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As a protoypical massive field theory we study the scalar field on the recently introduced Finsler
spacetimes. We show that particle excitations exist that propagate faster than the speed of light
recognized as the boundary velocity of observers. This effect appears already in Finsler space-
time geometries with very small departures from Lorentzian metric geometry. It switches on for
sufficiently large ratios of the particle four-momentum components and mass. For specific Finsler
spacetime models, we deduce the modified dispersion relation of Coleman–Glashow, and one known
from quantum gravity phenomenology. If similar dispersion relations resulted for fermions on Finsler
spacetimes, these generalized geometries could explain the very recent observations of the OPERA
collaboration who found muon neutrinos propagating faster than light at very high energies, while
being consistent with supernova observations.

Very recently the OPERA collaboration announced the
stunning results [1] of an extremely carefully analyzed ex-
periment that measures the time of flight of muon neu-
trinos along a baseline of around 730 km between CERN
and the Gran Sasso laboratory, and compares it to the
time expected using the speed of light. The measurement
shows that the neutrinos are faster by 60.7 ns with high
significance. Is this possible in fundamental theory?

In classical field theory particles like muon neutrinos
are described by partial differential equations. The re-
quirement that the Cauchy problem be well-posed im-
plies that the leading second order differential operator
in these equations must be hyperbolic. If the geomet-
ric structure of the spacetime background is given solely
by a Lorentzian metric, as is the case in the Standard
Model, hyperbolicity of the free field equations can only
be related to the Lorentzian cone structure determined
by this metric [2]. It follows that the support of the fields
must propagate in timelike directions [3] which in turn
holds for the particle excitations of the field. In other
words, free massive particles in Lorentzian geometry are
always slower than light.

Taking the OPERA result seriously hence tells us that
the structure of spacetime cannot be described simply by
Lorentzian geometry.

Various approaches to study deviations from
Lorentzian geometry are studied in the literature,
see e.g. the references in [2], often pointing towards
modified dispersion relations of Finsler geometric ori-
gin [4–8]. Finsler geometry realizes the weak equivalence
principle by providing the most general geometric clock
postulate for which proper time T [x] depends locally on
the position and four-velocity of an observer, or massive
particle, moving along a worldline x(τ) through the
spacetime manifold M ,

T [x] =

∫
dτ F (x(τ), ẋ(τ)) . (1)

The metric limit is given by the special tangent bundle
function F (x, y) = |gabyayb|1/2. However, not all Finsler

functions F are suitable for physics. To see which are, we
have developed the geometry of Finsler spacetimes in [9].
These are tailored to provide the notions of null geometry
and causal structure which are not available in standard
mathematical settings of Finsler geometry, but are re-
quired physically in order to describe the propagation of
light and to define observers.

In this letter we will exploit the controlled geomet-
rical framework of Finsler spacetimes to analyze the
propagation behaviour of the massive scalar field. Al-
ready on Finsler backgrounds very mildly departing from
Lorentzian geometry, this proves highly interesting. We
will demonstrate the existence of particle excitations that
propagate faster than the speed of light recognized as the
boundary velocity that observers cannot reach. These
particle modes are characterized by large ratios of their
four-momentum components and mass. This effect has
a fully Finsler geometrical origin, and is the direct con-
sequence of a more complicated dispersion relation than
appears on metric spacetimes. Since the massive scalar
field is the prototypical massive field theory, a similar
mechanism should be induced by Finsler spacetime ge-
ometry also on massive fermion fields.

In this way Finsler spacetime geometry could explain
the measured puzzling neutrino results qualitatively, and
answer why they are seen for the first time for very light
particles and at collider energies around 17 GeV [1] that
are much higher than those in supernova or reactor neu-
trinos in the MeV range [10, 11].

