
ar
X

iv
:1

10
9.

05
21

v1
  [

as
tr

o-
ph

.H
E

] 
 2

 S
ep

 2
01

1

Measurement of separate cosmic-ray electron and positron spectra with the Fermi

Large Area Telescope
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G. Jóhannesson,32 A. S. Johnson,1 T. Kamae,1 H. Katagiri,33 J. Kataoka,34 J. Knödlseder,35, 36 M. Kuss,2 J. Lande,1

L. Latronico,2 M. Lemoine-Goumard,37, 38 M. Llena Garde,20, 21 F. Longo,3, 4 F. Loparco,10, 11 M. N. Lovellette,25

P. Lubrano,7, 8 G. M. Madejski,1 M. N. Mazziotta,11 J. E. McEnery,26, 39 P. F. Michelson,1 W. Mitthumsiri,1, ‡

T. Mizuno,27 A. A. Moiseev,40, 39 C. Monte,10, 11 M. E. Monzani,1 A. Morselli,41 I. V. Moskalenko,1 S. Murgia,1

T. Nakamori,34 P. L. Nolan,1 J. P. Norris,42 E. Nuss,19 M. Ohno,43 T. Ohsugi,44 A. Okumura,1, 43 N. Omodei,1

E. Orlando,1, 45 J. F. Ormes,46 M. Ozaki,43 D. Paneque,47, 1 D. Parent,48 M. Pesce-Rollins,2 M. Pierbattista,15
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55Dipartimento di Fisica, Università di Roma “Tor Vergata”, I-00133 Roma, Italy

(Dated: September 5, 2011)

We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Tele-
scope. Because the instrument does not have an onboard magnet, we distinguish the two species
by exploiting the Earth’s shadow, which is offset in opposite directions for opposite charges due
to the Earth’s magnetic field. We estimate and subtract the cosmic-ray proton background using
two different methods that produce consistent results. We report the electron-only spectrum, the
positron-only spectrum, and the positron fraction between 20 GeV and 200 GeV. We confirm that
the fraction rises with energy in the 20–100 GeV range and determine for the first time that it
continues to rise between 100 and 200 GeV.

PACS numbers: 96.50.S-, 95.35.+d, 95.85.Ry, 98.70.Sa

Introduction. Positrons were discovered in cosmic rays
(CRs) in 1964 [1]. Subsequent measurements through the
1960s and 1970s [2, 3] showed that the positron fraction,
e+/(e+ + e−), decreases with energy up to ∼10 GeV.
See [4] and references therein for a summary of these
early experiments. Balloon payloads through the 1980s
measured CR electrons and positrons with inconsistent
results [5, and references therein]. Starting in the mid-

1990s, HEAT [6–10] and CAPRICE [11, 12] measured
the CR positron spectrum and fraction up to ∼ 50 GeV,
indicating a predominatly decreasing positron fraction
with increasing energy. However, a small excess in the
positron fraction above ≈ 7 GeV was detected by HEAT
and also seen in CAPRICE data, as well as by AMS-
01 [13]. Recently, the PAMELA instrument has mea-
sured a positron fraction that increases with energy above



∼10 GeV [14, 15] with high precision, confirming the in-
dications seen in the earlier data.
The best established mechanism for producing CR

positrons is secondary production: CR nuclei interact
inelastically with interstellar gas, producing charged pi-
ons that decay to positrons, electrons, and neutrinos.
However, this process results in a positron fraction that
decreases with energy [4, 16]. The origin of the rising
positron fraction at high energy is unknown and has been
ascribed to a variety of mechanisms including pulsars,
CRs interacting with giant molecular clouds, and dark
matter. See [17, 18] for recent reviews.
The Large Area Telescope (LAT) is a pair-conversion

gamma-ray telescope onboard the Fermi Gamma-ray
Space Telescope satellite. It has been used to measure
the combined CR electron and positron spectrum from
7 GeV to 1 TeV [19, 20]. The LAT does not have a mag-
net for charge separation. However, as pioneered by [21]
and [22], the geomagnetic field can also be used to sepa-
rate the two species without an onboard magnet. Müller
and Tang [22] used the difference in geomagnetic cut-
off for positrons and electrons from the east and west
to determine the positron fraction between 10 GeV and
20 GeV. As reported below, we used the shadow im-
posed by the Earth and its offset direction for electrons
and positrons due to the geomagnetic field, to separately
measure the spectra of CR electrons and positrons from
20 GeV to 200 GeV. In this energy range, the 68% con-
tainment radius of the LAT point-spread function is 0.1◦

or better and the energy resolution is 8% or better.
Region selection and exposure calculation. The Earth’s

magnetic field significantly affects the CR distribution in
near-Earth space. At energies below ∼10 GeV, a signifi-
cant fraction of the incoming particles are deflected back
to interplanetary space by the magnetic field (“geomag-
netic cutoff”). The exact value of the geomagnetic cutoff
rigidity depends on the detector position and viewing
angle. In addition to the geomagnetic cutoff effect, the
Earth blocks trajectories for particles of certain rigidities
and directions while allowing other trajectories. This re-
sults in a different rate of CRs from the east than the
west (the “east-west effect”) [23–25].
Figure 1 shows example trajectories for electrons and

positrons. Positive charges propagating toward the east
are curved outward, while negative charges are curved
inward toward the Earth (Figure 1). This results in a
region of particle directions from which positrons can ar-
rive, while electrons are blocked by the Earth. At each
particle rigidity there is a region to the west from which
positrons are allowed and electrons are forbidden. There
is a corresponding region to the east from which electrons
are allowed and positrons are forbidden. The precise size
and shape of these regions depend on the particle rigidity
and instrument location.
We used a high-precision geomagnetic field model (the

2010 epoch of the 11th version of the International Ge-
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FIG. 1: Examples of calculated electron (red) and positron
(blue) trajectories arriving at the detector, for 28 GeV parti-
cles arriving within the Equatorial plane (viewed from the
North pole). Forbidden trajectories are solid and allowed
trajectories are dashed. Inset: the three selection regions
(electron-only, positron-only, and both-allowed) for the same
particle energy and spacecraft position as the trajectory traces
(viewed from the instrument position in the Equatorial plane).

omagnetic Reference Field [26]) and a publicly available
code [27] to trace charged particle trajectories in the mag-
netic field and determine allowed vs. forbidden regions
for each species. We previously used the same magnetic
field model and tracer code to perform a precise compar-
ison between predicted and measured geomagnetic cutoff
rigidities for the Fermi LAT orbit, finding that the tracer
code accurately predicts the geographical distribution of
the geomagnetic cutoff [28]. We also tested the model
for the 1995 epoch and found that the differences for this
analysis were small. We therefore used the static 2010
model for all of the data analyzed here, which spanned
June 2008 through April 2011.

Each particle trajectory is traced backward from the
spacecraft until it reaches 20 Earth radii from the Earth
center or reaches the Earth’s atmosphere, which we ap-
proximate with a 60 km thickness (Figure 1). If the tra-
jectory reaches 20 Earth radii, it is an allowed trajec-
tory. If it reaches the atmosphere, it is a forbidden tra-
jectory. We calculate electron-only, positron-only, and
both-allowed (control) regions for each 30 s time step us-
ing the instantaneous spacecraft latitude and longitude
and the nominal orbital altitude of 565 km. The regions
are determined for each energy bin, with 10 logarithmi-
cally spaced energy bins spanning 20–200 GeV. The 30 s
time step (in which the spacecraft travels ∼ 2◦ longitude)
is sufficient to achieve a finely sampled distribution of
instantaneous regions and exposures. Although we use
binned position data for the exposure calculation, we use
the instantaneous spacecraft position at the time of each
event to determine which region it lies in, so the event



selection is not affected by the finite step size.

We define the “deflected horizon” (inset of Figure 1)
to be the curve that separates the allowed and forbidden
regions for a particular energy, charge, and spacecraft
position. The curve represents the position of the Earth
horizon as “deflected” by the geomagnetic field, with de-
flection occurring in one direction for electrons and in the
opposite direction for positrons. At 20 GeV the curves
differ significantly from the actual Earth horizon. At
higher energies, the curves asymptotically approach the
undeflected horizon. The positron-only region is defined
to be the region above the positron horizon and below the
electron horizon. A corresponding definition is used for
the electron-only region. The region above both instan-
taneous horizon curves and below a nadir angle of 130◦ is
the control region, where both species are allowed. The
control region is truncated at 130◦ because the additional
statistics gained using a larger region are unnecessary for
this analysis and require more processing time. The re-
gions vary with spacecraft position and particle energy.

We determine the integrated exposure (cm2 sr s) for
each of the three regions by integrating the energy- and
direction-dependent effective area of the instrument over
the solid angle of each region and over the livetime of the
data set. The numerical integration is performed with
0.5◦ pixels. For each particle, we use the reconstructed
energy and actual spacecraft position at the time of the
event to determine the deflected electron and positron
horizon curves. We then calculate the nadir angle dif-
ference between the particle arrival direction and the de-
flected horizon: D± = N − N±, where N is the nadir
angle from which the event arrived and N± is the nadir
angle of the positron (electron) horizon, evaluated at the
azimuth direction from which the event arrived. As de-
scribed below, we use D± to select one set of CR elec-
trons and another set of CR positrons and to remove
atmospheric electrons and positrons.

When a CR nucleus interacts in the Earth’s atmo-
sphere, it produces a shower of secondary particles in-
cluding gamma rays, electrons, and positrons. At the
high energies considered here, the secondaries are closely
collimated along the direction of the primary. The limb
of the atmosphere is therefore visible in gamma rays as a
bright, thin (1-2◦ wide) ring of emission. [29]. The peak
emission is produced at a nadir angle of 68◦, which is
1.3◦ (∼60 km) above the Earth surface.
Atmospheric electrons and positrons are produced

with angular distributions similar to that of atmospheric
gamma rays. Unlike the gamma rays, they are deflected
by the geomagnetic field before reaching the LAT and
arrive from the direction of the deflected horizon curves
rather than the actual Earth horizon. After accounting
for the deflection, however, they are also detected as a 1-
2◦ wide ring of emission (Figure 2). Like the gamma-ray
emission, the peak atmospheric positron emission seen by
the LAT is produced at an impact parameter of ∼60 km
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FIG. 2: Distribution of D+, for events with D− < −2◦. The
spike at D+ = 0◦ is due to atmospheric positrons. The events
with D+ > 0◦ are CR positrons plus residual proton back-
ground events. The events with D+ < 0◦ are residual back-
ground events.

above the Earth surface. The detection of this popula-
tion, and its narrow distribution at D+ = 0, confirms
that the magnetic field model and particle tracer code
are accurate.
To remove atmospheric electrons and positrons, which

are concentrated near D+ = 0 and D− = 0, we trim the
edges of our selection regions by a “trim width” W in
nadir angle. We evaluated the residual contamination by
atmospheric electrons and positrons by performing the
full positron flux measurement as a function of W . The
contamination decreases significantly from W = 0◦ to
W = 2◦ and is negligible for W ≥ 4◦. The contamina-
tion is <10% for W = 2◦ and <3% for W = 4◦. Below
100 GeV we trim by 4◦. Above 100 GeV we trim by
2◦; the systematic effect from residual secondaries with
this less conservative trimming is larger (10%) but still
smaller than the statistical uncertainty in this energy
range.
Run and event selection. Data collected in the LAT

standard mode of operation (survey mode) are not suit-
able for this analysis. In survey mode, the LAT points
away from the Earth, keeping the electron-only and
positron-only regions (which are centered on the Earth
horizon) outside of or at the edge of the field of view.
However, the LAT has observed in special modes with the
horizon in the field of view. Direct limb-pointed obser-
vations have been performed for instrument commission-
ing and calibration [29]. Pointed observations have also
been performed in which a particular celestial direction
is tracked for several hours or several days. During these
observations the target is tracked until it is occulted by
the Earth, during which time the spacecraft tracks along
the limb of the Earth, with a 50◦ offset toward zenith,



until the target re-emerges from occultation. We used
775 runs from these observation categories with a total
observation time of 39.0 days. A LAT run is an interval
of data taking that typically spans one orbit.

The recorded events are dominated by a background
of CR protons and heavier nuclei. Here we used the
same particle classification technique that we developed
to measure the combined e+ + e− spectrum [19, 20]
to separate CR leptons from this background. We use
events in the 20–200 GeV range. Below 20 GeV the elec-
tron/positron sensitivity is small due to charged-particle
rejection by the event filter applied onboard the LAT.
Above 200 GeV, the electron-only and positron-only re-
gions become very small; this combined with the steeply
falling spectra makes the number of detected events pro-
hibitively small.
Background subtraction. The CR hadron flux (pre-

dominantly protons) between 20 GeV and 200 GeV is
2–3 (depending on energy) orders of magnitude larger
than the electron flux and 3–4 orders of magnitude larger
than the positron flux [30]. Our lepton/hadron separa-
tion criteria suppress the hadron background to a level
that is between 4% and 20% (depending on energy) of
the combined electron+positron flux [19, 20].
We used two independent methods to estimate the

residual proton contamination remaining after the selec-
tion cuts described above. The first background estima-
tion method uses fits applied to the flight data alone; it
does not require simulating the detector. The transverse
size of showers in the calorimeter provides significant dis-
crimination power for separating electromagnetic show-
ers from hadronic interactions. In this method we use
slightly relaxed selection criteria to increase the statistics
of both leptons and hadrons and fit the distribution of
transverse shower size to statistically estimate the num-
ber of signal (and background) events present in the three
regions.

Distributions of the transverse shower size are pro-
duced for each energy bin and for each region. They
are fit with a function that represents the sum of signal
and background (Figure 3). The number of leptons in the
sample is determined by integrating the signal function
up to 35 mm, where we truncate the integral to reduce
the effect of the distribution tail. The signal and back-
ground shower size distributions are each parameterized
with a Gaussian. To evaluate the uncertainty due to
small differences between real data distributions and the
Gaussian approximation, we applied this fit-based tech-
nique to a sample of events collected in survey mode to
determine the e++ e− spectrum, and compared it to the
previously published LAT measurements [19, 20]. The
spectrum determined with the fit-based background sub-
traction method agrees with the published one within
5%. Tests on Monte Carlo simulations confirm that the
choice of Gaussian functions is sufficient to obtain the
number of signal events at the few-percent level.
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FIG. 3: Transverse shower size distribution in the electron-
only region. In the positron-only region, the number of events
with small transverse shower size is smaller, but the mean and
width of the distribution are similar.

The fit is well constrained in the control (both species
allowed) region where the number of events is large and
the signal-to-background ratio allows us to easily dis-
tinguish protons from electrons/positrons. In the other
two regions (electron-only and positron-only), the small
statistics are a limiting factor and the fit parameters are
not as well constrained. However, the distribution of
shower size depends primarily on particle type (lepton or
hadron) and on the angle θ between the particle track and
instrument axis. The electron and positron regions corre-
spond to particular θ distributions (the two distributions
are very similar to one another) which we reproduce by
assembling a reference set of events from the control re-
gion with the same θ distribution. We then fix the mean
and sigma parameters of the signal Gaussian to the val-
ues obtained by fitting this reference data set and fit only
the normalization to the data sets from the positron-only
and electron-only regions. No assumptions are made on
incoming angle dependence of the background Gaussian,
whose parameters are always free.
We evaluated the uncertainty introduced by this fit

stabilization procedure by changing the mean and sigma
parameters (within ±3 times the uncertainty of the fit
values from the reference data sets) and calculating the
resulting variation in the number of signal events. The
maximum deviation of the number of signal events is 4%
and is included in the systematic uncertainty for each
energy bin.

The second method of estimating the residual proton
background is based on a Monte Carlo (MC) simulation.
The LAT detector MC is based on GEANT 4 [31] and
has been validated using comparisons to flight data and
pre-flight beam test data. We produced a set of 40 bil-
lion Monte Carlo protons between 4 GeV and 10 TeV



(∼3% of which pass the trigger and onboard filter) with
a power-law distribution in energy with an index of 1.5.
We also simulated 150 million electron events between
4 GeV and 1 TeV (∼13% of which pass the onboard fil-
ter) with a spectral index of 1. The spacecraft orbit in the
simulation matched the actual flight orbit for the data set
used. We re-weight the MC proton flux to the spectrum
measured by the AMS-01 experiment (index 2.78) [13],
and the MC electron flux to the spectrum measured by
the Fermi LAT [19, 20] (index 3.08). We apply the same
analysis cuts to the MC and flight data in order to esti-
mate the residual proton contamination. Roughly 0.1%
of the protons that pass the onboard filter also pass the
analysis cuts we designed to reject them. We traced the
trajectories of surviving events and removed events with
trajectories blocked by the Earth. The accuracy of the
MC proton rate has been validated by comparing a vari-
ety of distributions between MC and flight data. In par-
ticular, we inverted individual cuts in order to produce
samples with an enriched proton background contribu-
tion. The rate of MC protons agrees with flight data
within ∼ 8%.

Results. The common systematic uncertainty in the
CR electron/positron flux for the two background sub-
traction methods are: ±5% effective area; ±5% on-
board filter efficiency in the two lowest energy bins (20.0–

31.7 GeV); and +0%
−3% below 100 GeV, +0%

−10% above 100 GeV
due to atmospheric lepton contamination. The system-
atic uncertainty of atmospheric positron contamination
is asymmetric because such contamination can only cause
us to overestimate, not underestimate, the CR positron
flux. Systematic uncertainties present only for the flight
data fitting method are 5–10% (depending on energy and
region) due to discrepancies between the fit shape and
the actual distribution and 2–4% due to using the ref-
erence θ distribution. Components present only for the
MC method are ∼8% due to discrepancies between MC
protons and flight data, and 2–10% CR proton spectral
index uncertainty, evaluated using three recent CR pro-
ton spectrum measurements (BESS [32], AMS-01 [13],
and PAMELA [33]). Summing systematic uncertainty
components in quadrature (we expect them to be un-
correlated), we estimate 10–16% (depending on energy)
uncertainty in the positron flux for the fit method and
8–19% for the MC method. To determine the final un-
certainty of each spectral point we add the statistical un-
certainty in quadrature; for the MC method this includes
both signal and background statistics.

The two independent background subtraction meth-
ods produce spectra that are consistent with one another
in each of the three regions (positron, electron and con-
trol). Our best estimates of the spectra are shown in
Figure 4 and Table I. We chose the fit method for all
energy bins except the highest, because this method has
slightly smaller uncertainty. For the highest energy bin
we use the MC method because the statistics are not suf-
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FIG. 4: Energy spectra for e+, e−, and e+ + e
− (control re-

gion). In the control region where both species are allowed,
this analysis reproduces the Fermi LAT results reported pre-
viously for the total electron plus positron spectrum [19, 20]
(gray). The small difference between the combined e+ + e

−

flux we measured in the control region and the total flux we
reported previously is due to instrument response functions
that have been updated to account for “ghost events” [34].
Previous results form HEAT [9] and PAMELA [15] are shown
for reference. The bottom panel shows that the ratio between
the sum and the control flux is consistent with 1 as expected.

ficient for fitting. The positron fraction ( J(e+)
J(e+)+J(e−) ) is

shown in Figure 5. Error propagation is performed inde-
pendently for the fraction and for the individual spectra;
the contribution due to effective area uncertainty cancels
in the fraction.

Energy J(e+)× 105 J(e−)× 104 J(e+)

J(e+)+J(e−)

20.0 − 25.2 160±5+20
−21 154±1+14

−14 .094±.003+.010
−.010

25.2 − 31.7 80.2±2.9+10
−10 72.8±.6+6.5

−6.5 .099±.003+.010
−.011

31.7 − 39.9 43.4±2.0+4.9
−5.1 34.1±.4+2.5

−2.5 .113±.005+.012
−.012

39.9 − 50.2 21.8±1.7+2.5
−2.6 16.1±.3+1.2

−1.2 .119±.008+.012
−.013

50.2 − 63.2 10.7±1.4+1.2
−1.3 7.89±.28+.58

−.58 .119±.014+.012
−.013

63.2 − 79.6 5.52±1.4+.66
−.68 3.66±.23+.27

−.27 .131±.029+.014
−.014

79.6− 100 3.90±1.2+.46
−.48 1.67±.21+.12

−.12 .189±.049+.018
−.019

100− 126 1.83±.57+.22
−.28 .97±.12+.08

−.08 .160±.045+.017
−.023

126− 159 1.28±.45+.15
−.20 .481±.085+.039

−.039 .210±.065+.021
−.030

159− 200 .911±.48+.13
−.16 .214±.069+.011

−.011 .30±.13+.03
−.04

TABLE I: Flux (GeV−1 m−2 s−1 sr−1) and positron fraction
as a function of energy (GeV). Uncertainties are ±stat ±sys.

The spectrum measured in each of the three regions be-
tween 20 and 200 GeV is well described by a power law.
The fit to the positron spectrum is (2.02±.22 × 10−3

GeV−1 m−2 s−1 sr−1)( E

20GeV )−2.77±0.14, while the fit to
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FIG. 5: Positron fraction measured by the Fermi LAT and by
other experiments [10, 14, 35]. The Fermi statistical uncer-
tainty is shown with error bars and the total (statistical plus
systematic uncertainty) is shown as a shaded band.

the electron spectrum is (2.07±.13 × 10−2 GeV−1 m−2

s−1 sr−1)( E

20GeV )−3.19±0.07. The uncertainties are deter-
mined by including the total (statistical plus systematic)
uncertainty of each energy bin. The fitted indices are con-
sistent with the index we reported previously for the total
electron plus positron spectrum (3.08±0.05) [19, 20].

Conclusion. We measured the CR positron and elec-
tron spectra separately between 20 and 200 GeV, using
a novel separation technique which exploits the charge-
dependent displacement of the Earth’s shadow due to the
geomagnetic field. While the positron fraction has been
measured previously up to 100 GeV [15] and the absolute
flux has been measured previously up to 50 GeV [9, 36],
this is the first time that the absolute CR positron spec-
trum has been measured above 50 GeV and that the
fraction has been determined above 100 GeV. We find
that the positron fraction increases with energy between
20 and 200 GeV, consistent with results reported by
PAMELA [14]. Future measurements with greater sen-
sitivity and energy reach, such as those by AMS-02, are
necessary to distinguish between the many possible ex-
planations of this increase.
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