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25. ACCELERATOR PHYSICS OF COLLIDERS

Revised August 2003 by K. Desler and D.A. Edwards (DESY).

25.1.

This article is intended to be a mini-introduction to accelerator
physics, with emphasis on colliders. Essential data are summarized
in the “Tables of Collider Parameters” (Sec. 26). Luminosity is the
quantity of most immediate interest for HEP, and so we begin with
its definition and a discussion of the various factors involved. Then
we talk about some of the underlying beam dynamics. Finally, we
comment on present limitations and possible future directions.

Introduction

The focus is on colliders because they provide the highest c.m.
energy, and therefore, the longest potential discovery reach. All
present-day colliders are synchrotrons with the exception of the SLAC
Linear Collider. In the pursuit of higher c.m. energy with electrons,
synchrotron radiation presents a formidable barrier to energy beyond
LEP. The LHC will be the first proton collider in which synchrotron
radiation has significant design impact.

25.2. Luminosity

The event rate R in a collider is proportional to the interaction
cross section oj,¢, and the factor of proportionality is called the
luminosity:

R= Zoin - (25.1)

If two bunches containing n1 and na particles collide with frequency
f, then the luminosity is approximately

ning

= 25.2
dmogoy ’ ( )

where 0, and oy characterize the Gaussian transverse beam profiles
in the horizontal (bend) and vertical directions. Though the initial
particle distribution at the source may be far from Gaussian, by the
time the beam reaches high energy, the normal form is a very good
approximation, thanks to the central limit theorem of probability
and diminished importance of space charge effects. The qualifier
“approximately” appears because this generic expression requires
adaptation to particular cases. Discussion may be found in the article
of Furman and Zisman in Sec. 3.1.1 of Ref. 1.

Luminosity is often expressed in units of cm , and tends to
be a large number. For example, KEK recently announced that its
B factory had reached a peak luminosity in excess of 103 cm=2 s~1.
The highest luminosity for protons achieved so far is 1.3 x 1032
cm~ 25! at the now decommissioned ISR; a goal of the Tevatron run
just getting underway as this is written is to challenge that record.
The relevant quantity for HEP is the luminosity integrated over time,
usually stated in the units normally used for cross sections, such as
pb~1 or fb~!. B-factory integrated luminosities are moving into the
hundreds of fb~! range.
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The beam size can be expressed in terms of two quantities, one
termed the transverse emittance, €, and the other, the amplitude
function, (. The transverse emittance is a beam quality concept
reflecting the process of bunch preparation, extending all the way
back to the source for hadrons and, in the case of electrons, mostly
dependent on synchrotron radiation. The amplitude function is a
beam optics quantity, and is determined by the accelerator magnet
configuration.

The transverse emittance is a measure of the phase space area
associated with either of the two transverse degrees of freedom, z and
y. These coordinates represent the position of a particle with reference
to some ideal design trajectory. Think of z as the “horizontal”
displacement (in the bend plane for the case of a synchrotron), and
y as the “vertical” displacement. The conjugate coordinates are the
transverse momenta, which at constant energy are proportional to the
angles of particle motion with respect to the design trajectory, ' and
y'. Various conventions are in use to characterize the boundary of
phase space. Beam sizes are usually given as the standard deviations
characterizing Gaussian beam profiles in the two transverse degrees of
freedom. In each degree of freedom, the one-o contour in displacement
and angle is frequently used, and we will follow this choice.

Suppose that at some location in the collider, the phase space
boundary appears as an upright ellipse, where the coordinates are
the displacement z (using the horizontal plane for instance), and the
angle z' with respect to the beam axis. The choice of an elliptical
contour will be justified under Beam Dynamics below. If o and o’ are
the ellipse semi-axes in the z and z’ directions respectively, then the
emittance may be defined by € = 7o0’. Transverse emittance is often
stated in units of mm-mrad.

At either a minimum or maximum of the beam size of a beam
circulating in equilibrium, the amplitude function B at those points
is the aspect ratio o/o’. When expressed in terms of o and 3, the
transverse emittance becomes

e=mno?/B . (25.3)
Of particular significance is the value of the amplitude function at the
interaction point, 8*. To achieve high luminosity, one wants 3* to
be as small as possible; how small depends on the capability of the
hardware to make a near-focus at the interaction point. For example,
in the HERA proton ring, 3* at one of the major detectors is 1 m
while elsewhere in the synchrotron, typical values of the amplitude
function lie in the range 30-100 m. For ete™ colliders, B; ~ 1 cm.

Eq. (25.2) can now be recast in terms of emittances and amplitude

functions as
ning
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Thus, to achieve high luminosity, all one has to do is make high
population bunches of low emittance collide at high frequency at

locations where the beam optics provides as low values of the
amplitude functions as possible.

¢=F (25.4)

Depending on the particular facility, there are other ways of stating
the expression for the luminosity. In a multibunch collider, the various
bunch populations will differ; in a facility such as HERA, the electron
and proton bunches may differ in emittance, the variation of the beam
size in the neighborhood of the interaction point may be significant,
and so on.

25.3. Beam dynamics

A major concern of beam dynamics is stability: conservation of
adequate beam properties over a sufficiently long time scale. Several
time scales are involved, and the approximations used in writing
the equations of motion reflect the time scale under consideration.
For example, when, in Sec. 25.3.1 below, we write the equations
for transverse stability, no terms associated with phase stability or
synchrotron radiation appear; the time scale associated with the last
two processes is much longer than that demanded by the need for
transverse stability.

25.3.1.

Present-day high-energy accelerators employ alternating gradient
focussing provided by quadrupole magnetic fields [2]. The equations
of motion of a particle undergoing oscillations with respect to the
design trajectory are

Betatron oscillations:

2" + Kyp(s)z =0, y" + Ky(s)y=0, (25.5)
with
' =dz/ds, y' =dy/ds (25.6)
Ky =B'/(Bp)+p~ %, Ky=—B'[(Bp) (25.7)
B' =0B,/0z . (25.8)

The independent variable s is path length along the design trajectory.
This motion is called a betatron oscillation because it was initially
studied in the context of that type of accelerator. The functions
K, and Ky reflect the transverse focussing—primarily due to
quadrupole fields except for the radius of curvature, p, term in Kj
for a synchrotron—so each equation of motion resembles that for a
harmonic oscillator, but with spring constants that are a function
of position. No terms relating to synchrotron oscillations appear,
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because their time scale is much longer and, in this approximation,
play no role.

These equations have the form of Hill’s equation, and so the
solution in one plane may be written as

z(s) = Ay/B(s) cos(¢(s) +6),

where A and § are constants of integration and the phase advances
according to dy/ds = 1/B. The dimension of A is the square
root of length, reflecting the fact that the oscillation amplitude is
modulated by the square root of the amplitude function. In addition
to describing the envelope of the oscillation, 3 also plays the role of
an ‘instantaneous’ X. The wavelength of a betatron oscillation may be
some tens of meters, and so typically values of the amplitude function
are of the order of meters, rather than on the order of the beam
size. The beam optics arrangement generally has some periodicity,
and the amplitude function is chosen to reflect that periodicity. As
noted above, a small value of the amplitude function is desired at
the interaction point, and so the focussing optics is tailored in its
neighborhood to provide a suitable 5*.

(25.9)

The number of betatron oscillations per turn in a synchrotron is
called the tune and is given by

——y
o) B

Expressing the integration constant A in the solution above in
terms of z, z’ yields the Courant-Snyder invariant

A% =y(s) 2(s)? + 20(s) x(s) 2'(s) + B(s) 2’ (5)?

(25.10)

where
1+ a?
B

(The Courant-Snyder parameters «, 3, and v employ three Greek
letters which have other meanings, and the significance at hand must
often be recognized from context.) Because 3 is a function of position
in the focussing structure, this ellipse changes orientation and aspect
ratio from location to location, but the area A2 remains the same.

a=-4/2, y= (25.11)

As noted above, the transverse emittance is a measure of the area
in z, 2’ (or y, y') phase space occupied by an ensemble of particles.
The definition used in Eq. (25.3) is the area that encloses 39% of a
Gaussian beam.

For electron synchrotrons, the equilibrium emittance results from
the balance between synchrotron radiation damping and excitation
from quantum fluctuations in the radiation rate. The equilibrium is
reached in a time which is small compared with the storage time.

For present-day hadron synchrotrons, synchrotron radiation does
not play a similar role in determining the transverse emittance.
Rather, the emittance during storage reflects the source properties
and the abuse suffered by the particles throughout acceleration and
storage. Nevertheless, it is useful to argue as follows: Though z' and
z can serve as canonically conjugate variables at constant energy, this
definition of the emittance would not be an adiabatic invariant when
the energy changes during the acceleration cycle. However, y(v/c)z’,
where here 7 is the Lorentz factor, is proportional to the transverse
momentum, and so qualifies as a variable conjugate to z. So often one
sees a normalized emittance defined according to

N :7%@ (25.12)

which is an approximate adiabatic invariant, e.g. during acceleration.

25.3.2. Phase stability: The particles in a circular collider also
undergo synchrotron oscillations. This is usually referred to as motion
in the longitudinal degree-of-freedom because particles arrive at a
particular position along the accelerator earlier or later than an ideal
reference particle. This circumstance results in a finite bunch length,
which is related to an energy spread.

For dynamical variables in longitudinal phase space, let us take AE
and At¢, where these are the energy and time differences from that of

the ideal particle. A positive At means a particle is behind the ideal
particle. The equation of motion is the same as that for a physical
pendulum, and therefore is nonlinear. But for small oscillations, it
reduces to a simple harmonic oscillator:

2
ddA; = —(2mw;5)%At
n

(25.13)

where the independent variable m is the turn number, and vg is
the number of synchrotron oscillations per turn, analogous to the
betatron oscillation tune defined earlier. Implicit in this equation is
the approximation that n is a continuous variable. This approximation
is valid provided vs < 1, which is usually well satisfied in practice.

In the high-energy limit, where v/c = 1,
hneV cos ¢ 1/2
=|— 25.14
ve [ 2 E (25.14)

There are four as yet undefined quantities in this expression: the
harmonic number h, the slip factor 7, the maximum energy eV gain
per turn from the acceleration system, and the synchronous phase ¢;.
The frequency of the RF system is normally a relatively high multiple,
h, of the orbit frequency. The slip factor relates the fractional change
in the orbit period 7 to changes in energy according to

AT AE
— =n— . 25.15
— =1 (25.15)
At sufficiently high energy, the slip factor just reflects the relationship
between path length and energy, since the speed is a constant; 7 is
positive for all the synchrotrons in the “Tables of Collider Parameters”
(Sec. 26).

The synchronous phase is a measure of how far up on the RF wave
the average particle must ride in order to maintain constant energy
to counteract synchrotron radiation. That is, sin ¢, is the ratio of
the energy loss per turn to the maximum energy per turn that can
be provided by the acceleration system. For hadron colliders built to
date, sin ¢ is effectively zero. This is not the case for electron storage
rings; for example, the electron ring of HERA runs at a synchronous
phase of 45°.

Now if one has a synchrotron oscillation with amplitudes At and
AE

)

At = At sin(2rvsn) ,  AE = AE cos(2rvsn), (25.16)
then the amplitudes are related according to
——~ 27 E —~
AE=TVTRG (25.17)

nr

The longitudinal emittance €, may be defined as the phase space
area bounded by particles with amplitudes At and AE. In general,
the longitudinal emittance for a given amplitude is found by numerical
integration. For sin ¢; = 0, an analytical expression is:

. (25.18)

a3 Eevh]YV?
€ = [#] (A

Again, a Gaussian is a reasonable representation of the longitudinal
profile of a well-behaved beam bunch; if o a; is the standard deviation
of the time distribution, then the bunch length can be characterized
by

l=cony - (25.19)

In the electron case, the longitudinal emittance is determined by
the synchrotron radiation process just, as in the transverse degrees
of freedom. For the hadron case, the history of acceleration plays
a role, and because energy and time are conjugate coordinates, the
longitudinal emittance is a quasi-invariant.

For HEP, bunch length is a significant quantity, because if the bunch
length becomes larger than *, the luminosity is adversely affected.
This is because 5 grows parabolically as one proceeds away from the
IP, and so the beam size increases, thus lowering the contribution to
the luminosity from such locations.
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25.3.3. Synchrotron radiation [3]: A relativistic particle under-
going centripetal acceleration radiates at a rate given by the Larmor
formula multiplied by the 4th power of the Lorentz factor:

1 e2q?

£ (25.20)

6meg 3

Here, a = v2/p is the centripetal acceleration of a particle with speed
v undergoing deflection with radius of curvature p. In a synchrotron
that has a constant radius of curvature within bending magnets,
the energy lost due to synchrotron radiation per turn is the above
multiplied by the time spent in bending magnets, 2mp/v. Expressed
in familiar units, this result may be written

W =8.85x10"°E*/p MeV per turn (25.21)
for electrons at sufficiently high energy that v ~ c. The energy
E is in GeV and p is in kilometers. The radiation has a broad
energy spectrum which falls off rapidly above the critical energy,
E = (3¢/2p)hy®. Typically, E, is in the hard x-ray region.

The characteristic time for synchrotron radiation processes is the
time during which the energy must be replenished by the acceleration
system. If fo is the orbit frequency, then the characteristic time is
given by

E
fow
Oscillations in each of the three degrees of freedom either damp
or antidamp depending on the design of the accelerator. For a
simple separated-function alternating gradient synchrotron, all three
modes damp. The damping time constants are related by Robinson’s
Theorem [4], which, expressed in terms of 79, is

0= (25.22)

(25.23)

Even though all three modes may damp, the emittances do not
tend toward zero. Statistical fluctuations in the radiation rate excite
synchrotron oscillations and radial betatron oscillations. Thus there is
an equilibrium emittance at which the damping and excitation are in
balance. The vertical emittance is non-zero due to horizontal-vertical
coupling.

Polarization can develop from an initially unpolarized beam as
a result of synchrotron radiation. A small fraction = E./E of the
radiated power flips the electron spin. Because the lower energy state
is that in which the particle magnetic moment points in the same
direction as the magnetic bend field, the transition rate toward this
alignment is larger than the rate toward the reverse orientation. An
equilibrium polarization of 92% is predicted, and despite a variety of
depolarizing processes, polarization above 80% has been observed at a
number of facilities.

The radiation rate for protons, is of, course down by a factor of the
fourth power of the mass ratio, and is given by
W =78x10"2E*/p keV per turn (25.24)
where E is now in TeV and p in km. For the LHC, synchrotron
radiation presents a significant load to the cryogenic system, and
impacts magnet design due to gas desorption and secondary electron

emission from the wall of the cold beam tube. The critical energy for
the LHC is 44 eV.

25.3.4. Beam-beam tune shift: In a bunch-bunch collision, the
particles of one bunch see the other bunch as a nonlinear lens.
Therefore, the focussing properties of the ring are changed in a way
that depends on the transverse oscillation amplitude. Hence, there is
a spread in the frequency of betatron oscillations.

There is an extensive literature on the subject of how large this
tune spread can be. In practice, the limiting value is hard to predict.
It is consistently larger for electrons because of the beneficial effects of
damping from synchrotron radiation.

In order that contributions to the total tune spread arise only at the
detector locations, the beams in a multibunch collider are kept apart

elsewhere in the collider by a variety of techniques. For equal energy
particles of opposite charge circulating in the same vacuum chamber,
electrostatic separators may be used assisted by a crossing angle if
appropriate. For particles of equal energy and of the same charge, a
crossing angle is needed not only for tune spread reasons, but also to
steer the particles into two separate beam pipes. In HERA, because of
the large ratio of proton to electron energy, separation can be achieved
by bending magnets.

25.3.5. Luminosity lifetime: In electron synchrotrons, the
luminosity degrades during the store primarily due to particles leaving
the phase stable region in longitudinal phase space, as a result
of quantum fluctuations in the radiation rate and bremsstrahlung.
For hadron colliders, the luminosity deteriorates due to emittance
dilution resulting from a variety of processes. In practice, stores are
intentionally terminated when the luminosity drops to the point where
a refill will improve the integrated luminosity.

25.4. Status and prospects

Present facilities represent a balance among current technology,
the desires of High Energy Physics, and public support. For a half
century, beam optics has exploited the invention of alternating gradient
focussing. This principle is employed in all colliders both linear and
circular. Superconducting technology has grown dramatically in
importance during the last two decades. Superconducting magnets are
vital to the Tevatron, HERA, and to the future LHC. Superconducting
accelerating structures are necessary to CESR, LEP, HERA, Jefferson
Laboratory, the spallation neutron source, and other facilities
requiring high-gradient long pulse length RF systems. Present room
temperature accelerating structures produce very short pulses, but
with gradients well in excess of the superconducting variety [1].

At present, the next facilities will include the LHC, and possibly
an electron linear collider. The LHC is an approved project that
will represent a major step forward in superconducting magnet
technology. No linear collider project has been approved as yet,
and the conventional and superconducting approaches compete for
prominence.

In addition to the possibilities of the preceding paragraph,
there are other synchrotron-based collider studies underway. Despite
formidable R&D challenges, a muon-muon collider may become
feasible. Proponents of a very large hadron collider at higher energy
than the cancelled SSC project are exploring low-cost magnets and
tunnels for a facility on the 100 TeV c.m. energy scale.

The approach to collider design sketched here—guidance and
focussing provided by external magnetic fields, and acceleration
produced by RF resonators—has led to ever larger and more costly
facilities with increase of c.m. energy. Support for new HEP facilities
has diminished as proposals have climbed into the multi-billion dollar
range.

There is no shortage of ideas for departure from the current
design paradigm. Wakefield accelerators, plasma-laser combinations,
and related investigations may, if successful, deliver gradients far
higher than any realized today in existing HEP facilities. However,
staging and energy efficiency are major hurdles. These approaches
are exceedingly challenging technologically, and require a strong R&D
program if they are to succeed.

Other important references include Ref. [5-7], which are not cited
in the text above.
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HIGH-ENERGY COLLIDER PARAMETERS: eTe Colliders (I)

The numbers here were received from representatives of the colliders in early 2004 (contact C.G. Wohl, LBNL). Many of the numbers of course
change with time, and only the latest values (or estimates) are given here; those in brackets are for coming upgrades. Quantities are, where
appropriate, r.m.s. H and V indicate horizontal and vertical directions. Parameters for the defunct SPEAR, DORIS, PETRA, PEP, SLC,
TRISTAN, and VEPP-2M colliders may be found in our 1996 edition (Phys. Rev. D54, 1 July 1996, Part I).

VEPP-2000 VEPP-4M BEPC BEPC-II DAPNE
(Novosibirsk) | (Novosibirsk) (China) (China) (Frascati)
Physics start date 2005 1994 1989 2007 1999
Physics end date — — — — ~2007
Maximum beam energy (GeV) 1.0 6 2.2 1.89 (2.1 max) 0.700
Luminosity (1030 cm—25—1) 100 20 10 at 1.843 GeV /beam 1000 80 present
5 at 1.55 GeV/beam 200 achievable
Time between collisions (us) 0.04 0.6 0.8 0.008 0.0027
Crossing angle (u rad) 0 0 0 1.1 x 104 (2.5 to 3.2)x10*
Energy spread (units 103) 0.64 1 0.58 at 2.2 GeV 0.52 0.40
Bunch length (cm) 4 5 ~ b 1.3 1 low current
2 high current
Beam radius (10-5 m) 125 (round) H: 1000 H: 890 H: 380 H: 800
V. 30 V. 37 Vi 5.7 V:4.8
Free .space at interaction +1 49 +9.15 +1.009 +0.40
point (m)
Luminosity lifetime (hr) continuous 2 7-12 1.5 0.7
Filling time (min) continuous 15 30 26 0.8 (topping up)
Acceleration period (s) — 150 120 — on energy
Injection energy (GeV) 0.2-1.0 1.8 1.55 1.89 on energy
Transverse emittance H: 250 H: 200 H: 660 H: 144 H: 300
(10797l' rad-m) V250 V: 20 V. 28 V: 3.1 Vi1
3*, amplitude function at H:0.06 H:0.75 H:12 H:1.0 H: 1.7
interaction point (m) V: 0.06 V:0.05 V:0.05 V:0.015 V:0.025
Beam-beam. tune s.hift ) H: 750 500 350 400 250
per crossing (units 10~%) V: 750
RF frequency (MHz) 172 180 199.53 499.8 356
Partic.les pelrobunch 16 15 20 at 2 GeV 4.8
(units 10°) 11 at 1.55 GeV
Bunches per ring 1 2 1 93 110/120
per species
Average be'am current 300 80 40 at 2 GeV 910 1000
per species (mA) 22 at 1.55 GeV (goal 2000)
Circumference or length (km) 0.024 0.366 0.2404 0.23753 0.098
Interaction regions 2 1 2 1 2
Utility insertions 2 1 4 4 2
Magnetic length of dipole (m) 1.2 2 1.6 Outer ring 1.6 1
Inner ring 1.41
Length of standard cell (m) 12 7.9 6.6 Quter ring 6.6 19
Inner ring 6.2
Phase advance per cell (deg) H: 738 65 ~ 60 60-90 360
V: 378 no standard cell
Dipoles in ring 8 78 40 84 8
+ 4 weak + 8 weak
Quadrupoles in ring 20 150 68 13442 s.c. 48
Peak magnetic field (T) 2.4 0.6 0.9028 Outer ring 0.67712 17
at 2.8 GeV Inner ring 0.76636
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HIGH-ENERGY COLLIDER PARAMETERS: eTe~ Colliders (II)

The numbers here were received from representatives of the colliders in early 2004. Many of the numbers of course change with time, and only
the latest values (or estimates) are given here. Quantities are, where appropriate, r.m.s. H and V indicate horizontal and vertical directions; s.c.
indicates superconducting.

CESR CESR-C KEKB PEP-II LEP
(Cornell) (Cornell) (KEK) (SLAC) (CERN)
Physics start date 1979 2002 1999 1999 1989
Physics end date 2002 — — — 2000
e”: 7 12 (9.0 nominal) 101 in 1999
Maximum beam energy (GeV) 6 6 e~ xet: 8x35 et: 25-4(31 ) (105=max.
(nominal Ecm = 10.5 GeV) foreseen
Luminosity (103° cm~2s~1) 1280 at 35 at 11305 6777 24 at Z0
5.3 GeV /beam 1.9 GeV/beam 100 at > 90 GeV
Time between collisions (us) 0.014 to 0.22 0.014 to 0.22 0.008 0.0042 22
Crossing angle (p rad) +2000 +4000 +11,000 0 0
Energy spread (units 1073 0.6 at 0.8 at 0.7 ~/e*: 0.61/0.77 0.7-15
8 ( ) 5.3 GeV /beam 1.9 GeV /beam e /e / -
Bunch length (cm) 1.8 1.2 0.65 e /et: 1.1/1.0 1.0
Beam radius (um) H: 460 H: 300 H:110 H: 157 H: 200 — 300
V: 4 V:5.7 V: 24 V. 47 V: 256—-38
Free space at interaction +2.2 (£0.6 +2.2 (£0.3 +0.75/—0.58 +0.2, 135
point (m) to REC quads) to PM quads) (+300/-500) mrad cone +300 mrad cone
Luminosity lifetime (hr) 2-3 2-3 continuous 35 20 at 2°
10 at > 90 GeV
Filling time (min) 5 (topping up) 5 (topping up) continuous 3 (topping up) 20 to setup
20 to accumulate
Acceleration period (s) — — — — 600
Injection energy (GeV) 1.8-6 1.5-6 e /et : 8/3.5 2.5-12 22
Transverse emittance H: 210 H: 150 e": 24 (H), 0.82 (V) e : 48 (H), 1.5 (V) H: 20-45
(w rad-nm) Vi1 V:25 e*: 18 (H), 1.0 (V) 24 (H), 1.5 (V) V:0.25—1
3*, amplitude function at H: 1.0 H: 0.60 e™: 0.63 (H), 0.0070 (V) e~: 0.50 (H), 0.012 (V) H: 1.5
interaction point (m) V:0.018 V:0.013 et: 0.59 (H), 0.0058 (V) | et: 0.50 (H), 0.012 (V) V:0.05
Beam-beam tune shift H: 250 H: 175 e”: 710 (H), 510 (V) e”: 400 (H), 400 (V) 830
per crossing (units 10~%) V: 620 V: 200 et: 1040 (H), 680 (V) et: 990 (H), 800 (V)
RF frequency (MHz) 500 500 508.887 476 352.2
Particles per bunch — o+ — /4 45 in collision
1.15 1.15 0 5.5/7.3 1 4.6/6.7
(units 1010) /e / /e / 60 in single beam
Bunches per ring 9 trains 8 trains 1281 1230 4 trains of 1 or 2
per species of 5 bunches of 5 bunches
Average beam current 340 55 e /et: 1130/1500 e /et 1200/1800 dat 2°
per species (mA) 4—6 at > 90 GeV
Beam polarization (%) — — — — 55 at 45 GeV
5 at 61 GeV
Circumference or length (km) 0.768 0.768 3.016 2.2 26.66
Interaction regions 1 1 1 1 (2 possible) 4
Utility insertions 3 3 3 per ring 5 4
Magnetic length of dipole (m) 1.6-6.6 1.6-6.6 e /et : 5.86/0.915 e /et: 5.4/0.45 11.66/pair
Length of standard cell (m) 16 16 e /et : 75.7/76.1 15.2 79
Phase advance per cell (deg) 45-90 (no 45-90 (no 450 e~ /et: 60/90 102/90
standard cell) standard cell)
Dipoles in ring 86 84 e~ /et :116/112 e /et 192/192 3280+24 inj.
+ 64 weak
Quadrupoles in ring 101 + 4 s.c. 101 + 4 s.c. e~ Jet 1 452/452 e~ /et: 290/326 530;288
8.C.
Peak magnetic field (T) 0.3 normal } at 8 0.3 normal } at 8 e~ /et :0.25/0.72 e~ /et: 0.18/0.75 0.135
0.8 high field J GeV 0.8 high field J GeV
2.1 wigglers
at 1.9 GeV
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HIGH-ENERGY COLLIDER PARAMETERS: ep, pp, and pp Colliders

The numbers here were received from representatives of the colliders in early 2004. Many of the numbers of course change with time, and
only the latest values (or estimates) are given here. Quantities are, where appropriate, r.m.s. H, V, and, s.c. indicate horizontal and vertical
directions, and superconducting. For existing colliders, the table shows achieved parameters.

