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Planck scale effects on some low energy quantum phenomena
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Almost all theories of Quantum Gravity predict modifications of the Heisenberg Uncertainty
Principle near the Planck scale to a so-called Generalized Uncertainty Principle (GUP). Recently it
was shown that the GUP gives rise to corrections to the Schrödinger and Dirac equations, which in
turn affect all non-relativistic and relativistic quantum Hamiltonians. In this paper, we apply it to
superconductivity and the quantum Hall effect and compute Planck scale corrections. We also show
that Planck scale effects may account for a (small) part of the anomalous magnetic moment of the
muon. We obtain (weak) empirical bounds on the undetermined GUP parameter from present-day
experiments.

Various approaches to quantum gravity, such as String
Theory, Doubly Special Relativity (DSR) Theories, Loop
Quantum Gravity via so-called Polymer Quantization, as
well as black hole physics, predict a minimum measurable
length, and a modification of the Heisenberg Uncertainty
Principle to a so-called Generalized Uncertainty Princi-
ple, or GUP, and a corresponding modification of the
commutation relations between position and momenta
[1–7]. The only GUP consistent with the symmetries and
index structure of the modified commutator bracket be-
tween position and momentum from all the above deriva-
tions (all of which predict corrections involving at most
terms up to second order in the momentum), and which
ensures [xi, xj ] = 0 = [pi, pj ] (via the Jacobi identity)1

is, to the best of our knowledge [9, 10]

[xi, pj ] = i~

[

δij−a
(

pδij +
pipj
p

)

+ a2
(

p2δij + 3pipj
)

]

(1)

∆x∆p≥ ~

2

[

1− 2a < p > +4a2 < p2 >
]

≥ ~

2

[

1+

(

a
√

〈p2〉
+4a2

)

∆p2+4a2〈p〉2−2a
√

〈p2〉
]

(2)

where a = a0/MPlc = a0ℓPl/~, MPl = Planck mass,
ℓPl ≈ 10−35 m = Planck length, and MPlc

2 = Planck
energy ≈ 1019 GeV . It should be stressed that the GUP-
induced terms become important near the Planck scale.
It is normally assumed that a0 ≈ 1. For phenomeno-
logical implications of the above GUP, see [8–12]. Note
that although Eqs. (1) and (2) are not Lorentz covari-
ant, they are at least approximately covariant under DSR
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1 (a) In refs. [8–10] α was used in place of a.
(b) The results of this article do not depend on this particular
form of GUP chosen, and continue to hold for a a large class of
variants, so long as an O(a) term is present in the right hand
side of Eq.(1).

transformations [6]. We expect the results of our paper
to have similar covariance as well. In addition, since DSR
transformations preserve not only the speed of light, but
also the Planck momentum and the Planck length, it is
not surprising that Eqs. (1) and (2) imply the following
minimum measurable length and maximum measurable
momentum

∆x ≥ (∆x)min ≈ a0ℓPl (3)

∆p ≤ (∆p)max ≈ MPlc

a0
. (4)

It can be shown that the following definitions

xi = x0i , pi = p0i
(

1− ap0 + 2a2p20
)

, (5)

(with x0i, p0j satisfying the canonical commutation re-
lations [x0i, p0j ] = i~ δij , such that p0i = −i~∂/∂x0i)
satisfy Eq.(1). In [8, 9] it was shown using Eq.(5),
that any non-relativistic Hamiltonian of the form H =
p2/2m+V (~r) can be written as H = p20/2m− (a/m)p30+
(5a2/2m)p40 + V (r) + O(a3), implying the modified
Schrödinger equation

[

− ~
2

2m
∇2 +

iα~3

m
∇3 +

5a2~4

2m
∇4

]

ψ = i~
∂ψ

∂t
. (6)

We will treat the a and a2 terms as perturbations, al-
though the higher order Schrödinger equation now has
new non-perturbative solutions of the form ψ ∼ eix/2a~,
which may have interesting physical implications [9].
Some phenomenological implications of the above GUP
modified Hamiltonian were examined in [11, 12].
Note that for the earlier versions of the GUP (which

did not take into account DSR), the terms in Eqs.(1), (2)
and (5) linear in a and the Planck length were effectively
absent. In the following sections, we will apply that ver-
sion to the problems of Superconductivity (Section I) and
the Quantum Hall Effect (Section II). In Section III, we
will write the Dirac equation that follows from the full
GUP, and apply it to the problem of anomalous magnetic
moment of the muon.
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I. SUPERCONDUCTIVITY

The usual Schrödinger current minimally coupled to a
Cooper pair of charge −2e and mass 2m reads [13]

~J = − e

2m

[

ψ⋆

{(

~

i
~∇+

2e

c
~A

)

ψ

}

+

{(

~

i
~∇+

2e

c
~A

)

ψ

}⋆

ψ

]

.

