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Relativity 

Mechanics is considered in a universe containing negative mass. Demanding 
(i) conservation of momentum, (ii) principle of equivalence, (iii) no runaway 
motions, ( iv )no  Schwarzschild black holes, and (v ) the  inertial and active 
gravitational masses of a body shall have the same sign, we find that all mass 
must be negative. Some properties of such a universe are investigated. We show 
that a neutral spherical body of arbitrarily small size is possible, and observers 
external to it can communicate with each other by light rays without horizon 
problems. There are no cosmological models with a power-law big bang, and 
there is an abundance of nonsingular models. Like electric charges would attract 
each other, and unlike ones would repel. This could produce stars and galaxies 
held together by charge and not gravity. Tile investigation does not suggest any 
reason why mass in the real universe should be positive. 

1. I N T R O D U C T I O N  

As far as we know, mass is always and everywhere positive. Nevertheless, 
it is interesting to speculate on a universe containing negative masses, and 
many writers have done so. 

The first speculations occurred in the nineteenth century and these are 
described in the book by Max Jammer El]. Karl Pearson attributed the 
observed fast recession of a certain star to the fact that, having negative 
mass, it was being repelled from our region of space. F6ppl in 1897 worked 
out an elaborate theory of negative masses, and Schuster in 1898 contem- 
plated a universe containing negative mass. 

The fundamental modern paper on negative mass is that of Bondi [-2]. 
He points out that mass in classical mechanics really consists of three 
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concepts: inertial mass, mi, passive gravitational mass, mp, and active 
gravitational mass, ma. In Newton's theory these are taken as equal. In 
general relativity the principle of equivalence states that mi=  mp, but ma 
need not be equal to the others. All three masses are normally taken to be 
positive, but the theories do not compel this. 

After Bondi's work, several papers about negative mass appeared 
[3-10]. Most of these investigated the interaction and possible coexistence 
of particles with masses of both signs. 

My own interest in the topic arose from the simple observation, which 
must have been made by most relativists, that if mass were negative the 
Schwarzschild solution would contain no horizon and Schwarzschild black 
holes would not exist. To this extent the universe would be, at least 
superficially, a simpler place. I then asked myself what compensating 
disadvantages, if any, would such a hypothetical universe have; and could 
it be made sensible to us at all given the outlook we have acquired from 
our familiarity with positive mass? 

If some of the masses mi,  mp, ma are allowed to be negativel a variety 
is possible in the laws of mechanics. The option I shall choose is to keep 
these and other physical laws as we know them; in particular, I retain the 
principle of equivalence and the equations of general relativity and elec- 
tromagnetism. I suppose, however, that all active gravitational mass is 
negative, so that no uncharged spherical particles are black holes. I am then 

led to a universe in which all three types o f  mass are negative. 
At this point it becomes clear that the universe I am considering has 

no practical relation to the one we live in. Indeed, what I am writing may 
be called science fantasy, and the busy reader is fully entitled to turn the 
page. My reason for continuing is to see whether the properties of the 
hypothetical universe suggest why the real universe contains only positive 
mass. My intention is well-summarized by Einstein's metaphorical phrase, 
"What interests me is whether God had any choice in the creation of the 
world." 

The conclusion, briefly summarized, is that the negative mass universe 
is comprehensible, but black holes are not eliminated because they can 
occur in charged spherical particles. 

The plan of the paper is as follows. Negative mass in classical 
mechanics is studied in Section 2, and there, assuming ma negative, I am 
led to the supposition that mi and mp should be negative also. Section 3 
deals with negative mass in the theory of relativity; here the exterior and 
interior Schwarzschild solutions are considered, and the paths of test par- 
ticles and light rays in the surrounding vacuum. In Section 4 there is a brief 
investigation of relativistic cosmology for a universe of negative mass den- 
sity. Section 5 gives the metric for a charged spherical particle of negative 
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mass in Einstein-Maxwell theory, and the paper ends with discussion and 
conclusions in Section 6. 