HERA TEVATRON RHIC LHC
(DESY) (Fermilab) (Brookhaven) (CERN)
Physics start date 1992 1987 2000 2007 ‘ 2008
Physics end date — — —
Particles collided ep P p (pol.) Au Au d Au pp Pb Pb
Maximum beam e: 0.030 0.980 0.1 0.1 TeV/u 0.1 TeV/u 7.0 2.76 TeV /u
energy (TeV) p: 0.92 40% pol
Luminosity 4
.0004 . 1. 1 .001
(1030 em=2571) 75 50 6 0.000 0.07 0x10 0.00
Time between 0.096 0.396 0.213 0.025 0.100
collisions (us)
Crossing angle (u rad) 0 0 0 300 < 100
Energy spread (units 10~3) e: g-gl 0.14 0.2 0.5 0.5 0.11 0.11
p: 0.
Bunch length (cm) e 0.83 57 40 20 20 7.7 7.94
p: 85
Beam radius e: 280(H),50(V) p: 39 175 (8*=1 m 150 (215 B*=1 m *_9 m 16.7 15.9
(1076 m) p: 265(H),50(V) 7 31 ® ) (21564 )| ® ) - -
Free space at +2 £6.5 16 38 38
interaction point (m)
Luminosity lifetime (hr) 10 11-13 10 3 6 14.9 7.3
Filling time (min) e: 60 30 15 7.5 20
p: 120 (both beams) | (both beams)
Acceleration period (s) e 200 86 140 230 230 1200
p: 1500
Injection energy (TeV) e: 0.012 0.15 0.023 0.011 0.012 0.450 0.1774
p: 0.040 TeV/u TeV/u TeV/u
Transxi%rse emittance e: 20(H),3.5(V) P 4.3 31 23 23 0.5 0.5
(10=%7 rad-m) p: 5(H),5(V) p 2.7
6*‘, ampl. functi(?n at e: 0.6 (H),0.26(V) 0.35 1-10 1-5 2.5 0.55 0.5
interaction point (m) p: 2.45(H),0.18(V)
Beam-beam- tune s.hift » e: 190(H),450(V) P 14 2 9 11 34 _
per crossing (units 107%) pr 12(H), 9(V) p: 70
RF frequency (MHz) e: 499.7 53 accel: 28 accel: 28 accel: 28 400.8 400.8
p: 208.2/52.05 store: 28 store: 197 store: 197
Pa.rtic.les pelrobunch e 3 P 24 7 0.06 d: 1.1 11.5 0.007
(units 1017) P 7 3 Au: 0.07
Bunches per ring e: 189 36 55 2808 592
per species p: 180
Average be.am current e: 40 p: 66 48 33 d: 7.7 584 6.12
per species (mA) p: 90 P 8.2 Au: 38
Circumference (km) 6.336 6.28 3.834 26.659
Interaction regions 2 collining beam 2 high % 6 2 high 2 1
1 fixed target (e beam) +1
Utility insertions 4 4 13/ring 4
Magne.tic length e: 9.185 6.12 9.45 14.3
of dipole (m) p: 8.82
Length of standard cell (m) e ii;-f? 59.5 29.7 106.90
P
Phase advance per cell (deg) e: 60 67.8 84 90
p: 90
Dipoles in ring e: 396 774 192 per ring 1232
p: 416 + 12 common main dipoles
Quadrupoles in ring e: 580 216 246 per rin 482 2-in-1
i 280 perring 24 1-in-1
e: C-shaped s.C. s.c. cosf s.C.
Magnet type p:s.c., collared, cosé cold iron 2in 1
cold iron warm iron cold iron
Peak magnetic field (T) e: 0.274 44 3.5 8.3
p: b
P source accum. rate (hr—') — 13.5x10%0 — —
Max. no. p in accum. ring — 2.4x10'2 — —
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27. PASSAGE OF PARTICLES THROUGH MATTER

Revised April 2002 by H. Bichsel (University of Washington), D.E.

Groom (LBNL), and S.R. Klein (LBNL).
27.1. Notation

Table 27.1: Summary of variables used in this section. The
kinematic variables 3 and <y have their usual meanings.

Symbol Definition Units or Value
a  Fine structure constant 1/137.035 999 11(46)
(€2 /4meghc)
M Incident particle mass MeV/c?
E  Incident particle energy yMc®> MeV
T  Kinetic energy MeV

Electron mass x c? 0.510998 918(44) MeV

re  Classical electron radius 2.817940325(28) fm
€2 [ATegmec?
N4 Avogadro’s number 6.022 1415(10) x 1023 mol !

ze  Charge of incident particle
Z  Atomic number of absorber
A Atomic mass of absorber
47N gr2mec? /A

g mol 1

0.307075 MeV g~ ! cm?
for A =1gmol'

eV (Nota bene!)

6  Density effect correction to ionization energy loss

I Mean excitation energy

hwp Plasma energy 28.816+/p(Z/A) eV(®)
(v/47 Ner3 mec?/a)
N. Electron density (units of r¢) ™3

wj  Weight fraction of the jth element in a compound or mixture

nj o number of jth kind of atoms in a compound or mixture

—  darl?Ny/A (716.408 g cm~2)~! for A =1 g mol~!
Xo Radiation length g cm 2

E. Critical energy for electrons MeV

Eyc Critical energy for muons GeV

Es  Scale energy /47 /a mec? 21.2052 MeV

Rpr Moliere radius g cm—2

(a) For pingcm™3.

27.2. Electronic energy loss by heavy particles [1-5]

Moderately relativistic charged particles other than electrons lose
energy in matter primarily by ionization and atomic excitation.
The mean rate of energy loss (or stopping power) is given by the
Bethe-Bloch equation,

B _ o 2Z 1 1) 2mec® 3y Tax

da Ap? |2 12
Here Tax is the maximum kinetic energy which can be imparted to a
free electron in a single collision, and the other variables are defined
in Table 27.1. With K as defined in Table 27.1 and Ain g mol~!, the
units are MeV g’lcm2.

5

-6 -3 (27.1)

In this form, the Bethe-Bloch equation describes the energy loss of
pions in a material such as copper to about 1% accuracy for energies
between about 6 MeV and 6 GeV (momenta between about 40 MeV/c
and 6 GeV/c). At lower energies various corrections discussed in
Sec. 27.2.1 must be made. At higher energies, radiative effects begin
to be important. These limits of validity depend on both the effective
atomic number of the absorber and the mass of the slowing particle.

The function as computed for muons on copper is shown by the
solid curve in Fig. 27.1, and for pions on other materials in Fig. 27.3.
A minor dependence on M at the highest energies is introduced
through Tmax, but for all practical purposes in high-energy physics
dE/dz in a given material is a function only of 5. Except in hydrogen,
particles of the same velocity have similar rates of energy loss in
different materials; there is a slow decrease in the rate of energy
loss with increasing Z. The qualitative difference in stopping power
behavior at high energies between a gas (He) and the other materials
shown in Fig. 27.3 is due to the density-effect correction, §, discussed
below. The stopping power functions are characterized by broad
minima whose position drops from gy = 3.5 to 3.0 as Z goes from
7 to 100. The values of minimum ionization as a function of atomic
number are shown in Fig. 27.2.

In practical cases, most relativistic particles (e.g., cosmic-ray
muons) have mean energy loss rates close to the minimum, and are
said to be minimum ionizing particles, or mip’s.

As discussed below, the most probable energy loss in a detector is
considerably below the mean given by the Bethe-Bloch equation.

C \ \ ]
] [ _ |
5100 | n o :
> r Bethe-Bloch Radiative ]
> L ]
§ I/  Anderson- 4
2 8, Ziegler b
[ faiam}
g rs3 E
% =k
2105 ® .. =
WA Radiative g 3
8 C Minimum  effects g~ losses ]
[ ionization reach 1% g -
8 | Nuclear E— i
R | losses N\ | _lo--=== [, W
¢ Without &
1 | | | |
0.001  0.01 0.1 1 10 100 1000 104 105 108
By
l | | | | | | | | J
1 0.1 1 10 100, |1 10 100, (1 10 100 |
[MeV/c] [GeV/c] [TeV/c]

Muon momentum

Fig. 27.1: Stopping power (= (—dE/dz)) for positive muons in copper as a function of 8y = p/Mc over nine orders of magnitude
in momentum (12 orders of magnitude in kinetic energy). Solid curves indicate the total stopping power. Data below the break
at By = 0.1 are taken from ICRU 49 [2], and data at higher energies are from Ref. 1. Vertical bands indicate boundaries between
different approximations discussed in the text. The short dotted lines labeled “x~” illustrate the “Barkas effect,” the dependence

of stopping power on projectile charge at very low energies [6].
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Figure 27.2: Stopping power at minimum ionization for the
chemical elements. The straight line is fitted for Z > 6. A
simple functional dependence on Z is not to be expected, since
(—dE/dz) also depends on other variables.
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Figure 27.3: Mean energy loss rate in liquid (bubble chamber)
hydrogen, gaseous helium, carbon, aluminum, iron, tin, and lead.
Radiative effects, relevant for muons and pions, are not included.
These become significant for muons in iron for 8y 2 1000, and at
lower momenta for muons in higher-Z absorbers. See Fig. 27.20.

Eq. (27.1) may be integrated to find the total (or partial)
“continuous slowing-down approximation” (CSDA) range R for a
particle which loses energy only through ionization and atomic
excitation. Since dE/dz depends only on 3, R/M is a function
of E/M or pc/M. In practice, range is a useful concept only for
low-energy hadrons (R < A7, where A is the nuclear interaction
length), and for muons below a few hundred GeV (above which
radiative effects dominate). R/M as a function of 8y = p/Mec is
shown for a variety of materials in Fig. 27.4.

The mass scaling of dE/dz and range is valid for the electronic
losses described by the Bethe-Bloch equation, but not for radiative
losses, relevant only for muons and pions.
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Figure 27.4: Range of heavy charged particles in liquid (bubble
chamber) hydrogen, helium gas, carbon, iron, and lead. For
example: For a K whose momentum is 700 MeV /¢, By = 1.42.
For lead we read R/M ~ 396, and so the range is 195 g cm~ 2.

For a particle with mass M and momentum M fBvye¢, Tmax is given
by
2mec? 3242
1+ 2yme/M + (me/M)?

Tmax = (27.2)
In older references [3,4] the “low-energy” approximation

Tmax = 2mec? B2, valid for 2yme/M < 1, is often implicit. For a
pion in copper, the error thus introduced into dE/dz is greater than
6% at 100 GeV. The correct expression should be used.

At energies of order 100 GeV, the maximum 4-momentum transfer
to the electron can exceed 1 GeV/c, where hadronic structure
effects significantly modify the cross sections. This problem has been
investigated by J.D. Jackson [7], who concluded that for hadrons (but
not for large nuclei) corrections to dE/dz are negligible below energies
where radiative effects dominate. While the cross section for rare hard
collisions is modified, the average stopping power, dominated by many
softer collisions, is almost unchanged.

“The determination of the mean excitation energy is the principal
non-trivial task in the evaluation of the Bethe stopping-power
formula” [8]. Recommended values have varied substantially with
time. Estimates based on experimental stopping-power measurements
for protons, deuterons, and alpha particles and on oscillator-
strength distributions and dielectric-response functions were given in
ICRU 37 [9]. These values, shown in Fig. 27.5, have since been widely
used. Machine-readable versions can also be found [10]. These values
are widely used.

27.2.1. Energy loss at low energies: Shell corrections C'/Z must
be included in the square brackets of of Eq. (27.1) [2,9,11,12] to
correct for atomic binding having been neglected in calculating some
of the contributions to Eq. (27.1). The Barkas form [12] was used in
generating Fig. 27.1. For copper it contributes about 1% at 3y = 0.3
(kinetic energy 6 MeV for a pion), and the correction decreases very
rapidly with energy.




244  27. Passage of particles through matter

22 e
20 3
18 —

~ F ICRU 37 (1984) .

% 16 (interpolated values are —

NS / not marked with points) E

N F ]

Fu Barkas & Berger 1964 E
12 Bichsel 1992\ =
10 - - — —Nf= — — g = = == ==
8:HmmxuquHxmmumwxmxﬁm%m3

0 10 20 30 40 50 60 70 80 90 100

VA

Figure 27.5: Mean excitation energies (divided by Z) as
adopted by the ICRU [9]. Those based on experimental
measurements are shown by symbols with error flags; the
interpolated values are simply joined. The grey point is for liquid
Hpy; the black point at 19.2 eV is for Hy gas. The open circles
show more recent determinations by Bichsel [11]. The dotted
curve is from the approximate formula of Barkas [12] used in
early editions of this Review.

Eq. (27.1) is based on a first-order Born approximation. Higher-
order corrections, again important only at lower energy, are normally
included by adding a term 22 L, (B) inside the square brackets.

An additional “Barkas correction” zL1(3) makes the stopping power
for a negative particle somewhat larger than for a positive particle
with the same mass and velocity. In a 1956 paper, Barkas et al. noted
that negative pions had a longer range than positive pions [6]. The
effect has been measured for a number of negative/positive particle
pairs, most recently for antiprotons at the CERN LEAR facility [13].

A detailed discussion of low-energy corrections to the Bethe formula
is given in ICRU Report 49 [2]. When the corrections are properly
included, the accuracy of the Bethe-Bloch treatment is accurate to
about 1% down to 8 = 0.05, or about 1 MeV for protons.

For 0.01 < 8 < 0.05, there is no satisfactory theory. For protons,
one usually relies on the phenomenological fitting formulae developed
by Andersen and Ziegler [2,14]. For particles moving more slowly
than ~ 0.01c (more or less the velocity of the outer atomic electrons),
Lindhard has been quite successful in describing electronic stopping
power, which is proportional to 3 [15,16]. Finally, we note that at low
energies, e.g., for protons of less than several hundred eV, non-ionizing
nuclear recoil energy loss dominates the total energy loss [2,16,17].

As shown in ICRU49 [2] (using data taken from Ref. 14), the nuclear
plus electronic proton stopping power in copper is 113 MeV cm? g~ at
T = 10 keV, rises to a maximum of 210 MeV cm? g~! at 100-150 keV,
then falls to 120 MeV cm?g~! at 1 MeV. Above 0.5-1.0 MeV the
corrected Bethe-Bloch theory is adequate.

27.2.2. Density effect: As the particle energy increases, its electric
field flattens and extends, so that the distant-collision contribution to
Eq. (27.1) increases as In 3. However, real media become polarized,
limiting the field extension and effectively truncating this part of the
logarithmic rise [3-4,18-21]. At very high energies,

6/2 — In(hwp/I) +1In By —1/2, (27.3)

where §/2 is the density effect correction introduced in Eq. (27.1)
and /wy is the plasma energy defined in Table 27.1. A comparison
with Eq. (27.1) shows that |dE/dz| then grows as In37y rather than
In3%242, and that the mean excitation energy I is replaced by the
plasma energy hwp. The ionization stopping power as calculated with
and without the density effect correction is shown in Fig. 27.1. Since
the plasma frequency scales as the square root of the electron density,
the correction is much larger for a liquid or solid than for a gas, as is
illustrated by the examples in Fig. 27.3.

The density effect correction is usually computed using Stern-
heimer’s parameterization [18]:

2(In10)z - C if 2 > z1;
5 2(In10)z — C + a(z1 — )% ifzg <z < 21;
0 if 2 < 2y (nonconductors);

60102(=—20) if z < zo (conductors)

(27.4)
Here 2 = logyo 7 = logio(p/Mc). C (the negative of the C used in
Ref. 18) is obtained by equating the high-energy case of Eq. (27.4) with
the limit given in Eq. (27.3). The other parameters are adjusted to
give a best fit to the results of detailed calculations for momenta below
Mcexp(z1). Parameters for elements and nearly 200 compounds and
mixtures of interest are published in a variety of places, notably in
Ref. 21. A recipe for finding the coefficients for nontabulated materials
is given by Sternheimer and Peierls [19], and is summarized in Ref. 1.

The remaining relativistic rise comes from the 5272 growth of Tmax,
which in turn is due to (rare) large energy transfers to a few electrons.
When these events are excluded, the energy deposit in an absorbing
layer approaches a constant value, the Fermi plateau (see Sec. 27.2.4
below). At extreme energies (e.g., > 332 GeV for muons in iron,
and at a considerably higher energy for protons in iron), radiative
effects are more important than ionization losses. These are especially
relevant for high-energy muons, as discussed in Sec. 27.6.

27.2.3. Energetic knock-on electrons (6 rays): The distribution
of secondary electrons with kinetic energies T' > T is given by [3]

N 1 ,Z 1 F(T)

dTdz ~ 2" AFE T2
for I < T < Tmax, where Tmax is given by Eq. (27.2). Here
[ is the velocity of the primary particle. The factor F' is spin-
dependent, but is about unity for 7 < Tmax. For spin-0 particles
F(T) = (1 — 32T/ Tmax); forms for spins 1/2 and 1 are also given by
Rossi [3]. For incident electrons, the indistinguishability of projectile
and target means that the range of T extends only to half the
kinetic energy of the incident particle. Additional formulae are
given in Ref. 22. Equation (27.5) is inaccurate for T' close to I: for
21 ST < 101, the 1/T2 dependence above becomes approximately
T, with 3 $n < 5[23].

6 rays of appreciable energy are rare. For example, for a 500 MeV
pion incident on a silicon detector with thickness 2 = 300 pm, one
may integrate Eq. (27.5) from T¢yt t0 Tmax to find that z(dN/dz) = 1,
or an average of one § ray per particle crossing, for Tcyt equal to
only 12 keV. For Teyy = 116 keV (the mean minimum energy loss in
300 pm of silicon), z(dN/dz) = 0.0475—less than one particle in 20
produces a § ray with kinetic energy greater than T¢yq.*

(27.5)

A § ray with kinetic energy T, and corresponding momentum pe is
produced at an angle 6 given by

cosf = (Te/Pe)(pmax/Tmax) 3

where pmax is the momentum of an electron with the maximum
possible energy transfer Tmax.

(27.6)

27.2.4. Restricted energy loss rates for relativistic ionizing
particles: Further insight can be obtained by examining the mean
energy deposit by an ionizing particle when energy transfers are

restricted to 7' < Teuy < Tmax. The restricted energy loss rate is

dE 7 ZZEL lln 2m602ﬂ272Tcut
ApB?|2 I2

_5_2 14+ Teut _ é )

2 Tmax 2
This form approaches the normal Bethe-Bloch function (Eq. (27.1)) as
Teut — Tmax- It can be verified that the difference between Eq. (27.1)

and Eq. (27.7) is equal to fTTC“u‘f" T(d>N/dTdz)dT, where d>N/dTdx
is given by Eq. (27.5).

dz |po,,

(27.7)

* These calculations assume a spin-0 incident particle and the valid-
ity of the Rutherford cross section used in Eq. (27.5).
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Since Tcut replaces Tmax in the argument of the logarithmic
term of Eq. (27.1), the By term producing the relativistic rise
in the close-collision part of dE/dz is replaced by a constant, and
|dE/dz|T<T,,, approaches the constant “Fermi plateau.” (The density
effect correction ¢ eliminates the explicit 5y dependence produced by
the distant-collision contribution.)

27.2.5. Fluctuations in energy loss: The mean energy loss per
unit absorber thickness by charged particles in matter, as given by the
Bethe-Bloch formula (Eq. (27.1)), is essentially useless in describing
the behavior of a single particle because of the stochastic nature of
the energy losses. Since the single-collision spectrum is highly skewed,
the probability distribution function (pdf) describing the “straggling”
is also highly skewed. The pdf f(A; By, z) describing the distribution
of energy loss A in absorber thickness z is usually called the “Landau
distribution [24],” although a careful reading of Rossi [3] shows that
the matter is much more complicated. Examples of the distribution
based on recent calculations by Bichsel [25-27] are shown in Fig. 27.6.
The most probable loss Ay increases in a first approximation as
z(a +Inz), and the ratio w/A;, decreases with increasing x (where
w is the full width at half maximum, as indicated in the figure). For
very thick absorbers, where the energy loss exceeds one half of the
original energy, f(A) begins to approximate a Gaussian.

The most probable loss per unit thickness, normalized to the mean
loss rate by a minimum ionizing particle, is shown in Fig. 27.7. These
“Bichsel functions” rise by perhaps 10% from their minimum values as
the energy increases, but reach a Fermi plateau for the same reasons
that restricted energy loss does: The asymptotic In/3y rise in the
Bethe-Block formula comes from the hard-collision losses that create
the tail.

The most probable loss is much more relevant to detector calibration
than the mean energy loss, since the tail is often lost in background
and in any case is difficult to define because of the weight of a few
high-loss events. Note that the most probable loss is less than 70% of
the mean for a typical silicon strip detector.

The function f(A;Bv,z) should be used in maximum likelihood fits
to the signals produced by a single particle, as in the case of a track
in a TPC.
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Figure 27.6: Straggling functions in silicon for 500 MeV pions,
normalized to unity at the most probable value Ap/z. The width
w is the full width at half maximum.

27.2.6. Energy loss in mixtures and compounds: A mixture or
compound can be thought of as made up of thin layers of pure
elements in the right proportion (Bragg additivity). In this case,

dE dE
& =2

where dE/dz|; is the mean rate of energy loss (in MeV g cm~2)
in the jth element. Eq. (27.1) can be inserted into Eq. (27.8) to

(27.8)
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Figure 27.7: Most probable energy loss in silicon, scaled to the
mean loss of a minimum ionizing particle, 388 eV /um (1.66 MeV
g lem?).

find expressions for (Z/A), (I), and (6); for example, (Z/A) =
Sw;Z;/Aj =Y njZj] > n;Aj. However, (I) as defined this way is
an underestimate, because in a compound electrons are more tightly
bound than in the free elements, and () as calculated this way has
little relevance, because it is the electron density which matters. If
possible, one uses the tables given in Refs. 21 and 28, which include ef-
fective excitation energies and interpolation coefficients for calculating
the density effect correction for the chemical elements and nearly 200
mixtures and compounds. If a compound or mixture is not found, then
one uses the recipe for § given in Ref. 19 (repeated in Ref. 1), and calcu-
lates (I) according to the discussion in Ref. 8. (Note the “13%” rule!)