(7)
Substituting ψ = |ψ|eiφ, and assuming virtually all spa-
tial dependence of the wavefunction in the phase φ, such

that |ψ| ≈ constant, and ~∇ψ = iψ~∇φ, we get:

~J = −
[

2e2

mc
~A+

e~

m
~∇φ .

]

|ψ|2 (8)

Integrating both sides of (8) over a closed loop inside a

superconducting material (where ~J = 0), we get:

0 =

∮

~J · d~l =
∮
(

2e2

mc
~A+

e~

m
~∇φ
)

· d~l (9)

or, from Stokes theorem:

Φ ≡
∫

~B · d~S =

∮

~A · d~l = ~c

2e

∮

~∇φ · d~l

=
~c

2e
∆φ =

~c

2e
2πn ≡ nΦ0 , Φ0 =

hc

2e
, n ∈ N(10)

which is the flux quantization in a superconductor.

Next, we would like to estimate GUP effects on the
above flux quantum. We see from (6) that because of
the ∇3 operator, the leading Planck scale term of order
O(a) is non-local, except in 1-spatial dimension. We do
not know of a natural way of circumventing the problem
for the non-relativistic case at hand, though such a lin-
earization can modify the Dirac equation [9] (which we
shall use in Section III). Thus we will work with the ear-
lier version of the GUP and equivalently the O(a2) term
in Eq.(6). The new conserved current follows (see [11],
with β → 5a2/2), again for charge −2e and mass 2m

~J =
~

2mi

[

ψ⋆~∇ψ − ψ~∇ψ⋆
]

+
5a2~3e

2mi

[(

ψ⋆~∇∇2ψ − ψ~∇∇2ψ⋆
)

+
(

∇2ψ⋆~∇ψ −∇2ψ~∇ψ⋆
)]

(11)

≡ ~J0 + ~J1 , (12)

ρ = |ψ|2 ~∇ · ~J +
∂ρ

∂t
= 0 , (13)

with J1 being the GUP induced term. Once again, min-
imal coupling with the Cooper pairs give

~J1 = −5a2e

2m

{

ψ⋆

[(

~~∇
i

+
2e

c
~A

)(

~~∇
i

+
2e

c
~A

)

·
(

~~∇
i

+
2e

c
~A

)]

ψ +

[(

~~∇
i

+
2e

c
~A

)(

~~∇
i

+
2e

c
~A

)

·
(

~~∇
i

+
2e

c
~A

)

ψ

]⋆

ψ

+

[(

~~∇
i

+
2e

c
~A

)

·
(

~~∇
i

+
2e

c
~A

)

ψ

]⋆ [(

~~∇
i

+
2e

c
~A

)

ψ

]

+

[(

~~∇
i

+
2e

c
~A

)

·
(

~~∇
i

+
2e

c
~A

)

ψ

][(

~~∇
i

+
2e

c
~A

)

ψ

]⋆}

(14)

Using | ~A| ≈ | ~B|L, where L is a typical linear dimen-

sion of the sample and ~~∇ψ/i = ~ψ~∇φ ≈ ~2πψ/L, an

experiment can be arranged that such that |~~∇ψ/i| ≪
|2e ~Aψ/c|. For example, for | ~B| ≈ 0.1 T, L ≈ 0.1 m,

|~~∇ψ/i|/|2e ~Aψ/c| ≈ 10−3. Hence

~J1 ≈ −80a2e4

mc3
~A| ~A|2|ψ|2 . (15)

Thus using once again 0 =
∮

~J · d~l =
∮

~J0 · d~l +
∮

~J1 · d~l,
and treating | ~A|2 ≈ | ~B|2L2 as effectively constant over
the domain of integration we now, in lieu of Eq.(10), get

the flux (1− 40a2e2

c2 | ~A|2)Φ = hc
2en or

Φ =

(

1 +
40a2e2

c2
| ~A|2

)

nΦ0 ≡ n
(

Φ0 + a2Φ1

)