We will now make these statements precise. The the-
ory presented here, lives on the tangent bundle TM of the
spacetime manifold M which is the union over all tangent
spaces. Given coordinates (xa) on some open neighbour-
hood U ⊂ M , one can write any vector Y in TxM as
Y = ya∂a|x; regarding Y as a point in TM , one asso-

ciates the induced coordinates (xa, yb). The associated
coordinate basis of TTM is denoted by {∂a, ∂̄a = ∂/∂ya}.
We first review, and briefly comment on, our definition
of Finsler spacetimes, see [9] for a detailed description,
before we enter the discussion of the scalar field.
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Definition. A Finsler spacetime (M,L, F ) is a four-
dimensional smooth manifold M with a continuous func-
tion L : TM → R on the tangent bundle which has
the following properties: (a) L is smooth on TM \ {0};
(b) L is positively homogeneous of real degree r ≥ 2 as
L(x, λy) = λrL(x, y) for all λ > 0; (c) L is reversible in
the sense |L(x,−y)| = |L(x, y)|; (d) the Hessian gLab of L
with respect to the fibre coordinates is non-degenerate on
TM \A where A has measure zero and does not contain
the null structure {L(x, y) = 0} ⊂ TM ,

gLab(x, y) =
1

2
∂̄a∂̄bL ; (2)

(e) the unit timelike condition holds: for all x ∈M ,

Ωx =
{
y ∈ TxM

∣∣∣ |L(x, y)| = 1 , gLab(x, y) has

signature (ε,−ε,−ε,−ε) , ε =
|L(x, y)|
L(x, y)

}
(3)

contains a non-empty closed connected component Sx.
The Finsler function associated to L is defined as
F (x, y) = |L(x, y)|1/r, the Finsler metric as

gab(x, y) =
1

2
∂̄a∂̄bF

2 . (4)

Observe that this definition is a direct generalization
of Lorentzian metric spacetimes (M, g̃) with metric g̃
of signature (−,+,+,+). To see this, set L(x, y) =
g̃ab(x)yayb. This is homogeneous of order r = 2; proper-
ties (a)–(c) are obvious; the metric gLab = g̃ab is invertible
on TM , so (d) holds; the unit timelike condition (e) is
satisfied by the set Sx of unit g̃-timelike vectors at x.

Our definition of Finsler spacetimes varies in several
important aspects from the definitions of Finsler spaces
in the literature, cf. the references in [9]. The central
new ingredient is the function L that acts as the fun-
damental geometric background structure. Properties
(a)–(d) ensure that the geometry of the null structure
{L = 0} ≡ {F = 0} is fully under control, and that
null Finsler geodesics are well-defined. These are essen-
tial to describe the effective motion of massless particles
and light. The unit timelike condition (e) implies the
existence of open convex cones of timelike vectors at all
points x, constructed from the shell Sx of unit timelike
vectors; these have a null boundary and are required to
model causality and the four-velocities of physical ob-
servers. The Finsler function F that appears in the clock
postulate (1) to measure time is a derived quantity.

Action principles for matter fields on Finsler spacetime
can be obtained from the corresponding action integral
over the spacetime manifold. The procedure was tested
in [9] for electrodynamics, where we could prove that
light indeed propagates along Finsler null geodesics.

To obtain the Finsler spacetime action of the massive
scalar field, we start with the standard Lagrangian on

metric spacetime (M, g̃),

L[g̃, φ̃, ∂φ̃] = −1

2
g̃ab(x)∂aφ̃(x)∂bφ̃(x)− 1

2
m2φ̃(x)2 . (5)

Note that L[. . . ] can be seen as a prescription to form
a scalar quantity from various tensorial objects. The
same prescription can be used to generate a Lagrangian
on TM , after promoting φ̃(x) to a tangent bundle field
φ(x, y) of zero homogeneity in y, exchanging the partial
derivatives on M for partial derivatives on TM , and re-
placing the metric g̃(x) by the Sasaki-type metric

G(x, y) = −gab(x, y)dxa ⊗ dxb − gab(x, y)

|L(x, y)|2/r
δya ⊗ δyb .

(6)
Here δya = dya +Na

bdx
b; the coefficients of the Cartan

non-linear connection are Na
b = 1

4 ∂̄b[g
Lap(yq∂m∂̄pL −

∂pL)]; in the metric limit these essentially reduce to the
Christoffel symbols Na

b → Γ[g̃]abcy
c.