Professor W. H. McCrea has pointed out to me that many of the 
results of the paper can be obtained from the standard ones by keeping the 
masses positive but altering the sign of the gravitational constant, G. I 
prefer to keep G positive throughout and vary the signs of mass, because 
negative inertial mass produces unorthodox effects when nongravitational 
forces are present. 

2. NEGATIVE MASS IN CLASSICAL MECHANICS 

Consider two gravitating particles (1) and (2) with constant masses, 
and position vectors r l ,  r2. Newton's mechanics and law of gravitation give 

(1) (2) 
(1).. G ( r 2 -  rl)  mpma 
mirl _ ir2_r~[3 (1) 

(2) (1) 
(2) .. G ( r l - r 2 )  mpma 
m i r 2 =  Irl--ral  3 (2) 

where an overdot means d/dt and G is the constant of gravitation, assumed 
positive. Adding, we obtain 

(1) (2) (2) (1) , 
d ,o) . G(r 2 - r l)(m p m~ - mp ma) 
dt tmirl q- ~/)i1"2)= i r z_r l l3  (3) 

and for  the conservation the momentum o f  the particles we require 

(1) /(1) (2) ,(2) , , 
m,/mp = ma/mp = k (const.) (4) 

This is equivalent to Newton's  third law for the pair of particles (i.e., their 
actions on each other shall be equal and opposite). We shall henceforth 
suppose this to be true for all pairs of particles, so we have 

(J) (J) 
ma = kmp (for all j )  (5) 

Condition (4) ensures also the conservation o f  energy for gravitational 
motion of two particles. From (1) and (2) we have 

(1) .. (2) .. 
mir l  "rl -~ mir2 �9 f2 

,(1) (2) . (2) 
= G ( r 2 - r l ) . t m p m a r l -  mp~af2)  ] r 2 - r l l  3 



1 1 4 6  Bonnor 

and assuming (4) we can easily show that 

d 
dt (V+ V) = 0 

where T, the total kinetic energy, is defined as usual, and the potential 
energy is 

1 , . , / 1 )  (2) (2) (1) , 
V= --~ t1[mpm a + mpma) Ir 2 -  rl1-1 (6) 

The laws of conservation of momentum and energy are easily extended 
to any number of gravitating particles provided (5) is fulfilled. 

From (3) and (4) 

(1)  .. (2)  .. 
mirl + mir2 = 0 (7) 

Suppose now that inertial mass can exist with either sign, and envisage two 
(1)  (2)  

particles of equal and opposite inertial mass, m i = - m i .  Then (7) gives 
i: 1 =i: 2, both accelerations being given by (1) or (2), and being nonzero if 
rl #r2.  Thus the two particles, starting from rest, will follow each other 
with constant acceleration to infinity. The velocities increase without limit 
but momentum and energy are conserved because the inertial masses are 
equal and opposite. 

The behavior is somewhat different if the inertial masses of the two 
particles are opposite in sign but not equal. Consider two particles whose 
inertial masses satisfy 

(2)  (1)  
m i =  - - ~ m  i 

where 7 is a positive constant not equal to unity. If the particles start from 
rest we find once again that they move off in the same direction, the 

velocity of ~) being 7-1 times that of ~). Unless the particles collide their 
velocities increase throughout the motion but tend to finite limits; these 
limits can be made arbitrarily large by allowing 7 to approach unity. 
Momentum and energy are conserved. 

This runaway motion still takes place if the particles are charged, 
unless the gravitational and electrical forces just balance. Indeed, any 
system of forces obeying Newton's third law allows (7). 

I regard the runaway (or self-accelerating) motion described in the 
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previous three paragraphs as so preposterous that I prefer to rule it out by 
supposing that inertial mass is all positive or all negative, 2 i.e., 

(j) (J) 
mi>O or m~<O (forallj)  (8) 

Next I shall assume the principle of equivalence for all Particles, i.e., 

and also 

(J) (J) 
mi = mp (for all j)  (9) 

(J) 
ma<0 (for all j) (10) 

which has the effect of ruling out black holes. 
Equations (5), (8), (9), and (10) then lead to two possibilities 

(J) (J) (J) 
(a) mi<0, mp<O, ma<0 (forallj)  (11) 

(J) (J) (J) 
(b) mi>O, rap>O, mo<O (forallj)  (12) 

Since we are contemplating a different universe there is no a priori 
basis for choosing between (11) and (12). Some justification for ruling out 
(12) will appear in the next section where we shall consider possible 
interiors for Schwarzschild particles of negative ma. While admitting that 
(12) deserves further study, I shall choose (11) here. Throughout the rest o f  
the paper we shall envisage a universe in which all bodies have mi, mp and 
m a negative. 

Let me summarize the assumptions which have led me to this world- 
outlook. I started with Newton's second law ~nd his law of gravitation in 
forms (1) and (2). I then assumed (i) conservation of momentum (or the 
third law), (ii)no runaway motion, (iii)principle of equivalence, and 
(iv) no Schwarzschild black holes. This brought me to (11) and (12), of 
which I have chosen to consider here only (11). 

2 Runaway motion can also occur with two particles whose inertial masses have the same sign, 
e.g., in the case 

(1) (2) (t) (2) (1) (2) 
m i = m i ,  m p = m p ,  m a =  - - m  a 

Eq. (4) is not satisfied, momentum is not conserved, and the third law is violated. Bondi 
showed that this motion is also permitted in general relativity. From the point of view adop- 
ted in this paper, this argument would  lead us to deny the existence of particles having the 
same signs for mr and rap, but opposite signs for ma. 



1148 Bonnor 

Although the concept of a black hole is essentially one of general 
relativity, it is instructive in this section to consider a Newtonian inter- 
pretation that was given by McCrea [11]. Suppose we have a spherical 
mass m of radius ro. Let us use units in which G and c, the speed of light, 
are both unity and assume the equivalence of mass and energy E =  mc 2. 

Suppose that a particle of mass 6rn is brought slowly from infinity to the 
surface of m. The potential energy of 6m in the field of m is - r o lm 6m, and 
the total mass of the sphere is now 

m + 6m -- r o l m  (~rn (13) 

Let m and 6rn be positive: then when the radius ro is equal to m, (13) 
reduces to m and the additional particle confers no extra mass on the 
sphere. If r 0 < m the addition of 6rn actually reduces the total mass. Thus, 
there is a singular radius ro associated with the positive mass m. If, 
however, rn and 6m are both negative, 6m and the potential energy both 
contribute (negatively) to m and by the process Irnl can be increased 
indefinitely whatever the radius of m. There is no singular radius in this 
case. McCrea showed how, in the case of positive mass, the argument could 
be adapted to general relativity, and the singular radius is then ro = 2m. 

3. NEGATIVE MASS IN THE THEORY OF RELATIVITY 

In relativity a further sort of mass arises--rest mass. The rest mass m 0 
of a body need not be the same as any of m i, rap, ma. Let us, however, 
assume that mo is negative along with the others. In accordance with my 
assumption that the laws of physics are to be unaltered, we must preserve 
the formula 

E o = m o  c2 (14) 

so that the rest energy E o is negative. Indeed, since all energy has active 
gravitational mass, we must suppose that all energy is negative, except 
possibly in certain bodies where positive energy does occur but is out- 
weighed by negative energy, so that the total mass is negative. An example 
would be a fluid sphere in which the rest density is negative but a positive 
pressure contributes positively to the energy density: in this case, our 
supposition would require the total energy to be negative. A case of this 
sort is described in this section. 

Negative mass in special relativity has been considered at length by 
Terletski [12]. From the practical point of view, there would be some 
unfamiliar phenomena, for example, in the manifestations of the formula 
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(14). Theoretically, the only difficulty appears to be in the violation of 
causality, or equivalently, the violation of the second law of ther- 
modynamics. However, these violations occur only if both  positive and 
negative masses are present. From the point of view adopted in this paper, 
in which all masses are conceived to be negative, this difficulty would not 
arise. (Difficulties arising in general relativity when positive and negative 
matter  coexist have been described by de Martins [13]).  

I turn now to negative mass in general relativity. I shall use the metric 
signature - - - + and field equations 

R ~k - 1/2g~kR + Ag ~k = -87zT ik (15) 

where T ik is the energy tensor and A the cosmological constant. In this 
section and Section 5, A will be put zero, but will be nonzero in Section 4. 

We normally think of matter  as being the source of gravitational 
fields, but there exist exact solutions of (15) with T ~ =  0 and A = 0 which 
contain no parameter  referring to mass at all. Examples are the Kasner 
metric [14] and some gravitational wave metrics (e.g., plane waves [15]). 

In the exact vacuum solutions which do contain parameters referring 
to mass, the mass concerned is, in all cases known to me, the active 
gravitational mass, ma, and it enters as an arbitrary constant which can 
assume either sign; m~ and mp do not occur explicitly, even in exact solu- 
tions referring to the motion of particles [16-18].  Sometimes mi and mp 
can be identified, although with considerable difficulty, in approximate 
solutions [19, 20]. 

If we take perfect fluid as the source of the field, so that, in the usual 
notation, 

T~k = (p + p)  u,u k _ g~kp (16) 

we can expand the identities T~k;k = 0 in the form 

(p + p)  a t= h'kp,k (17) 

where a~= u~;~u k is the fluid acceleration, and h ik = g ~ -  u~u ~ is the tensor 
projecting the pressure gradient P.k into the 3 space orthogonal to u z. In 
(17) p + p is clearly to be identified with the inertial mass density. Using the 
principle of equivalence we take the same expression for  passive gravita- 
tional mass density. Whittaker [21] showed that in the static case the active 
gravitational mass density is p + 3p, and I shall assume this is so in what 
follows. 

Let us now turn to the static exterior field of a spherical body of 
negative mass m. The Schwarzschild solution is 

ds 2 = -  1 + - - 7 -  d r 2 - r 2 ( d O 2 + s i n 2 O d ~ 2 ) +  1 + - -  dt 2 (18) 
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where  

- m = M > 0  (19) 

There is no horizon, and light emitted is blue-shifted. The only singularity 
is at r = 0. 

Suppose that the coordinate radius of the body is ro. Then we can fit 
an interior containing perfect fluid of constant proper density, just as in the 
case of positive mass [22]. The metric is 

t r2 ~ 1 ds2= - 1 + ~ - ] )  d r 2 -  r2(dO2 + sin2 O d(J 2) 

-k-[~(1-I-  rg]l/2--1 / -~ dt 2 (20) 

and the pressure p and the density Po are given by 

i-" / r 2 \ 1/2 / r 2 \1/2 "1 
1+--~2 -- l + - g ]  It__ .0 %__.)_./ 

8 7 z p = ~ /  / r 2\1/2 / r 2\~/2 / 

l 
-- 8rcpo = 3R 2 = 6Mro  3 

so that the proper density Po is negative and the constant R is real. The 
pressure is positive and the pressure gradient negative. (It should be noted 
that, since inertial mass in negative, random motions of particles produce 
tensions, not pressures.) 

There is no lower limit on the coordinate radius ro, in contrast to the 
case of positive density in which reality of the metric and the finiteness of 
the pressure impose lower limits on ro. 

The inertial mass density P0+ P, and the active gravitational mass 
density Po + 3p, are both negative inside the sphere. The integral of the 
former over the volume of the sphere (i.e., the total inertial mass of the 
body), is therefore negative. Thus it is not possible, with an interior solu- 
tion of constant rest density, to make a model of a sphere satisfying (12). 

A different interior for a spherical body was found by Whittaker [23]. 
This has constant active gravitational mass density, i.e., 

p + 3p = n (const.) 

It is easy to check that, in the case of negative m, the field equations (15) 
and (16), together with continuity conditions at the boundary, require that 
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if n is negative the inertial mass  density p + p is also negative th roughou t  
the sphere, so in this case, also, the body  would not  satisfy (12). 

These two interior solutions const i tute the support ,  referred to in 
Section 2, for ruling out  (12). Of  course, they do not  p rove  that  there are 
no interiors consistent  with (12); I ment ion  them as some justification for 
considering (11) rather  than  (12), at least in the first instance. 

Let  us now consider the mot ions  of test particles in the space-t ime 
(18). These are, of course, given by the geodesics. The mot ions  of a positive 
mass  test particle are the same as those of  a negative mass  one, if they start  
f rom the same initial configuration.  There are no bound  orbits, as can 
easily be checked by s tudying the geodesic equat ions  [-24]. It  is wel l -known 
that  in Newton ian  theory  orbits  under  a central repulsive inverse square 
law are hyperbolas  or straight  lines. 

Consider  a test particle projected inward a long a radial line. I f  its 
velocity of  projection is great enough, it can approach arbitrarily near the 
center, but it is always turned back before reaching r = 0. A test particle 
projected radially ou tward  proceeds to infinity. 

It  is interesting to s tudy the cor responding  si tuat ion for a ray of light. 
The null geodesic equat ions  for a radial  ray in space-t ime (17) reduce to a 
single equat ion  

- - = - - e  1 +  
dt 

where e = + 1 for an incoming and - 1 for an outgoing ray. In tegra t ing this 
with initial condi t ion r = r 1 at t = 0 we find 

et = rl - r -  2 M  log[-(rl + 2M)( r  + 2 M ) - * ]  (21) 

Thus  an incoming ray is not turned back and reaches r = 0 in a finite coor-  
dinate t ime r I - 2 M  log(1 + r l /2M ). 

Consider  now two fixed observers  01 and 02 on the same radial line, 
at coord ina te  radii r 1 and r e (r  2 > r l ) .  Suppose  that  0 2 sends a light ray to 
01 w h o  reflects it back. Then  using (20) we find that  the coordinate  t ime 
which elapses at 02 dur ing the return trip of  the ray is 

T =  2{r 2 - r ,  - 2 M l o g [ , ( r  2 + 2M)( r l  + 2M)  13 }. (22) 

Not ing  that  the function f ( r )  - r - 2 M  log(r  + 2M)  increases monoton ica l ly  
f rom r = 0, we see that  T is positive; it is also finite for finite r2. The  p roper  
t ime at 02 cor responding  to T is 

s2 = T(1 + 2Mr21) 1/2 
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If the process is reversed so that  01 sends a ray to 0 2 who reflects it back, 
T is unchanged and the proper time at 01 is 

Sl = T(1 + 2MRS1) 1/2 

Thus, sl and s2 are finite and positive. So any two f ixed radial observers can 
communicate with each other infinite proper time by the radar method. (This 
is true even if 01 is at the singularity r = 0 . )  There are no failures in com- 
munication like those due to the horizon in the Schwarzschild space-time for 
a positive mass. 

4. C O S M O L O G Y  WITH NEGATIVE MASS 

From purely geometrical considerations we know that the metric of a 
spatially homogeneous universe in comoving coordinates must be that of 
Robertson and Walker: 

ds2= - I S ( t ) ]  2 {dr2+ I f ( r ) ]  2 (d02 + sin 2 0.d~b2)} +dt  2 (23) 

where f ( r ) =  sin r, r or sinh r according as the space curvature k is + 1, 0, 
or - 1 ,  respectively. Supposing that the field equations are (15) and that 
the model is filled with perfect fluid with energy tensor (16), we can write 
the relevant equations as 

8/rp = S-2(3S 2 + 3k - A S  2) (24) 

8rcp = - S - 2 ( 2 S S  + ~2 + k - A S  2) (25) 

Then for the inertial and active gravitational mass densities we have 

872(p + p) = 2S-2( - SS + ~z + k) ~< 0 (26) 

8~(p + 3p) = 2 S - 1 ( -  3S + AS)  <~ 0 (27) 

which we suppose to be nonpositive as explained in Section 3. Note that A 
does not occur in (26). S(t) is taken as real and positive; I shall omit the 
case in which p and p are zero for all t. 

I shall not attempt a complete classification of the possible forms of 
the scale function S, but content myself with describing some of the 
possibilities. 

4.1. k=O, 1 

From (26) we need ~ > 0  so S cannot have a maximum: recollapse 
after expansion is not possible for the spatially flat and elliptic models. To 
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study the possibility of a big bang, we put S = :r ~ (t ~> 0, n > 0, a > 0) but 
we find that it is not possible to satisfy (26). Thus, models with k =  0, 1 
do not admit a power-law big bang. As an example of a scale function 
satisfying both (26) and (27) I mention 

S = fi cosh cot,/3 > 0, c~fi > 1, 30r 2 > A 

where c~,fl are constants. The model with this form of S is free of 
singularity. 

4.2. k =  - 1  

This case admits a static universe, S = S o  (const.) provided A is 
negative. In nonstatic universes, if A~>0 (27) again requires S~>0, so S 
cannot have a maximum and recollapse is not possible. 

A power-law big bang is possible, but afterward the regime satisfies 
(26) only for a limited time. 

The case with most variety is k = - 1, A < 0. This allows a maximum 
in S. It also allows small oscillations about the static universe; that is, we 
may take 

S = So + sf(t) 

where s is constant and f ( t )  is a function oscillating about zero. Then if s 
is sufficiently small, (26) and (27) are still satisfied. 

4.3. p = 0 ,  A = 0  

This case is actually included in the foregoing, but I mention it 
explicitly because it corresponds to the simplest Friedmann models of 
traditional cosmology. It follows from (27) that 5? must be nonnegative, 
and then from (26) that k = -1 .  Integrating (25) with p = 0 and k = - 1  we 
find 

S = ~2 cosh 2 U 

t + to = ~2(1/2 sinh 2u + u) 

where ~ and t o are constants. The geometry is necessarily hyperbolic and 
S decreases from infinity at t = - o o  to a minimum and then increases to 
infinity again. There is no big bang or other singularity. 

To sum up, the main feature of interest in this section is the absence 
of a power-law big bang leading to a permanent negative mass cosmology, 
and the abundance of nonsingular models. However, as explained in 
Section 6, electric forces might play a prominent part in the motion of large 
structures in the universe. If so, the results of this section would be 
drastically affected. 
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5. THE SPACE-TIME OF A STATIC SPHERICAL CHARGE 

Let us assume that three of the equations of Einstein-Maxwell theory 
are as usual 

R i k  - 1/2gikR = -8rc(Ti~ ) + E ik) 

E l k  = A i ;  k - -  A k ;  i 

Fik k = 4 7 z J  i 

(28) 

(29) 

(30) 

ik T(m ) being the material energy tensor, Eik the electromagnetic energy 
tensor, Ai the four-potential for the electromagnetic field Fik, and J~ the 
current density; a semicolon denotes covariant differentiation. To find the 
exterior solution for a static spherical charge we put Tiara)--0, and assume 
a static spherically symmetric metric. 

An important difference from the usual derivation arises because of 
our assumption that inertial mass is negative. To see this, consider the 
energy of two charges ql q2, held at rest in their mutual field. It is the work 
that must be done to bring q2 from infinity to its actual position in the field 
of ql. Since q2 will have negative inertial mass, the work has the sign of 
- q ~ q 2 ,  which is opposite to its sign in ordinary physics. Therefore, in this 
case the energy  tensor Eik to be subs t i tu ted  into (28) m u s t  have a minus  sign 

p r e f i x e d  to the usual  express ion,  i.e., it must be 

E ~k = Fg~Fk,~ - 1/4 gikFabFab (31) 

Let us assume that this is generally true for all forms of electro- 
magnetic energy. Then it will ensure that, for example, incoherent radiation 
contributes negatively to the rest mass in (14). This is required by our 
supposition, for otherwise one could envisage a container of negative mass 
filled with sufficient radiation to give a body of positive mass, which we 
have ruled out. 

Continuing with the spherical case, we need to substitute (31) into 
(28) and solve (28)-(30) for a static spherically symmetric metric and elec- 
tric change q. We proceed in the usual way [26] and arrive at the solution 

d s 2 = _ (  1 2m q2,~-i r r 2 J dr2 - r2(d02 + sin2 0 dcp 2) 

+ ( 1  2m q2) 
r r-~ dt2 

F14 = qr - 2  

(32) 
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This differs from the standard one in the negative sign before q2, which 
arises because of the change in sign of E ~k occurring in (31). 

In (32) m is negative in accordance with our fundamental assumption. 
The metric has a horizon where g44 = 0, i.e., where 

ro = - Iml + (m 2 -Jr- q2)1/2 

Thus, a charged particle has a horizon unless its coordinate radius is 
greater than r o. Therefore, although our supposition that m is negative 
ruled out black holes in neutral particles, charged particles can f o r m  black 
holes. 

6. DISCUSSION AND CONCLUSION 

In the universe we have been considering, the kinetic energy of 
particles, having the sign of the inertial mass, is negative. Random motions 
exert tensions, not pressures. The potential energy of the gravitational field 
is negative, as usual. 

In the real universe, gravitation (although very weak compared with 
other forces) becomes important when its attractive character produces 
large masses. Repulsive gravitation, as envisaged in this paper, would tend 
to disperse matter; it would not form stars. Indeed, preventing the forma- 
tion of large masses, gravity might not assume much importance at all. 
Negative inertial mass would have very far-reaching consequences, 
however. 

Maxwell's equations are unchanged in our hypothetical universe; what 
is altered is the motion of charges and magnets, all endowed with negative 
inertial mass. The sign of the electromagnetic energy is opposite to that in 
ordinary theory. 

The forces of electromagnetism could produce condensations. Con- 
sider two particles of equal inertial mass mi, and charges ql and q2, moving 
in each other's electric field with angular velocity ~o in a circle of radius a 
about their mass center. Ignoring gravitation, we have for each particle 3 

- mi a(O2 = ql q2(2a) -2 

Since m i < 0  this requires ql and q2 to have the same sign. Thus atoms 
would be possible and would be of two types: those of positive charge, and 
those of negative charge. Chemistry might be a very interesting subject in 
this universe. Moreover, positive atoms would attract each other, and so 

3 Coulomb's law is unaltered, in particular, in sign. 
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would negative atoms. In this way large condensations, each with a 
positive or negative charge, could form. 

In fact, charge would take the place of gravitational mass in the for- 
mation of large bodies. Although there would be no neutral planets orbit- 
ing stars under the force of gravitation, there could be charged planetary 
systems. Intelligent life in such a universe could not be ruled out. Galaxies 
with charge of either sign might exist, and positively charged galaxies 
would repel negatively charged ones. This would have a profound effect on 
the purely gravitational cosmological models described in Section 4. 

There would be no neutral black holes, and observers in the space- 
time of a neutral negative mass would have no difficulties of communica- 
tion, as explained in Section 3. Charged bodies could form black holes, 
however, and (since the largest bodies would probably be charged) the 
theorists' problems with black holes would still be present. 

Epistemologically, it seems that a universe of negative mass (but no 
positive mass) presents no logical or conceptual difficulties for general 
relativity or electromagnetism--although such difficulties may arise in 
other branches of physics. Pursuing Einstein's theological metaphor, men- 
tioned in the Introduction, one can say that the results of this paper do not 
reveal why God chose matter to have positive rather that negative mass. 
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