a Gaussian
distribution� this is often the case when x represents an estimator for
a parameter and one has a su�ciently large data sample� If there is
more than one parameter being estimated
 the multivariate Gaussian
is used� For the univariate case with known �


�� 
 �
�p
���

Z ���

���
e��x���

����� dx � erf

�
�p
� �

�
�	��
	�

is the probability that the measured value x will fall within �� of the
true value �� From the symmetry of the Gaussian with respect to x
and �
 this is also the probability for the interval x � � to include
�� Fig� 	��
 shows a � � ���
� con�dence interval unshaded� The
choice � � � gives an interval called the standard error which has
�� 
 � ����� if � is known� Values of 
 for other frequently used
choices of � are given in Table 	����

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

Figure ����� Illustration of a symmetric �� con�dence interval
�unshaded� for a measurement of a single quantity with Gaussian
errors� Integrated probabilities
 de�ned by 

 are as shown�

We can set a one�sided �upper or lower� limit by excluding above
x � � �or below x � ��� The values of 
 for such limits are half the
values in Table 	����

In addition to Eq� �	��
	�
 
 and � are also related by the
cumulative distribution function for the 
� distribution



 � �� F �
��n� � �	��

�

for 
� � ������ and n � � degree of freedom� This can be obtained
from Fig� 	��� on the n � � curve or by using the CERNLIB routine
PROB�

For multivariate measurements of
 say
 n parameter estimatesb� � �b��� � � � � b�n�
 one requires the full covariance matrix Vij �

cov�b�i� b�j �
 which can be estimated as described in Sections 	�����
and 	����	� Under fairly general conditions with the methods of
maximum�likelihood or least�squares in the large sample limit
 the
estimators will be distributed according to a multivariate Gaussian
centered about the true �unknown� values �
 and furthermore the
likelihood function itself takes on a Gaussian shape�

The standard error ellipse for the pair �b�i� b�j� is shown in Fig� 	���

corresponding to a contour 
� � 
�min � � or lnL � lnLmax � ����
The ellipse is centered about the estimated values b�
 and the tangents
to the ellipse give the standard deviations of the estimators
 �i and
�j � The angle of the major axis of the ellipse is given by

tan �� �
��ij�i�j

��i � ��j
� �	��
��

where �ij � cov�b�i� b�j ���i�j is the correlation coe�cient�
The correlation coe�cient can be visualized as the fraction of the

distance �i from the ellipse�s horizontal centerline at which the ellipse
becomes tangent to vertical
 i�e� at the distance �ij�i below the
centerline as shown� As �ij goes to �� or ��
 the ellipse thins to a
diagonal line�

It could happen that one of the parameters
 say
 �j 
 is known from
previous measurements to a precision much better than �j so that the
current measurement contributes almost nothing to the knowledge of
�j � However
 the current measurement of of �i and its dependence
on �j may still be important� In this case
 instead of quoting both
parameter estimates and their correlation
 one sometimes reports the
value of �i which minimizes 


� at a �xed value of �j 
 such as the PDG
best value� This �i value lies along the dotted line between the points
where the ellipse becomes tangent to vertical
 and has statistical
error �inner as shown on the �gure
 where �inner � �� � ��ij�

����i�

Instead of the correlation �ij 
 one reports the dependency db�i�d�j
which is the slope of the dotted line� This slope is related to the
correlation coe�cient by db�i�d�j � �ij � �i

�j
�

θ i
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θ i

jσ

θj

iσ

jσ

iσ
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θ j
^

ij   iρ  σ
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Figure ����� Standard error ellipse for the estimators b�i andb�j � In this case the correlation is negative�
As in the single�variable case
 because of the symmetry of the

Gaussian function between � and b�
 one �nds that contours of constant
lnL or 
� cover the true values with a certain
 �xed probability� That
is
 the con�dence region is determined by

lnL��� � lnLmax �� lnL � �	��
��
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Table ����� �
� or �� lnL corresponding to a coverage
probability � � 
 in the large data sample limit
 for joint
estimation of m parameters�

��� 
� � � m � � m � � m � 	

����� ���� ��	� 	��	

��� ���� 
��� ����

��� 	��
 ���� ����

���
� 
��� ���� ���	

��� ���	 ���� ���	


����	 ���� ����	 �
���

or where a 
� has been de�ned for use with the method of least
squares



���� � 
�min ��
� � �	��
��

Values of �
� or �� lnL are given in Table 	��� for several values of
the coverage probability and number of �tted parameters�

For �nite data samples
 the probability for the regions determined
by Equations �	��
�� or �	��
�� to cover the true value of � will
depend on �
 so these are not exact con�dence regions according to
our previous de�nition� Nevertheless
 they can still have a coverage
probability only weakly dependent on the true parameter and
approximately as given in Table 	���� In any case the coverage
probability of the intervals or regions obtained according to this
procedure can in principle be determined as a function of the true
parameter�s�
 for example
 using a Monte Carlo calculation�

One of the practical advantages of intervals that can be constructed
from the log�likelihood function or 
� is that it is relatively simple to
produce the interval for the combination of several experiments� If N
independent measurements result in log�likelihood functions lnLi���

then the combined log�likelihood function is simply the sum


lnL��� �
NX
i��

lnLi��� � �	��
��

This can then be used to determine an approximate con�dence interval
or region with Equation �	��
��
 just as with a single experiment�

��������� Poisson or binomial data�

Another important class of measurements consists of counting a
certain number of events n� In this section we will assume these
are all events of the desired type
 i�e�
 there is no background� If n
represents the number of events produced in a reaction with cross
section �
 say
 in a �xed integrated luminosity L
 then it follows a
Poisson distribution with mean 	 � �L� If
 on the other hand
 one
has selected a larger sample of N events and found n of them to have
a particular property
 then n follows a binomial distribution where the
parameter p gives the probability for the event to possess the property
in question� This is appropriate
 e�g�
 for estimates of branching ratios
or selection e�ciencies based on a given total number of events�

For the case of Poisson distributed n
 the upper and lower limits on
the mean value 	 can be found from the Neyman procedure to be

	lo �
�
�
F��
��
�
lo� �n� � �	��
�a�

	up � �
�
F��
��
��� 
up� ��n� ��� � �	��
�b�

where the upper and lower limits are at con�dence levels of ��
lo and
� � 
up
 respectively
 and F��

��
is the quantile of the 
� distribution

�inverse of the cumulative distribution�� The quantiles F��
��

can

be obtained from standard tables or from the CERNLIB routine
CHISIN� For central con�dence intervals at con�dence level �� 

 set

lo � 
up � 
���

It happens that the upper limit from �	��
�a� coincides numerically
with the Bayesian upper limit for a Poisson parameter using a uniform

Table ����� Lower and upper �one�sided� limits for the mean 	
of a Poisson variable given n observed events in the absence of
background
 for con�dence levels of �� and �� �

�� 
 ��� �� 
 ��� 

n 	lo 	up 	lo 	up

� ! ��	� ! 	���

� ����� 	��� ����� 
��


� ���	� ��	� ��	�� ��	�

	 ���� ���� ����� ����


 ���
 ���� ��	� ����

� ��
	 ���� ���� �����

� 	��� ����	 ���� ����


� 	��� ����� 	��� �	���

� 
��� ����� 	��� �
�
	

� ��
	 �
��� 
��� �����

�� ���� ���
� ��
	 �����

prior p�d�f� for 	� Values for con�dence levels of �� and �� are
shown in Table 	��	�

For the case of binomially distributed n successes out of N trials
with probability of success p
 the upper and lower limits on p are
found to be

plo �
nF��F �
lo� �n� ��N � n� ���

N � n� � � nF��F �
lo� �n� ��N � n� ���
� �	����a�

pup �
�n� ��F��F ��� 
up� ��n� ��� ��N � n��

�N � n� � �n� ��F��F ��� 
up� ��n� ��� ��N � n��
� �	����b�

Here F��F is the quantile of the F distribution �also called the
Fisher!Snedecor distribution� see Ref� �
���

��������� Di�culties with intervals near a boundary�

A number of issues arise in the construction and interpretation
of con�dence intervals when the parameter can only take on values
in a restricted range� An important example is where the mean
of a Gaussian variable is constrained on physical grounds to be
non�negative� This arises
 for example
 when the square of the
neutrino mass is estimated from bm� � bE� � bp�
 where bE and bp
are independent
 Gaussian distributed estimates of the energy and
momentum� Although the true m� is constrained to be positive

random errors in bE and bp can easily lead to negative values for the
estimate bm��

If one uses the prescription given above for Gaussian distributed
measurements
 which says to construct the interval by taking the
estimate plus or minus one standard deviation
 then this can give
intervals that are partially or entirely in the unphysical region� In
fact
 by following strictly the Neyman construction for the central
con�dence interval
 one �nds that the interval is truncated below zero�
nevertheless an extremely small or even a zero�length interval can
result�

An additional important example is where the experiment consists
of counting a certain number of events
 n
 which is assumed to
be Poisson distributed� Suppose the expectation value E�n� � 	
is equal to s � b
 where s and b are the means for signal and
background processes
 and assume further that b is a known constant�
Then bs � n � b is an unbiased estimator for s� Depending on true
magnitudes of s and b
 the estimate bs can easily fall in the negative
region� Similar to the Gaussian case with the positive mean
 the
central con�dence interval or even the upper limit for s may be of zero
length�

The con�dence interval is in fact designed not to cover the
parameter with a probability of at most 

 and if a zero�length
interval results
 then this is evidently one of those experiments� So
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although the construction is behaving as it should
 a null interval is
an unsatisfying result to report and several solutions to this type of
problem are possible�

An additional di�culty arises when a parameter estimate is not
signi�cantly far away from the boundary
 in which case it is natural
to report a one�sided con�dence interval �often an upper limit�� It
is straightforward to force the Neyman prescription to produce only
an upper limit by setting x� � � in Eq� 	��	�� Then x� is uniquely
determined and the upper limit can be obtained� If
 however
 the
data come out such that the parameter estimate is not so close to
the boundary
 one might wish to report a central �i�e�
 two�sided�
con�dence interval� As pointed out by Feldman and Cousins ��
�

however
 if the decision to report an upper limit or two�sided interval
is made by looking at the data ���ip��opping��
 then the resulting
intervals will not in general cover the parameter with the probability
�� 
�

With the con�dence intervals suggested in ��
�
 the prescription
determines whether the interval is one� or two�sided in a way which
preserves the coverage probability� Intervals with this property are
said to be uni�ed� Furthermore
 the Feldman!Cousins prescription is
such that null intervals do not occur� For a given choice of � � 

 if
the parameter estimate is su�ciently close to the boundary
 then the
method gives a one�sided limit� In the case of a Poisson variable in the
presence of background
 for example
 this would occur if the number
of observed events is compatible with the expected background� For
parameter estimates increasingly far away from the boundary
 i�e�
 for
increasing signal signi�cance
 the interval makes a smooth transition
from one� to two�sided
 and far away from the boundary one obtains a
central interval�

The intervals according to this method for the mean of Poisson
variable in the absence of background are given in Table 	��
� �Note
that 
 in ��
� is de�ned following Neyman ��	� as the coverage
probability� this is opposite the modern convention used here in which
the coverage probability is ��
�� The values of ��
 given here refer
to the coverage of the true parameter by the whole interval �	�� 	���
In Table 	��	 for the one�sided upper and lower limits
 however
 �� 

refers to the probability to have individually 	up � 	 or 	lo � 	�

Table ����� Uni�ed con�dence intervals �	�� 	�� for a the mean
of a Poisson variable given n observed events in the absence of
background
 for con�dence levels of �� and �� �

�� 
 ��� �� 
 ��� 

n 	� 	� 	� 	�

� ���� ��

 ���� 	���

� ���� 
�	� ���� ���


� ���	 ���� ��	� ����

	 ���� ��
� ���� ����


 ��
� ���� ��	� ����

� ���
 ���� ���
 �����

� ���� ���
� ���� �����

� 	��� ����	 ���� �	���

� 	��� �	��� ���
 �����

� 
�	� ���	� 
�	� �����

�� ���� ����� 
��� �����

A potential di�culty with uni�ed intervals arises if
 for example

one constructs such an interval for a Poisson parameter s of some
yet to be discovered signal process with
 say
 �� 
 � ���� If the true
signal parameter is zero
 or in any case much less than the expected
background
 one will usually obtain a one�sided upper limit on s� In
a certain fraction of the experiments
 however
 a two�sided interval
for s will result� Since
 however
 one typically chooses � � 
 to be
only ��� or ���� when searching for a new e�ect
 the value s � �
may be excluded from the interval before the existence of the e�ect
is well established� It must then be communicated carefully that in

excluding s � � from the interval
 one is not necessarily claiming to
have discovered the e�ect�

The intervals constructed according to the uni�ed procedure in ��
�
for a Poisson variable n consisting of signal and background have the
property that for n � � observed events
 the upper limit decreases
for increasing expected background� This is counter�intuitive
 since
it is known that if n � � for the experiment in question
 then no
background was observed
 and therefore one may argue that the
expected background should not be relevant� The extent to which
one should regard this feature as a drawback is a subject of some
controversy �see
 e�g�
 Ref� ������

Another possibility is to construct a Bayesian interval as described
in Section 	��	��� The presence of the boundary can be incorporated
simply by setting the prior density to zero in the unphysical region�
Priors based on invariance principles �rather than subjective degree of
belief� for the Poisson mean are rarely used in high energy physics�
they diverge for the case of zero events observed
 and they give upper
limits which undercover when evaluated by the frequentist de�nition
of coverage ���� Rather
 priors uniform in the Poisson mean have been
used
 although as previously mentioned
 this is generally not done to
re�ect the experimenter�s degree of belief but rather as a procedure
for obtaining an interval with certain frequentist properties� The
resulting upper limits have a coverage probability that depends on the
true value of the Poisson parameter and is everywhere greater than
the stated probability content� Lower limits and two�sided intervals
for the Poisson mean based on �at priors undercover
 however
 for
some values of the parameter
 although to an extent that in practical
cases may not be too severe ��
 ���� Intervals constructed in this way
have the advantage of being easy to derive� if several independent
measurements are to be combined then one simply multiplies the
likelihood functions �cf� Eq� �	��
����

An additional alternative is presented by the intervals found from
the likelihood function or 
� using the prescription of Equations �	��
��
or �	��
��� As in the case of the Bayesian intervals
 the coverage
probability is not
 in general
 independent of the true parameter�
Furthermore
 these intervals can for some parameter values undercover�
The coverage probability can of course be determined with some extra
e�ort and reported with the result�

Also as in the Bayesian case
 intervals derived from the value of the
likelihood function from a combination of independent experiments can
be determined simply by multiplying the likelihood functions� These
intervals are also invariant under transformation of the parameter� this
is not true for Bayesian intervals with a conventional �at prior
 because
a uniform distribution in
 say
 � will not be uniform if transformed to
��� Use of the likelihood function to determine approximate con�dence
intervals is discussed further in �����

In any case it is important always to report su�cient information
so that the result can be combined with other measurements� Often
this means giving an unbiased estimator and its standard deviation

even if the estimated value is in the unphysical region�

Regardless of the type of interval reported
 the consumer of that
result will almost certainly use it to derive some impression about the
value of the parameter� This will inevitably be done
 either explicitly
or intuitively
 with Bayes� theorem


p��jresult� 	 L�resultj������ � �	�����

where the reader supplies his or her own prior beliefs ���� about
the parameter
 and the �result� is whatever sort of interval or other
information the author has reported� For all of the intervals discussed

therefore
 it is not su�cient to know the result� one must also know
the probability to have obtained this result as a function of the
parameter
 i�e�
 the likelihood� Contours of constant likelihood
 for
example
 provide this information
 and so an interval obtained from
lnL � lnLmax �� lnL already takes one step in this direction�

It can also be useful with a frequentist interval to calculate its
subjective probability content using the posterior p�d�f� based on one
or several reasonable guesses for the prior p�d�f� If it turns out to
be signi�cantly less than the stated con�dence level
 this warns that
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it would be particularly misleading to draw conclusions about the
parameter�s value without further information from the likelihood�
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���MONTECARLOTECHNIQUES
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Updated February ���� by R� Cousins �UCLA� in consultation with
F� James �CERN�	 October ���
 by G� Cowan �RHUL� and R� Miquel
�LBNL�

Monte Carlo techniques are often the only practical way to
evaluate di�cult integrals or to sample random variables governed
by complicated probability density functions� Here we describe an
assortment of methods for sampling some commonly occurring
probability density functions�

����� Sampling the uniform distribution

Most Monte Carlo sampling or integration techniques assume a
�random number generator
 which generates uniform statistically
independent values on the half open interval ��� ��� There is a
long history of problems with various generators on a �nite digital
computer� but recently� the RANLUX generator ��� has emerged with
a solid theoretical basis in chaos theory� Based on the method of
L�uscher� it allows the user to select di�erent quality levels� trading o�
quality with speed�

Other generators are also available which pass extensive batteries of
tests for statistical independence and which have periods which are so
long that� for practical purposes� values from these generators can be
considered to be uniform and statistically independent� In particular�
the lagged�Fibonacci based generator introduced by Marsaglia� Zaman�
and Tsang ��� is e�cient� has a period of approximately ����� produces
identical sequences on a wide variety of computers and� passes the
extensive �DIEHARD
 battery of tests �
�� Many commonly available
congruential generators fail these tests and often have sequences
�typically with periods less than ���� which can be easily exhausted
on modern computers and should therefore be avoided ����

����� Inverse transform method

If the desired probability density function is f�x� on the range
�� � x � �� its cumulative distribution function �expressing the
probability that x � a� is given by Eq� �
����� If a is chosen with
probability density f�a�� then the integrated probability up to point
a� F �a�� is itself a random variable which will occur with uniform
probability density on ��� ��� If x can take on any value� and ignoring
the endpoints� we can then �nd a unique x chosen from the p�d�f� f�s�
for a given u if we set

u � F �x� � �

���

provided we can �nd an inverse of F � de�ned by

x � F���u� � �

���

This method is shown in Fig� 

��a� It is most convenient when one
can calculate by hand the inverse function of the inde�nite integral
of f � This is the case for some common functions f�x� such as
exp�x�� ��� x�n� and ���� � x�� �Cauchy or Breit�Wigner�� although
it does not necessarily produce the fastest generator� CERNLIB
contains routines to implement this method numerically� working from
functions or histograms�

For a discrete distribution� F �x� will have a discontinuous jump of
size f�xk� at each allowed xk� k � �� �� � � �� Choose u from a uniform
distribution on ����� as before� Find xk such that

F �xk��� � u � F �xk� � Prob �x � xk� �

kX
i��

f�xi� 	 �

�
�

then xk is the value we seek �note� F �x�� � ��� This algorithm is
illustrated in Fig� 

��b�

0

1

0

1

F(x)

F(x)
} f (xk)

x
xk+1xk

u

x
x = F−1(u)

Continuous
distribution

Discrete
distribution

u

(a)

(b)

Figure ����� Use of a random number u chosen from a uniform
distribution ����� to �nd a random number x from a distribution
with cumulative distribution function F �x��

����� Acceptance�rejection method �Von Neumann�

Very commonly an analytic form for F �x� is unknown or too
complex to work with� so that obtaining an inverse as in Eq� �

��� is
impractical� We suppose that for any given value of x the probability
density function f�x� can be computed and further that enough is
known about f�x� that we can enclose it entirely inside a shape which
is C times an easily generated distribution h�x� as illustrated in
Fig� 

���

C h(x)

C h(x)

f (x)

x

f (x)

(a)

(b)

Figure ����� Illustration of the acceptance�rejection method�
Random points are chosen inside the upper bounding �gure� and
rejected if the ordinate exceeds f�x�� Lower �gure illustrates
importance sampling�

Frequently h�x� is uniform or is a normalized sum of uniform
distributions� Note that both f�x� and h�x� must be normalized
to unit area and therefore the proportionality constant C � ��
To generate f�x�� �rst generate a candidate x according to h�x��
Calculate f�x� and the height of the envelope C h�x�	 generate u and
test if uC h�x� � f�x�� If so� accept x	 if not reject x and try again� If
we regard x and uC h�x� as the abscissa and ordinate of a point in a
two�dimensional plot� these points will populate the entire area C h�x�
in a smooth manner	 then we accept those which fall under f�x�� The
e�ciency is the ratio of areas� which must equal ��C	 therefore we
must keep C as close as possible to ���� Therefore we try to choose
C h�x� to be as close to f�x� as convenience dictates� as in the lower
part of Fig� 

��� This practice is called importance sampling� because
we generate more trial values of x in the region where f�x� is most
important�
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����� Algorithms

Algorithms for generating random numbers belonging to many
di�erent distributions are given by Press ���� Ahrens and Dieter ����
Rubinstein ���� Everett and Cashwell ���� Devroye ���� and Walck �����
For many distributions alternative algorithms exist� varying in
complexity� speed� and accuracy� For time�critical applications� these
algorithms may be coded in�line to remove the signi�cant overhead
often encountered in making function calls� Variables named �u
 are
assumed to be independent and uniform on ������ �Hence� u must be
veri�ed to be non�zero where relevant��

In the examples given below� we use the notation for the variables
and parameters given in Table 
����

������� Exponential decay�

This is a common application of the inverse transform method� also
using the fact that �� � u� is uniform if u is uniform� To generate
decays between times t� and t� according to f�t� � exp��t���� let
r� � exp��t���� and r� � exp��t����	 generate u and let

t � �� ln�r� � u�r� � r���� �

���

For �t�� t�� � ������ we have simply t � �� lnu� �See also Sec� 

������
������� Isotropic direction in �D�

Isotropy means the density is proportional to solid angle� the
di�erential element of which is d� � d�cos ��d�� Hence cos � is
uniform ��u� � �� and � is uniform ��	u��� For alternative generation
of sin� and cos�� see the next subsection�

������� Sine and cosine of random angle in �D�

Generate u� and u�� Then v� � �u� � � is uniform on ������� and
v� � u� is uniform on ������ Calculate r� � v�� � v�� � If r

� � �� start
over� Otherwise� the sine �S� and cosine �C� of a random angle are
given by