27.2.7. Ionization yields: Physicists frequently relate total energy
loss to the number of ion pairs produced near the particle’s track.
This relation becomes complicated for relativistic particles due to
the wandering of energetic knock-on electrons whose ranges exceed
the dimensions of the fiducial volume. For a qualitative appraisal
of the nonlocality of energy deposition in various media by such
modestly energetic knock-on electrons, see Ref. 29. The mean local
energy dissipation per local ion pair produced, W, while essentially
constant for relativistic particles, increases at slow particle speeds [30].
For gases, W can be surprisingly sensitive to trace amounts of
various contaminants [30]. Furthermore, ionization yields in practical
cases may be greatly influenced by such factors as subsequent
recombination [31].

27.3. Multiple scattering through small angles

A charged particle traversing a medium is deflected by many
small-angle scatters. Most of this deflection is due to Coulomb
scattering from nuclei, and hence the effect is called multiple Coulomb
scattering. (However, for hadronic projectiles, the strong interactions
also contribute to multiple scattering.) The Coulomb scattering
distribution is well represented by the theory of Moliere [32]. It is
roughly Gaussian for small deflection angles, but at larger angles
(greater than a few 6, defined below) it behaves like Rutherford
scattering, having larger tails than does a Gaussian distribution.

If we define 1
bo = H;Ilrelxsne = % 9$fce .
then it is sufficient for many applications to use a Gaussian approxi-
mation for the central 98% of the projected angular distribution, with

a width given by [33,34]

o = % 2 2/ Xo [1 +0.038In(z/ Xq)
Here p, B¢, and z are the momentum, velocity, and charge number
of the incident particle, and z/Xj is the thickness of the scattering
medium in radiation lengths (defined below). This value of 6y is from
a fit to Moliére distribution [32] for singly charged particles with 3 =1
for all Z, and is accurate to 11% or better for 1073 < 2/ Xy < 100.

(27.9)

(27.10)
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Eq. (27.10) describes scattering from a single material, while the
usual problem involves the multiple scattering of a particle traversing
many different layers and mixtures. Since it is from a fit to a Moliere
distribution, it is incorrect to add the individual 6y contributions in
quadrature; the result is systematically too small. It is much more
accurate to apply Eq. (27.10) once, after finding z and Xj for the
combined scatterer.

Lynch and Dahl have extended this phenomenological approach,
fitting Gaussian distributions to a variable fraction of the Moliere
distribution for arbitrary scatterers [34], and achieve accuracies of 2%
or better.

}

Yplane

y
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A

Figure 27.8: Quantities used to describe multiple Coulomb
scattering. The particle is incident in the plane of the figure.

The nonprojected (space) and projected (plane) angular distribu-
tions are given approximately by [32]

L [ B ) g @7.11)
202 P |7 202 ’ '
1 912)1aue
—_ — db, , 27.12
V2 6 exp [ 20% plane ( )

where 6 is the deflection angle. In this approximation, Ggpace ~

(9}2)1ane)a7 + oglane,y)7 where the z and y axes are orthogonal to the
direction of motion, and dQ =~ dfpjane,z @plane,y- Deflections into
Oplane,e and Opjane 4 are independent and identically distributed.

Figure 27.8 shows these and other quantities sometimes used to
describe multiple Coulomb scattering. They are

1 1

Tlame = = 0pae = =0, 27.13

d}plane V3 plane V3 0 ( )
1 1

Y plane = 7 0 plane = VA RALE (27.14)
1 1

plane = 3 20 lane = w3 (27.15)

All the quantitative estimates in this section apply only in the
limit of small 0;5‘:19 and in the absence of large-angle scatters. The
random variables s, ¥, y, and 6 in a given plane are distributed in
a correlated fashion (see Sec. 31.1 of this Review for the definition
of the correlation coefficient). Obviously, y ~ z%. In addition, y and
6 have the correlation coefficient pyg = V/3/2 ~ 0.87. For Monte
Carlo generation of a joint (¥ plane,&plane) distribution, or for other
calculations, it may be most convenient to work with independent
Gaussian random variables (21, 22) with mean zero and variance one,
and then set

Yplane =21 T 00(1 - 1050)1/2/\/g + 22 PyoT 90/\/5
=21 200/V12 + 29 26p/2 ;
leane =z200 .

(27.16)
(27.17)
Note that the second term for y plane equals & Opjane/2 and represents

the displacement that would have occurred had the deflection Opape
all occurred at the single point z/2.

For heavy ions the multiple Coulomb scattering has been measured
and compared with various theoretical distributions [35].
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Figure 27.9: Fractional energy loss per radiation length in
lead as a function of electron or positron energy. Electron
(positron) scattering is considered as ionization when the energy
loss per collision is below 0.255 MeV, and as Mgller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel
and Crawford, Electron-Photon Shower Distribution Function
Tables for Lead, Copper, and Air Absorbers, Pergamon Press,
1970. Messel and Crawford use Xo(Pb) = 5.82 g/cm?, but
we have modified the figures to reflect the value given in the
Table of Atomic and Nuclear Properties of Materials (Xo(Pb) =
6.37 g/cm?).

27.4. Photon and electron interactions in matter

27.4.1. Radiation length: High-energy electrons predominantly
lose energy in matter by bremsstrahlung, and high-energy photons by
ete™ pair production. The characteristic amount of matter traversed
for these related interactions is called the radiation length Xg, usually
measured in g cm~2. Tt is both (a) the mean distance over which a
high-energy electron loses all but 1/e of its energy by bremsstrahlung,
and (b) % of the mean free path for pair production by a high-energy
photon [36]. Tt is also the appropriate scale length for describing
high-energy electromagnetic cascades. Xy has been calculated and
tabulated by Y.S. Tsai [37]:

Xio = 4ar§%{22 [Lead = F(2)] + Z Ligg } -
For A =1 g mol™}, 4arlNy/A = (716.408 g cm™2)"!. L,q and
L 4 are given in Table 27.2. The function f(Z) is an infinite sum, but
for elements up to uranium can be represented to 4-place accuracy by

F(Z) =a?[(1 +a?)~! +0.20206
—0.0369 a2 + 0.0083 a — 0.002a°] ,
where a = aZ [38].

(27.18)

(27.19)

Table 27.2: Tsai’s L;,q and L’md, for use in calculating the

radiation length in an element using Eq. (27.18).

Element 7 Liag L
H 1 5.31 6.144
He 2 4.79 5.621
Li 3 4.74 5.805
Be 4 4.71 5.92
Others >4 In(184.15Z7Y/3) In(1194 Z~2/3)

Although it is easy to use Eq. (27.18) to calculate X¢, the functional
dependence on Z is somewhat hidden. Dahl provides a compact fit to
the data [39]:

16.4 24
Xo—_M6dgem 74 (27.20)
Z(Z +1)1n(287/V/Z)
Results using this formula agree with Tsai’s values to better than
2.5% for all elements except helium, where the result is about 5% low.
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Figure 27.10: The normalized bremsstrahlung cross section
kdor,par/dk inlead versus the fractional photon energy y = k/E.
The vertical axis has units of photons per radiation length.
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Figure 27.11: Two definitions of the critical energy E..

The radiation length in a mixture or compound may be approxi-
mated by
1/Xo =) w;/X;, (27.21)
where w; and X; are the fraction by weight and the radiation length
for the jth element.

27.4.2. Energy loss by electrons: At low energies electrons and
positrons primarily lose energy by ionization, although other processes
(Mgller scattering, Bhabha scattering, et annihilation) contribute, as
shown in Fig. 27.9. While ionization loss rates rise logarithmically
with energy, bremsstrahlung losses rise nearly linearly (fractional loss
is nearly independent of energy), and dominates above a few tens of
MeV in most materials

Ionization loss by electrons and positrons differs from loss by
heavy particles because of the kinematics, spin, and the identity of
the incident electron with the electrons which it ionizes. Complete
discussions and tables can be found in Refs. 8, 9, and 28.

At very high energies and except at the high-energy tip of the
bremsstrahlung spectrum, the cross section can be approximated in
the “complete screening case” as [37]

do/dk = (1/k)darZ{(§ — 3y +y))[Z%(Lraa — (2)) + Z L, ]
+51-y)(Z2+ 7)),

(27.22)
where y = k/E is the fraction of the electron’s energy transfered to
the radiated photon. At small y (the “infrared limit”) the term on the
second line can reach 2.5%. If it is ignored and the first line simplified
with the definition of Xy given in Eq. (27.18), we have

do A

& XoNaE ( (27.23)
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Figure 27.12: Electron critical energy for the chemical elements,
using Rossi’s definition [3]. The fits shown are for solids and

liquids (solid line) and gases (dashed line). The rms deviation
is 2.2% for the solids and 4.0% for the gases. (Computed with
code supplied by A. Fassé.)

This cross section (times k) is shown by the top curve in Fig. 27.10.

This formula is accurate except in near y = 1, where screening may
become incomplete, and near y = 0, where the infrared divergence
is removed by the interference of bremsstrahlung amplitudes from
nearby scattering centers (the LPM effect) [40,41] and dielectric
supression [42,43]. These and other supression effects in bulk media
are discussed in Sec. 27.4.5.

With decreasing energy (E < 10 GeV) the high-y cross section
drops and the curves become rounded as y — 1. Curves of this familar
shape can be seen in Rossi [3] (Figs. 2.11.2,3); see also the review by
Koch & Motz [44].

Except at these extremes, and still in the complete-screening
approximation, the the number of photons with energies between kpjn
and kmax emitted by an electron travelling a distance d < Xy is

N7 — i éln kmax _ 4(kmax _ kmin) + (kmax - kmin)2
Xo |3 Emin 3E 2F2
(27.24)
27.4.3. Critical energy: An electron loses energy by bremsstrah-

lung at a rate nearly proportional to its energy, while the ionization
loss rate varies only logarithmically with the electron energy. The
critical energy E. is sometimes defined as the energy at which the
two loss rates are equal [45]. Berger and Seltzer [45] also give the
approximation E, = (800 MeV)/(Z + 1.2). This formula has been
widely quoted, and has been given in older editions of this Review [46].
Among alternate definitions is that of Rossi [3], who defines the
critical energy as the energy at which the ionization loss per radiation
length is equal to the electron energy. Equivalently, it is the same
as the first definition with the approximation |dE/d&|prems ~ E/Xo-
This form has been found to describe transverse electromagnetic
shower development more accurately (see below). These definitions
are illustrated in the case of copper in Fig. 27.11.

The accuracy of approximate forms for E. has been limited by the
failure to distinguish between gases and solid or liquids, where there
is a substantial difference in ionization at the relevant energy because
of the density effect. We distinguish these two cases in Fig. 27.12.
Fits were also made with functions of the form a/(Z + b)®, but «
was found to be essentially unity. Since E. also depends on A, I, and
other factors, such forms are at best approximate.
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Figure 27.14: The normalized pair production cross section
N doy,pa/dy, versus fractional electron energy z = E/k.
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o "o o —experimental Gy The increasing domination of pair production as the energy
1Mb ! \)’% increases is shown in Fig. 27.16. Using approximations similar to

those used to obtain Eq. (27.23), Tsai’s formula for the differential
cross section [37] reduces to

do A

dE ~ XoNy4
in the complete-screening limit valid at high energies. Here z = E/k
is the fractional energy transfer to the pair-produced electron (or
positron), and k is the incident photon energy. The cross section is
very closely related to that for bremsstrahlung, since the Feynman
diagrams are variants of one another. The cross section is of necessity
symmetric between z and 1 — z, as can be seen by the solid curve in
Fig. 27.14. See the review by Motz, Olsen, & Koch for a more detailed
treatment [47].

Eq. (27.25) may be integrated to find the high-energy limit for the

total eTe™ pair-production cross section:

[1- g1 —2)] (27.25)

1kb

Cross section (barns/atom)

=
o

10 mb o =§(A/XoNya) . (27.26)
10eV 1keV 1 MeV 1GeV 100 GeV Equation Eq. (27.26) is accurate to within a few percent down to
Photon Energy energies as low as 1 GeV, particularly for high-Z materials.
Figure 27.13: Photon total cross sections as a function of 1.0 ¢ T T =
energy in carbon and lead, showing the contributions of different 09 T 3
processes: “F ’ E
op.e. = Atomic photoelectric effect (electron ejection, 0.8 ;* 7;
photon absorption) 0.7 E A
ORayleigh = Coherent scattering (Rayleigh scattering—atom ’ E ]
neither ionized nor excited) 0.6 —
OCompton = Incoherent scattering (Compton scattering off an P05 ; é
electron) F ]
knuc = Pair production, nuclear field 04 ? 7;
ke = Pair production, electron field 0.3 — —
Data from Hubbell, Gimm, and @verbg, J. Phys. Chem. Ref. 02 E ]
Data 9, 1023 (1980). Curves for these and other elements, TE B
compounds, and mixtures may be obtained from 0.1 , —
http://physics.nist.gov/PhysRefData. The photon total £ V{/‘,‘,‘"‘"" o L B
cross section is approximately flat for at least two decades 0~01 2 - 5 10 20 50 100 20 500 1000

beyond the energy range shown. Original figures courtesy Photon energy (MeV)

J.H. Hubbell (NIST).

Figure 27.16: Probability P that a photon interaction will
result in conversion to an ete™ pair. Except for a few-percent
contribution from photonuclear absorption around 10 or 20
MeV, essentially all other interactions in this energy range result
in Compton scattering off an atomic electron. For a photon
attenuation length A\ (Fig. 27.15), the probability that a given
photon will produce an electron pair (without first Compton
scattering) in thickness ¢ of absorber is P[1 — exp(—t/))].

27.4.4. Energy loss by photons: Contributions to the photon cross
section in a light element (carbon) and a heavy element (lead) are
shown in Fig. 27.13. At low energies it is seen that the photoelectric
effect dominates, although Compton scattering, Rayleigh scattering,
and photonuclear absorption also contribute. The photoelectric cross
section is characterized by discontinuities (absorption edges) as
thresholds for photoionization of various atomic levels are reached.
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Fig. 27.15: The photon mass attenuation length (or mean free path) A = 1/(u/p) for various elemental absorbers as a function
of photon energy. The mass attenuation coefficient is p/p, where p is the density. The intensity I remaining after traversal of

thickness ¢ (in mass/unit area) is given by I = Iy exp(—t/A). The accuracy is a few percent. For a chemical compound or mixture,
1/Aeff ® D elements WZ/ Az, where wyz is the proportion by weight of the element with atomic number Z. The processes responsible
for attenuation are given in not Fig. 27.9. Since coherent processes are included, not all these processes result in energy deposition.
The data for 30 eV < FE < 1 keV are obtained from http://www-cxro.1bl.gov/optical constants (courtesy of Eric M. Gullikson,
LBNL). The data for 1 keV < E < 100 GeV are from http://physics.nist.gov/PhysRefData, through the courtesy of John H.

Hubbell (NIST).

27.4.5. Bremsstrahlung and pair production at very high
energies: At ultrahigh energies, Eqns. 27.22-27.26 will fail
because of quantum mechanical interference between amplitudes from
different scattering centers. Since the longitudinal momentum transfer
to a given center is small (o k/E?, in the case of bremsstrahlung),
the interaction is spread over a comparatively long distance called the
formation length (< E2/k) via the uncertainty principle. In alternate
language, the formation length is the distance over which the highly
relatistic electron and the photon “split apart.” The interference
is usually destructive. Calculations of the “Landau-Pomeranchuk-
Migdal” (LPM) effect may be made semi-classically based on the
average multiple scattering, or more rigorously using a quantum
transport approach [40,41].

In amorphous media, bremsstrahlung is suppressed if the photon
energy k is less than E?/Eppys [41], where*
212 X,
Eppar = e 0X0 _ 7 7 1oy fem) x pXo .
4mhe
Since physical distances are involved, pXp, in cm, appears. The
energy-weighted bremsstrahlung spectrum for lead, kdoppys/dk, is
shown in Fig. 27.10. With appropriate scaling by pXo, other materials
behave similarly.

(27.27)

For photons, pair production is reduced for E(k — E) > k Erpyy.
The pair-production cross sections for different photon energies are
shown in Fig. 27.14.

If £ < E, several additional mechanisms can also produce
suppression. When the formation length is long, even weak factors
can perturb the interaction. For example, the emitted photon can
coherently forward scatter off of the electrons in the media. Because
of this, for k < wpE/me ~ 1074, bremsstrahlung is suppressed

* This definition differs from that of Ref. 48 by a factor of two.
Eppy scales as the 4th power of the mass of the incident particle, so
that Erpyr = (1.4 x 1010 TeV/cm) x pXp for a muon.

by a factor (kme/wpE)? [43]. Magnetic fields can also suppress
bremsstrahlung.

In crystalline media, the situation is more complicated, with
coherent enhancement or suppression possible. The cross section
depends on the electron and photon energies and the angles between
the particle direction and the crystalline axes [41].

27.5. Electromagnetic cascades

When a high-energy electron or photon is incident on a thick
absorber, it initiates an electromagnetic cascade as pair production
and bremsstrahlung generate more electrons and photons with lower
energy. The longitudinal development is governed by the high-energy
part of the cascade, and therefore scales as the radiation length in the
material. Electron energies eventually fall below the critical energy,
and then dissipate their energy by ionization and excitation rather
than by the generation of more shower particles. In describing shower
behavior, it is therefore convenient to introduce the scale variables

t=z/Xy, y=E/E., (27.28)

so that distance is measured in units of radiation length and energy in
units of critical energy.

Longitudinal profiles from an EGS4 [49] simulation of a 30 GeV
electron-induced cascade in iron are shown in Fig. 27.17. The number
of particles crossing a plane (very close to Rossi’s II function [3])
is sensitive to the cutoff energy, here chosen as a total energy of
1.5 MeV for both electrons and photons. The electron number falls off
more quickly than energy deposition. This is because, with increasing
depth, a larger fraction of the cascade energy is carried by photons.
Exactly what a calorimeter measures depends on the device, but it
is not likely to be exactly any of the profiles shown. In gas counters
it may be very close to the electron number, but in glass Cherenkov
detectors and other devices with “thick” sensitive regions it is closer
to the energy deposition (total track length). In such detectors the
signal is proportional to the “detectable” track length T, which is
in general less than the total track length 7T'. Practical devices are
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Figure 27.17: An EGS4 simulation of a 30 GeV electron-
induced cascade in iron. The histogram shows fractional energy
deposition per radiation length, and the curve is a gamma-
function fit to the distribution. Circles indicate the number of
electrons with total energy greater than 1.5 MeV crossing planes
at X(/2 intervals (scale on right) and the squares the number of
photons with E > 1.5 MeV crossing the planes (scaled down to
have same area as the electron distribution).

sensitive to electrons with energy above some detection threshold Eg,
and Ty = T F(Ey/E;). An analytic form for F(E;/E.) obtained by
Rossi [3] is given by Fabjan [50]; see also Amaldi [51].

The mean longitudinal profile of the energy deposition in an
electromagnetic cascade is reasonably well described by a gamma
distribution [52]:

B a—1,—bt
dE — Eb (bt)*~ e
dt T(a)

The maximum tmax occurs at (a — 1)/b. We have made fits to shower
profiles in elements ranging from carbon to uranium, at energies from
1 GeV to 100 GeV. The energy deposition profiles are well described
by Eq. (27.29) with

tmax = (@ —1)/b=1.0 x (Iny + Cj) , j=en, (27.30)

where Ce = —0.5 for electron-induced cascades and Cy = +0.5 for
photon-induced cascades. To use Eq. (27.29), one finds (a — 1)/b from
Eq. (27.30) and Eq. (27.28), then finds a either by assuming b ~ 0.5
or by finding a more accurate value from Fig. 27.18. The results
are very similar for the electron number profiles, but there is some
dependence on the atomic number of the medium. A similar form for
the electron number maximum was obtained by Rossi in the context
of his “Approximation B,” [3] (see Fabjan’s review in Ref. 50), but
with Ce = —1.0 and Cy = —0.5; we regard this as superseded by the
EGS4 result.

The “shower length” X = X /b is less conveniently parameterized,
since b depends upon both Z and incident energy, as shown in
Fig. 27.18. As a corollary of this Z dependence, the number of elec-
trons crossing a plane near shower maximum is underestimated using
Rossi’s approximation for carbon and seriously overestimated for ura-
nium. Essentially the same b values are obtained for incident electrons
and photons. For many purposes it is sufficient to take b ~ 0.5.

(27.29)

The gamma function distribution is very flat near the origin, while
the EGS4 cascade (or a real cascade) increases more rapidly. As a
result Eq. (27.29) fails badly for about the first two radiation lengths;
it was necessary to exclude this region in making fits.

Because fluctuations are important, Eq. (27.29) should be used only
in applications where average behavior is adequate. Grindhammer
et al. have developed fast simulation algorithms in which the variance
and correlation of a and b are obtained by fitting Eq. (27.29) to
individually simulated cascades, then generating profiles for cascades
using a and b chosen from the correlated distributions [53].

The transverse development of electromagnetic showers in different
materials scales fairly accurately with the Moliére radius Ry;, given
by [54,55]

Ry = Xo Es/Ec (27.31)
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Figure 27.18: Fitted values of the scale factor b for energy
deposition profiles obtained with EGS4 for a variety of elements
for incident electrons with 1 < Ey < 100 GeV. Values obtained
for incident photons are essentially the same.

where Es ~ 21 MeV (Table 27.1), and the Rossi definition of E is
used.

In a material containing a weight fraction w; of the element with
critical energy E¢; and radiation length X, the Moliére radius is

given by
Lo lsw Bej
Ry Es X;

(27.32)

Measurements of the lateral distribution in electromagnetic
cascades are shown in Refs. 54 and 55. On the average, only 10%
of the energy lies outside the cylinder with radius Rp;. About
99% is contained inside of 3.5Rys, but at this radius and beyond
composition effects become important and the scaling with Rj; fails.
The distributions are characterized by a narrow core, and broaden as
the shower develops. They are often represented as the sum of two
Gaussians, and Grindhammer [53] describes them with the function

2r R?
10)= ooy g
where R is a phenomenological function of z/Xy and In E.

At high enough energies, the LPM effect (Sec. 27.4.5) reduces the
cross sections for bremsstrahlung and pair production, and hence can
cause significant enlongation of electromagnetic cascades [41].

(27.33)

27.6. Muon energy loss at high energy

At sufficiently high energies, radiative processes become more
important than ionization for all charged particles. For muons and
pions in materials such as iron, this “critical energy” occurs at several
hundred GeV. (There is no simple scaling with particle mass, but
for protons the “critical energy” is much, much higher.) Radiative
effects dominate the energy loss of energetic muons found in cosmic
rays or produced at the newest accelerators. These processes are
characterized by small cross sections, hard spectra, large energy
fluctuations, and the associated generation of electromagnetic and (in
the case of photonuclear interactions) hadronic showers [56-64]. As
a consequence, at these energies the treatment of energy loss as a
uniform and continuous process is for many purposes inadequate.

It is convenient to write the average rate of muon energy loss
as [65]

—dE/dz = o(E) + b(E) E . (27.34)

Here a(E) is the ionization energy loss given by Eq. (27.1), and
b(E) is the sum of ete™ pair production, bremsstrahlung, and
photonuclear contributions. To the approximation that these slowly-
varying functions are constant, the mean range zo of a muon with
initial energy Ej is given by

w0 ~ (1/6)In(1 + Eo/Eye) , (27.35)
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where Ey. = a/b. Figure 27.19 shows contributions to b(E) for iron.
Since a(E) = 0.002 GeV g~! cm?, b(E)E dominates the energy loss
above several hundred GeV, where b(E) is nearly constant. The rates
of energy loss for muons in hydrogen, uranium, and iron are shown in
Fig. 27.20 [1].
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Figure 27.19: Contributions to the fractional energy loss by

muons in iron due to ete” pair production, bremsstrahlung,

and photonuclear interactions, as obtained from Groom et al. [1]
except for post-Born corrections to the cross section for direct

pair production from atomic electrons.
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Figure 27.20: The average energy loss of a muon in hydrogen,
iron, and uranium as a function of muon energy. Contributions
to dE/dz in iron from ionization and the processes shown in
Fig. 27.19 are also shown.

The “muon critical energy” Ej. can be defined more exactly as the
energy at which radiative and ionization losses are equal, and can be
found by solving Eyc = a(Euc)/b(Eyc)- This definition corresponds
to the solid-line intersection in Fig. 27.11, and is different from the
Rossi definition we used for electrons. It serves the same function:
below Ej ionization losses dominate, and above Ey radiative effects
dominate. The dependence of Ej,. on atomic number Z is shown in
Fig. 27.21.

The radiative cross sections are expressed as functions of the
fractional energy loss v. The bremsstrahlung cross section goes
roughly as 1/v over most of the range, while for the pair production
case the distribution goes as v=3 to v=2 [66]. “Hard” losses are
therefore more probable in bremsstrahlung, and in fact energy losses
due to pair production may very nearly be treated as continuous.
The simulated [64] momentum distribution of an incident 1 TeV/c
muon beam after it crosses 3 m of iron is shown in Fig. 27.22.
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Figure 27.21: Muon critical energy for the chemical elements,
defined as the energy at which radiative and ionization energy
loss rates are equal [1]. The equality comes at a higher energy
for gases than for solids or liquids with the same atomic number
because of a smaller density effect reduction of the ionization
losses. The fits shown in the figure exclude hydrogen. Alkali
metals fall 3-4% above the fitted function, while most other
solids are within 2% of the function. Among the gases the worst
fit is for radon (2.7% high).

The most probable loss is 8 GeV, or 3.4 MeV gflcm2. The full
width at half maximum is 9 GeV/c, or 0.9%. The radiative tail is
almost entirely due to bremsstrahlung, although most of the events
in which more than 10% of the incident energy lost experienced
relatively hard photonuclear interactions. The latter can exceed
detector resolution [67], necessitating the reconstruction of lost energy.
Tables [1] list the stopping power as 9.82 MeV g~lcm? for a 1 TeV
muon, so that the mean loss should be 23 MeV (= 23 MeV/c), for a
final momentum of 977 MeV/c, far below the peak. This agrees with
the indicated mean calculated from the simulation. Electromagnetic
and hadronic cascades in detector materials can obscure muon tracks
in detector planes and reduce tracking efficiency [68].
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Figure 27.22: The momentum distribution of 1 TeV/c muons
after traversing 3 m of iron as calculated withthe MARS14
Monte Carlo code [64] by S.I. Striganov [1].
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27.7. Cherenkov and transition radiation [5,69,70]

A charged particle radiates if its velocity is greater than the
local phase velocity of light (Cherenkov radiation) or if it crosses
suddenly from one medium to another with different optical properties
(transition radiation). Neither process is important for energy loss,
but both are used in high-energy physics detectors.

Cherenkov Radiation. The half-angle 6. of the Cherenkov cone for
a particle with velocity B¢ in a medium with index of refraction n is
6. = arccos(1/nf)
~ 1/2(1—1/nB) for small ., e.g. in gases.  (27.36)

The threshold velocity (¢ is 1/n, and 4 = 1/(1 — ﬂtz)l/z. Therefore,
Byt = 1/(26 + 62)1/2, where § = n — 1. Values of & for various com-
monly used gases are given as a function of pressure and wavelength
in Ref. 71. For values at atmospheric pressure, see Table 6.1. Data for
other commonly used materials are given in Ref. 72.

The number of photons produced per unit path length of a particle
with charge ze and per unit energy interval of the photons is

&N a2, a?z? 1
—— = —sin“fp=—5 |1 - 55—
dEdr  hc Te MeC2 B2n2(E)

~ 370sin2 0.(E) eV lem™  (z=1), (27.37)

or, equivalently,
d’N _ 2raz’ 1
=" (1- . 27.
dzd) A2 ( an()\)) (27.38)

The index of refraction is a function of photon energy F, as is the
sensitivity of the transducer used to detect the light. For practical
use, Eq. (27.37) must be multiplied by the the transducer response
function and integrated over the region for which Sn(E) > 1. Further
details are given in the discussion of Cherenkov detectors in the
Detectors section (Sec. 28 of this Review).

Transition radiation. The energy radiated when a particle with
charge ze crosses the boundary between vacuum and a medium with
plasma frequency wp is

I = azlyhwy/3, (27.39)
where
hwp = /4w Ner3 mec2/a = 41/47Nead, 2 x 13.6 eV . (27.40)

Here N is the electron density in the medium, 7. is the classical
electron radius, and aso is the Bohr radius. For styrene and similar
materials, \/47 Nea3, ~ 0.8, so that hwp = 20 eV. The typical emission
angle is 1/y.

The radiation spectrum is logarithmically divergent at low energies
and decreases rapidly for /w/vhwp > 1. About half the energy is
emitted in the range 0.1 < fiw/yhwy < 1. For a particle with v = 103,
the radiated photons are in the soft x-ray range 2 to 20 keV. The
v dependence of the emitted energy thus comes from the hardening
of the spectrum rather than from an increased quantum yield. For a
typical radiated photon energy of yhwy/4, the quantum yield is

N 1 azQ'yﬁwp/'thp o2
4

Nyws—5 2022 2 0.5% x 22 . (27.41)

More precisely, the number of photons with energy Aw > hwq is

given by [5]
2 2
T
1) + ﬁ:| s

within corrections of order (fiwg/vyfwp)?. The number of photons
above a fixed energy fiwp < yfiwp thus grows as (Iny)2, but the number
above a fixed fraction of yhw, (as in the example above) is constant.
For example, for fiw > yfiwp/10, Ny = 2.519 az? /1 = 0.59% x 22.

The yield can be increased by using a stack of plastic foils with
gaps between. However, interference can be important, and the soft
x rays are readily absorbed in the foils. The first problem can be
overcome by choosing thicknesses and spacings large compared to the
“formation length” D = yc/wyp, which in practical situations is tens
of um. Other practical problems are discussed in Sec. 28.

2 I
Noy(hw > Fwp) = % [(m VM‘:}” - (27.42)
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28. PARTICLE DETECTORS

Revised 2003 (see the various sections for authors).

In this section we give various parameters for common detector
components. The quoted numbers are usually based on typical devices,
and should be regarded only as rough approximations for new designs.
More detailed discussions of detectors and their underlying physics
can be found in books by Ferbel [1], Grupen [2], Kleinknecht [3],
Knoll [4], and Green [5]. In Table 28.1 are given typical spatial and
temporal resolutions of common detectors.

Table 28.1: Typical spatial and temporal resolutions of common
detectors. Revised September 2003 by R. Kadel (LBNL).

Resolution Dead

Detector Type Accuracy (rms)  Time Time
Bubble chamber 10-150 pm 1 ms 50 ms®
Streamer chamber 300 pm 2 s 100 ms
Proportional chamber 50-300 pmb<¢ 2 ns 200 ns
Drift chamber 50-300 pm 2 ns® 100 ns
Scintillator — 100 ps/nf 10 ns
Emulsion 1 pm — —
Liquid Argon Drift [Ref. 6] ~175-450 pm ~ 200 ns ~ 2 us
Gas Micro Strip [Ref. 7] 30-40 pm < 10 ns —
Resistive Plate chamber [Ref. 8] <10 pm 1-2 ns —
Silicon strip pitch/(3 to 7)9 h h
Silicon pixel 2 pm? h h

®

Multiple pulsing time.
300 pm is for 1 mm pitch.

Delay line cathode readout can give +150 pm parallel to anode
wire.

wirespacing/v/12.
For two chambers.

o

[}

a

~ o

n = index of refraction.

@

The highest resolution (“7”) is obtained for small-pitch detectors
(<25 pm) with pulse-height-weighted center finding.

B

Limited by the readout electronics [9]. (Time resolution of < 25 ns
is planned for the ATLAS SCT.)

Analog readout of 34 pm pitch, monolithic pixel detectors.

28.1. Organic scintillators
Revised September 2001 by K.F. Johnson (FSU).

Organic scintillators are broadly classed into three types, crystalline,
liquid, and plastic, all of which utilize the ionization produced by
charged particles (see the section on “Passage of particles through
matter” (Sec. 27.2) of this Review) to generate optical photons, usually
in the blue to green wavelength regions [10]. Plastic scintillators are by
far the most widely used. Crystal organic scintillators are practically
unused in high-energy physics.

Densities range from 1.03 to 1.20 g em™3. Typical photon yields
are about 1 photon per 100 eV of energy deposit [11]. A one-cm-thick
scintillator traversed by a minimum-ionizing particle will therefore
yield ~ 2 x 10* photons. The resulting photoelectron signal will
depend on the collection and transport efficiency of the optical
package and the quantum efficiency of the photodetector.

Plastic scintillators do not respond linearly to the ionization
density. Very dense ionization columns emit less light than expected
on the basis of dE/dz for minimum-ionizing particles. A widely
used semi-empirical model by Birks posits that recombination and
quenching effects between the excited molecules reduce the light
yield [12]. These effects are more pronounced the greater the density
of the excited molecules. Birks’ formula is

d¢ _  dE/dz
dz ~ "1+ kpdEjdz’

where . is the luminescence, %y is the luminescence at low
specific ionization density, and kp is Birks’ constant, which must be
determined for each scintillator by measurement.

Decay times are in the ns range; rise times are much faster. The
combination of high light yield and fast response time allows the
possibility of sub-ns timing resolution [13]. The fraction of light
emitted during the decay “tail” can depend on the exciting particle.
This allows pulse shape discrimination as a technique to carry out
particle identification. Because of the hydrogen content (carbon to
hydrogen ratio ~ 1) plastic scintillator is sensitive to proton recoils
from neutrons. Ease of fabrication into desired shapes and low
cost has made plastic scintillators a common detector component.
Recently, plastic scintillators in the form of scintillating fibers have
found widespread use in tracking and calorimetry [14].

28.1.1. Scintillation mechanism :

Scintillation: A charged particle traversing matter leaves behind it a
wake of excited molecules. Certain types of molecules, however, will
release a small fraction (~ 3%) of this energy as optical photons.
This process, scintillation, is especially marked in those organic
substances which contain aromatic rings, such as polystyrene (PS)
and polyvinyltoluene (PVT). Liquids which scintillate include toluene
and xylene.

Fluorescence: In fluorescence, the initial excitation takes place via
the absorption of a photon, and de-excitation by emission of a
longer wavelength photon. Fluors are used as “waveshifters” to shift
scintillation light to a more convenient wavelength. Occurring in
complex molecules, the absorption and emission are spread out over a
wide band of photon energies, and have some overlap, that is, there
is some fraction of the emitted light which can be re-absorbed [15].
This “self-absorption” is undesirable for detector applications because
it causes a shortened attenuation length. The wavelength difference
between the major absorption and emission peaks is called the Stokes’
shift. It is usually the case that the greater the Stokes’ shift, the
smaller the self absorption—thus, a large Stokes’ shift is a desirable
property for a fluor (aka the “Better red than dead” strategy).

Tonization excitation of base plastic

base plastic

108m | | Forster energy transfer
primary fluor
~1% wt/wt
emit UV, ~340 nm (~1% wt/wt)
1074m Y
absorb UV photon secondary fluor
K (~0.05% wt/wt )
emit blue, ~400 nm
Im Y

absorb blue photon photodetector

Figure 28.1: Cartoon of scintillation “ladder” depicting the
operating mechanism of plastic scintillator. Approximate fluor
concentrations and energy transfer distances for the separate
sub-processes are shown.

Scintillators: The plastic scintillators used in high-energy physics
are binary or ternary solutions of selected fluors in a plastic base
containing aromatic rings. (See the appendix in Ref. 16 for a
comprehensive list of components.) Virtually all plastic scintillators
contain as a base either PVT or PS. PVT-based scintillator can be up
to 50% brighter. The fluors must satisfy additional conditions besides
being fluorescent. They must be sufficiently stable, soluble, chemically
inert, fast, radiation tolerant, and efficient.

Ionization in the plastic base produces UV photons with short
attenuation length (several mm). Longer attenuation lengths are
obtained by dissolving a “primary” fluor in high concentration (1%
by weight) into the base, which is selected to efficiently re-radiate
absorbed energy at wavelengths where the base is more transparent.
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The primary fluor has a second important function. The decay time
of the scintillator base material can be quite long—in pure polystyrene
it is 16 ns, for example. The addition of the primary fluor in high
concentration can shorten the decay time by an order of magnitude
and increase the total light yield. At the concentrations used (1% and
greater), the average distance between a fluor molecule and an excited
base unit is around 100 A, much less than a wavelength of light. At
these distances the predominant mode of energy transfer from base to
fluor is not the radiation of a photon, but a resonant dipole-dipole
interaction, first described by Foerster, which strongly couples the
base and fluor [17]. The strong coupling sharply increases the speed
and the light yield of the plastic scintillators.

Unfortunately, a fluor which fulfills other requirements is usually
not completely adequate with respect to emission wavelength or
attenuation length, so it is necessary to add yet another waveshifter
(the “secondary” fluor), at fractional percent levels, and occasionally
a third (not shown in Fig. 28.1).

External wavelength shifters: Light emitted from a plastic scintillator
may be absorbed in a (nonscintillating) base doped with a wave-
shifting fluor. Such wavelength shifters are widely used to aid light
collection in complex geometries. The wavelength shifter must be
insensitive to ionizing radiation and Cherenkov light. A typical
wavelength shifter uses an acrylic base because of its good optical
qualities, a single fluor to shift the light emerging from the plastic
scintillator to the blue-green, and contains ultra-violet absorbing
additives to deaden response to Cherenkov light.

28.1.2. Caveats and cautions: Plastic scintillators are reliable,
robust, and convenient. However, they possess quirks to which the
experimenter must be alert.

Aging and Handling: Plastic scintillators are subject to aging which
diminishes the light yield. Exposure to solvent vapors, high
temperatures, mechanical flexing, irradiation, or rough handling
will aggravate the process. A particularly fragile region is the surface
which can ‘craze”—develop microcracks—which rapidly destroy the
capability of plastic scintillators to transmit light by total internal
reflection. Crazing is particularly likely where oils, solvents, or
fingerprints have contacted the surface.

Attenuation length: The Stokes’ shift is not the only factor
determining attenuation length. Others are the concentration of
fluors (the higher the concentration of a fluor, the greater will be
its self-absorption); the optical clarity and uniformity of the bulk
material; the quality of the surface; and absorption by additives, such
as stabilizers, which may be present.

Afterglow: Plastic scintillators have a long-lived luminescence which
does not follow a simple exponential decay. Intensities at the 10~4
level of the initial fluorescence can persist for hundreds of ns [10,18].

Atmospheric quenching: Plastic scintillators will decrease their light
yield with increasing partial pressure of oxygen. This can be a 10%
effect in an artificial atmosphere [19]. It is not excluded that other
gases may have similar quenching effects.

Magnetic field: The light yield of plastic scintillators may be changed
by a magnetic field. The effect is very nonlinear and apparently not
all types of plastic scintillators are so affected. Increases of ~ 3% at
0.45 T have been reported [20]. Data are sketchy and mechanisms are
not understood.

Radiation damage: Irradiation of plastic scintillators creates color
centers which absorb light more strongly in the UV and blue than
at longer wavelengths. This poorly understood effect appears as

a reduction both of light yield and attenuation length. Radiation
damage depends not only on the integrated dose, but on the dose rate,
atmosphere, and temperature, before, during and after irradiation, as
well as the materials properties of the base such as glass transition
temperature, polymer chain length, etc. Annealing also occurs,
accelerated by the diffusion of atmospheric oxygen and elevated
temperatures. The phenomena are complex, unpredictable, and not
well understood [21]. Since color centers are less intrusive at longer

wavelengths, the most reliable method of mitigating radiation damage
is to shift emissions at every step to the longest practical wavelengths,
e.g., utilize fluors with large Stokes’ shifts (aka the “Better red than
dead” strategy).

28.1.3. Scintillating and wavelength-shifting fibers:

The clad optical fiber is an incarnation of scintillator and
wavelength shifter (WLS) which is particularly useful [22]. Since the
initial demonstration of the scintillating fiber (SCIFI) calorimeter [23],
SCIFI techniques have become mainstream. SCIFI calorimeters are
found, for example, in the g — 2 experiment at Brookhaven [24] and at
KLOE; SCIFI trackers are found at CHORUS and D@ ; WLS readout
is used in both ATLAS and CMS hadron calorimeters [25].

SCIFT calorimeters are fast, dense, radiation hard, and can have
leadglass-like resolution. SCIFT trackers can handle high rates and are
radiation tolerant, but the low photon yield at the end of a long fiber
(see below) forces the use of very sophisticated photodetectors such
as VLPC’s, such as are used in D@ . WLS scintillator readout of a
calorimeter allows a very high level of hermeticity since the solid angle
blocked by the fiber on its way to the photodetector is very small.
The sensitive region of scintillating fibers can be controlled by splicing
them onto clear (non-scintillating/non-WLS) fibers.

A typical configuration would be fibers with a core of polystyrene-
based scintillator or WLS (index of refraction n = 1.59), surrounded
by a cladding of PMMA (n = 1.49) a few microns thick, or, for
added light capture, with another cladding of fluorinated PMMA with
n = 1.42, for an overall diameter of 0.5 to 1 mm. The fiber is drawn
from a boule and great care is taken during production to ensure that
the intersurface between the core and the cladding has the highest
possible uniformity and quality, so that the signal transmission via
total internal reflection has a low loss. The fraction of generated light
which is transported down the optical pipe is denoted the capture
fraction and is about 6% for the single-clad fiber and 10% for the
double-clad fiber.

The number of photons from the fiber available at the photodetector
is always smaller than desired, and increasing the light yield has proven
difficult [26]. A minimum-ionizing particle traversing a high-quality
1 mm diameter fiber perpendicular to its axis will produce fewer
than 2000 photons, of which about 200 are captured. Attenuation
eliminates about 95% of these photons. D@ uses 0.775 mm diameter
scintillating fibers in the tracker and obtains 9 photoelectrons with
the VLPC reaching 85% quantum efficiency.

A scintillating or WLS fiber is often characterized by its
“attenuation length,” over which the signal is attenuated to 1/e of
its original value. Many factors determine the attenuation length,
including the importance of re-absorption of emitted photons by the
polymer base or dissolved fluors, the level of crystallinity of the base
polymer, and the quality of the total internal reflection boundary.
Attenuation lengths of several meters are obtained by high quality
fibers. However, it should be understood that the attenuation length
is not necessarily a measure of fiber quality. Among other things,
it is not constant with distance from the excitation source and it is
wavelength dependent. So-called “cladding light” causes some of the
distance dependence [27], but not all. The wavelength dependence
is usually related to the higher re-absorption of shorter wavelength
photons—once absorbed, re-emitted isotropically and lost with 90%
probability—and to the lower absorption of longer wavelengths by
polystyrene. Experimenters should be aware that measurements of
attenuation length by a phototube with a bialkali photocathode,
whose quantum efficiency drops below 10% at 480 nm, should not
be naively compared to measurements utilizing a silicon photodiode,
whose quantum efficiency is still rising at 600 nm.

28.2. Inorganic scintillators:

Revised September 2003 by C.L. Woody (BNL). and R.-Y. Zhu
(California Inst. of Technology).

Inorganic crystals form a class of scintillating materials with much
higher densities than organic plastic scintillators (typically ~ 4-8
g/cms) with a variety of different properties for use as scintillation
detectors. Due to their high density and high effective atomic number,
they can be used in applications where high stopping power or
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a high conversion efficiency for electrons or photons is required.
These include total absorption electromagnetic calorimeters (see
Sec. 28.10.1), which consist of a totally active absorber (as opposed
to a sampling calorimeter), as well as serving as gamma ray detectors
over a wide range of energies. Many of these crystals also have very
high light output, and can therefore provide excellent energy resolution
down to very low energies (~ few hundred keV).

Some crystals are intrinsic scintillators in which the luminescence is
produced by a part of the crystal lattice itself. However, other crystals
require the addition of a dopant, typically fluorescent ions such as
thallium (TI) or cerium (Ce) which is responsible for producing the
scintillation light. However, in both cases, the scintillation mechanism
is the same. Energy is deposited in the crystal by ionization, either
directly by charged particles, or by the conversion of photons into
electrons or positrons which subsequently produce ionization. This
energy is transfered to the luminescent centers which then radiate
scintillation photons. The efficiency 1 for the conversion of energy
deposit in the crystal to scintillation light can be expressed by the
relation [28]

n=p-5-Q. (28.1)
where (3 is the efficiency of the energy conversion process, S is the
efficiency of energy transfer to the luminescent center, and @ is the
quantum efficiency of the luminescent center. The value of 7 ranges
between 0.1 and ~ 1 depending on the crystal, and is the main
factor in determining the intrinsic light output of the scintillator.
In addition, the scintillation decay time is primarily determined by
the energy transfer and emission process. The decay time of the
scintillator is mainly dominated by the decay time of the luminescent
center. For example, in the case of thallium doped sodium iodide
(NalI(T1)), the value of 7 is ~ 0.5, which results in a light output ~
40,000 photons per MeV of energy deposit. This high light output is
largely due to the high quantum efficiency of the thallium ion (Q ~
1), but the decay time is rather slow (7 ~ 250 ns).

Table 28.2 lists the basic properties of some commonly used
inorganic crystal scintillators. NaI(Tl) is one of the most common
and widely used scintillators, with an emission that is well matched
to a bialkali photomultiplier tube, but it is highly hygroscopic and
difficult to work with, and has a rather low density. CsI(Tl) has
high light yield, an emission that is well matched to solid state
photodiodes, and is mechanically robust (high plasticity and resistance
to cracking). However, it needs careful surface treatment and is
slightly hygroscopic. Compared with CsI(Tl), pure CsI has identical
mechanical properties, but faster emission at shorter wavelengths
and light output approximately an order of magnitude lower. BaFy
has a fast component with a sub-nanosecond decay time, and is the
fastest known scintillator. However, it also has a slow component
with a much longer decay time (~ 630 ns). Bismuth gemanate
(BigGezO12 or BGO) has a very high density, and consequently a
short radiation length Xy and Moliere radius Rjs. BGO’s emission
is well-matched to the spectral sensitivity of photodiodes, and it
is easy to handle and not hygroscopic. Lead tungstate (PbWOQy4 or
PWO) has a very high density, with a very short Xy and Rjs, but
its intrinsic light yield is rather low. Both cerium doped lutetium
oxyorthosilicate (LuzSiO5:Ce, or LSO:Ce) [29] and cerium doped
gadolinium orthosilicate (GdSiO5:Ce, or GSO:Ce) [30] are dense
crystal scintillators which have a high light yield and a fast decay
time.

Beside the crystals listed in Table 28.2, a number of new crystals are
being developed that may have potenial applications in high energy
or nuclear physics. Of particular interest is the family of yttrium
and lutetium perovskites, which include YAP (YA1O3:Ce) and LuAP
(LuAlO3:Ce) and their mixed compositions. These have been shown
to be linear over a large energy range [31], and have the potential
for providing extremely good intrinsic energy resolution. In addition,
other fluoride crystals such as CeFs have been shown to provide
excellent energy resolution in calorimeter applications.

Table 28.2 gives the light output of other crystals relative to
NalI(Tl) as measured with a bialkalai photomultiplier tube. However,
the useful signal produced by a scintillator is usually quoted in
terms of the number of photoelectrons per MeV produced by a given

photodetector. The relationship between the number of photons/MeV
produced and photoelectrons/MeV detected involves the factors for
the light collection efficiency L and the quantum efficiency QFE of the
photodetector:

Npe./MeV = L-QE - Ny/MeV (28.2)

L includes the transmission of scintillation light within the crystal
(i.e., the bulk attenuation length of the material), reflections and
scattering from the surfaces, and the size and shape of the crystal.
These factors can vary considerably depending on the sample, but can
be in the range of ~50-60%. However, the internal light transmission
depends on the intrinsic properties of the material, as well as the
number and type of impurites and defects that can produce internal
absorption within the crystal, and can be highly affected by factors
such as radiation damage, as discussed below.

The quantum efficiency depends on the type of photodetector
used to detect the scintillation light, which is typically ~15-20%
for photomultiplier tubes and ~70% for silicon photodiodes for
visible wavelengths. The quantum efficiency of the detector is
usually highly wavelength dependent and should be matched to
the particular crystal of interest to give the highest quantum yield
at the wavelength corresponding to the peak of the scintillation
emission. The comparison of the light output given in Table 28.2 is
for a standard photomultiplier tube with a bialkali photocathode.
Results with different photodetectors can be significantly different.
For example, the response of CsI(T1) relative to NaI(TIl) with a silicon
photodiode would be 140 rather than 45 due to its higher quantum
efficiency at longer wavelengths. For scintillators which emit in the
UV, a detector with a quartz window should be used.

One important issue related to the application of a crystal
scintillator is its radiation hardness. Stability of its light output, or
the ability to track and monitor the variation of its light output in a
radiation environment, is required for high resolution and precision
calibration [32]. All known crystal scintillators suffer from radiation
damage. A common damage phenomenon is the appearance of
radiation induced absorption caused by the formation of impurities or
point defect related color centers. This radiation induced absorption
reduces the light attenuation length in the crystal, and hence its
light output. For crystals with high defect density, a severe reduction
of light attenuation length may lead to a distortion of the light
response uniformity, leading to a degradation of energy resolution.
Additional radiation damage effects may include a reduced intrinsic
scintillation light yield (damage to the luminescent centers) and an
increased phosphorescence (afterglow). For crystals to be used in the
construction a high precision calorimeter in a radiation environment,
its scintillation mechanism must not be damaged and its light
attenuation length in the expected radiation environment must be
long enough so that its light response uniformity, and thus its energy
resolution, does not change [33].

Most of the crystals listed in Table 28.2 have been used in high
energy or nuclear physics experiments when the ultimate energy
resolution for electrons and photons is desired. Examples are the
Crystal Ball NaI(TI) calorimeter at SPEAR, the L3 BGO calorimeter
at LEP, the CLEO CsI(Tl) calorimeter at CESR, the KTeV CsI
calorimeter at the Tevatron, and the BaBar and BELLE CsI(TI)
calorimeters at PEP-II and KEK. Because of its high density and
low cost, PWO calorimeters are now being constructed by CMS and
ALICE at LHC, by CLAS and PrimEx at CEBAF, and by BTeV at
the Tevatron.

28.3. Cherenkov detectors
Written September 2003 by B.N. Ratcliff (SLAC).

Although devices using Cherenkov radiation are often thought of
as particle identification (PID) detectors, in practice, they are widely
used over a much broader range of applications; including (1) fast
particle counters; (2) hadronic particle identification; and (3) tracking
detectors performing complete event reconstruction. A few examples
of specific applications from each category include; (1) the polarization
detector of the SLD [34]; (2) the hadronic PID detectors at the
B factory detectors (DIRC in BaBar [8] and the aerogel threshold
Cherenkov in Belle [35]); and (3) large water Cherenkov counters
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Table 28.2: Properties of several inorganic crystal scintillators. Most
of the notation is defined in Sec. 6 of this Review.

*
Amax n

Parameter: p  MP Xy Ry dE/dz A1 Tdecay Relative Hygro- d(LY)/dT
Units:  g/em® °C e¢m  cm MeVem cm ns nm output! scopic? %/°CH
NaI(Tl) 3.67 651 259 4.8 4.8 41.4 230 410 1.85 100 yes ~0
BGO 7.13 1050 1.12 2.3 9.0 21.8 300 480 2.15 9 no —-1.6
BaF, 4.89 1280 2.06 3.4 6.6 29.9 630° 300° 1.50 21° no —2°
099 2207 2.7¢ ~0f
CsI(T1) 4.51 621 1.85 3.5 5.6 37.0 1300 560 1.79 45 slight 0.3
CsI(pure) 4.51 621 1.85 3.5 5.6 37.0 35° 420°  1.95 5.6° slight —-0.6
6/ 310f 2.3f
PbWO, 83 1123 0.9 2.0 10.2 18 50° 560°  2.20 0.1% no -1.9
10/ 420 0.67
LSO(Ce) 7.40 2070 1.14 2.3 9.6 21 40 420 1.82 75 no -0.3
GSO(Ce) 6.71 1950 1.37 2.4 8.9 22 600° 430 1.85 35 no —-0.1
567 307

* Refractive index at the wavelength of the emission maximum.
t Relative light yield measured with a bi-alkali cathode PMT.
t Variation of light yield with temperature evalutated at room

temperature.
f = fast component, s = slow component

such as Super-Kamiokande [36]. Cherenkov counters contain two main
elements; (1) a radiator through which the charged particle passes,
and (2) a photodetector. As Cherenkov radiation is a weak source of
photons, light collection and detection must be as efficient as possible.
The presence of the refractive index n and the path length of the
particle in the radiator in the Cherenkov relations allows tuning these
quantities for a particular experimental application.

Cherenkov detectors utilize one or more of the properties of
Cherenkov radiation discussed in the Passages of Particles through
Matter section (Sec. 27 of this Review): the prompt emission of a
light pulse; the existence of a velocity threshold for radiation; and the
dependence of the Cherenkov cone half-angle 6. and the number of
emitted photons on the velocity of the particle.

The number of photoelectrons (Np.e.) detected in a given device is

a?z?

Npe. = / €(E) sin? 6,(E)dE , (28.3)

T'e MeC?

where L is the path length in the radiator, ¢(E) is the efficiency for
collecting the Cherenkov light and transducing it in photoelectrons,
and o?/(re mec?) = 370 cm eV,

The quantities € and 6. are functions of the photon energy E.
However, since the typical energy dependent variation of the index of
refraction is modest, a quantity called the Cherenkov detector quality
factor Ng can be defined as

Radiators can be chosen from a variety of transparent materials
(Sec. 27 of this Review and Table 6.1). In addition to refractive
index, the choice requires consideration of factors such as material
density, radiation length, transmission bandwidth, absorption length,
chromatic dispersion, optical workability (for solids), availability, and
cost. Long radiator lengths are required to obtain sufficient numbers
of photons when the momenta of the particle species to be separated
are high. Recently, the gap in refractive index that has traditionally
existed between gases and liquid or solid materials has been partially
closed with transparent silica aerogels with indices that range between
about 1.007 and 1.13.

Cherenkov counters may be classified as either imaging or threshold
types, depending on whether they do or do not make use of Cherenkov
angle (6;) information. Imaging counters may be used to track
particles as well as identify them.

28.3.1. Threshold counters: Threshold Cherenkov detectors [37],
in their simplest form, make a yes/no decision based on whether the
particle is above or below the Cherenkov threshold velocity 8; = 1/n.
A straightforward enhancement of such detectors uses the number of
observed photoelectrons (or a calibrated pulse height) to discriminate
between species or to set probabilities for each particle species [38].
This strategy can increase the momentum range of particle separation
by a modest amount (to a momentum some 20% above the threshold
momentum of the heavier particle in a typical case).

Careful designs give (econ) 2 90%. For a photomultiplier with a
typical bialkali cathode, [ egetdE =~ 0.27, so that

2,2
a’z
Ny = dE 28.4
0 remec? /E ’ (284) Npe./L~90 cm™ (sin?f;)  (ie., No =90 cm™') . (28.6)
so that Suppose, for example, that n is chosen so that the threshold for species
Np.e. = LNo(sin? 6c) . (28.5) @ is pt; that is, at this momentum species a has velocity B, = 1/n. A

We take z = 1, the usual case in high-energy physics, in the following
discussion.

second, lighter, species b with the same momentum has velocity Gy, so
cos fc = fa/Bp, and

This definition of the quality factor Ny is not universal, nor, indeed, mZ —m2
very useful for situations where the geometrical photon collection Npe. L= 90 em™! T; : (28.7)
efficiency (ecop) varies substantially for different tracks. In this case, Pe+ma

separate factors for photon collection and detection (eget), so that
€ = €coll€dets are sometimes included on the right hand side of the
equation. A typical value of Ny for a photomultiplier (PMT) detection
system working in the visible and near UV, and collecting most of the
Cherenkov light, is about 100 cm~!. Practical counters, utilizing a
variety of different photodetectors, have values ranging between about
30 and 180 cm™L.

For K /7 separation at p = py = 1(5) GeV/c, Np.e./L ~ 16(0.8) cm™!
for n’s and (by design) 0 for K’s.

For limited path lengths Ny e. can be small, and a minimum number
is required to trigger external electronics. The overall efficiency of the
device is controlled by Poisson fluctuations, which can be especially
critical for separation of species where one particle type is dominant.
The effective number of photoelectrons is often less than the average
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number calculated above due to additional equivalent noise from the
photodetector. It is common to design for at least 10 photoelectrons
for the high velocity particle in order to obtain a robust counter. As
rejection of the particle that is below threshold depends on not seeing
a signal, electronic and other background noise can be important.
Physics sources of light production for the below threshold particle,
such as decay of the above threshold particle or the production of
delta rays in the radiator, often limit the separation attainable, and
need to be carefully considered. Well designed, modern multi-channel
counters, such as the ACC at Belle [35], can attain good particle
separation performance over a substantial momentum range for
essentially the full solid angle of the spectrometer.

28.3.2. Imaging counters: The most powerful use of the
information available from the Cherenkov process comes from
measuring the ring-correlated angles of emission of the individual
Cherenkov photons. Since low-energy photon detectors can measure
only the position (and, perhaps, a precise detection time) of the
individual Cherenkov photons (not the angles directly), the photons
must be “imaged” onto a detector so that their angles can be
derived [39]. In most cases the optics map the Cherenkov cone
onto (a portion of) a distorted circle at the photodetector. Though
this imaging process is directly analogous to the familiar imaging
techniques used in telescopes and other optical instruments, there is
a somewhat bewildering variety of methods used in a wide variety of
counter types with different names. Some of the imaging methods used
include (1) focusing by a lens; (2) proximity focusing (i.e., focusing
by limiting the emission region of the radiation); and (3) focusing
through an aperture (a pinhole). In addition, the prompt Cherenkov
emission coupled with the speed of modern photon detectors allows
the use of time imaging, a method which is used much less frequently
in conventional imaging technology. Finally, full tracking (and event
reconstruction) can be performed in large water counters by combining
the individual space position and time of each photon together with
the constraint that Cherenkov photons are emitted from each track at
a constant polar angle.

In a simple model of an imaging PID counter, the fractional error
on the particle velocity (§3) is given by

85 = %ﬂ = tanBeo(6e) (28.8)

where

o(00) = (0(6:)) oC .

vV Np.e.

where (0(6;)) is the average single photoelectron resolution, as defined
by the optics, detector resolution and the intrinsic chromaticity
spread of the radiator index of refraction averaged over the photon
detection bandwidth. C' combines a number of other contributions to
resolution including,(1) correlated terms such as tracking, alignment,
and multiple scattering, (2) hit ambiguities, (3) background hits from
random sources, and (4) hits coming from other tracks. In many
practical cases, the resolution is limited by these effects.

(28.9)

For a 8 = 1 particle of momentum (p) well above threshold entering
a radiator with index of refraction (n), the number of o separation
(No) between particles of mass mj and mg is approximately

2 2
Npn_dmizmal (28.10)
2p20(0c)Vn? — 1

In practical counters, the angular resolution term o(f.) varies
between about 0.1 and 5 mrad depending on the size, radiator, and
photodetector type of the particular counter. The range of momenta
over which a particular counter can separate particle species extends
from the point at which the number of photons emitted becomes
sufficient for the counter to operate efficiently as a threshold device
(~20% above the threshold for the lighter species) to the value in
the imaging region given by the equation above. For example, for
0(fc) = 2mrad, a fused silica radiator(n = 1.474), or a flourocarbon
gas radiator (CsF12, n = 1.0017), would separate m/K’s from the
threshold region starting around 0.15(3) GeV/c through the imaging
region up to about 4.2(18) GeV/c at better than 30.

Many different imaging counters have been built during
the last several decades [42]. Among the earliest examples
of this class of counters are the very limited acceptance
Differential Cherenkov detectors, designed for particle selection in
high momentum beam lines. These devices use optical focusing
and/or geometrical masking to select particles having velocities in
a specified region. With careful design, a velocity resolution of
o3/B ~ 10~%-10~° can be obtained [37].

Practical multi-track Ring-Imaging Cherenkov detectors
(generically called RICH counters) are a more recent development.
They have been built in small-aperture and 47 geometries both as
PID counters and as stand-alone detectors with complete tracking
and event reconstruction as discussed more fully below. PID RICH
counters are sometimes further classified by ‘generations’ that differ
based on performance, design, and photodetection techniques.

A typical example of a first generation RICH used at the Z
factory ete™ colliders [40,41] has both liquid (CgF14, n = 1.276)
and gas (CsF12, n = 1.0017) radiators, the former being proximity
imaged using the small radiator thickness while the latter use
mirrors. The phototransducers are a TPC/wire-chamber combination
having charge division or pads. They are made sensitive to photons
by doping the TPC gas (usually, ethane/methane) with ~ 0.05%
TMAE (tetrakis(dimethylamino)ethylene). Great attention to detail
is required, (1) to avoid absorbing the UV photons to which TMAE
is sensitive, (2) to avoid absorbing the single photoelectrons as they
drift in the long TPC, and (3) to keep the chemically active TMAE
vapor from interacting with materials in the system. In spite of their
unforgiving operational characteristics, these counters attained good
e/m/K/p separation over wide momentum ranges during several years
of operation. In particular, their 7/K separation range extends over
momenta from about 0.25 to 20 GeV/c.

Second and third generation counters [42] generally must operate
at much higher particle rates than the first generation detectors,
and utilize different photon detection bandwidths, with higher
readout channel counts, and faster, more forgiving photon detection
technology than the TMAE doped TPCs just described. Radiator
choices have broadened to include materials such as lithium flouride,
fused silica, and aerogel. Vacuum based photodetection systems (e.g.,
photomultiplier tubes (PMT) or hybrid photodiodes (HPD)) have
become increasingly common. They handle very high rates, can be
used in either single or multi anode versions, and allow a wide choice
of radiators. Other fast detection systems that use solid cesium iodide
(CSI) photocathodes or triethylamine (TEA) doping in proportional
chambers are useful with certain radiator types and geometries.

A DIRC (Detector of Internally Reflected Cherenkov light) is
a third generation subtype of a RICH first used in the BaBar
detector [8]. It “inverts” the usual principle for use of light from the
radiator of a RICH by collecting and imaging the total internally
reflected light, rather than the transmitted light. A DIRC utilizes the
optical material of the radiator in two ways, simultaneously; first as
a Cherenkov radiator, and second, as a light pipe for the Cherenkov
light trapped in the radiator by total internal reflection. The DIRC
makes use of the fact that the magnitudes of angles are preserved
during reflection from a flat surface. This fact, coupled with the high
reflection coefficients of the total internal reflection process (> 0.9995
for higly polished SiO3), and the long attenuation length for photons
in high purity fused silica, allows the photons of the ring image to
be transported to a detector outside the path of the particle where
they may be imaged. The BaBar DIRC uses 144 fused silica radiator
bars (1.7 x 3.5 x 490 ¢cm) with the light being focused onto 11000
conventional PMT’s located about 120 cm from the end of the bars by
the “pinhole” of the bar end. DIRC performance can be understood
using the formula for (N, ) discussed above. Typically, Np.e. is rather
large (between 15 and 60) and the Cherenkov polar angle is measured
to about 2.5 mrad. The momentum range with good 7/K separation
extends up to about 4 GeV/c, matching the B decay momentum
spectrum observed in BaBar.
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28.4. Cherenkov tracking calorimeters
Written August 2003 by D. Casper (UC Irvine).

In addition to the specialized applications described in the previous
section, Cherenkov radiation is also exploited in large, ring-imaging
detectors with masses measured in kilotons or greater. Such devices
are not subdetector components, but complete experiments with
triggering, tracking, vertexing, particle identification and calorimetric
capabilities, where the large mass of the transparent dielectric medium
serves as an active target for neutrino interactions (or their secondary
muons) and rare processes like nucleon decay.

For volumes of this scale, absorption and scattering of Cherenkov
light are non-negligible, and a wavelength-dependent factor e~9/L()
(where d is the distance from emission to the sensor and L()) is the
attenuation length of the medium) must be included in the integral
of Eq. (28.3) for the photoelectron yield. The choice of medium is
therefore constrained by the refractive index and transparency in
the region of photodetector sensitivity; highly-purified water is an
inexpensive and effective choice; sea-water, mineral oil, polar ice,
and D0 are also used. Photo-multiplier tubes (PMTs) on either a
volume or surface lattice measure the time of arrival and intensity
of Cherenkov radiation. Hemispherical PMTs are favored for the
widest angular acceptance, and sometimes mounted with reflectors or
wavelength-shifting plates to increase the effective photosensitive area.
Gains and calibration curves are measured with pulsed laser signals
transmitted to each PMT individually via optical fiber or applied to
the detector as a whole through one or more diffusing balls.

Volume instrumentation [43] is only cost-effective at low densities,
with a spacing comparable to the attenuation (absorption and
scattering) length of Cherenkov light in the medium (15-40 m
for Antarctic ice and ~45 m in the deep ocean). PMTs are
deployed in vertical strings as modular units which include pressure
housings, front-end electronics and calibration hardware. The effective
photocathode coverage of such arrays is less than 1% but still adequate
(using timing information and the Cherenkov angular constraint) to
reconstruct the direction of TeV muons to 1° or better. The size of
such “neutrino telescopes” is limited only by cost once the technical
challenges of deployment, power, signal extraction and calibration in
an inaccessible and inhospitable environment are addressed; arrays up
to (1 km)? in size are under study or development.

Surface instrumentation [44] allows the target volume to be viewed
with higher photocathode density by a number of PMTs which
scales like (volume)2/3. To improve hermeticity and shielding, and to
ensure that an outward-going particle’s Cherenkov cone illuminates
sufficient PMTs for reconstruction, a software-defined fiducial volume
begins some distance (~ 2 m) inside the photosensor surface. Events
originating within the fiducial volume are classified as fully-contained
if no particles exit the inner detector, or partially-contained otherwise.
An outer (veto) detector, optically separated from the inner volume
and instrumented at reduced density, greatly assists in making this
determination and also simplifies the selection of contained events.
The maximum size of a pure surface array is limited by the attenuation
length (~ 100 m has been achieved for large volumes using reverse-
osmosis water purification), pressure tolerance of the PMTs (< 80
meters of water, without pressure housings) and structural integrity of
the enclosing cavity, if underground. In practice, these limitations can
be overcome by a segmented design involving multiple modules of the
nominal maximum size; megaton-scale devices are under study.

Cherenkov detectors are excellent electromagnetic calorimeters,
and the number of Cherenkov photons produced by an e/y is
nearly proportional to its kinetic energy. For massive particles,
the number of photons produced is also related to the energy,
but not linearly. For any type of particle, the visible energy E.is
is defined as the energy of an electron which would produce the
same number of Cherenkov photons. The number of photoelectrons
collected depends on a detector-specific scale factor, with event-by-
event corrections for geometry and attenuation. For typical PMTs,
in water Npe. =~ 15§ Eyis(MeV), where ¢ is the effective fractional
photosensor coverage; for other materials, the photoelectron yield
scales with the ratio of sin® 8, over density. At solar neutrino energies,
the visible energy resolution (~ 30%/+/¢ Eyis(MeV)) is about 20%

worse than photoelectron counting statistics would imply. For higher
energies, multi-photoelectron hits are likely and the charge collected
by each PMT (rather the number of PMTs firing) must be used; this
degrades the energy resolution to approximately 2%/1/€ Eyis(GeV).
In addition, the absolute energy scale must be determined with sources
of known energy. Using an electron LINAC and/or nuclear sources,
0.5-1.5% has been achieved at solar neutrino energies; for higher
energies, cosmic-ray muons, Michel electrons and 7¥ from neutrino
interactions allow ~ 3% absolute energy calibration.

A trigger can be formed by the coincidence of PMTs within
a window comparable to the detector’s light crossing time; the
coincidence level thus corresponds to a visible energy threshold.
Physics analysis is usually not limited by the hardware trigger, but
rather the ability to reconstruct events. The interaction vertex can
be estimated using timing and refined by applying the Cherenkov
angle constraint to identified ring edges. Multi-ring events are more
strongly constrained, and their vertex resolution is 33-50% better than
single rings. Vertex resolution depends on the photosensor density and
detector size, with smaller detectors performing somewhat better than
large ones (~ 25 cm is typical for existing devices). Angular resolution
is limited by multiple scattering at solar neutrino energies (25-30°)
and improves to a few degrees around E,;; = 1GeV.

A non-showering (p, Wi,p) track produces a sharp ring with
small contributions from delta rays and other radiated secondaries,
while the more diffuse pattern of a showering (e,vy) particle
is actually the superposition of many individual rings from
charged shower products. Using maximum likelihood techniques
and the Cherenkov angle constraint, these two topologies
can be distinguished with an efficiency which depends on the
photosensor density and detector size [45]. This particle identification
capability has been confirmed by using cosmic-rays and Michel
electrons, as well as charged-particle [46] and neutrino [47]
beams. Large detectors perform somewhat better than smaller
ones with identical photocathode coverage; a misidentification
probability of ~ 0.4%/£ in the sub-GeV range is consistent
with the performance of several experiments for 4% < & < 40%.
Detection of a delayed coincidence from muon decay offers
another, more indirect, means of particle identification; with
suitable electronics, efficiency approaches 100% for pT decays
but is limited by nuclear absorption (22% probability in water)
for p~.

Reconstruction of multiple Cherenkov rings presents a challenging
pattern recognition problem, which must be attacked by some
combination of heuristics, maximum likelihood fitting, Hough
transforms and/or neural networks. The problem itself is somewhat
ill-defined since, as noted, even a single showering primary produces
many closely-overlapping rings. For 70 — ~+ two-ring identification,
performance falls off rapidly with increasing 7° momentum,
and selection criteria must be optimized with respect to the
analysis-dependent cost-function for e «— 70 mis-identification. Two
representative cases for £ = 39% will be illustrated. In an atmospheric
neutrino experiment, where 70 are relatively rare compared to et
one can isolate a > 90% pure 500 MeV/c 7° sample with an efficiency
of ~ 40%. In a v, appearance experiment at E, < 1GeV, where e*
are rare compared to 70, a 99% pure 500 MeV/c electron sample can
be identified with an efficiency of ~ 70%. For constant &, a larger
detector (with, perforce, a greater number of pixels to sample the light
distribution) performs somewhat better at multi-ring separation than
a smaller one. For a more detailed discussion of event reconstruction
techniques, see Ref. 36.

28.5. Transition radiation detectors (TRD’s)
Revised September 2003 by D. Froidevaux (CERN).

It is clear from the discussion in the section on “Passages of Particles
Through Matter” (Sec. 27 of this Review) that transition radiation
(TR) only becomes useful for particle detectors when the signal can
be observed as x rays emitted along the particle direction for Lorentz
factors « larger than 1000. In practice, TRD’s are therefore used to
provide electron/pion separation for 0.5 GeV/c S p S 100 GeV/ec.
The charged-particle momenta have usually been measured elsewhere
in the detector in the past [57].
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Table 28.3: Properties of Cherenkov tracking calorimeters.
LSND was a hybrid scintillation/Cherenkov detector; the
estimated ratio of isotropic to Cherenkov photoelectrons was
about 5:1. MiniBooNE’s light yield also includes a small
scintillation component.

Detector Fiducial mass PMTs 13 p.e./ Dates
(kton) (diameter, cm) MeV

IMB-1 [48] 3.3 HoO 2048 (12.5) 1% 0.25 1982-85
IMB-3 [49] 3.3 H,O 2048 (20 +plate) 4.5% 1.1  1987-90
KAMI [50,51] 0.88/0.78 H,O 1000/948 (50)  20% 3.4 1983-85
KAMII [52] 1.04 H20 948 (50) 20% 3.4 1986-90
LSND [53] 0.084 oil+scint. 1220 (20) 25% 33 1993-98
SK-1 [54] 22.5 HyO 11146 (50) 39% 6 1997-2001
SK-2 22.5 H,O 5182 (50) 18% 3 2002~
K2K [55] 0.025 H,O 680 (50) 39% 6 1999~
SNO [56] 1.0 D20 9456 (20+cone) 55% 9 1999~
MiniBooNE  0.445 oil 1280 (20) 10% 3-4 2002-

Since soft x rays, in the useful energy range between 2 and 20 keV,
are radiated with about 1% probability per boundary crossing,
practical detectors use radiators with several hundred interfaces,
e.g. foils or fibers of low-Z materials such as polypropylene (or, more
rarely, lithium) in a gas. Absorption inside the radiator itself and in
the inactive material of the x-ray detector is important and limits
the usefulness of the softer x rays, but interference effects are even
larger, and saturate the x-ray yield for electron energies above a
few GeV [58,59].

A classical detector is composed of several similar modules, each
consisting of a radiator and an x-ray detector, which is usually a wire
chamber operated with a xenon-rich mixture, in order to efficiently
absorb the x rays. The most prominent and recent examples of
such detectors for large-scale experiments are the TRD detectors of
NOMAD [60], ALICE [61], and PHENIX. Since transition-radiation
photons are mostly emitted at very small angles with respect to the
charged-particle direction, the x-ray detector most often detects the
sum of the ionization loss (dE/dz) of the charged particle in the
gas and energy deposition of the x rays. The discrimination between
electrons and pions can be based on the charges measured in each
detection module, on the number of energy clusters observed above
an optimal threshold (usually in the 5 to 7 keV region), or on more
sophisticated methods analyzing the pulse shape as a function of time.
Once properly calibrated and optimized, most of these methods yield
very similar results.

Development work over the past years for accelerator (ATLAS [62])
and space (AMS [63], PAMELA [64] applications has aimed
at increasing the intrinsic quality of the TRD-performance by
increasing the probability per detection module of observing a signal
from TR-photons produced by electrons. This has been achieved
experimentally by distributing small-diameter straw-tube detectors
uniformly throughout the radiator material. This method has thereby
also cured one of the major drawbacks of more classical TRD’s, that
is, their need to rely on another detector to measure the charged-
particle trajectory. For example, in the ATLAS Transition Radiator
Tracker [65] charged particles cross about 35 straw tubes embedded in
the radiator material. Dedicated R&D work and detailed simulations
have shown that the combination of charged-track measurement and
particle identification in the same detector will provide a very powerful
tool even at the highest LHC luminosity [66].

The major factor in the performance of any TRD is its overall
length. This is illustrated in Fig. 28.2, which shows, for a variety
of detectors, the measured (or predicted) pion efficiency at a fixed
electron efficiency of 90% as a function of the overall detector length.
The experimental data cover too wide a range of particle energies
(from a few GeV to 40 GeV) to allow for a quantitative fit to
a universal curve. Fig. 28.2 shows that an order of magnitude in
rejection power against pions is gained each time the detector length
is increased by ~ 20 cm.
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Figure 28.2: Pion efficiency measured (or predicted) for
different TRDs as a function of the detector length for a
fixed electron efficiency of 90%. The experimental data are
directly taken or extrapolated from references [67-79,60](NA34
to NOMAD).

28.6. Wire chambers
Written October 1999 by A. Cattai and G. Rolandi (CERN).

A wire chamber relies on the detection of a large fraction of the
charge created in a volume filled with an appropriate gas mixture.
A charged particle traversing a gas layer of thickness A produces
electron-ion pairs along its path (see Sec. 27.2). The yield (1/)) of
ionization encounters for a minimum ionization particle (m.i.p.) (see
Fig. 27.1) is given in Table 28.4.

Table 28.4: For various gases at STP: (a) yield of ionization

encounters (1/X) for m.i.p. [80], (b) tgg: thickness of the gas layer
for 99% efficiency, and (c) the average number of free electrons
produced by a m.i.p. (calculated using data from Ref. 81).

Encounters/cm tgg(mm) Free electrons/cm

He 5 9.2 16
Ne 12 3.8 42
Ar 25 1.8 103
Xe 46 1.0 340
CH;4 27 17 62
CO; 35 13 107
CoHg 43 1.1 113

The probability to have at least one ionization encounter is
1 — exp(—A/A) and the thickness of the gas layer for 99% efficiency
is tg9g = 4.6). Depending on the gas, some 65-80% of the encounters
result in the production of only one electron; the probability that a
cluster has more than five electrons is smaller than 10%. However
the tail of the distribution is very long and the yield of ionization
electrons is 3—4 times that of the ionization encounters. The secondary
ionization happens either in collisions of (primary) ionization electrons
with atoms or through intermediate excited states. The process is
non-linear and gas mixtures may have larger yields than each of their
components. See also the discussion in Sec. 27.7.

Under the influence of electric and magnetic fields the ionization
electrons drift inside the gas with velocity u given by:

1

u= H‘Ell + w272

(E+ wr(E x B) + w?rX(E- B)B) (28.11)
where E and B are unit vectors in the directions of the electric and
magnetic fields respectively, p is the electron mobility in the gas, w
is the cyclotron frequency eB/mc, and 7 = pm/e is the mean time
between collisions of the drifting electrons. The magnitude of the drift
velocity depends on many parameters; typical values are in the range
1-8 cm/ps.

In a quite common geometry, the drift electric field is perpendicular
to the magnetic field. In this case the electrons drift at an angle ¥
with respect to the electric field direction such that tany = wr.
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The ionization electrons are eventually collected by a thin (typically
10 pm radius) anode wire where a strong electric field—increasing as
1/r—accelerates the electrons enough to produce secondary ionization
and hence an avalanche. A quenching gas (organic molecules with large
photo-absorption cross-section) absorbs the majority of the photons
produced during the avalanche development, keeping the avalanche
region localized. The gain achievable with a wire counter depends
exponentially on the charge density on the wire, on the gas density
p and—through it—on pressure and temperature: dG/G ~ —Kdp/p,
where the coefficient K ranges between 5 and 8 in practical cases.
Gains larger than 10* can be obtained in proportional mode.

The electrons produced in the avalanche are collected by the wire
in a few nanoseconds. The positive ions move away from the wire and
generate a signal that can be detected with an amplifier. Depending
on whether the wire is treated as a current source or a voltage source,
the signal is described respectively by:

d

o AV(E) = L),

I(t) F(t); (28.12)
C

where ¢ is the positive charge in the avalanche, C is the

capacitance between the anode wire and the cathodes and

F(t) = In(1 + t/to)/ In(1 + tmax/to)- The constant ¢y is of the order

of one or few nanoseconds; the constant tmax (several microseconds)

describes the time that it takes ions to reach the cathodes.

A sketch of the first multi-wire proportional chamber (MWPC) [82]
is shown in Fig. 28.3. It consists of a plane of parallel sense wires
with spacing s and length L inserted in a gap of thickness A. The
potential distributions and fields in a proportional or drift chamber
can usually be calculated with good accuracy from the exact formula
for the potential around an array of parallel line charges ¢ (coul/m)
along z and located at y =0, z = 0, £s, +2s, ...,

e L (5) wsmt ()1 -

V(z,y)=—

(28.13)
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Figure 28.3: Electric field lines in a (MWPC) with an anode
pitch of 2 mm as calculated with GARFIELD program [83].
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With digital readout, the resolution in the direction perpendicular
to the wire is s/v/12, where s is typically 1-2 mm. Similar resolution
can be achieved with a smaller channel density by measuring the
difference in time between the arrival of electrons at the wire and the
traversal of the particle, albeit with a longer response time. In the
case of drift chambers, the spatial resolution is limited by the diffusion
of ionization electrons during the drift and by the fluctuations of the
ionization process. Depending on the gas mixture, the width of the
diffusing cloud after 1 cm of drift is typically between 50 and 300 pm;
small diffusion implies low drift velocity. With drift lengths up to 5 cm
(1 ps), resolutions in the range 100-200 pm have been achieved in
chambers with surface areas of several square meters [84]. The central
detectors in many collider experiments are drift chambers with the
wires parallel to the beam direction. Small volume chambers (0.1 m3)
have been used for vertex measurement achieving resolutions of 50 pm

using high pressure (2-4 bar) and low diffusion gas mixtures [85].
Large volume chambers (5-40 m?®) with several thousand wires of
length of 1-2 meters are operated with resolution between 100 and
200 pm  [86].

The spatial resolution cannot be improved by arbitrarily reducing
the spacing of the wires. In addition to the practical difficulties of
precisely stringing wires at a pitch below 1 mm, there is a fundamental
limitation: the electrostatic force between the wires is balanced by the
mechanical tension, which cannot exceed a critical value. This gives
the following approximate stability condition:

20 g

il -3
Z>1. .
72 1.5 x107°V(kV) T (28.14)

where V' is the voltage of the sense wire and 7' is the tension of the
wire in grams-weight equivalent.
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Figure 28.4: Electron drift lines in a micro-strip gas chamber
with a pitch of 200 pm.

This limitation can be overcome by means of lithographic
techniques [87]: a series of thin aluminum strips are precisely 0.2 ym
engraved on an insulating support producing a miniaturized version
of a MWPC (see Fig. 28.4). With this technique the spacing of the
anodes can be reduced to 0.1-0.2 mm, reducing the drift time of the
ions and improving on the spatial resolution and on the rate capability
of the chamber.

In all these devices, since the avalanche is very localized along the
anode, signals induced on nearby electrodes can be used to measure
the coordinate along the anode direction (see Sec. 28.7).

A review of the principle of particle detection with drift chambers
can be found in [88]. A compilation of the mobilities, diffusion
coefficients and drift deflection angles as a function of E and B for
several gas mixtures used in proportional chambers can be found
in [89]. A review of micro-strip gas chambers (MSGC) can be found
in [90].

28.7. Time-projection chambers
Written November 1997 by M.T Rownan; revised August 2003.

Detectors with long drift distances perpendicular to a multi-anode
proportional plane provide three-dimensional information, with one
being the time projection. A (typically strong) magnetic field parallel
to the drift direction suppresses transverse diffusion (¢ = v/2Dt) by a

factor
1

D(B)/DO) = {7

(28.15)
where D is the diffusion coefficient, w = eB/mc is the cyclotron
frequency, and 7 is the mean time between collisions. Multiple
measurements of energy deposit along the particle trajectory combined
with the measurement of momentum in the magnetic field allows
excellent particle identification [91], as can be seen in Fig. 28.5.

A typical gas-filled TPC consists of a long uniform drift region
(1-2 m) generated by a central high-voltage membrane and precision
concentric cylindrical field cages within a uniform, parallel magnetic
field [88]. Details of construction and electron trajectories near the
anode end are shown in Fig. 28.6. Signal shaping and processing using
analog storage devices or FADC’s allows excellent pattern recognition,
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Figure 28.5: PEP4/9-TPC energy-deposit measurements (185
samples @8.5 atm Ar-CHy 80-20%) in multihadron events. The
electrons reach a Fermi plateau value of 1.4 times the most
probably energy deposit at minimum ionization. Muons from
pion decays are separated from pions at low momentum; =/K
are separated over all momenta except in the cross-over region.
(Low-momentum protons and deuterons originate from hadron-
nucleus collisions in inner materials such as the beam pipe.)

track reconstruction, and particle identification within the same
detector.

Typical values:
Gas: Ar + (10-20%) CHy
E/P =100-200 V /cm/atm

Pressure(P) = 1-8.5 atm.
B =1-1.5 Tesla

Vdrify = D—7 cm/ps wr =1-8
0z ory = 100-200 pm

OB dep = 2.5-5.5 %

o, =0.2-1 mm

Truncated mean energy-deposit resolution depends on the number
and size of samples, and gas pressure:

(Pe)~032 (28.16)

Here N is the number of samples, £ is the sample size, and P is the
pressure. Typical energy-deposit distributions are shown in Fig. 28.5.
Good three-dimensional two-track resolutions of about 1-1.5 cm are
routinely achieved.

08 dep x N7043 x

E x B distortions arise from nonparallel £ and B fields (see
Eq. (28.11)), and from the curved drift of electrons to the anode
wires in the amplification region. Position measurement errors include
contributions from the anode-cathode geometry, the track crossing
angle (a), E x B distortions, and from the drift diffusion of electrons

(28.17)

where ¢ is the coordinate resolution, og includes the anode-cathode
geometry contribution, ¢ is the Lorentz angle, and L is the drift
distance.

ol ory = o2 + 0% (1 + tan? @)L/ Limax + 02 (tan o — tanp)?

Space-charge distortions arise in high-rate environments, especially
for low values of wr. However, they are mitigated by an effective
gating grid (Fig. 28.6). Field uniformities of

/(EL/E) dz<0.5-1 mm , (28.18)

over 10-40 m® volumes have been obtained. Laser tracks and
calibration events allow mapping of any remnant drift non-uniformities.
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Figure 28.6: (a) Drifting electrons are collected on the gating
grid until gated open by a triggering event. A shielding grid at
ground potential is used to terminate the drift region. Electrons
drifting through an open gating grid (b) pass through to the
amplification region around the anode wires. Positive ions
generated in the avalanche are detected on segmented cathode
pads to provide precise measurements along the wire. The slow
positive ions are blocked from entering the drift region by closing
the gating grid after the electrons have drifted through.

28.8. Silicon semiconductor detectors
Updated August 2003 by H. Spieler (LBNL).

Semiconductor detectors are widely used in modern high-energy
physics experiments. They are the key ingredient of high-resolution
vertex and tracking detectors and are also used as photodetectors in
scintillation calorimeters. The most commonly used material is silicon,
but germanium, gallium-arsenide and diamond are also useful in some
applications. Integrated circuit technology allows the formation of
high-density micron-scale electrodes on large (10-15 cm diameter)
wafers, providing excellent position resolution. Furthermore, the
density of silicon and its small ionization energy result in adequate
signals with active layers only 100-300 pm thick, so the signals are also
fast (typically tens of ns). Semiconductor detectors depend crucially
on low-noise electronics (see Sec. 28.9), so the detection sensitivity is
determined by signal charge and capacitance. For a survey of recent
developments see Ref. 92.

Silicon detectors are p-n junction diodes operated at reverse bias.
This forms a sensitive region depleted of mobile charge and sets up
an electric field that sweeps charge liberated by radiation to the
electrodes. Detectors typically use an asymmetric structure, e.g. a
highly doped p electrode and a lightly doped n region, so that the
depletion region extends predominantly into the lightly doped volume.
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The thickness of the depleted region is

W = /2¢(V + Vy;)/Ne = /2ppue(V + Vi) » (28.19)
where V' = external bias voltage
Vp; = “built-in” voltage (= 0.5 V for resistivities typically used
in detectors)
= doping concentration
e = electronic charge
e = dielectric constant = 11.9 ¢y ~ 1 pF/cm
p = resistivity (typically 1-10 kQ cm)
1 = charge carrier mobility
= 1350 cm?® V1 s~ 1 for electrons
=450 cm? V=1 571 for holes

or

W =0.5 [um/VQ-cm - V] x /p(V + Vy;) for n-type material, and

W =0.3 [pm/VQ-cm - V] x v/p(V + Vy;) for p-type material.

The conductive p and n regions together with the depleted volume
form a capacitor with the capacitance per unit area

C =¢/W ~1[pF/cm] /W . (28.20)
In strip and pixel detectors the capacitance is dominated by
the fringing capacitance. For example, the strip-to-strip fringing
capacitance is ~ 1-1.5 pF cm™' of strip length at a strip pitch of
25-50 pm.

For energetic particles and photons the energy required to create
an electron-hole pair E; = 3.6 eV (which is larger than the band gap
because phonon excitation is required for momentum conservation).
For minimum-ionizing particles, the most probable charge deposition
in a 300 pm thick silicon detector is about 3.5 fC (22000 electrons).
Since both electronic and lattice excitations are involved, the variance
in the number of charge carriers N = E/E; produced by an absorbed
energy E is reduced by the Fano factor F' (about 0.1 in Si). Thus,
on = VFN and the energy resolution o /E = \/FE;/E. However,
the measured signal fluctuations are usually dominated by electronic
noise or energy loss fluctuations in the detector. Visible light can
be detected with photon energies above the band gap. In optimized
photodiodes quantum efficiencies > 80% for wavelengths between
400 nm and nearly 1 pm are achievable. UV-extended photodiodes
have useful efficiency down to 200 nm.

Charge collection time decreases with increasing bias voltage, and
can be reduced further by operating the detector with “overbias,”
i.e., a bias voltage exceeding the value required to fully deplete the
device. The collection time is limited by velocity saturation at high
fields (approaching 107 cm/s at E > 10* V/cm); at an average field
of 10* V/cm the collection time is about 15 ps/um for electrons and
30 ps/um for holes. In typical fully-depleted detectors 300 pm thick,
electrons are collected within about 10 ns, and holes within about
25 ns.

Position resolution is limited by transverse diffusion during charge
collection (typically 5 pm for 300 pm thickness) and by knock-on
electrons. Resolutions of 2-4 pm (rms) have been obtained in beam
tests. In magnetic fields, the Lorentz drift deflects the electron and
hole trajectories and the detector must be tilted to reduce spatial
spreading (see “Hall effect” in semiconductor textbooks).

Radiation damage occurs through two basic mechanisms:

1. Bulk damage due to displacement of atoms from their lattice
sites. This leads to increased leakage current, carrier trapping,
and build-up of space charge that changes the required operating
voltage. Displacement damage depends on the nonionizing energy
loss and the energy imparted to the recoil atoms, which can
initiate a chain of subsequent displacements, i.e., damage clusters.
Hence, it is critical to consider both particle type and energy.

2. Surface damage due to charge build-up in surface layers, which
leads to increased surface leakage currents. In strip detectors the

inter-strip isolation is affected. The effects of charge build-up are
strongly dependent on the device structure and on fabrication
details. Since the damage is proportional to the absorbed energy
(when ionization dominates), the dose can be specified in rad (or
Gray) independent of particle type.

The increase in reverse bias current due to bulk damage is
AT, = a® per unit volume, where ® is the particle fluence and « the
damage coefficient (a ~ 3 x 10717 A/cm for minimum ionizing protons
and pions after long-term annealing; o ~ 2 x 1017 A/cm for 1 MeV
neutrons). The reverse bias current depends strongly on temperature

Ir(T») 1) o E (T1-Ty
=(Z2) exp|——
Ig(T1) T Pl
where £ = 1.2 eV, so rather modest cooling can reduce the current

substantially (~ 6-fold current reduction in cooling from room
temperature to 0°C).

(28.21)

The space-charge concentration in high-resistivity n-type Si changes
approximately as
N = Noe % — 83, (28.22)

where Ny is the initial donor concentration, § ~ 6 x 1014 ¢m?

determines donor removal, and 8 ~ 0.03 cm~! describes acceptor
creation. The acceptor states trap electrons, building up a negative
space charge, which in turn requires an increase in the applied voltage
to sweep signal charge through the detector thickness. This has the
same effect as a change in resistivity, i.e., the required voltage drops
initially with fluence, until the positive and negative space charge
balance and very little voltage is required to collect all signal charge.
At larger fluences the negative space charge dominates, and the
required operating voltage increases (V o« N). The safe operating
limit of depletion voltage ultimately limits the detector lifetime. Strip
detectors specifically designed for high voltages have been operated
at bias voltages >500V. Since the effect of radiation damage depends
on the electronic activity of defects, various techniques have been
applied to neutralize the damage sites. For example, additional doping
with oxygen increases the allowable charged hadron fluence roughly
three-fold [93]. The increase in leakage current with fluence, on the
other hand, appears to be unaffected by resistivity and whether the
material is n or p-type.

Strip and pixel detectors have remained functional at fluences
beyond 10*® ¢cm ™2 for minimum ionizing protons. At this damage level,
charge loss due to recombination and trapping also becomes significant
and the high signal-to-noise ratio obtainable with low-capacitance
pixel structures extends detector lifetime. The occupancy of the defect
charge states is strongly temperature dependent; competing processes
can increase or decrease the required operating voltage. It is critical to
choose the operating temperature judiciously (—10 to 0°C in typical
collider detectors) and limit warm-up periods during maintenance.
For a more detailed summary see Ref. 94 and and the web-site of the
ROSE collaboration at http://RD48.web.cern.ch/rd48.

Currently, the lifetime of detector systems is still limited by
the detectors; in the electronics use of standard “deep submicron”
CMOS fabrication processes with appropriately designed circuitry has
increased the radiation resistance to fluences > 101> cm~2 of minimum
ionizing protons or pions. For a comprehensive discussion of radiation
effects see Ref. 95.

28.9. Low-noise electronics
Revised August 2003 by H. Spieler (LBNL).

Many detectors rely critically on low-noise electronics, either to
improve energy resolution or to allow a low detection threshold. A
typical detector front-end is shown in Fig. 28.7.

The detector is represented by a capacitance Cy, a relevant model
for most detectors. Bias voltage is applied through resistor Ry and the
signal is coupled to the preamplifier through a blocking capacitor Cl.
The series resistance R represents the sum of all resistances present
in the input signal path, e.g. the electrode resistance, any input
protection networks, and parasitic resistances in the input transistor.
The preamplifier provides gain and feeds a pulse shaper, which tailors
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Figure 28.7: Typical detector front-end circuit.

the overall frequency response to optimize signal-to-noise ratio while
limiting the duration of the signal pulse to accommodate the signal
pulse rate. Even if not explicitly stated, all amplifiers provide some
form of pulse shaping due to their limited frequency response.

The equivalent circuit for the noise analysis (Fig. 28.8) includes
both current and voltage noise sources. The leakage current of a
semiconductor detector, for example, fluctuates due to electron
emission statistics. This “shot noise” 7,4 is represented by a current
noise generator in parallel with the detector. Resistors exhibit noise
due to thermal velocity fluctuations of the charge carriers. This noise
source can be modeled either as a voltage or current generator.
Generally, resistors shunting the input act as noise current sources and
resistors in series with the input act as noise voltage sources (which is
why some in the detector community refer to current and voltage noise
as “parallel” and “series” noise). Since the bias resistor effectively
shunts the input, as the capacitor C} passes current fluctuations to
ground, it acts as a current generator i,; and its noise current has
the same effect as the shot noise current from the detector. Any other
shunt resistances can be incorporated in the same way. Conversely,
the series resistor Rs acts as a voltage generator. The electronic noise
of the amplifier is described fully by a combination of voltage and
current sources at its input, shown as epq and ipg.

DETECTOR BIAS SERIES AMPLIFIER +
RESISTOR RESISTOR PULSE SHAPER
Rs  ens
s
Ry . .
G Inb Ina
ind

Figure 28.8: Equivalent circuit for noise analysis.

Shot noise and thermal noise have a “white” frequency distribution,
i.e. the spectral power densities dPy/df o di2/df oc del/df are
constant with the magnitudes

iid =2ely,
P
Tnb = R
b
2, = 4kTR; (28.23)

where e is the electronic charge, I; the detector bias current, k the
Boltzmann constant and 7' the temperature. Typical amplifier noise
parameters epq and inq are of order nV/v/Hz and pA/v/Hz. Trapping
and detrapping processes in resistors, dielectrics and semiconductors
can introduce additional fluctuations whose noise power frequently
exhibits a 1/ f spectrum. The spectral density of the 1/f noise voltage
is
A

2

ey = Tf , (28.24)
where the noise coefficient Af is device specific and of order
10-10-10-12v2,

A fraction of the noise current flows through the detector

capacitance, resulting in a frequency-dependent noise voltage

in/(wCq), which is added to the noise voltage in the input circuit.
Since the individual noise contributions are random and uncorrelated,
they add in quadrature. The total noise at the output of the
pulse shaper is obtained by integrating over the full bandwidth of
the system. Superimposed on repetitive detector signal pulses of
constant magnitude, purely random noise produces a Gaussian signal
distribution.

Since radiation detectors typically convert the deposited energy
into charge, the system’s noise level is conveniently expressed as an
equivalent noise charge @n, which is equal to the detector signal
that yields a signal-to-noise ratio of one. The equivalent noise charge
is commonly expressed in Coulombs, the corresponding number of
electrons, or the equivalent deposited energy (eV). For a capacitive
sensor o

Q2 = i2FTg+ eZFvT—S +FypA;CY
where C is the sum of all capacitances shunting the input, Fj, Fy,
and F,; depend on the shape of the pulse determined by the shaper
and T is a characteristic time, for example, the peaking time of a
semi-gaussian pulse or the sampling interval in a correlated double
sampler. The form factors F;, F, are easily calculated

(28.25)

! oo[W(t)]%lt, F,

o L T [ [dW(H)
172TS —oo B

2
5 7 ] dt, (28.26)

—o0

where for time-invariant pulse-shaping W (t) is simply the system’s
impulse response (the output signal seen on an oscilloscope) with
the peak output signal normalized to unity. For more details see
Refs. [96-97].