Action integrals on Finsler spacetimes can be formu-
lated on the seven-dimensional subbundle Σ ⊂ TM de-
fined by |L(x, y)| = 1 and non-degenerate gL(x, y). Con-
venient coordinates (x̂a, uα) on Σ are constructed in [9];
a volume form is induced by the pullback G∗ of G,

G∗ = −gab|Σdx̂a⊗dx̂b−(gab∂αy
a∂βy

b)|Σδu
α⊗δuβ , (7)

where δuα = duα+Ñα
adx̂

a and Ñα
a = Np

a∂̄pu
α−∂auα.

With these results the action for the massive scalar field
on Finsler spacetimes becomes

S[φ] =

∫
Σ

d4x̂d3u
√
G∗ L[G,φ, ∂φ]|Σ (8)

= −1

2

∫
Σ

d4x̂d3u
√
G∗
[
GAB∂Aφ∂Bφ+m2φ2

]
|Σ
,

where the capital indices A,B label the eight induced
coordinates (xa, yb) on TM . We will see from the corre-
sponding equations of motion below, that this field the-
ory is designed to reduce to standard massive scalar field
theory on M in the limit of metric geometry, i.e., for
L(x, y) = g̃ab(x)yayb and φ(x, y) = φ̃(x).

The equations of motion for φ are obtained by varia-
tion. We first expand the action in the horizontal/vertical
basis {δa = ∂a − N b

a∂̄b, ∂̄a} of TTM , where expres-
sion (6) can be applied,

S[φ] =
1

2

∫
Σ

√
G∗
[
gabδaφδbφ+ gab∂̄aφ∂̄bφ−m2φ2

]
|Σ
.

(9)
To find δS[φ] we then require the following formulae
for integration by parts which can be proven using the
coordinate transformation rules detailed in [9]. For n-
homogeneous functions Aa(x, y) we have the identities

0 =

∫
Σ

√
G∗
[
δaA

a +
(
Γδ ppa + Sppa

)
Aa
]
|Σ
, (10)

0 =

∫
Σ

√
G∗
[
∂̄aA

a +
(
gpq∂̄agpq − (n+ 3)ypgpa

)
Aa
]
|Σ
,
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with the shorthand notation Γδ abc = 1
2g
ap(δbgpc+δcgpb−

δpgbc) and Sabc = Γδ abc − ∂̄bNa
c. With these technical

preparations we find the equations of motion[
− gab

(
δaδb−Γδ pabδp + ∂̄a∂̄b +Sppaδb

)
φ−m2φ

]
|Σ

= 0 .

(11)
In the limit of metric geometry this reduces to the stan-
dard Klein–Gordon equation (g̃ab∇[g̃]a∂b − m2)φ̃ = 0,
where ∇[g̃] denotes the Levi–Civita connection.

We will now study the propagation behaviour of the
field φ using techniques from the analysis of partial dif-
ferential equations [3]. For this purpose we first deduce
the principal symbol from the second order derivatives.

In the coordinates (xM̂ ) = (x̂a, uα) of Σ with associated

coordinate basis {∂M̂} = {∂̂a, ∂α} of TΣ one finds

−gab|Σ
[
∂̂a∂̂bφ− 2Ñα

a∂α∂̂bφ (12)

+
(
Ñα

aÑ
β
b + ∂̄au

α∂̄bu
β
)
∂α∂βφ

]
|Σ
.

It can be shown that these terms can be rewritten with
the help of the pullback metric G∗ as

G∗ M̂N̂∂M̂∂N̂φ . (13)

Below we will specify the underlying Finsler spacetime
geometry to be a very small departure from Lorentzian
geometry with two almost identical lightcones. We shall
confirm for this case that the pullback metric G∗ on Σ
is of Lorentzian signature (−,+,+,+,+,+,+). This im-
plies that the field equations of the massive scalar field φ
are hyperbolic, and so have a well-posed Cauchy prob-
lem. Allowed Cauchy surfaces of initial data are conor-
mal to the momenta P ∈ T ∗Σ inside the lightcone,
G∗−1(P, P ) < 0. Moreover, it follows that the support of
the field φ on Σ propagates into timelike directions inside
the lightcones of G∗ in TΣ. These are obtained from the
momenta by raising the indices with the map

X =
1

m
G∗−1(P, ·) . (14)

On the level of classical field theory it is clear that
only those excitations of the field φ can be interpreted
as particles which move along worldlines tangent to the
spacetime manifold M . These tangents to M all sit in
TM which in turn can be identified with the so-called
horizontal vector fields over the bundle Σ. Any such hor-
izontal vector field can be expressed in the local coor-
dinate basis as X = Xaδ̂a = Xa(∂̂a − Ñα

a∂α). Using
the map between momentum and velocity above and the
fact that G∗ preserves the horizontal and vertical struc-
ture according to (7), shows that also particle momenta
must be horizontal, i.e., P = Padx̂

a.
Now that we understand the propagation of the field φ

and have defined its particle excitations, we are in the po-
sition to study the corresponding dispersion relation. To

do so we specify a Finsler spacetime very mildly depart-
ing from flat Lorentzian metric geometry, where stan-
dard dispersion relations are well-defined. We consider
the simple bimetric background structure

L(x, y) = ηaby
ayb (ηcd + hcd) y

cyd (15)

which has no x-dependence. The ηab denote the usual
Minkowski metric, and hcd is chosen so that the met-
ric ηab + hab is Lorentzian and has a timelike cone that
contains the cone of ηab. The null structure of L is the
union of the light cones of η and η + h. The function L
produces a Finsler spacetime according to our definition
above with homogeneity r = 4; for small components hab,
it is not hard to check that the closed connected compo-
nent Sx of unit timelike vectors is given by η(y, y) = −1
up to a perturbation. Hence observers in this Finsler
spacetime can only move along worldlines with η-timelike
tangents; their boundary velocity is given by the light-
cone of η. These characteristics are shown in figure 1.

η(y,y)=0Sx

(η+h)(y,y)=0

FIG. 1. Null structure and unit timelike shell in TxM at any
point x of a simple bimetric Finsler spacetime.

The dispersion relation is now derived from the field
equation of φ, see (11). This equation simplifies on the
specific Finsler spacetime defined by L, where the geom-
etry implies both Na

b = 0 and Γδ abc = 0, to

− gab|Σ
(
δ̂aδ̂b + ∂̄au

α∂̄bu
β∂α∂β + ∂̄a∂̄bu

α∂α

)
|Σ
φ = m2φ .

(16)
We perform a Fourier decomposition into modes of mo-
mentum P = Padx̂

a + Pαδu
α = (Pa + Ñα

aPα)dx̂a +
Pαdu

α. These have the form exp[i(Pa + Ñα
aPα)x̂a +

iPαu
α], so that δ̂a and ∂α act as multiplication by iPa and

iPα, respectively. As explained above, particle modes
must correspond to Fourier modes with Pα = 0 so that
only horizontal momentum remains. Hence we find the
following dispersion relation for the particle excitations
of the massive scalar field:

− gabPaPb = −m2 . (17)

This dispersion relation is governed by the Finsler met-
ric g. We will now interpret this result.

The Finsler metric of the bimetric spacetime geome-
try L in equation (15) is calculated from the definition
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as gab(x, y) = (sign η(y, y))(ηab + hab/2) to first order
in the components hab. According to the interpretation
of fields on Finsler spacetimes proposed in [9], the tan-
gent direction y in the Finsler metric has to be identi-
fied with the four-velocity of the observer studying the
scalar field. Since all observers here are η-timelike, we
thus find −gab(x, y) = ηab + hab/2. The signature of
−gab is (−,+,+,+); comparing (6) and (7) similarly as
in [9] then shows that G∗ has the Lorentzian signature
(−,+,+,+,+,+,+) required for a well-posed propaga-
tion of φ. Substituting gab into the dispersion relation,
and using the momentum–velocity map (14) finally yields

ηabX
aXb = −1− habPaPb

2m2
(18)

where hab = ηapηbqhpq, and Xa and Pa are the horizon-
tal components of particle velocity and momentum, i.e.,
those components interpreted as velocity and momentum
on the spacetime manifold.