S � �v�v��r
� and C � �v�� � v����r

� � �

���

������� Gaussian distribution�

If u� and u� are uniform on ������ then

z� � sin �	u�
p
�� lnu� and z� � cos �	u�

p
�� lnu� �

���

are independent and Gaussian distributed with mean � and 
 � ��

There are many faster variants of this basic algorithm� For example�
construct v� � �u�� � and v� � �u�� �� which are uniform on �������
Calculate r� � v���v�� � and if r� � � start over� If r� � �� it is uniform
on ������ Then

z� � v�

s
�� ln r�

r�
and z� � v�

s
�� ln r�

r�
�

���

are independent numbers chosen from a normal distribution with
mean � and variance �� z�i � � � 
zi distributes with mean � and

variance 
�� A recent implementation of the fast algorithm of Leva
Ref� �� is in CERNLIB�

For a multivariate Gaussian with an n�n covariance matrix V � one
can start by generating n independent Gaussian variables� f�jg� with
mean � and variance � as above� Then the new set fxig is obtained
as xi � �i �

P
j Lij�j � where �i is the mean of xi� and Lij are

the components of L� the unique lower triangular matrix that ful�ls
V � LLT � The matrix L can be easily computed by the following
recursive relation �Cholesky�s method��

Ljj �

�
�Vjj �

j��X
k��

L�
jk

�
A

���

� �

��a�

Lij �
Vij �

Pj��
k��LikLjk

Ljj
� j � �� ���� n 	 i � j � �� ���� n ��

��b�

where Vij � 
ij
i
j are the components of V � For n � � one has

L �

�

� �


�

p
�� 
� 
�

�
� �

���

and therefore the correlated Gaussian variables are generated as
x� � �� � 
���� x� � �� � 

��� �

p
�� 
� 
����

������� ���n� distribution�

For n even� generate n�� uniform numbers ui	 then

y � �� ln
�
�n��Y

i��

ui

�
A is ���n� � �

����

For n odd� generate �n� ���� uniform numbers ui and one Gaussian z
as in Sec� 

����	 then

y � �� ln
�
��n�����Y

i��

ui

�
A� z� is ���n� � �

����

For n� 
� the much faster Gaussian approximation for the �� may be
preferable� generate z as in Sec� 

���� and use

y �
�
z �

p
�n� �

��
��	 if z � �p�n� � reject and start over�

�����	� Gamma distribution�

All of the following algorithms are given for � � �� For � �� ��
divide the resulting random number x by ��

� If k � � �the exponential distribution�� accept x � ��lnu�� �See
also Sec� 

������

� If � � k � �� initialize with v� � �e � k��e �with e � ����������
being the natural log base�� Generate u�� u�� De�ne v� � v�u��

Case �� v� � �� De�ne x � v
��k
� � If u� � e�x� accept x and

stop� else restart by generating new u�� u��
Case �� v� � �� De�ne x � �ln��v� � v���k�� If u� � xk���
accept x and stop� else restart by generating new u�� u��
Note that� for k � �� the probability density has a pole at
x � �� so that return values of zero due to under�ow must be
accepted or otherwise dealt with�

� Otherwise� if k � �� initialize with c � 
k � ����� Generate
u� and compute v� � u��� � u�� and v� � �u� � ����

p
c�v�� If

x � k � v� � � � �� go back and generate new u�	 otherwise
generate u� and compute v� � ��v��u

�
�� If v� � � � �v���x or if

ln v� � �f�k � �� ln�x��k � ���� v�g� accept x and stop	 otherwise
go back and generate new u��

�����
� Binomial distribution�

Begin with k � � and generate u uniform in ��� ��� Compute
Pk � �� � p�n and store Pk into B� If u � B accept rk � k and
stop� Otherwise� increment k by one	 compute the next Pk as
Pk � �p���� p�� � �n� k���k���	 add this to B� Again if u � B accept
rk � k and stop� otherwise iterate until a value is accepted� If p � ���
it will be more e�cient to generate r from f�r	n� q�� i�e�� with p and q
interchanged� and then set rk � n� r�

������� Poisson distribution�

Iterate until a successful choice is made� Begin with k � � and set
A � � to start� Generate u� Replace A with uA	 if now A � exp�����
where � is the Poisson parameter� accept nk � k � � and stop�
Otherwise increment k by �� generate a new u and repeat� always
starting with the value of A left from the previous try� For large
��� ��� it may be satisfactory �and much faster� to approximate the
Poisson distribution by a Gaussian distribution �see our Probability
chapter� Sec� 
����
� and generate z from f�z	����	 then accept
x � max��� �� � z

p
� � ����� where � � signi�es the greatest integer

� the expression� ����

������� Student�s t distribution�

For n � � degrees of freedom �n not necessarily integer�� generate x
from a Gaussian with mean � and 
� � � according to the method of


����� Next generate y� an independent gamma random variate with
k � n�� degrees of freedom� Then z � x

p
�n�

p
y is distributed as a t

with n degrees of freedom�
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For the special case n � �� the Breit�Wigner distribution� generate
u� and u�	 set v� � �u� � � and v� � �u� � �� If v�� � v�� � � accept
z � v��v� as a Breit�Wigner distribution with unit area� center at ����
and FWHM ���� Otherwise start over� For center M� and FWHM ��
use W � z��� �M��
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The Monte Carlo particle numbering scheme presented here is
intended to facilitate interfacing between event generators� detector
simulators� and analysis packages used in particle physics� The
numbering scheme was introduced in �	

 ��� and a revised
version ���
� was adopted in �		
 in order to allow systematic inclusion
of quark model states which are as yet undiscovered and hypothetical
particles such as SUSY particles� The numbering scheme is used in
several event generators� e�g� HERWIG and PYTHIA�JETSET� and
in the �HEPEVT� ��� standard interface�

The general form is a ��digit number�

�n nr nL nq� nq� nq� nJ �

This encodes information about the particle�s spin� �avor content� and
internal quantum numbers� The details are as follows�

�� Particles are given positive numbers� antiparticles negative
numbers� The PDG convention for mesons is used� so that K�

and B� are particles�
�� Quarks and leptons are numbered consecutively starting from �

and �� respectively� to do this they are �rst ordered by family
and within families by weak isospin�


� In composite quark systems �diquarks� mesons� and baryons�
nq���

are quark numbers used to specify the quark content� while
the rightmost digit nJ � �J � � gives the system�s spin �except
for the K�

S and K�
L�� The scheme does not cover particles of spin

J � ��
�� Diquarks have ��digit numbers with nq� � nq� and nq� � ��
�� The numbering of mesons is guided by the nonrelativistic �L�S

decoupled� quark model� as listed in Tables ���� and ���
�

a� The numbers specifying the meson�s quark content conform
to the convention nq� � � and nq� � nq� � The special case

K�
L is the sole exception to this rule�

b� The quark numbers of �avorless� light �u� d� s� mesons are�
�� for the member of the isotriplet ���� ��� � � ��� �� for the
lighter isosinglet ��� �� � � ��� and 

 for the heavier isosinglet
���� �� � � ��� Since isosinglet mesons are often large mixtures
of uu� dd and ss states� �� and 

 are assigned by mass and
do not necessarily specify the dominant quark composition�

c� The special numbers 
�� and �
� are given to the K�
S and

K�
L respectively�

d� The �fth digit nL is reserved to distinguish mesons of the
same total �J� but di�erent spin �S� and orbital �L� angular
momentum quantum numbers� For J � � the numbers are�
�L� S� � �J � �� �� nL � �� �J� �� nL � �� �J� �� nL � �
and �J � �� �� nL � 
� For the exceptional case J � � the
numbers are ��� �� nL � � and ��� �� nL � � �i�e� nL � L��
See Table 
����

Table ����� Meson numbering logic� Here qq stands for
nq� nq��

L � J � �� S � � L � J � S � � L � J � S � � L � J � �� S � �

J code JPC L code JPC L code JPC L code JPC L

� � � � ��qq� ��� � � � � ��qq� ��� �

� ��qq
 ��� � ��qq
 ��� � ��qq
 ��� � 
�qq
 ��� �

� ��qq� ��� � ��qq� ��� � ��qq� ��� � 
�qq� ��� 



 ��qq� 
�� � ��qq� 
�� 
 ��qq� 
�� 
 
�qq� 
�� �

� ��qq	 ��� 
 ��qq	 ��� � ��qq	 ��� � 
�qq	 ��� �

e� If a set of physical mesons correspond to a �non�negligible�
mixture of basis states� di�ering in their internal quantum
numbers� then the lightest physical state gets the smallest
basis state number� For example the K������� is numbered
��
�
 ���P� K�B� and the K������� is numbered ��
�

���P� K�A��

f� The sixth digit nr is used to label mesons radially excited
above the ground state�

g� Numbers have been assigned for complete nr � � S� and
P �wave multiplets� even where states remain to be identi�ed�

h� In some instances assignments within the q�q meson model
are only tentative� here best guess assignments are made�

i� Many states appearing in the Meson Listings are not yet
assigned within the q�q model� Here nq���

and nJ are
assigned according to the state�s likely �avors and spin� all
such unassigned light isoscalar states are given the �avor
code ��� Within these groups nL � �� �� �� � � � is used to
distinguish states of increasing mass� These states are �agged
using n � 	� It is to be expected that these numbers will
evolve as the nature of the states are elucidated�

�� The numbering of baryons is again guided by the nonrelativistic
quark model� see Table �����

a� The numbers specifying a baryon�s quark content are such
that in general nq� � nq� � nq� �

b� Two states exist for J � ��� baryons containing 
 di�erent
types of quarks� In the lighter baryon �	�
��� � � �� the light
quarks are in an antisymmetric �J � �� state while for
the heavier baryon ���� 
 �� ��� � � �� they are in a symmetric
�J � �� state� In this situation nq� and nq� are reversed for
the lighter state� so that the smaller number corresponds to
the lighter baryon�

c� At present most Monte Carlos do not include excited baryons
and no systematic scheme has been developed to denote
them� though one is foreseen� In the meantime� use of the
PDG 	� ��� numbers for excited baryons is recommended�

d� For pentaquark states n � 	� nrnLnq�nq� gives the four
quark numbers in order nr � nL � nq� � nq� � nq� gives the
antiquark number� and nJ � �J � �� with the assumption
that J � ��� for the states currently reported�

�� The gluon� when considered as a gauge boson� has o�cial number
��� In codes for glueballs� however� 	 is used to allow a notation
in close analogy with that of hadrons�


� The pomeron and odderon trajectories and a generic reggeon
trajectory of states in QCD are assigned codes 		�� 			�� and ���
respectively� where the �nal � indicates the indeterminate nature
of the spin� and the other digits re�ect the expected �valence 
�avor content� We do not attempt a complete classi�cation of all
reggeon trajectories� since there is currently no need to distinguish
a speci�c such trajectory from its lowest�lying member�

	� Two�digit numbers in the range ���
� are provided for the
Standard Model gauge bosons and Higgs�

��� Codes 
����� are reserved for generator�speci�c pseudoparticles
and concepts�

��� The search for physics beyond the Standard Model is an active
area� so these codes are also standardized as far as possible�

a� A standard fourth generation of fermions is included by
analogy with the �rst three�

b� The graviton and the boson content of a two�Higgs�doublet
scenario and of additional SU����U��� groups are found in
the range 
�����

c� �One�of�a�kind exotic particles are assigned numbers in the
range ���
��

d� Fundamental supersymmetric particles are identi�ed by
adding a nonzero n to the particle number� The superpartner
of a boson or a left�handed fermion has n � � while the
superpartner of a right�handed fermion has n � �� When
mixing occurs� such as between the winos and charged
Higgsinos to give charginos� or between left and right
sfermions� the lighter physical state is given the smaller basis
state number�

e� Technicolor states have n � 
� with technifermions treated
like ordinary fermions� States which are ordinary color
singlets have nr � �� Color octets have nr � �� If a state
has non�trivial quantum numbers under the topcolor groups
SU�
�� � SU�
��� the quantum numbers are speci�ed by
tech�ij� where i and j are � or �� nL is then �i � j� The
coloron� V�� is a heavy gluon color octet and thus is 
�������



��� Monte Carlo particle numbering scheme ���

f� Excited �composite� quarks and leptons are identi�ed by
setting n � ��

��� Occasionally program authors add their own states� To avoid
confusion� these should be �agged by setting nnr � 		�

�
� Concerning the non�		 numbers� it may be noted that only
quarks� excited quarks� squarks� and diquarks have nq� � �� only
diquarks� baryons �including pentaquarks�� and the odderon have
nq� �� �� and only mesons� the reggeon� and the pomeron have
nq� � � and nq� �� �� Concerning mesons �not antimesons�� if nq�
is odd then it labels a quark and an antiquark if even�

This text and lists of particle numbers can be found on the
WWW ���� The StdHep Monte Carlo standardization project ���
maintains the list of PDG particle numbers� as well as numbering
schemes from most event generators and software to convert between
the di�erent schemes�
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Footnotes to the Tables�
�� Numbers or names in bold face are new or have changed since the ���� Review �
��
a� Particulary in the third generation� the left and right sfermion states may mix� as shown�

The lighter mixed state is given the smaller number�

b� The physical e� states are admixtures of the pure e�� eZ�� fW�� eH�
� �
eH�
� � and

eH� states�
c� In this draft we have only provided one generic leptoquark code� More general classi�cations

according to spin� weak isospin and �avor content would lead to a host of states� that could be
added as the need arises�

d� �� and 
� are alternate names for ���

�� and 
���
���
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��� CLEBSCH�GORDANCOEFFICIENTS� SPHERICALHARMONICS�

AND d FUNCTIONS
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Figure ����� The sign convention is that of Wigner �Group Theory� Academic Press� New York� ����
� also used by Condon and Shortley �The
Theory of Atomic Spectra� Cambridge Univ� Press� New York� ���	
� Rose �Elementary Theory of Angular Momentum� Wiley� New York� ����
�
and Cohen �Tables of the Clebsch�Gordan Coe�cients� North American Rockwell Science Center� Thousand Oaks� Calif�� ���

� The coe�cients
here have been calculated using computer programs written independently by Cohen and at LBNL�



��� ��� SU��� isoscalar factors and representation matrices

��� SU��� ISOSCALAR FACTORSANDREPRESENTATIONMATRICES

Written by R�L� Kelly �LBNL��

The most commonly used SU��� isoscalar factors� corresponding
to the singlet� octet� and decuplet content of � � � and �� � �� are
shown at the right� The notation uses particle names to identify the
coe�cients� so that the pattern of relative couplings may be seen
at a glance� We illustrate the use of the coe�cients below� See J�J
de Swart� Rev� Mod� Phys� ��� 	�
 ��	
�� for detailed explanations
and phase conventions�

A
p

is to be understood over every integer in the matrices� the
exponent ��� on each matrix is a reminder of this� For example� the
� � �K element of the ��� ��� � matrix is �p
�p�� 
 �����

Intramultiplet relative decay strengths may be read directly from
the matrices� For example� in decuplet � octet � octet decays� the
ratio of �� � �K and �� N� partial widths is� from the ��� ���
matrix�

� ��� � �K�

� ��� N��



��



� �phase space factors� � ��
���

Including isospin Clebsch�Gordan coe�cients� we obtain� e�g��

����� � ��K��

���� � p ���



���
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� ��



� p�s�f� 


�

�
� p�s�f� ��
���

Partial widths for � � � � � involve a linear superposition of ��
�symmetric� and �� �antisymmetric� couplings� For example�

���� � ��� �
�
�
r

	

��
g� �

r
�

��
g�

��

� ��
���

The relations between g� and g� �with de Swart�s normalization�
and the standard D and F couplings that appear in the interaction
Lagrangian�

L 
 �
p
� D Tr �fB�BgM� �

p
� F Tr ��B�B�M� � ��
���

where �B�B� � BB �BB and fB�Bg � BB �BB� are
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p
��

��
g� � F 


p



��
g� � ��
���

Thus� for example�

���� � ��� � �F �D�� � ��� ���� � ��
�
�

where � � F��D � F �� �This de�nition of � is de Swart�s� The
alternative D��D � F �� due to Gell�Mann� is also used��

The generators of SU��� transformations� �a �a 
 �� ��� are �� �
matrices that obey the following commutation and anticommutation
relationships�

��a� �b� � �a�b � �b�a 
 �ifabc�c ��
���

f�a� �bg � �a�b � �b�a 

�

�
	abI � �dabc�c � ��
���

where I is the �� � identity matrix� and 	ab is the Kronecker delta
symbol� The fabc are odd under the permutation of any pair of
indices� while the dabc are even� The nonzero values are
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Equation ��
��� de�nes the Lie algebra of SU���� A general d�
dimensional representation is given by a set of d�d matrices satisfying
Eq� ��
��� with the fabc given above� Equation ��
��� is speci�c to the
de�ning ��dimensional representation�



��� SU�n� multiplets and Young diagrams ���

��� SU�n� MULTIPLETS ANDYOUNGDIAGRAMS

Written by C�G� Wohl �LBNL��

This note tells ��� how SU�n� particle multiplets are identi�ed or
labeled� ��� how to �nd the number of particles in a multiplet from its
label� ��� how to draw the Young diagram for a multiplet� and ��� how
to use Young diagrams to determine the overall multiplet structure of
a composite system� such as a �	quark or a meson	baryon system�

In much of the literature� the word 
representation� is used where
we use 
multiplet�� and 
tableau� is used where we use 
diagram��

����� Multiplet labels

An SU�n� multiplet is uniquely identi�ed by a string of �n���
nonnegative integers� ��� �� �� � � ��� Any such set of integers speci�es
a multiplet� For an SU��� multiplet such as an isospin multiplet� the
single integer � is the number of steps from one end of the multiplet
to the other �i�e�� it is one fewer than the number of particles in the
multiplet�� In SU���� the two integers � and � are the numbers of
steps across the top and bottom levels of the multiplet diagram� Thus
the labels for the SU��� octet and decuplet

1

1

0

3

are ����� and ���
�� For larger n� the interpretation of the integers
in terms of the geometry of the multiplets� which exist in an
�n���	dimensional space� is not so readily apparent�

The label for the SU�n� singlet is �
� 
� � � � � 
�� In a �avor SU�n��
the n quarks together form a ��� 
� � � � � 
� multiplet� and the n
antiquarks belong to a �
� � � � � 
� �� multiplet� These two multiplets
are conjugate to one another� which means their labels are related by
��� �� � � ��� �� � � � �� ���

����� Number of particles

The number of particles in a multiplet� N � N��� �� � � ��� is given
as follows �note the pattern of the equations��

In SU���� N � N��� is

N �
��� ��

�
� ������

In SU���� N � N��� �� is

N �
��� ��

�
�
�� � ��

�
�
��� � � ��
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� ������

In SU���� N � N��� �� �� is
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�����

�
�
�����
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�
�
���������

�
�

������

Note that in Eq� ������ there is no factor with �� � � � ��� only a
consecutive sequence of the label integers appears in any factor� One
more example should make the pattern clear for any SU�n�� In SU����
N � N��� �� �� �� is

N �
�����

�
�
�����

�
�
�����

�
�
�����
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�
�
�����������

�
�������

From the symmetry of these equations� it is clear that multiplets that
are conjugate to one another have the same number of particles� but
so can other multiplets� For example� the SU��� multiplets ���
�
� and
�����
� each have �
 particles� Try the equations and see�

����� Young diagrams

A Young diagram consists of an array of boxes �or some other
symbol� arranged in one or more left�justi�ed rows� with each row
being at least as long as the row beneath� The correspondence between
a diagram and a multiplet label is� The top row juts out � boxes to
the right past the end of the second row� the second row juts out �

boxes to the right past the end of the third row� etc� A diagram in
SU�n� has at most n rows� There can be any number of 
completed�
columns of n boxes buttressing the left of a diagram� these don�t a�ect
the label� Thus in SU��� the diagrams

� � � �

represent the multiplets ���
�� �
���� �
�
�� ������ and ���
�� In any
SU�n�� the quark multiplet is represented by a single box� the
antiquark multiplet by a column of �n��� boxes� and a singlet by a
completed column of n boxes�

����� Coupling multiplets together

The following recipe tells how to �nd the multiplets that occur
in coupling two multiplets together� To couple together more than
two multiplets� �rst couple two� then couple a third with each of the
multiplets obtained from the �rst two� etc�

First a de�nition� A sequence of the letters a� b� c� � � � is admissible

if at any point in the sequence at least as many a�s have occurred as
b�s� at least as many b�s have occurred as c�s� etc� Thus abcd and aabcb

are admissible sequences and abb and acb are not� Now the recipe�

�a� Draw the Young diagrams for the two multiplets� but in one of
the diagrams replace the boxes in the �rst row with a�s� the boxes in
the second row with b�s� etc� Thus� to couple two SU��� octets �such

as the �	meson octet and the baryon octet�� we start with and

a a

b
� The unlettered diagram forms the upper left�hand corner of all

the enlarged diagrams constructed below�

�b� Add the a�s from the lettered diagram to the right	hand ends
of the rows of the unlettered diagram to form all possible legitimate
Young diagrams that have no more than one a per column� In general�
there will be several distinct diagrams� and all the a�s appear in each
diagram� At this stage� for the coupling of the two SU��� octets� we
have�

a a � a � a � �
a a

a a

�c� Use the b�s to further enlarge the diagrams already obtained�
subject to the same rules� Then throw away any diagram in which the
full sequence of letters formed by reading right to left in the �rst row�
then the second row� etc�� is not admissible�

�d� Proceed as in �c� with the c�s �if any�� etc�

The �nal result of the coupling of the two SU��� octets is�

� a a

b
�

a a � a a � a � a � a � �
b a b a b a

b b a a b

Here only the diagrams with admissible sequences of a�s and b�s and
with fewer than four rows �since n � �� have been kept� In terms of
multiplet labels� the above may be written

��� ��� ��� �� � ��� ��� ��� 
�� �
� ��� ��� ��� ��� ��� �
� 
� �

In terms of numbers of particles� it may be written

�� � � ��� ��� ��� �� �� � �

The product of the numbers on the left here is equal to the sum on
the right� a useful check� �See also Sec� �� on the Quark Model��


