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Constraints on Lorentz invariance violation from gamma-ray burst GRB090510

Zhi Xiao and Bo-Qiang Ma∗

School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

We obtain modified dispersion relations by requiring the vanishing of determinant of inverse
of modified photon propagators in Lorentz invariance violation (LIV) theory. Inspired by these
dispersion relations, we give a more general dispersion relation with less assumption and apply it to
the recent observed gamma-ray burst GRB090510 to extract various constraints on LIV parameters.
We find that the constraint on quantum gravity mass is slightly larger than the Planck mass but is
consistent with other recent observations, so the corresponding LIV coefficient ξ1 has reached the
natural order (o(1)) as one expects. From our analysis, the linear LIV corrections to photon group
velocity might be not excluded yet.

PACS numbers: 11.30.Cp, 11.30.Er, 11.55.Fv, 98.70.Rz

I. INTRODUCTION

Lorentz invariance violation (LIV or LV) has been intensively investigated both theoretically and experimentally
in recent years. The revival passion of relativity violation in theoretical construction originates from the attempt to
compromise general relativity with quantum mechanics. On the other hand, the experimental searches may provide
us with concrete evidence to sift a most hopeful candidate of quantum gravity from a vast number of theories.

From theoretical aspect, some theories expect LIV to happen at high energies. For example, spontaneous Lorentz
symmetry breaking may happen in string theory as the perturbative string vacua is unstable, thus some tensor fields
generate nonzero vacuum expectation values [1]. The breaking of Lorentz symmetry also happens in other frameworks,
such as loop gravity [2], foamy structure of spacetime [3], torsion in general gravity [4], etc.. More recently, Hor̆ava
proposed a power counting renormalizable theory of gravity [5] with a “dynamical critical exponent” z to characterize
the anisotropic scaling properties between space and time. While Lorentz symmetry is breaking at high energies, it
restores when this dynamical critical exponent flows to z = 1 at low energies. There are also some other proposals,
such as the so called double special relativity [7], which preserves relativity principle with a nonlinear realization
of Lorentz group, thus conventional Lorentz symmetry is also broken. One striking consequence of LIV is that the
photon propagation speed is no longer a unique constant, generally, it depends on energy and propagation direction.

These theoretical investigations have promoted various experiments to search for the deviation from conventional
linear dispersion relation for photons [8]. However, as the possible violation effects for photons must be very tiny, the
detection of these effects present a significant challenge to experimentalists. In addition to improve the precision of
measurements to find any possible evidence of LIV, we should also take efforts on searching for certain accumulating
processes to amplify these tiny effects. Such idea has already been proposed on the observation of certain astronomical
objects such as pulsars, active galactic nuclei (AGN) [9] and gamma-ray bursts (GRB) [15], etc., and the tiny LIV
effect could manifest itself through the observation of rotation of linear polarization (birefringence) [16] or time of
flight lag [15] for photons with different energies.

The paper is organized as follows. In Section 2, we review certain modified photon dispersion relations derived from
several LIV models, including standard model extension (SME) with power counting renormalizable operators [16],
effective field theory with dimension 5 operators [19] and Hor̆ava’s anisotropic U(1) theory. In Section 3, we focus on
time of flight analysis of GRB and try to extract some LIV parameters from the recent observation of GRB090510 [18].
We briefly discuss the time of flight analysis of photons from cosmological distant objects, then we give a general
dispersion relation used conventionally in the astrophysical analysis of LIV [9]. This general dispersion relation
contains those terms derived from the models in Section 2 as special cases. We then extract constraints to linear LIV
parameters from GRB090510 to o(0.1), improved by 1 or 2 order of magnitude than those in [34] and [9, 35]. From
the analysis of the time-lag formula we find that it is hard to significantly improve the constraints from this simple
and rough analysis, unless other time-lag effects (like source effect, which is a major uncertainty in the time of flight
analysis) can be clarified or other methods will be used.