This dispersion relation is derived from a clear theoreti-
cal framework; it differs fundamentally from the standard
relation ηabX

aXb = −1 on flat Minkowski spacetime.
The key feature is that an observer who regards η as the
relevant spacetime structure can no longer conclude that
the massive particle is always timelike; this depends on
the ratio of habPaPb and its squared mass. If this ratio is
negative which depends on the components of hab, and if
the Pa/m are sufficiently large, then the massive particles
will be faster than the boundary velocity for observers
given by light on {η(y, y) = 0}. A closer look at the full
background null structure, see figure 1, reveals that there
still exists even faster light on {(η + h)(y, y) = 0}. We
remark that the massive scalar field in this situation will
have particle excitations moving in η-timelike, η-null and
η-spacelike directions.

Finsler spacetime models realizing this scenario can
be easily obtained. It remains to be seen whether such
spacetimes can be obtained as solutions of generalized
gravitational field equations [12]. We now discuss two
examples. First, consider a diagonal matrix hab with en-
tries (0,−κ2,−κ2,−κ2) for small |κ|. Then ηab+hab is a
Lorentzian metric, and its timelike cone contains the cone
of ηab as required. The right hand side of (18) becomes
−1 + κ2|~p|2/(2m2) which may become positive for suf-
ficiently large spatial momenta; then the particle moves
faster than light on {η(y, y) = 0}. The dispersion relation
in momentum space follows from (17) using the expres-
sion for the inverse Finsler metric −gab = ηab − hab/2:

ηabPaPb = −m2 − 1

2
κ2|~p|2 . (19)

This precisely agrees with the modified dispersion rela-
tion of Coleman–Glashow [13] which was derived in a
Lorentz symmetry violating extension of the Standard
Model. Here it is derived as the effect of a generalized
spacetime geometry on classical field theory.

As a second example consider setting h00 = −κ2 6= 0
for small |κ| and let all other components hab vanish.
Again the timelike cone of ηab is contained in the timelike
cone of ηab+hab. The observer regarding η as the sole ge-
ometric background structure identifies X0 = −P0/m =
−E/m where E is the particle energy. From (18) one
calculates the particles’ three-velocity as

|~v| = 1− m2

2E2
+
κ2

4
. (20)

This corresponds to one of the modified dispersion rela-
tions discussed in [14], derived here from a fundamental
theoretical setup for the first time.

Discussion. The OPERA observations on neutrinos
faster than light have already inspired a number of very
different, mostly phenomenological, explanations [15–24].
In contrast, our explanation is of a fundamental, purely
geometric, nature. We argued that particle velocities be-
yond the speed of light require modified principal symbols
in the free field equations; these must be given by a gen-
eralization of Lorentzian spacetime geometry. The only
way around this argument is the effective modification of
the standard metric principal symbol for the muon neu-
trino by other fields, so that the muon neutrino is always
interacting [25–28].

Our geometric approach is based on Finsler space-
times [9]. We proved for the massive scalar field that
particle modes with superluminal velocities appear even
on simple spacetimes with small departures from met-
ric geometry. The effect switches on abruptly when
0 < −habPaPb/(2m2) ∼ O(1); so it neither occurs
for particles with too small energies nor with too large
masses. Our central result is the dispersion relation (18)
that covers the Coleman–Glashow relation and other spe-
cial cases. As an inherently geometric effect this re-
sult should carry over to other massive field theories on
Finsler spacetimes. Then the OPERA neutrino results
could be explained, while being consistent with the ab-
sence of superluminality in supernova neutrinos in con-
trast to [29]. All these features arise from a fundamental
spacetime picture in a remarkably simple way.
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