A pulse shaper formed by a single differentiator and integrator with
equal time constants has F; = Iy = 0.9 and Fy, = 4, independent
of the shaping time constant. The overall noise bandwidth, however,
depends on the time constant, i.e. the characteristic time Ts. The
contribution from noise currents increases with shaping time, i.e.,
pulse duration, whereas the voltage noise decreases with increasing
shaping time. Noise with a 1/f spectrum depends only on the ratio
of upper to lower cutoff frequencies (integrator to differentiator time
constants), so for a given shaper topology the 1/f contribution to Qn
is independent of Ts. Furthermore, the contribution of noise voltage
sources to Qn increases with detector capacitance. Pulse shapers
can be designed to reduce the effect of current noise, e.g., mitigate
radiation damage. Increasing pulse symmetry tends to decrease Fj
and increase Fy (e.g., to 0.45 and 1.0 for a shaper with one CR
differentiator and four cascaded integrators). For the circuit shown in
Fig. 28.8,

9 -2 2
Q" = (281(1 + 4kT/Rb + Zna)FlTs (2827)
+ (KT Ry + eny) FuC3/Ts + Fyp AfCJ .

As the characteristic time Tg is changed, the total noise goes
through a minimum, where the current and voltage contributions are
equal. Fig. 28.9 shows a typical example. At short shaping times the
voltage noise dominates, whereas at long shaping times the current
noise takes over. The noise minimum is flattened by the presence
of 1/f noise. Increasing the detector capacitance will increase the
voltage noise and shift the noise minimum to longer shaping times.

For quick estimates, one can use the following equation, which
assumes an FET amplifier (negligible ino) and a simple CR-RC
shaper with time constants 7 (equal to the peaking time):

1 kQl 7
9 _ 5 [KQ] 7
(Qn/e)? = 12 [HA_HS] 17+ 6% 10 [ns]Rb
28.2
136 x 10 ns 2C” (25
! ——5 o | €n—
(pF)*(nV)*/Hz| ™ T

Noise is improved by reducing the detector capacitance and leakage
current, judiciously selecting all resistances in the input circuit, and
choosing the optimum shaping time constant.
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Figure 28.9: Equivalent noise charge vs shaping time.

The noise parameters of the amplifier depend primarily on the
input device. In field effect transistors, the noise current contribution
is very small, so reducing the detector leakage current and increasing
the bias resistance will allow long shaping times with correspondingly
lower noise. In bipolar transistors, the base current sets a lower bound
on the noise current, so these devices are best at short shaping times.
In special cases where the noise of a transistor scales with geometry,
i.e., decreasing noise voltage with increasing input capacitance, the
lowest noise is obtained when the input capacitance of the transistor
is equal to the detector capacitance, albeit at the expense of power
dissipation. Capacitive matching is useful with field-effect transistors,
but not bipolar transistors. In bipolar transistors, the minimum
obtainable noise is independent of shaping time, but only at the
optimum collector current Iz, which does depend on shaping time.

C kT Fy, 1
2 i F, I, =— 2 28.2
Q7 min 4kT@\/ iy at I - C+/Bpc 7 Ts’ (28.29)

where Spc is the DC current gain. For a CR-RC shaper and
Bpc = 100,
Qn,min/e = 2501/C/pF .

Practical noise levels range from ~ le for CCDs at long shaping
times to ~ 10? e in high-capacitance liquid argon calorimeters. Silicon
strip detectors typically operate at ~ 10° e electrons, whereas pixel
detectors with fast readout provide noise of several hundred electrons.

(28.30)

In timing measurements, the slope-to-noise ratio must be optimized,
rather than the signal-to-noise ratio alone, so the rise time ¢, of the
pulse is important. The “jitter” o¢ of the timing distribution is

on tr

= @Eins, ~ N (28.31)

Ot

where o4, is the rms noise and the derivative of the signal dS/dt is

evaluated at the trigger level Sp. To increase dS/dt without incurring
excessive noise, the amplifier bandwidth should match the rise-time

of the detector signal. The 10 to 90% rise time of an amplifier with

bandwidth fir is 0.35/ fyy. For example, an oscilloscope with 350 MHz
bandwidth has a 1 ns rise time. When amplifiers are cascaded, which
is invariably necessary, the individual rise times add in quadrature.

~ o J2 2
by~ AJ 2 + 12y + o+ 12y,

Increasing signal-to-noise ratio also improves time resolution, so
minimizing the total capacitance at the input is also important.
At high signal-to-noise ratios, the time jitter can be much smaller
than the rise time. The timing distribution may shift with signal
level (“walk”), but this can be corrected by various means, either in
hardware or software [9].

For a more detailed introduction to detector signal processing and
electronics see Ref. 98.

28.10. Calorimeters

28.10.1. Electromagnetic calorimeters:
Written August 2003 by R.-Y. Zhu (California Inst. of Technology).

The development of electromagnetic showers is discussed in the
section on “Passage of Particles Through Matter” (Sec. 27 of this
Review).

Formulae are given which approximately describe average showers,
but since the physics of electromagnetic showers is well understood,
detailed and reliable Monte Carlo simulation is possible. EGS4 [99]
and GEANT [100] have emerged as the standards.

There are homogeneous and sampling electromagnetic calorimeters.
In a homogeneous calorimeter the entire volume is sensitive, i.e.,
contributes signal. Homogeneous electromagnetic calorimeters may
be built with inorganic heavy (high-Z) scintillating crystals such as
BGO, Csl, Nal, and PWO, non-scintillating Cherenkov radiators such
as lead glass and lead fluoride, or ionizing noble liquids. Properties
of commonly used inorganic crystal scintillators can be found in
Table 28.2. A sampling calorimeter consists of an active medium
which generates signal and a passive medium which functions as an
absorber. The active medium may be a scintillator, an ionizing noble
liquid, a gas chamber, or a semiconductor. The passive medium is
usually a material of high density, such as lead, iron, copper, or
depleted uranium.

The energy resolution o /E of a calorimeter can be parametrized
as a/\/EGBbG)c/E, where @ represents addition in quadrature and F is
in GeV. The stochastic term a represents statistics-related fluctuations
such as intrinsic shower fluctuations, photoelectron statistics, dead
material at the front of the calorimeter, and sampling fluctuations.
For a fixed number of radiation lengths, the stochastic term a for
a sampling calorimeter is expected to be proportional to \/W,
where ¢t is plate thickness and f is sampling fraction [101,102]. While
a is at a few percent level for a homogeneous calorimeter, it is
typically 10% for sampling calorimeters. The main contributions to
the systematic, or constant, term b are detector non-uniformity and
calibration uncertainty. In the case of the hadronic cascades discussed
below, non-compensation also contributes to the constant term. One
additional contribution to the constant term for calorimeters built for
modern high-energy physics experiments, operated in a high-beam
intensity environment, is radiation damage of the active medium.
This can be minimized by developing radiation-hard active media [33]
and by frequent in situ calibration and monitoring [32,102]. With
effort, the constant term b can be reduced to below one percent. The
term ¢ is due to electronic noise summed over readout channels within
a few Moliére radii. The best energy resolution for electromagnetic
shower measurement is obtained in total absorption homogeneous
calorimeters, e.g. calorimeters built with heavy crystal scintillators.
These are used when ultimate performance is pursued.

The position resolution depends on the effective Moliére radius
and the transverse granularity of the calorimeter. Like the energy
resolution, it can be factored as a/\/EeD b, where a is a few to 20 mm
and b can be as small as a fraction of mm for a dense calorimeter
with fine granularity. Electromagnetic calorimeters may also provide
direction measurement for electrons and photons. This is important
for photon-related physics when there are uncertainties in event origin,
since photons do not leave information in the particle tracking system.
Typical photon angular resolution is about 45 mrad/ VE, which can
be provided by implementing longitudinal segmentation [103] for a
sampling calorimeter or by adding a preshower detector [104] for a
homogeneous calorimeter without longitudinal segmentation.

Novel technologies have been developed for electromagnetic
calorimetry. New heavy crystal scintillators, such as PWO, LSO:Ce,
and GSO:Ce (see Sec. 28.2), have attracted much attention for
homogeneous calorimetry. In some cases, such as PWO, it has received
broad applications in high-energy and nuclear physics experiments.
The “spaghetti” structure has been developed for sampling calorimetry
with scintillating fibers as the sensitive medium. The “accordion”
structure has been developed for sampling calorimetry with ionizing
noble liquid as the sensitive medium. Table 28.5 provides a brief
description of typical electromagnetic calorimeters built recently
for high-energy physics experiments. Also listed in this table are
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calorimeter depths in radiation lengths (Xo) and the achieved energy
resolution. Whenever possible, the performance of calorimeters in
situ is quoted, which is usually in good agreement with prototype
test beam results as well as EGS or GEANT simulations, provided
that all systematic effects are properly included. Detailed references
on detector design and performance can be found in Appendix C of
reference [102] and Proceedings of the International Conference series
on Calorimetry in Particle Physics.

Table 28.5: Resolution of typical electromagnetic calorimeters.
E is in GeV.

Technology (Experiment) Depth  Energy resolution Date
NaI(Tl) (Crystal Ball)  20Xo  2.7%/E/* 1983
BisGe3012 (BGO) (L3) 22Xy  2%/VE ©0.7% 1993
CsI (KTeV) 27Xy 2%/VE ®0.45% 1996
CsI(T1) (BaBar) 16-18X¢ 2.3%/EY* @ 1.4% 1999
CsI(T1) (BELLE) 16Xy  1.7% for E, > 3.5 GeV 1998
PbWO4 (PWO) (CMS) 25X, 3%/VE ®0.5% & 0.2/E 1997
Lead glass (OPAL) 205Xy 5%/VE 1990
Liquid Kr (NA48) 27Xo 3.2%/VE® 0.42% & 0.09/E 1998
Scintillator/depleted U 20-30X, 18%/VE 1988
(ZEUS)
Scintillator/Pb (CDF) 18Xy  13.5%/VE 1988
Scintillator fiber/Pb 15Xy 5.7%/VE @ 0.6% 1995
spaghetti (KLOE)
Liquid Ar/Pb (NA31)  27Xp  7.5%/VE ®05%®0.1/E 1988
Liquid Ar/Pb (SLD) 21Xy 8%/VE 1993
Liquid Ar/Pb (H1) 20-30Xo 12%/VE @ 1% 1998
Liquid Ar/depl. U (D@) 20.5Xy 16%/vVE ®0.3% ®0.3/E 1993
Liquid Ar/Pb accordion 25Xy  10%/vVE © 0.4% & 0.3/E 1996
(ATLAS)
28.10.2. Hadronic calorimeters: [102,105] The length scale

appropriate for hadronic cascades is the nuclear interaction length,
given very roughly by

A7 ~35g cm 243 (28.32)
Longitudinal energy deposition profiles are characterized by a sharp
peak near the first interaction point (from the fairly local deposition
of EM energy resulting from 7%’s produced in the first interaction),
followed by a more gradual development with a maximum at

2/A1 = tmax ~ 0.2In(E/1 GeV) + 0.7 (28.33)

as measured from the front of the detector.

The depth required for containment of a fixed fraction of the
energy also increases logarithmically with incident particle energy.
The thickness of iron required for 95% (99%) containment of cascades
induced by single hadrons is shown in Fig. 28.10 [106]. Two of the
sets of data are from large neutrino experiments, while the third
is from a commonly-used parameterization. Depths as measured in
nuclear interaction lengths presumably scale to other materials. From
the same data it can be concluded that the requirement that 95%
of the energy in 95% of the showers be contained requires 40 to 50
cm (2.4 to 3.0 A7) more material material than for an average 95%
containment. The transverse dimensions of hadronic showers also
scale as A1, although most of the energy is contained in a narrow core.

The energy deposit in a hadronic cascade consists of a prompt
EM component due to 0 production and a somewhat slower
component mainly due to low-energy hadronic activity. An induction
argument verified by Monte-Carlo simulations has shown that the
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Figure 28.10: Required calorimeter thickness for 95% and 99%
hadronic cascade containment in iron, on the basis of data from
two large neutrino detectors and the parameterization of Bock
et al. [106].

fraction of hadronic energy in a cascade is (E/FEq)™ !, where
0.80 < m < 0.85 [107]. Ep is about 1 GeV for incident pions, and
the power-law description is approximately valid for incident energy
E greater than a few tens of GeV. In general, the electromagnetic
and hadronic energy depositions are converted to electrical signals
with different efficiencies. The ratio of the conversion efficiencies is
usually called the intrinsic e/h ratio. It follows in the power-law
approximation the ratio of the responses for incident pions and
incident electrons is given by “r/e”=1— (1 — h/e)(E/Eo)™'. With
or without the power-law approximation the response for pions is
not a linear function of energy for e/h # 1. (But in any case, as
the energy increases a larger and larger fraction of the energy is
transferred to 7%’s, and “r/e”— 1.) If e/h = 1.0 the calorimeter is
said to be compensating. If e/h differs from unity by more than 5%
or 10%, detector performance is compromised because of fluctuations
in the 70 content of the cascades. This results in (a) a skewed signal
distribution and (b) an almost-constant contribution to detector
resolution which is proportional to the degree of noncompensation
|1 — h/e|. The coefficient relating the size of the constant term to
|1 — h/e| is 14% according to FLUKA simulations [107], and 21%
according to Wigmans’ calculations [108]. (Wigmans now prefers a
different approach to the “constant term” [102].)

The formula for “m/e” given above is valid for a large uniform
calorimeter. Real calorimeters usually have an EM front structure
which is different, and so modifications must be made in modeling the
response.

In most cases e/h is greater than unity, particularly if little hydrogen
is present or if the gate time is short. This is because much of the
low-energy hadronic energy is “hidden” in nuclear binding energy
release, low-energy spallation products, ete. Partial correction for these
losses occurs in a sampling calorimeter with high-Z absorbers, because
a disproportionate fraction of electromagnetic energy is deposited in
the inactive region. For this reason, a fully sensitive detector such as
scintillator or glass cannot be made compensating.

The average electromagnetic energy fraction in a high-energy
cascade is smaller for incident protons than for pions; Fy ~ 2.6 GeV
rather than ~ 1 GeV. As a result “r/e”>“p/e” (if e/h > 1) in a
noncompensating calorimeter [107]. This difference has now been
measured [109].

Circa 1990 compensation was thought to be very important in
hadronic calorimeter design. Motivated very much by the work of
Wigmans [108], several calorimeters were built with e/h = 1 £ 0.02.
These include

e ZEUS [110] 2.6 cm thick scintillator sheets sandwiched between

3.3 mm depleted uranium plates; a resolution of 0.35/VE was
obtained;
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e ZEUS prototype study [111], with 10 mm lead plates and 2.5 mm
scintillator sheets; 0.44/VE;

e DO [112], where the sandwich cell consists of a 4-6 mm thick
depleted uranium plate, 2.3 mm LAr, a G-10 signal board, and
another 2.3 mm LAr gap; 45%/VE.

Approximately Gaussian signal distributions were observed.

More recently, compensation has not been considered as important,
and, in addition, the new generation of calorimeters for LHC
experiments operate in a different energy regime and can tolerate
poorer resolution in return for simpler, deeper structures. For
example, the ATLAS endcaps consist of iron plates with scintillating
fiber readout [113]. The fraction of the structure consisting of low-Z
active region (scintillator in this case) is much smaller than would
be necessary to achieve compensation. Test beam results with these
modules show a resolution of ~ 46%/vE, and e/h = 1.5-1.6.

28.10.3. Free electron drift velocities in liquid ionization
sensors: Velocities as a function of electric field strength are
given in Refs. 114-117 and are plotted in Fig. 28.11. Recent
precise measurements of the free electron drift velocity in LAr have
been published by W. Walkowiak [118]. These measurements were
motivated by the design of the ATLAS electromagnetic calorimeter and
inconsistencies in the previous literature. Velocities are systematically
higher than those shown in Fig. 28.11.
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Figure 28.11: Electron drift velocity as a function of field
strength for commonly used liquids.

28.11. Superconducting solenoids for collider
detectors

Revised October 2001 by R.D. Kephart (FNAL).
28.11.1. Basic (approximate) equations: In all cases SI units

are assumed, so that B is in tesla, E is in joules, dimensions are in
meters, and pg = 47 % 1077,

Magnetic field: The magnetic field at the center of a solenoid of

length L and radius R, having N total turns and a current I is
woNT

VIZ+4R? '

Stored energy: The energy stored in the magnetic field of any magnet

is calculated by integrating B2 over all space:

E— L/B%iv .
2p0

For a solenoid with an iron flux return in which the magnetic field is
< 2T, the field in the aperture is approximately uniform and equal to
puoNI/L. If the thickness of the coil is small, (which is the case if it is
superconducting), then

B(0,0) = (28.34)

(28.35)

E =~ (n/2u0)B*R2L . (28.36)

Cost of a superconducting solenoid [119]:

Cost (in M$) = 0.523 [E/(1 MJ))%-662 (28.37)

Magnetostatic computer programs: It is too difficult to solve the
Biot-Savart equation for a magnetic circuit which includes iron

components and so iterative computer programs are used. These
include POISSON, TOSCA [120], and ANSYS [121].

28.11.2. Scaling laws for thin solenoids: For a detector in which
the calorimetry is outside the aperture of the solenoid, the coil must
be thin in terms of radiation and absorption lengths. This usually
means that the coil is superconducting and that the vacuum vessel
encasing it is of minimum real thickness and fabricated of a material
with long radiation length. There are two major contributers to the
thickness of a thin solenoid:

1. The conductor, consisting of the current-carrying superconducting
material (usually Cu/Nb-Ti) and the quench protecting stabilizer
(usually aluminum), is wound on the inside of a structural
support cylinder (usually aluminum also). This package typically
represents about 60% of the total thickness in radiation lengths.
The thickness scales approximately as B2R.

2. Approximately another 25% of the thickness of the magnet comes
from the outer cylindrical shell of the vacuum vessel. Since this
shell is susceptible to buckling collapse, its thickness is determined
by the diameter, length, and the modulus of the material of which
it is fabricated. When designing this shell to a typical standard,
the real thickness is

t = P.D*5[(L/D) — 0.45(t/D)*%]/2.6Y"* (28.38)
where ¢ = shell thickness (in), D = shell diameter (in), L = shell
length (in), ¥ = modulus of elasticity (psi), and P, = design
collapse pressure (= 30 psi). For most large-diameter detector

solenoids, the thickness to within a few percent is given by [122]

t = P.D?%(L/D)/2.6Y™" . (28.39)

28.11.3. Properties of collider detector solenoids: The physical
dimensions, central field, stored energy and thickness in radiation
lengths normal to the beam line of the superconducting solenoids
associated with the major colliders are given in Table 28.6.

Table 28.6: Properties of superconducting collider detector
solenoids.

Experiment-Lab  Field Bore Dia Length Energy Thickness
(T) (m) (m) (MJ) (Xo)
CDF-Fermilab 1.5 2.86 5.07 30 0.86
D@ —Fermilab 2.0 1.06 2.73 5.6 0.87
BaBar-SLAC 1.5 2.80 3.46 27.0 <14
Topaz—-KEK* 1.2 2.72 5.4 19.5 0.70
Venus-KEK* 0.75 3.4 5.64 12 0.52
Cleo II-Cornell 1.5 2.9 3.8 25 2.5
Aleph-CERN* 1.5 5.0 7.0 130 1.7
ATLAS-CERNt 2.0 2.5 5.3 700 0.66
CMS-CERN' 40 59 12,5 2700 t
Delphi-CERN* 1.2 5.2 7.4 109 4.0
H1-DESY 1.2 5.2 5.75 120 1.2
Zeus-DESY 1.8 1.72 2.85 10.5 0.9

*No longer in service.
Detectors under construction.
YEM calorimeter inside solenoid, so small X¢ not a goal.

The ratio of stored energy to cold mass (E/M) is a useful
performance measure. One would like the cold mass to be as small
as possible to minimize the thickness, but temperature rise during
a quench must also be minimized. Ratios as large as 12 kJ/kg may
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Figure 28.12: Ratio of stored energy to cold mass for existing
thin detector solenoids. Solenoids in decommissioned detectors
are indicated by open circles. Solenoids for detectors under
construction are indicated by grey circles.

be used. The limit is set by the maximum temperature that the coil
design can tolerate during a fast quench. This maximum temperature
is usually limited to < 100 K so that thermal expansion effects in the
coil are manageable. This quantity is shown as a function of total
stored energy for some major collider detectors in Fig. 28.12.

28.12. Measurement of particle momenta in a
uniform magnetic field [123,124]

The trajectory of a particle with momentum p (in GeV/c) and
charge ze in a constant magnetic field B is a helix, with radius
of curvature R and pitch angle A. The _{adius of curvature and
momentum component perpendicular to B are related by

pcosA =0.3zBR,

where B is in tesla and R is in meters.

(28.40)

The distribution of measurements of the curvature k¥ = 1/R is
approximately Gaussian. The curvature error for a large number of
uniformly spaced measurements on the trajectory of a charged particle
in a uniform magnetic field can be approximated by

(6k)% = (6kres)? + (6kms)?
6k = curvature error

(28.41)

where
Okres = curvature error due to finite measurement resolution
6kms = curvature error due to multiple scattering.

If many (> 10) uniformly spaced position measurements are made
along a trajectory in a uniform medium,

€ 720

Ohees = T\ W

(28.42)
where N = number of points measured along track
LI

€ = measurement error for each point, perpendicular to the
trajectory.

the projected length of the track onto the bending plane

If a vertex constraint is applied at the origin of the track, the
coefficient under the radical becomes 320.

For arbitrary spacing of coordinates s; measured along the projected
trajectory and with variable measurement errors ¢; the curvature error
bkres is calculated from:

Vs
VssVizgo — (Vyg2)?

s

4
(Bkres)® = » ) (28.43)

(Addison-Wesley, Menlo Park, CA, 1987).

2. Claus Grupen, Particle Detectors, Cambridge Monographs on
Particle Physics, Nuclear Physics and Cosmology, # 5, Cambridge
University Press (1996).

3. K. Kleinknecht, Detectors for Particle Radiation, Cambridge
University Press (1998).

4. G.F. Knoll, Radiation Detection and Measurement, 3nd edition,
John Wiley & Sons, New York (1999).

5. Dan Green, The Physics of Particle Detectors, Cambridge
Monographs on Particle Physics, Nuclear Physics and Cosmology,
# 12, Cambridge University Press (2000).

6. [Icarus Collaboration], ICARUS-TM/2001-09; LGNS-EXP 13/89
add 2-01.

E. Albert et al., Nucl. Instrum. Methods A409, 70 (1998).
B. Aubert et al., [BaBar Collaboration], Nucl. Instrum. Methods
A479, 1 (2002).

9. H. Spieler, IEEE Trans. Nucl. Sci. NS-29, 1142 (1982).

10. J.B. Birks, The Theory and Practice of Scintillation
Counting(Pergamon, London, 1964).

11. D. Clark, Nucl. Instrum. Methods 117, 295 (1974).

12. J.B. Birks, Proc. Phys. Soc. A64, 874 (1951).

13. B. Bengston and M. Moszynski, Nucl. Instrum. Methods 117,
227 (1974);

J. Bialkowski et al., Nucl. Instrum. Methods 117, 221 (1974).

14.  Proceedings of the Symposium on Detector Research and
Development for the Superconducting Supercollider, eds. T.
Dombeck, V. Kelly, and G.P. Yost (World Scientific, Singapore,
1991).

15. L.B. Berlman, Handbook of Fluorescence Spectra of Aromatic
Molecules, 2nd edition (Academic Press, New York, 1971).

16. C. Zorn, in Instrumentation in High Energy Physics, ed. F. Sauli,
(1992, World Scientific, Singapore) pp. 218-279.

17.  T. Foerster, Ann. Phys. 2, 55 (1948).

18. J.M. Fluornoy, Conference on Radiation-Tolerant Plastic
Scintillators and Detectors, K.F. Johnson and R.L. Clough
editors, Rad. Phys. and Chem., 41 389 (1993).

19. D. Horstman and U. Holm, ibid, 395.

20. D. Blomker et al., Nucl. Instrum. Methods A311, 505 (1992);

J. Mainusch et al., Nucl. Instrum. Methods A312, 451 (1992).

21. Conference on Radiation-Tolerant Plastic Scintillators and
Detectors, K.F. Johnson and R.L. Clough editors, Rad. Phys. and
Chem., 41 (1993).

22. S.R. Borenstein and R.C. Strand, IEEE Trans. Nuc. Sci.
NS-31(1), 396 (1984).

23. P. Sonderegger, Nucl. Instrum. Methods A257, 523 (1987).



28. Particle detectors 269

24.
25.

26.
27.
28.

29.

30.
31.
32.

33.
34.
35.
36.

37.
38.
39.
40.

41.

42,

43.
44.

45.
46.
47.
48.