(16)

Φ1 =
40 e2| ~B|2L2

c2
Φ0 , n ∈ N . (17)

to leading order in a.
Measurement of the fundamental flux quantum implies

a2Φ1 < δΦ0/Φ0, where δΦ0/Φ0 is the experimental error.
Using Eq.(17) above, we obtain an upper bound on a0,

a0 <
10−n/2

√
40

MPlc
2

eBL
< 1019−n/2 , (18)

assuming experimental precision of 1 part in 10n, where

again we used | ~B| ≈ 0.1 T, L ≈ 0.1 m. For example, for
n = 4, a0 < 1017. Conversely, if a significant improve-
ment of precision can be achieved, then small deviations
from Φ0, as predicted above, may be observable! P in-
duced correction to the flux quantum.

II. QUANTUM HALL EFFECT

The modification of the flux quantum has a direct ef-
fect on the observable Hall resistance. As is well known,
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a current density jx along x in a two dimensional sample
in the xy plane subjected to a magnetic field B along z
results in a potential difference and an effective electric
field Ey along y. This results in a cancelation of the elec-
tric and Lorentz force on the charge carriers (having drift
velocity v)

eEy = evB , (19)

and sets up a measurable potential difference in that di-
rection. Eq.(19), and the relation jx = nev, where n is
the electron density in the sample, imply

Ey =
jxB

ne
. (20)

The Hall resistivity ρxy is defined by the relation

Ey = ρxyjx , (21)

which combined with Eq.(20) yields

ρxy =
B

ne
. (22)

We also know that quantum mechanically, the elec-
trons in the sample subjected to the perpendicular mag-
netic field give rise to Landau levels, with the energy at
level n given by

En = ~ωc

(

n+
1

2

)

, (23)

where ωc = eB/mc is the cyclotron frequency. Now, from
flux quantization it follows that the density of quanta of
magnetic flux is given by

nH =
B

Φ0 + a2Φ1

(24)

in terms of the single unit of flux quanta given by (16).
This is also the density of states for each Landau level,
where we have made the replacement 2e→ e in Eq.(10),
since now the carriers are electrons as opposed to Cooper
pairs.
Now if the Fermi energy EF lies between the energy

levels Ek and Ek+1, all states Ei , i ≤ k are occupied,
resulting in the carrier density

n = knH , k ∈ N. (25)

Thus from Eqs.(16), (17) and (22), the Hall resistance
turns out to be [14]

ρxy =
hc

ke2

[

1 +
10a2e2| ~B|2L2

c2

]

, k ∈ N . (26)

Although the Hall resistance is still quantized, its mag-
nitude has shifted by a small amount. A bound similar
to Eq.(18), as well as possibilities of measurement of cor-
rections of the above type can be argued for this case as
well.

III. ANOMALOUS MAGNETIC MOMENT OF

THE MUON

In this case, we show that the non-relativistic limit of
the Dirac equation can be used to extract GUP correc-

tions. First, as in [9] we linearize p0 =
√

p20x + p20y + p20z
by replacing p0 → ~α · ~p, where αi (i = 1, 2, 3) and β
are the Dirac matrices, for which we use the following
representation

αi =

(

0 σi
σi 0

)

, β =

(

I 0
0 −I

)

. (27)

The GUP-corrected Dirac equation can thus be written
to O(a) as

Hψ =
(

c ~α · ~p+ βmc2
)

ψ(~r, t)

=
(

c ~α · ~p0 − c a(~α · ~p0)(~α · ~p0) + βmc2
)

ψ(~r, t)

= i~
∂ψ(~r, t)

∂t
. (28)

To study the non-relativistic limit, we write the spinor ψ
as [15]

ψ = e−imt

(

χ1(~r, t)
χ2(~r, t)

)

, (29)

and we include the electromagnetic potential Aµ = (φ, ~A)
in Eq.(28) by the usual minimal coupling prescription [11]

i~ ∂
∂t → i~ ∂

∂t − eφ, ~p0 → ~Π0 ≡ ~p0 − e ~A/c, obtaining the
two component equations

i~
∂χ1

∂t
= eφχ1 + c

(

~σ · ~Π
)