∗ Corresponding author. Email address: mabq@phy.pku.edu.cn

http://arxiv.org/abs/0909.4927v3


2

II. PHOTON DISPERSION RELATIONS

A. Background tensor field induced LIV

A systematical treatment of LIV to incorporate particle standard model with power counting renormalizable La-
grangian, called standard model extension (SME), was proposed by Kostelecký and Colladay in Ref. [16], where the
photon sector reads

Lphoton = −
1

4
FµνFµν −

1

4
(kF )κλµνFκλFµν +

1

2
(kAF )κǫκλµνAλFµν . (1)

From (1), we deduce the equation of motion below

∂αFµα + (kF )µαβγ∂αF βγ + (kAF )αǫµαβγF βγ = 0. (2)

By expressing (2) in terms of 4-vector potential Aµ and assuming that the Fourier decomposition

Aµ(x) ≡ aµ(p) exp(−i p · x) (3)

is still reliable, we express (2) in the momentum space as

Mµν(p)aν(p) = 0, (4)

where

Mµν(p) = ηµν p2 − pµ pν − 2(kF )µκλνpκ pλ − 2i(kAF )κǫµκλνpλ. (5)

We impose gauge fixing condition and require the determinant of the reduced matrix to vanish, then we can obtain
an implicit function p0(~p), which is an eighth order-polynomial in p0. Otherwise one can verify that the determinant
of Mµν vanishes as a consequence of gauge invariance of equation (2). For example, we use Lorentz gauge

∂α Aα = 0, (6)

in momentum space, i.e.,

pα aα(p) = 0. (7)

So we have the gauge fixed reduced matrix

Mgf
µν(p) = ηµν p2 − 2(kF )µκλνpκ pλ − 2i(kAF )κǫµκλνpλ. (8)

For our purpose, we just try to extract a simplified result by assuming that (particle) rotational invariance still holds
regardless of the explicit violation of Lorentz symmetry, i.e., only (kAF )0 and α (a combination of (kF )κλµν , for
details, see Appendix or [20]) are nonzero. With this assumption, we have the following matrix:

M red(p) =






p2 − α~p2 αp0p1 αp0p2 αp0p3

αp0p1 −(p2 + α((p0)2 + ~p2 − (p1)2)) αp1p2 + 2ik0
AF p3 αp1p3 − 2ik0

AF p2

αp0p2 αp1p2 − 2ik0
AF p3 −(p2 + α((p0)2 + ~p2 − (p2)2)) αp2p3 + 2ik0

AF p1

αp0p3 αp1p3 + 2ik0
AF p2 αp2p3 − 2ik0

AF p1 −(p2 + α(p0)2 + ~p2 − (p3)2))






. (9)

Its determinant reads

det(M red(p)) =
{

4(k0
AF )2~p2 −

(

(1 + α)(p0)2 − (1 − α)~p2
)2

}

(1 + α)(p2)2. (10)

By requiring det(M red(p)) = 0 (otherwise there would be no solution for a photon field), we have two dispersion
relations, one is the conventional p2 = 0 and the other is

(p0)2 =
1

(1 + α)

(

(1 − α)~p2 ± 2kAF |~p|
)

. (11)
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We can also use another equivalent method to obtain these two dispersion relations. First, we rewrite (1) in an
explicitly quadratic form in the photon field, i.e.,

Lphoton = −
1

4
FµνFµν −

1

4
(kF )κλµνFκλFµν +

1

2
(kAF )κǫκλµνAλFµν −

1

2ξ
(∂ · A)2

= −
1

2
∂µAν

(

Fµν + 2(kF )κλµν∂κAλ +
ηµν

ξ
∂ · A − 2ǫκλµν(kAF )κAλ

)

= total derivative +
1

2
Aν(D−1

F )νλAλ, (12)

where we have added gauge fixing terms − 1
2ξ

(∂ · A)2 in (12) and

(D−1
F )νλ ≡

(

�ηνλ − ∂ν∂λ(1 −
1

ξ
) − 2(kF )νµκλ∂µ∂κ − 2ǫνµκλ(kAF )µ∂κ

)

. (13)

Using the same Ansatz (3), we define a matrix Σ in momentum space

Σ(p)νρ = −

(

p2ηνρ − (1 −
1

ξ
)pνpρ

)

+ 2(kF )νµκρpµpκ − 2iǫνµκρp
µ(kAF )κ. (14)