49.

50.
51.
52.
53.

54.
55.
56.
57.
58.
59.
60.
61.

62.

63.

S.A. Sedykh et al., Nucl. Instrum. Methods A455, 346 (2000).
SCIFI 97: Conference on Scintillating Fiber Detectors, 1997
University of Notre Dame, Indiana, eds. A. Bross, R. Ruchti, and
M. Wayne.

K.F. Johnson, Nucl. Instrum. Methods A 344, 432 (1994).

C.M. Hawkes et al., Nucl. Instrum. Methods A292, 329 (1990).
A. Lempicki et al., Nucl. Instrum. Methods A333, 304 (1993);
G. Blasse, Proceedings of the Crystal 2000 International Workshop
on Heavy Scintillators for Scientific and Industrial Applications,
Chamonix, France, Sept. (1992), Edition Frontieres.

C. Melcher and J. Schweitzer, Nucl. Instrum. Methods A314, 212
(1992).

K. Takagi and T. Fakazawa, Appl. Phys. Lett. 42, 43 (1983).

C. Kuntner et al., Nucl. Instrum. Methods A493, 131 (2002).

G. Gratta, H. Newman, and R.Y. Zhu, Ann. Rev. Nucl. and Part.
Sci. 44, 453 (1994).

R.Y. Zhu, Nucl. Instrum. Methods A413, 297 (1998).

M. Woods et al., SPIN96 (QCD161:5921:1996) 843.

A. Abashian et al., Nucl. Instrum. Methods A479, 117 (2002).

M. Shiozawa, [Super-Kamiokande Collaboration], Nucl. Instrum.
Methods A433, 240 (1999).

J. Litt and R. Meunier, Ann. Rev. Nucl. Sci. 23, 1 (1973).

D. Bartlett et al., Nucl. Instrum. Methods A260, 55 (1987).

B. Ratcliff, Nucl. Instrum. Methods A502, 211 (2003).

M. Cavalli-Sforza et al., “Construction and Testing of the SLC
Cherenkov Ring Tmaging Detector,” TEEE 37, N3:1132 (1990).
E.G. Anassontzis et al., “Recent Results from the DELPHI Barrel
Ring Imaging Cherenkov Counter,” IEEE 38, N2:417 (1991).

See the RICH Workshop series: Nucl. Instrum. Methods A343, 1
(1993); Nucl. Instrum. Methods A371, 1 (1996); Nucl. Instrum.
Methods A433, 1 (1999); Nucl. Instrum. Methods A502, 1
(2003).

H. Blood et al., FERMILAB-PUB-76-051-EXP.

L. Sulak, HUEP-252 Presented at the Workshop on Proton
Stability, Madison, Wisc. (1978).

K.S. Hirata et al., Phys. Lett. B205, 416 (1988).

S. Kasuga et al., Phys. Lett. B374, 238 (1996).

M.H. Ahn et al., Phys. Rev. Lett. 90, 041801 (2003).

R.M. Bionta et al., Phys. Rev. Lett. 51, 27 (1983); [Erratum-ibid.
51, 522 (1983)].

R. Becker-Szendy et al., Nucl. Instrum. Methods A324, 363
(1993).

H. Ikeda et al.,, UTLICEPP-82-04.

K. Arisaka et al., J. Phys. Soc. Jap. 54, 3213 (1985).

K.S. Hirata et al., Phys. Rev. D38, 448 (1988).

C. Athanassopoulos et al., Nucl. Instrum. Methods A 388, 149
(1997).

Y. Fukuda et al., Nucl. Instrum. Methods A501, 418 (2003).
S.H. Ahn et al., Phys. Lett. B511, 178 (2001).

J. Boger et al., Nucl. Instrum. Methods A449, 172 (2000).

B. Dolgoshein Nucl. Instrum. Methods A326, 434 (1993).

X. Artru et al., Phys. Rev. D12, 1289 (1975).

G.M. Garibian et al., Nucl. Instrum. Methods 125, 133 (1975).
G. Bassompierre et al., Nucl. Instrum. Methods 411, 63 (1998).
ALICE Collaboration, “Technical Design Report of the Transition
Radiation Tracker,” CERN/LHCC/ 2001-021 (2001).

RD6 Collaboration, CERN/DRDC 90-38 (1990); CERN/DRDC
91-47 (1991); CERN/DRDC 93-46 (1993).

T. Kirn et al., Proceedings of TRDs for the 3rd millenium,
Workshop on advanced transition radiation detectors for
accelerator and space applications, eds N. Giglietto and P.
Spinelli, Frascati Physics Series, Vol. XXV, 161 (2002).

64.

65.

66.

67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
7.

78.
79.
80.
81.

82.

83.

84.

85.

86.

87.
88.

89.
90.

91.

92.
93.
94.
95.

96.

97.

98.

99.

100.

P. Spinelli et al., Proceedings of “TRDs for the 3rd millenium”,
Workshop on advanced transition radiation detectors for
accelerator and space applications,”eds N. Giglietto and P.
Spinelli, Frascati Physics Series, Vol. XXV, 177 (2002).

ATLAS Collaboration, ATLAS Inner Detector Technical Design
Report, v 2, ATLAS TDR 5, CERN/LHCC/97-16 (30 April
1997).

ATLAS Collaboration, Detector and Physics Performance
Technical Design Report, CERN/LHCC/99-14, 71 (1999).

B. Dolgoshein, Nucl. Instrum. Methods 252, 137 (1986).
C.W. Fabjan et al., Nucl. Instrum. Methods 185, 119 (1981).
J. Cobb et al., Nucl. Instrum. Methods 140, 413 (1977).

A. Biingener et al., Nucl. Instrum. Methods 214, 261 (1983).
R.D. Appuhn et al., Nucl. Instrum. Methods 263, 309 (1988).
Y. Watase et al., Nucl. Instrum. Methods 248, 379 (1986).
R. Ansari et al., Nucl. Instrum. Methods 263, 51 (1988).
H.J. Butt et al., Nucl. Instrum. Methods 252, 483 (1986).
J.F. Detoeuf et al., Nucl. Instrum. Methods 265, 157 (1988).
M. Holder et al., Nucl. Instrum. Methods 263, 319 (1988).

H. Weidkamp, DiplomArbeit, Rhein-Westf. Tech. Hochschule
Aachen (1984).

H. Grissler et al., Proc. Vienna Wire Chamber Conference (1989).
T. Akesson et al., Nucl. InstrumMethods A412, 200 (1998).

F.F. Rieke and W. Prepejchal, Phys. Rev. A6, 1507 (1972).

L.G. Christophorou, “Atomic and molecular radiation physics”
(Wiley, London 1991).

G. Charpak et al., Nucl. Instrum. Methods 62, 262 (1968).

R. Veenhof, GARFIELD program: simulation of gaseous
detectors, version 6.32, CERN Program Library Pool W999
(W5050).

As representative examples see: B. Adeva et al., Nucl. Instrum.
Methods A 287, 35 (1990).

As representative example see: A. Alexander et al., Nucl. Instrum.
Methods A 276, 42 (1989).

As representative examples see: F. Bedeschi et al., Nucl. Instrum.
Methods A 268, 50 (1988);

Opal Collaboration: Nucl. Instrum. Methods A305, 275 (1991).
A. Oed, Nucl. Instrum. Methods A263, 351 (1988).

W. Blum and G. Rolandi, Particle Detection with Drift Chambers,
Springer-Verlag (1994).

A. Peisert and F. Sauli, CERN-84-08 (Jul 1984).

R. Bellazzini and A. M. Spezziga, Rivista del Nuovo Cimento 17,
1(1994).

D.R. Nygren and J.N. Marx, “The Time Projection Chamber,”
Phys. Today 31, 46 (1978).

P. Weilhammer, Nucl. Instrum. Methods A453, 60 (2000).

G. Lindstrém et al., Nucl. Instrum. Methods A 465, 60 (2001).
G. Lindstrém et al., Nucl. Instrum. Methods A426, 1 (1999).

A. Holmes-Siedle and L. Adams, Handbook of Radiation Effects,
2nd ed., Oxford 2002, ISBN 0-19-850733-X, QC474.H59 2001.

V. Radeka, IEEE Trans. Nucl. Sci. NS-15/3, 455 (1968);

V. Radeka, IEEE Trans. Nucl. Sci. NS-21, 51 (1974).

F.S. Goulding, Nucl. Instrum. Methods 100, 493 (1972);

F.S. Goulding and D.A. Landis, IEEE Trans. Nucl. Sci. NS-29,
1125 (1982).

H. Spieler, Front-End Electronics and Signal Processing, in
Proceedings of the First ICFA School at the ICFA Instrumentation
Center in Morelia, ATP vol. 674, pp. 76 - 100, eds. L. Villasefior,
V. Villanueva, ISBN 0-7354-0141-1, LBNL-52914.

W.R. Nelson, H. Hirayama, and D.W.O. Rogers, “The EGS4
Code System,” SLAC-265, Stanford Linear Accelerator Center
(Dec. 1985).

R. Brun et al., GEANTS3, CERN DD/EE/84-1 (1987).




270

28. Particle detectors

101.

102.

103.

104.

109.
110.

D. Hitlin et al., Nucl. Instrum. Methods 137, 225 (1976). See
also W. J. Willis and V. Radeka, Nucl. Instrum. Methods 120,
221 (1974), for a more detailed discussion.

R. Wigmans, Calorimetry: Energy Measurement in Particle
Physics, Clarendon, Oxford (2000).

ATLAS Collaboration, The ATLAS Liquid Argon Calorimeter
Technical Design Report, CERN/LHCC 96-41 (1996).

CMS Collaboration, The CMS Electromagnetic Calorimeter
Technical Design Report, CERN/LHCC 97-33 (1997).

C. Leroy and P.-G. Rancoita, Rep. Prog. Phys. 63, 505 (2000).
D. Bintinger, in Proceedings of the Workshop on Calorimetry for
the Supercollider, Tuscaloosa, AL, March 13-17, 1989, edited by
R. Donaldson and M.G.D. Gilchriese (World Scientific, Teaneck,
NJ, 1989), p. 91;

R.K. Bock, T. Hansl-Kozanecka, and T.P. Shah, Nucl. Instrum.
Methods 186, 533 (1981).

T.A. Gabriel, D.E. Groom, P.K. Job, N.V. Mokhov, and G.R.
Stevenson, Nucl. Instrum. Methods A 338, 336 (1994).

R. Wigmans, Nucl. Instrum. Methods A 259, 389 (1987);

R. Wigmans, Nucl. Instrum. Methods A 265, 273 (1988).

N. Akchurian et al., Nucl. Instrum. Methods A408, 380 (1998).
U. Behrens et al., Nucl. Instrum. Methods A289, 115 (1990);
A. Bernstein et al., Nucl. Instrum. Methods A336, 23 (1993).

111.
112.
113.
114.
115.
116.

117.

118.

120.
121.

122.

123.
124.

E. Bernardi et al., Nucl. Instrum. Methods A262, 229 (1987).

S. Abachi et al., Nucl. Instrum. Methods A324, 53 (1993).

F. Ariztizabal et al., Nucl. Instrum. Methods A 349, 384 (1994).
E. Shibamura et al., Nucl. Instrum. Methods 131, 249 (1975).
T.G. Ryan and G.R. Freeman, J. Chem. Phys. 68, 5144 (1978).
W.F. Schmidt, “Electron Migration in Liquids and Gases,” HMI
B156 (1974).

A.O. Allen, “Drift Mobilities and Conduction Band Energies of
Excess Electrons in Dielectric Liquids,” NSRDS-NBS-58 (1976).
W. Walkowiak, Nucl. Instrum. Methods A 449, 288 (2000).

M.A. Green, R.A. Byrns, and S.J. St. Lorant, “Estimating the
cost of superconducting magnets and the refrigerators needed to

keep them cold,” in Advances in Cryogenic Engineering, Vol. 37,
Plenum Press, New York (1992).

Vector Fields, Inc., 1700 N. Farnsworth Ave., Aurora, IL.
Swanson Analysis Systems, Inc., P.O. Box 65, Johnson Rd.,
Houston, PA.

CGA-341-1987, “Standard for insulated cargo tank specification
for cryogenic liquids,” Compressed Gas Association, Inc.,
Arlington, VA (1987).

R.L. Gluckstern, Nucl. Instrum. Methods 24, 381 (1963).

V. Kariméki, Nucl. Instrum. Methods A410, 284 (1998).



29. Radioactivity and radiation protection 271

29. RADIOACTIVITY AND RADIATION PROTECTION

Revised March 1998 by R.J. Donahue (LBNL) and A. Fassd (SLAC).

29.1. Definitions

The International Commission on Radiation Units and Measure-
ments (ICRU) recommends the use of SI units. Therefore we list SI
units first, followed by cgs (or other common) units in parentheses,
where they differ.

e Unit of activity = becquerel (curie):

1 Bq = 1 disintegration s~ [= 1/(3.7 x 10'9) Ci]
e Unit of absorbed dose = gray (rad):

1 Gy =1 joule kg=! (= 10* erg g~! = 100 rad)

=6.24 x 1012 MeV kg~! deposited energy

e Unit of exposure, the quantity of z- or - radiation at a point in
space integrated over time, in terms of charge of either sign produced
by showering electrons in a small volume of air about the point:

=1 coul kg~ of air (roentgen; 1 R = 2.58x10~* coul kg—1)

=1 esu cm—3(= 87.8 erg released energy per g of air)
Implicit in the definition is the assumption that the small test volume
is embedded in a sufficiently large uniformly irradiated volume that
the number of secondary electrons entering the volume equals the
number leaving. This unit is somewhat historical, but appears on
many measuring instruments.
o Unit of equivalent dose (for biological damage) = sievert [= 100
rem (roentgen equivalent for man)]: Equivalent dose in Sv = absorbed
dose in grays x wg, where wg (radiation weighting factor, formerly
the quality factor Q) expresses long-term risk (primarily cancer and
leukemia) from low-level chronic exposure. It depends upon the type
of radiation and other factors, as follows [2]:

Table 29.1: Radiation weighting factors.

Radiation wWR

X- and y-rays, all energies 1
Electrons and muons, all energies 1
Neutrons < 10 keV 5
10-100 keV 10

> 100 keV to 2 MeV 20

2-20 MeV 10

> 20 MeV 5

Protons (other than recoils) > 2 MeV 5

Alphas, fission fragments, & heavy nuclei 20

29.2. Radiation levels [3]

e Natural annual background, all sources: Most world areas,
whole-body equivalent dose rate ~ (0.4-4) mSv (40400 millirems).
Can range up to 50 mSv (5 rems) in certain areas. U.S. average
~ 3.6 mSv, including & 2 mSv (= 200 mrem) from inhaled natural
radioactivity, mostly radon and radon daughters (0.1-0.2 mSv in open
areas. Average is for a typical house and varies by more than an order
of magnitude. It can be more than two orders of magnitude higher in
poorly ventilated mines).

e Cosmic ray background in counters (Earth’s surface):
~ 1 min~' em~2 sr—!. For more accurate estimates and details,

see the Cosmic Rays section (Sec. 24 of this Review).
o Fluxes (per cm2) to deposit one Gy, assuming uniform irradiation:

~ (charged particles) 6.24x10°/(dE/dz), where dE/dx (MeV
g~ cm?), the energy loss per unit length, may be obtained from the
Mean Range and Energy Loss figures.

~ 3.5 x 10 cm™2 minimum-ionizing singly-charged particles in
carbon.

~ (photons) 6.24x10°/[Ef/)], for photons of energy E (MeV),
attenuation length )\ (g cm~2) (see Photon Attenuation Length
figure), and fraction f<1 expressing the fraction of the photon’s
energy deposited in a small volume of thickness < A but large enough
to contain the secondary electrons.

~ 2 x 101 photons cm™2 for 1 MeV photons on carbon (f = 1/2).
(Quoted fluxes are good to about a factor of 2 for all materials.)

¢ Recommended limits to exposure of radiation workers
(whole-body dose):*

CERN: 15 mSv yr—!

U.K.: 15 mSv yr~1

U.S.: 50 mSv yr—! (5 rem yr—1)f
e Lethal dose: Whole-body dose from penetrating ionizing radiation
resulting in 50% mortality in 30 days (assuming no medical treatment)
2.5-3.0 Gy (250-300 rads), as measured internally on body longitudinal
center line. Surface dose varies due to variable body attenuation and
may be a strong function of energy.

29.3. Prompt neutrons at accelerators

29.3.1. Electron beams: At electron accelerators neutrons are
generated via photonuclear reactions from bremsstrahlung photons.
Neutron yields from semi-infinite targets per unit electron beam power
are plotted in Fig. 29.1 as a function of electron beam energy [4]. In
the photon energy range 10-30 MeV neutron production results from
the giant photonuclear resonance mechanism. Neutrons are produced
roughly isotropically (within a factor of 2) and with a Maxwellian
energy distribution described as:

AN _ En _p.r

— = —e 29.1
dE, T2 ( )
where T is the nuclear temperature characteristic of the target nucleus,
generally in the range of 7' = 0.5-1.0 MeV. For higher energy photons
the quasi-deuteron and photopion production mechanisms become
important.
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Figure 29.1: Neutron yields from semi-infinite targets, per kW
of electron beam power, as a function of electron beam energy,
disregarding target self-shielding.
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29.3.2. Proton beams: At proton accelerators neutron yields
emitted per incident proton by different target materials are roughly
independent [5] of proton energy between 20 MeV and 1 GeV and are
given by the ratio C:Al:Cu-Fe:Sn:Ta-Pb = 0.3:0.6:1.0:1.5: 1.7.
Above 1 GeV neutron yield [6] is proportional to E™, where
0.80 < m < 0.85.
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Figure 29.2: Calculated neutron spectrum from 205 GeV/c
hadrons (2/3 protons and 1/3 7%) on a thick copper target.
Spectra are evaluated at 90° to beam and through 80 cm of
normal density concrete or 40 cm of iron.

A typical neutron spectrum [7] outside a proton accelerator
concrete shield is shown in Fig. 29.2. The shape of these spectra
are generally characterized as having a thermal-energy peak which is
very dependent on geometry and the presence of hydrogenic material,
a low-energy evaporation peak around 2 MeV, and a high-energy
spallation shoulder.
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Figure 29.3: The variation of the attenuation length for
monoenergetic neutrons in concrete as a function of neutron
energy [5].

The neutron-attenuation length, A, is shown in Fig. 29.3 for
monoenergetic broad-beam conditions. These values give a satisfactory
representation at depths greater than 1 m in concrete.

Letaw’s [8] formula for the energy dependence of the inelastic
proton cross-section (asymptotic values given in Table 6.1) for E < 2
GeV is:

o(E) = Gasympt [1 — 0.62¢~E/200 sin(lO.QE’O'ZS)] , (29.2)
and for E > 2 GeV:
Tasympt = 454%7 14+ 0.0165in(5.3 — 2.631n A)] , (29.3)

where ¢ is in mb, E is the proton energy in MeV and A is the mass
number.

29.4. Dose conversion factors
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Figure 29.4: Fluence to dose equivalent conversion factors for
various particles.

Fluence to dose equivalent factors are given in Fig. 29.4 for
photons [9], neutrons [10], muons [11], protons and pions [12]. These
factors can be used for converting particle fluence to dose for personnel
protection purposes.

29.5. Accelerator-induced activity

The dose rate at 1 m due to spallation-induced activity by high
energy hadrons in a 1 g medium atomic weight target can be
estimated [13] from the following expression:

D =Dy ® In[(T+1¢)/¢], (29.4)
where 7T is the irradiation time, ¢ is the decay time since irradiation,
@ is the flux of irradiating hadrons (hadrons cm~2 s~1) and Dy has a
value of 5.2 x 10717 [(Sv hr~!)/(hadron cm~=2 s=1)]. This relation is
essentially independent of hadron energy above 200 MeV.

Dose due to accelerator-produced induced activity can also be
estimated with the use of “w factors” [5]. These factors give the
dose rate per unit star density (inelastic reaction for £ > 50 MeV)
after a 30-day irradiation and 1-day decay. The w factor for steel or
iron is ~ 3 x 10712 (Sv cm?/star). This does not include possible
contributions from thermal-neutron activation. Induced activity
in concrete can vary widely depending on concrete composition,
particularly with the concentration of trace quantities such as sodium.
Additional information can be found in Barbier [14].
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29.6. Photon sources

The dose rate from a gamma point source of C Curies emitting one
photon of energy 0.07 < E < 4 MeV per disintegration at a distance
of 30 cm is 6CE (rem/hr), or 60CE (mSv/hr), £20%.

The dose rate from a semi-infinite uniform photon source of specific
activity C' (pCi/g) and gamma energy E (MeV) is 1.07CE (rem/hr),
or 10.7CE (mSv/hr).

Footnotes:

* The ICRP recomendation [2] is 20 mSy yr—!

5 years, with the dose in any one year < 50 mSv.

averaged over

f Many laboratories in the U.S. and elsewhere set lower limits.

t Dose is the time integral of dose rate, and fluence is the time
integral of fluz.
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30. Commonly used radioactive sources

Table 30.1. Revised November 1993 by E. Browne (LBNL).

Particle Photon
Type of Energy Emission Energy Emission
Nuclide  Half-life decay (MeV) prob. (MeV) prob.
2Na 2.603 y AT, EC 0.545 90% 0.511  Annih.
1.275  100%
§#Mn 0.855y EC 0.835  100%
Cr K x rays 26%
ggFe 273y EC Mn K x rays:
0.00590 24.4%
0.00649 2.86%
5T Co 0.744y EC 0014 9%
0.122  86%
0.136  11%
Fe K x rays 58%
$9Co 5271y B~ 0.316 100% 1.173  100%
1.333  100%
88Ge 0.742y EC Ga K x rays 44%
- %Ga 8%, EC 1.899 90% 0.511 Annih
1.077 3%
298r 285y B~ 0.546 100%
-0y 6~ 2.283 100%
196 Ru 1.020y B~ 0.039 100%
— 19Rh B~ 3.541 9% 0512 21%
0.622  10%
199cd 1267y EC 0.063e”  41% 0.088 3.6%
0.084 e~ 45% Ag K x rays 100%
0.087 e~ 9%
13sn 0315y EC 0364e”  29% 0.392  65%
0.388 e~ 6% In K x rays 97%
187Cs 302y B~ 05l4e 94% 0.662  85%
1.176 e~ 6%
133Ba 10564y EC 0.045¢  50% 0.081  34%
0.075 e~ 6% 0.356  62%
Cs K x rays 121%
0TBi 31.8y EC 048le” 2%  0.569  98%
0.975 e~ 7% 1.063  75%
1.047 e~ 2% 1.770 7%
Pb K x rays 78%
28Th 1912y 6oz 5.341 to 8.785 0.239  44%
367: 0.334 to 2.246 0.583  31%
2.614  36%
(—2%Ra —20Rn  —2%Po —24ZPb - 2UZBi  — 2L%Po)
ZiAm 4327y  a  5.443 13% 0.060  36%
5.486 85% Np L x rays 38%
23%Am/Be 432.2y 6 x 1075 neutrons (4-8 MeV) and
4 % 107%y’s (4.43 MeV) per Am decay
Hicm 1811y o« 5.763 24%  PuLxrays ~ 9%
5.805 76%
Bict 2.645 y a (97%) 6.076 15%
6.118 82%

Fission (3.1%)
~ 20 ~’s/fission; 80% < 1 MeV
~ 4 neutrons/fission; (E,) = 2.14 MeV

30. COMMONLY USED RADIOACTIVE SOURCES

“Emission probability” is the probability per decay of a given emission;
because of cascades these may total more than 100%. Only principal
emissions are listed. EC means electron capture, and e~ means
monoenergetic internal conversion (Auger) electron. The intensity of
0.511 MeV eTe™ annihilation photons depends upon the number of
stopped positrons. Endpoint 8+ energies are listed. In some cases
when energies are closely spaced, the y-ray values are approximate
weighted averages. Radiation from short-lived daughter isotopes is
included where relevant.

Half-lives, energies, and intensities are from E. Browne and
R.B. Firestone, Table of Radioactive Isotopes (John Wiley & Sons,
New York, 1986), recent Nuclear Data Sheets, and X-ray and
Gamma-ray Standards for Detector Calibration, INEA-TECDOC-619
(1991).

Neutron data are from Neutron Sources for Basic Physics and
Applications (Pergamon Press, 1983).