χ2 − ca
(

~σ · ~Π
)2

χ1 (30)

i~
∂χ2

∂t
=
(

eφ− 2mc2
)

χ2 + c
(

~σ · ~Π
)

χ1 − ca
(

~σ · ~Π
)2

χ2

In the non-relativistic limit mc2 >> eφ, |∂χ2/∂t|, the
second of Eqs.(30) becomes to O(a)

χ2 =
1

2mc

[

1− a

2mc

(

~σ · ~Π
)2
]

(

~σ · ~Π
)

χ1 , (31)

which, when substituted into the first of Eqs.(30) yields

i~
∂χ1

∂t
= eφχ1 +

1

2m

(

~σ · ~Π
)2

χ1

− a

(2m)2c

(

~σ · ~Π
)4

χ1 − ca
(

~σ · ~Π
)2

χ1 . (32)

Using the identities σaσb = δab + iǫabcσc and
(

~σ · ~Π
)2

=

|~Π|2−e~~σ · ~B/c and the identification of the spin operator
~S = ~σ/2, Eq.(32) becomes

i~
∂χ1

∂t
=

[(

1

2m
− ca

)

|~Π|2 − a

(2m)2c
Π4 + eφχ1

−2
e~

2mc

(

1− 2acm− a

mc
Π2

)

~S · ~B − ae2~2

(2m)2c3
| ~B|2 (33)

− ie~a

2(mc)2

(

~∇(~σ · ~B) · ~Π− e

c
~A · ~∇(~σ · ~B) + i~∇2(~σ · ~B)

)

]

χ1
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where the terms in the first line correspond to the GUP
corrected kinetic terms (including the Π4 term) and the
potential energy term, while those on the second and
third lines pertain to the interaction with the electron
with an external magnetic field. The ones in the third
line are also new terms which depend on derivatives of
the magnetic field2 . Since e/2mc is the Bohr magneton,
one gets g = 2(1− 2acm− a

mcΠ
2) , or

(

g − 2

2

)

GUP

= −
[

2acm+
aΠ2

mc

]

. (34)

Note that GUP predicts a slight decrease in the value of
g, and for a measurement accuracy of 1 part in 10n, one
obtains the bound

a0 < 10−nmPl

mµ

< 1020−n , (35)

where we have used mPl = 1.2× 1019 GeV/c2 and mµ =
105.7 MeV/c2. Thus for the present-day precision level
of n = 12, a0 < 108, which gives a much tighter bound.
Conversely, further increase of accuracies may enable one
to observe the above deviation.

IV. CONCLUSIONS

In this paper we have explored Planck scale effects on
some low energy systems via the Generalized Uncertainty
principle, which appears to be a robust prediction of most
theories of Quantum Gravity. We found that small but
non-zero effect are present for the fundamental flux quan-
tum of superconductivity, for the integer quantum Hall

effect, and for the anomalous magnetic moment of the
muon. Since these effects have not been observed so far,
one can obtain important upper bounds on the GUP pa-
rameter, which turns out to be a0 < 1017 and a0 < 108

from current experiments in Superconductivity and muon
experiments respectively. These can be compared with
the bounds obtained in [8], between 1018 and 1025, and in
[10], between 1010 and 1023. Although the above bounds
appear to be rather weak, future experiments of greater
precision will either provide better bounds on the GUP
parameter or in an optimistic scenario, may be able to
detect some of these effects. In a broader context this
approach may open up a low energy window to quan-
tum gravity phenomenology. This strongly suggests that
more work needs to be done in this direction.
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Note added

After completion of this work, we became aware of paper
[16] (we thank the referee for pointing this out to us),
in which the authors obtain a lower bound on the funda-
mental (higher dimensional) Planck mass in theories with
extra dimensions, from muon (g − 2) measurements, by
directly using the modified Dirac equation. In this paper
on the other hand, we use the non-relativistic limit of the
GUP modified Dirac equation to obtain upper bounds on
a0.

2 We used the following identities in their derivation: [~Π, ~σ · ~B] =

~p0(~σ · ~B), [Π2, ~σ · ~B] = ~Π·~p0(~σ · ~B)+{~p0(~σ · ~B)}·~Π and (~σ · ~B)Π2 =

Π2(~σ · ~B)− [Π2, ~σ · ~B]
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