From the conventional free field theory, the differential operator inside the two fields in the quadratic form of certain
Lagrangian (e.g., (12)) is just the inverse of free field propagator in position space (see [21] or [22] ), thus (14) is just
the inverse of photon propagator expressed in momentum space. We know that generally the inverse of propagator
is just the dispersion relation, from which one can find the pole of the corresponding particle, so we expect that
the determinant of (14) in case of ξ → ∞ (i.e., without gauge fixing) is zero. Similarly, we can find the explicit
dispersion relation in a special gauge by choosing the corresponding specific value of ξ. For example, we find that
Σ(p)νρ|ξ=1 = −Mgf(p)νρ (ξ = 1 is just the Lorentz gauge (6) used to obtain (9), and this choice can avoid the
inequivalent gauge choice comparison. As pointed out in [16], different gauge choices are inequivalent with each other
in the LIV electrodynamics). So in the rotational invariant case, this matrix can also lead to (11) and the conventional
dispersion relation. We mention here that similar method to obtain photon propagator in the SME framework has
also been obtained recently in [23], with a more systematic and complete treatment.

The leading order nonrenormalizable LIV operators (dimension 5) were systematically studied in [19], where Myers
and Pospelov also introduced explicitly a timelike four-vector na to take LIV into account, thus this theory can be
regarded as a leading nonrenomalizable part of SME. Since we are only interested in the study of the consequence of
LIV to the propagation of GRB, we focus our attention only on photon field there. The corresponding Lagrangian is

δLphoton =
ξ

2MPl

ǫµνκρnαFαρn · ∂(nκFµν). (15)

We write it in another equivalent form, i.e.

Lphoton =
1

2
Aν

(

�ηνρ −
2ξ

MPl

n · ∂(n · ∂ nκ∂µǫνµκρ + nκ∂µ∂αǫνµκαnρ)

)

Aρ + total derivative, (16)

where we have added the Lorentz gauge fixing term. Then by performing the same procedure as before, we have the
reduced inverse of propagator

Π(p)νρ = −p2ηνρ −
2iξ

MPl

(ǫνµ0ρp2
0pµ + ǫνµ0αp0pµpαδρ

0) (17)

when expressing explicitly the time-like four-vector n in a preferred frames as nρ = (1, 0, 0, 0). Then by imposing

detΠ(p) = det











−p2 0 0 0

0 p2 −i 2ξ
MP l

(p0)2p3 i 2ξ
MP l

(p0)2p2

0 i 2ξ
MP l

(p0)2p3 p2 −i 2ξ
MP l

(p0)2p1

0 −i 2ξ
MPl

(p0)2p2 i 2ξ
MP l

(p0)2p1 p2

)











= p4

(

(
2ξ

MPl

~p)2(p0)4 − p4

)

= 0, (18)

we obtain the dispersion relation

(p0)2 = ~p2 ±
2ξ

MPl

(p0)2|~p|, (19)

which was obtained in [19] plus the conventional one p2 = 0.
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B. Anisotropic scaling induced LIV

Now we turn to another framework of LIV proposed recently by Hor̆ava [5]. His original proposal was to provide a
UV completion of quantum theory of gravity. Lorentz symmetry appears naturally in this theory when the dynamical
critical exponent flows to z = 1 at low energies. While at high energies, space and time present anisotropic scaling

t → λzt, ~r → λ~r, (20)

thus Lorentz symmetry breaks down. However, this formalism does not break spatial isotropy, thus there is no need to
assume a special background field configuration to realize rotational invariance, unlike the background tensor formalism
discussed above. Aside from gravity, Hor̆ava also constructed an anisotropic Yang-Mills theory with critical spatial
dimension D = 4 [5]. As Chen and Huang recently gave a general construction of bosonic field theory demonstrating
this anisotropic scaling behavior [6], we follow this new approach instead of [5]. In the new formalism, the photon
action reads

S =
1

2

∫

dtdDx
1

g2
E



 ~E2 −
∑

J≥2

1

gJ−2
E

nJ
∑

n=0

(−1)n λJ,n

M2n+ 1

2
(D+1)(J−2)

∂2n ⋆ F J



 . (21)

For simplicity, we consider the case z = 2 and D = 3. Then one immediately reads from the action that the scaling
dimensions of the couplings are

[gE]s =
1

2
(z − D) + 1, [λJ,n]s = z + D +

1

2
(z − D − 2)J − 2n. (22)

Thus in this case the renormalizable condition ([gE ]s ≥ 0 : z ≥ D − 2) for ~E is automatically satisfied. Actually, it is
superrenormalizable. If the critical dimension (i.e., [gE ]s = 0) is D = 3, then z must equal to 1, which just corresponds
to the conventional Lorentz invariant gauge theory. Renormalizability also imposes the condition [λJ,n]s ≥ 0, and for
a free field theory, J = 2, n ≤ z − 1 = 1. For simplicity, we set λ2,0 = 1

2 , then the free Lagrangian (with gauge fixing
term) is

Lfree =
1

g2
E

(

~E2 −
1

2
FijF

ij −
λ2,1

M2
(∂iFik · ∂jFjk + ∂iFjk · ∂iFjk)

)

−
1

ξ
(∂ · A)2

=
1

2g2
E

Aν

{(

�ηνρ − ∂ν∂ρ(1 −
1

ξ
)

)

−
3λ2,1

M2
∆(∆δkj − ∂k∂j)δ

ν
kδρ

j

}

Aρ. (23)

By performing the same trick, we can obtain

Γ(p)νρ = −p2ηνρ +
3λ2,1

M2
δν
kδρ

j (pkpj − ~p2δjk), (24)

and the corresponding dispersion relations read

p2 = 0, (p0)2 = ~p2(1 +
3λ2,1

M2
~p2). (25)

III. TIME OF FLIGHT ANALYSIS OF GRB IN LIV THEORY

In this section, we discuss the LIV effect on the observed GRBs, focusing especially on the time of flight of γ rays.
Gamma-ray bursts (GRBs) are sudden, intense flashes originating from distant galaxies with cosmological distances,
and they are the most luminous electromagnetic events we ever known. As already shown in the above formulas,
LIV can modify conventional Maxwell equations and hence leads to modified dispersion relation in addition to the
conventional one. However, due to the large mass scale suppression, this LIV effects must be very tiny to account for
the conventional stringent terrestrial test. Fortunately, as first pointed out in [3], the cosmological origin plus high
energy and the millisecond time structure of GRB make GRB an ideal object to observe the possible minuscule effects
of LIV. Actually, many known stringent constraints to LIV parameters were drawn from astronomical observations,
such as AGN [9], ultrahigh-energy cosmic rays (UHECR) [13], CMB [10, 11], etc.. The LIV induced modified dispersion
relation can lead to many interesting phenomena. The most apparent consequence is the frequency dependence of
photon group velocity, though this is not always the case. For example, if only kF 6= 0 in the SME framework, photons
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propagate independently with their energies. So if photons with different energies are emitted simultaneously, this
frequency dispersion of group velocity then leads to the so called time-lag phenomenon. In addition to time lag,
certain models, e.g. SME, indicate that photons with independent polarizations obey distinct dispersion relations.
This was demonstrated in the above two models, see (11) and (19). All these models involve a conventional mode
with an extraordinary helicity dependent one, thus can lead to the so called vacuum birefringence effects [16, 17]. The
tiny changes in polarization grow linearly with propagation distance and hence can be accumulated to be observable
for cosmological sources. This can provide a sensitive probe to LIV [10, 11, 12, 16, 17]. Aside from purely kinematic
effects, the tiny LIV correction to dispersion relation can also dramatically change the thresholds of high-energy particle
reactions, hence leads to distinct particle spectrum of UHECR with respect to that of Lorentz invariance cases. The
observation of this spectrum can provide a unique signature of LIV [24]. On the contrary, the nonobservation of these
effects can put very stringent constraints to LIV parameters [13]. Below we will primarily discuss the GRB time-lag
caused by LIV.

First we make a brief review of the formula used in the description of GRB photon time-lag with respect to the
source redshift. For an isotropic and homogeneous universe, one can derive a differential relation

dt = −
dz

H0(1 + z)
√

ΩΛ + ΩK(1 + z)2 + ΩM (1 + z)3 + ΩR(1 + z)4
(26)

from the Friedman equation

(
ȧ

a
)2 +

K

a2
=

8πGNρ

3
, (27)

see [25] for details, where the present-day Hubble constant H0 ≃ 71 km/s/Mpc and ΩK = 0 for a nearly flat universe.
The matter density ΩM ≃ 0.27, radiation density ΩR ≃ 0 and vacuum energy density ΩΛ ≃ 0.73 are the cosmological
parameters evaluated today. We note that (26) is the standard result derived from general relativity which is a locally
Lorentz invariant (LI) theory. So in dealing with photon time-lag below, we implicitly assume that the gravity side
is untouched. Though a unified treatment should also include the change of gravity due to possible LIV effects hence
may also change (26) and the time-lag formula used below.

Then we make a general assumption of photon dispersion relation

E2 = f(p; M, {ξi}), (28)

where f(p; M, {ξi}) is a general function of p (p = |~p|), some unknown large scale M relevant to LIV and a set of
parameters {ξi}. Inspired by the dispersion relations (19) and (25) derived from particular models discussed above
and the fact that LIV corrections must be very tiny at low energies, we assume that the expansion of (28) around the
conventional dispersion relation E2 = p2 is

E2 = p2(1 +

N
∑

i=1

ξi(
p

M
)i), (29)

where N is a large number marking the precision of our expansion. Thus (19) and (25) can be regarded as just two
special cases of (29), i.e., only ξ1 6= 0 and ξ2 6= 0 respectively (where (19) just adds helicity dependence assumption
of LIV). In addition to its generality, the reason for beginning with (29) instead of those particular models is that
various experiments have already ruled out (19) to a convincing level (see [31] and a recent review [36]). Indeed,
dimension 5 LIV operators have suffered very stringent constraints both from frequency-dependent birefringence test
with GRB [37, 39], Crab Nebula [38], and the UHECR spectrum analysis under special assumptions [13] (i.e. LIV
corrections to electron dispersion relations are smaller than those of photon ones, e.g., in the Liouville string models
of foamy structure of space-time [40], where only neutral gauge bosons receive quantum-gravity corrections).

When taking into account of the expansion of universe [26] and the assumption that gravity side remains intact,the
time-lag led by modified dispersion relation (29) with leading order LIV correction of order n is

δt =
1 + n

2
ξn

δEn
0

Mn

∫ z

0

(1 + z′)n

h(z′)
dz′, (30)

where

h(z) = H0

√

ΩΛ + ΩK(1 + z)2 + ΩM (1 + z)3 + ΩR(1 + z)4, (31)
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E0 is the redshifted photon energy observed on earth. δEn
0 = En

l − En
h , where El and Eh denote lower and higher

energies of observed photons respectively in the time delay. The n-th order correction corresponds to dimension n+4
LIV operators. This can be seen from another formula

δt = δwd−4

∫ z

0

(1 + z′)d−4

h(z′)
dz′

∑

jm

0Yjm(n̂)k
(d)
(I)jm

, (32)

which is suitable to the analysis of time-lag in the SME framework given recently by Kostelecký and Mewes [27].
Before we discuss the linear (n = 1) and the quadratic (n = 2) corrections to the photon dispersion relation, we

first utilize the observed time delay in GRB090510 located at redshift z = 0.903 ± 0.003 to give a rough estimate to
photon mass. As is well known, photon mass is represented by dimension 2 operator (quadratic in photon fields) and
may spoil gauge invariance (this is not the case in Chern-Simons theory [22] in space-time dimension 3). However,
the presence of photon mass does not necessarily implies LIV. In a LI theory (Proca’s theory), the existence of a
unique speed c could be regarded as the limiting speed of light for arbitrary-high energy photons. So photon mass
is absent in a LIV theory (e.g. SME [37]) if gauge invariance is still valid. But we can still give a rough estimate of
its magnitude by using (32) and the fact that the bulk of the photons above 30 MeV arrived 258 ± 34 ms later than
those below 1 MeV [18] in the observation of GRB090510 :

∑

jm

0Yjm(n̂)k
(2)
(I)jm

≤ 1.4801 ∗ 10−24 GeV2. (33)

This could be translated to the photon mass bound as mγ ≤ 1.217 ∗ 10−3 eV, much larger than the mass upper
bound given in [30], mγ ≤ 1 ∗ 10−18 eV. This confirms the remarks given in [33]: “(departures of electrostatic
and magnetostatic fields from the gauge invariant one) give more sensitive ways to detect a photon mass than
the observation of velocity dispersion.” Of course, one can obtain an effective mass bound comparable to this as
mγ ≤ 1.217 ∗ 10−19 eV [11], but the origin is different. From the bound derived we see that one would need a much
larger photon mass to explain the time of flight data if one does not introduce the LIV effect (or other effect, e.g. source
effect). More than that, as the presence of photon mass indicates that high energy photons propagate faster than low
energy ones, this time advance of high energy photons may cancel possible time-lag induced by certain LIV models
(ξi < 0 in (29), see also (35)). Thus mass effects may conspire with LIV effects to produce a nearly nonobservation
of time-lag in certain time of flight analysis [14]. On the contrary, in some scenario with ξi > 0, the time-lag might
be caused by the combined effects of mass and LIV, thus the situation is still complicated. Fortunately, due to the
high precision laboratory experiment [32] (constrain mγ to 10−17 eV level), those scenarios mentioned above do not
happen and we can safely ignore the mass effects in our discussion about LIV constraints drawn from the time of
flight analysis of GRB090510.

Without the trouble of possible mass effects, we can then securely discuss LIV effects in the time-lag phenomena
below. As a byproduct of (32), we give a rough estimate to mass dimension 3 LIV operators

∑

jm

0Yjm(n̂)k
(3)
(I)jm

≤ 1.1558 ∗ 10−21 GeV. (34)

We see that this bound is comparable to that obtained from the LIV effects on Schumann resonances in a natural
earth-ionosphere cavity [28], though it is much weaker than the other astronomical constraints [10, 11] (which are
constrained to less than 10−43 GeV).

Then we turn to nonrenormalizable LIV operators but using formula (30) of time-lag instead, as it is more suitable to
our simple analysis based on general dispersion relation (29). As usual, we only discuss energy dependent corrections
to photon group velocity to the quadratic level. Before looking into details, from (29) we derive modified group
velocity

vg ≡
∂E

∂p
=

p

E

(

1 +
1

2
(i + 2) ξi(

p

M
)i

)

=

(

1 + 1
2 (i + 2) ξi(

p
M

)i
)

√

1 + ξi(
p
M

)i

≃ 1 +
1

2
(i + 1) ξi(

p

M
)i, (35)

where Einstein sum over index i from 1 to N is indicated. Then by the same procedure in [26], we can give a time-lag
formula which is accurate to 2nd order of E

M
and first order in ∆z as

δt = ξ1
El − Eh

M

∫ z

0

(1 + z′)

h(z′)
dz′ +

3

8
(4ξ2 − ξ2

1)
E2

l − E2
h

M2

∫ z

0

(1 + z′)2

h(z′)
dz′. (36)
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It can be seen that (36) is consistent with (30) when ξ2 = 0 and ξ1 = 0 respectively for linear (though the linear
correction is calculated to second order in the large mass suppression, it will be checked that this can not improve the
linear constraints any more, thus in practical calculation, (30) is enough) and quadratic corrections to group velocity.

For linear energy dependent correction to 1st order, we derive from the most conservative claim that, the bulk of the
photons above 30 MeV arrived 258±34 ms later than those below 1 MeV [18], the LIV scale M

ξ1

∼ −5.02689∗1016 GeV,

which is 3-order less than the Planck scale if |ξ1| is of order 1. However, if utilizing the more stringent claim that, a
single highest detected photon from GRB090510 with 31 GeV arrives 0.179 s later than the main LAT emission above
100 MeV, we can deduce a significant higher quantum gravity mass scale

M

ξ1
∼ −7.72017 ∗ 1019 GeV, (37)

where the minus sign indicates the fact that photons with higher energies propagate slower than lower ones as already
mentioned in the discussion of photon mass (ξ1 < 0). By direct calculation of solving 2nd order equation of M

ξ1

(i.e.

setting ξ2 = 0 in (36)), we find that this can not improve the result any more as mentioned. This illustrates that in a
rough estimate of linear correction to group velocity, there is no need to take into account 2nd order correction of (M

ξ1

)2

as (36). The result (37) means that linear correction gives a LIV mass scale nearly 6.32 MPl if ξ1 ∼ o(1), which is very
close to that of [18]. Of course, if one chooses other data from the Table 2 in [18], one can obtain the same conclusion
that quantum-gravity mass scale is significantly above the Planck mass (at most of order 102 MPl [18]) from this simple
analysis. This conclusion is nothing more than a translation of the claim that the constraint on the linear energy
dependent LIV parameter |ξ1| can be placed in the range 10−1 ∼ 10−2, if we regard M ∼ MPl. If this constraint
is confirmed by other astrophysical observations, then it puts the constraints at least 2 order of magnitude stronger
than [9] and [35], which gives |ξ1| < 17 and |ξ1| < 58 respectively. However, this constraints is not stronger enough as
those obtained in [13] extracted from the UHECR spectrum and those in [37] from the frequency-dependent helicity
observations of GRB930131 and GRB960924. However, we note that those most stringent constraints (ξ1 ≤ 10−14)
up to now rely either on particular assumptions (see [13]) or helicity dependent models, e.g. (19). Thus it is necessary
to put the constraints obtained from (29) on the linear LIV parameter ξ1 to the same level (still a hard task as a span
of 12 orders to be conquered) from future observations. If so, we can finally make a more firm claim that dimension 5
LIV operators can be excluded firmly [36]. Then we may reach the conclusion in the near future that either Lorentz
symmetry is exact, or at high energies there are some other symmetries such as SUSY plus CPT to protect our low
energy theory from receiving CPT odd corrections [31].

For quadratic energy dependent correction, i.e. ξ1 = 0, we obtain from the most conservative claim mentioned
above the constraints on quantum-gravity mass scale M ∼ 5.84718 ∗ 107 GeV if ξ2 ∼ o(1). While for the single

31 GeV event, we obtain the constraint as M2

ξ2

∼ −5.26767 ∗ 1021 GeV2, thus M ∼ 7.25787 ∗ 1010 GeV. It is obvious

that the constraints obtained from quadratic correction are much weaker than those from linear one as quadratic
correction being suppressed more than one power of M . Thus in the future we should take more efforts to the
search of more stringent constraints on quadratic LIV correction to photon group velocity. As mentioned above,
the quadratic correction is produced by dimension 6 operators, which are the leading order nonrenormalizable CPT
even LIV operators. As we known, various current constraints to dimension 6 operators are also much weaker than
dimension 5 ones [37].

Before we close this section, we observe that our results are similar to that obtained recently in [9] and [34, 35].
We give these results in the table below:

Source Mkn501 [35] PKS 2155 - 304 [9] GRB080916C [34] GRB090510 [18]

redshift 0.034 0.116 4.35 0.900

δt(s) 240 27 16.54 0.179

Eh to El(GeV) 104 to 250 600 to 210 13.22 to 10−3 31 to 0.1

M(GeV) 6.06 ∗ 1017 7.51 ∗ 1017 1.55 ∗ 1018 7.72 ∗ 1019

ttotal

δt
6.01 ∗ 1013 1.72 ∗ 1015 2.34 ∗ 1016 1.29 ∗ 1018

TABLE I: Where the first three rows below the source row are the data given from [9, 18, 34, 35] respectively, the last 2 rows
are the linear quantum-gravity masses and total time to time-lag ratios calculated from (30).

We find that the rough estimates about the linear mass scale are consistent with those given by the reference above
and the order of magnitude of the linear mass scale ranges from 1017 to 1019. It is easily seen from Table I that
one can approach this large magnitude with the advantages both from the quotient of total time to time-lag (which
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originates from the cosmological distance and short pulse nature of GRB) and the large absolute energy difference
(range from GeV to TeV). To further constrain the linear order quantum-gravity mass hence the coefficient ξ1 in
the future, we need to amplify the large ratio of total time to time lag, as photons with energies much higher than
already observed (TeV) can not reach us from cosmological distance due to the pair creation interaction with infrared
background photons. One way to amplify the large time ratio is to exclude other non-LIV induced time-lag factors, like
different response time of detectors [41] (which slightly increase linear quantum-gravity mass scale obtained in [18]),
or one turns to other methods like spectrum analysis [13], otherwise the constraints can not be improved significantly.
Further more, a statistic analysis by taking into account of statistic error [35] and a multi-source analysis to calculate
the correlation between distance and time-lag [15] will make the results more concrete.

IV. CONCLUSION

In this paper, we reviewed several modified dispersion relations from standard model extension and Hor̆ava theory in
the photon sector. Dispersion relations are derived consistently from the inverse of photon free propagators, without
taking quantum corrections into account. Inspired by these dispersion relations we give a more general one (29)
to avoid some particular assumptions (e.g. helicity dependence). Then we apply this relation to the time of flight
analysis of recently reported GRB090510. We obtain constraints on the linear LIV energy dependent coefficients
to the level of ξ1 ∼ o(.1), which is equivalent to the statement that the relevant linear quantum-gravity mass scale
is M ∼ 7.72 ∗ 1019 GeV. Using the same method we also get the quadratic mass scale Mq ∼ 7.26 ∗ 1010 GeV,
denoting a much loose constraints to dimension 6 operators. These results are consistent with those in [9, 18, 34, 35].
As a byproduct of the time-lag formula (32), we point out that one can safely ignore the photon mass effect in the
discussion of LIV effects in the time-lag analysis of GRBs due to the stringent terrestrial constraints on photon mass,

and we obtain a constraints
∑

jm 0Yjm(n̂)k
(3)
(I)jm

≤ 1.1558 ∗ 10−21 GeV to the dimension 3 operator.

From our analysis, we find that though the constraints obtained are far from reaching those from the spectrum
analysis [13] and those from the helicity dependent analysis [37], our analysis relies little on extra assumptions except
the expansion (29) and the formula (30). Thus to exclude the linear order quantum-gravity correction to photon group
velocity is still too early as long as the constraints to the general linear order correction (29) have not approached
the same level as in [36]. We find that the results have already reached the precision of probing Planck mass scale or
even higher, slightly better than [9, 35]. If one can largely clarify other time lag uncertainties like [41], the constraints
could be improved more.
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Appendix

The previous referred parameter α, is just one of the parameters defined from various combinations of (kF )κλµν .
These definitions arise for convenience from the consideration of the symmetry of this tensor. From the Lagrangian

δL = −
1

4
(kF )κλµνFκλFµν , (38)

we find that (kF )κλµν is antisymmetric to the two indices κλ and µν respectively, and is symmetric to the interchange
of these two pairs of indices. As we do not want to include a conceivable θ-type term proportional to 1

2 ǫκλµνFκλFµν ,

we require that ǫκλµν(kF )κλµν = 0. By requiring that (kF )κλµν is doubletraceless as any trace term would serve
merely as a redefinition of kinematic terms and hence a field redefinition, (kF )κλµν has the symmetry of Riemann
tensor. Then we can define the decomposition of (kF )κλµν in terms of its spatial and time indices, i.e.,

(kDE)jk ≡ −2(kF )0j0k, (kHB)il ≡
1

2
(kF )jkmnǫijkǫlmn,

(kDB)jk ≡ −(kHE)kj ≡
1

2
(kF )0jmnǫkmn, (39)
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with Latin indices run from 1 to 3. Moreover, we define

αE =
1

3
tr(kDE), αB =

1

3
tr(kHB), (40)

and double tracelessness gives tr(kHB + kDE) = 0, i.e., α ≡ αE = −αB. So we can extract the trace term to define

(βE)jk = (kDE)jk − αδjk, −(βB)jk = (kHB)jk + αδjk. (41)

By using Bianchi identity (kF )κ[λµν] = 0, we have tr(kDB) = 0. With these definitions, we can rewrite the Lagrangian
(1) as

Lphoton =
1

2
( ~E2 − ~B2) +

1

2
α( ~E2 + ~B2) +

1

2

(

(βE)jkEjEk + (βB)jkBjBk + (kDB)jkEjBk
)

+ k0
AF

~A · ~B − φ~kAF · ~B + ~kAF · ( ~A × ~E). (42)
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[37] V.A. Kostelecký and N. Russell, arXiv: hep-ph/0905.0031, Table XIV.
[38] T. Jacobson, S. Liberati, D. Mattingly and F.W. Stecker, Phys. Rev. Lett. 93, 021101 (2004).
[39] I.G. Mitrofanov, Nature 426, 139 (2003).
[40] J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, and A.S. Sakharov, Int. J. Mod. Phys.A 19, 4413 (2004)
[41] G. Ghirlanda, G. Ghisellini and L. Nava, arXiv:astro-ph/0909.0016.


	Introduction
	Photon Dispersion Relations
	 Background tensor field induced LIV
	 Anisotropic scaling induced LIV 

	Time of flight Analysis of GRB in LIV theory
	Conclusion
	Acknowledgments
	Appendix
	References

