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Abstract

We describe an explicit mechanism for the emergence of a dynamical holographic bulk

from the structure of entanglement in a quantum state. We start with a generic system

in complete isolation, assuming it has a classical limit involving coherent states. Then

we entangle it with another system of that kind, and subject the pair to a decohering

process. We make a number of broadly applicable and physically reasonable assumptions

about this setup. First, we assume that the states selected by the decoherence (called

pointer states) have the same local symmetries as the isolated systems, in a sense which

is made precise. We also assume that the modular Hamiltonians of pointer states scale

inversely with Planck’s constant, so that the pointer states are highly entangled in the

classical limit. Finally, we require the timescale of decoherence to scale in a certain way

with Planck’s constant, so that decoherence happens very frequently in the classical limit,

but not too frequently. Given these assumptions, we demonstrate that the semiclassical

evolution of the system is dominated by a certain dynamical generalisation of Uhlmann

holonomy. We construct a coherent state path integral for this evolution, showing that

the semiclassical fields evolve in a spacetime with one more dimension than the isolated

case. The additional dimension is generated by modular flow.

http://arxiv.org/abs/2006.13246v1
mailto:jjvk2@cam.ac.uk


Contents

1 Introduction 2

2 Highly entangled decohering systems 9
2.1 Polar decomposition of pointer states 9

2.2 Frequent decoherence (∆t → 0) 11

2.3 Dynamical Uhlmann holonomy 13

2.4 Bures metric 15

2.5 Classical limit (~ → 0) 16

2.6 Semiclassical correlators 18

3 Emergent holography 20

4 Discussion 23

Acknowledgements 25

A Generating function for a decohering system 26
A.1 Correlators in open systems 26

A.2 Decoherence 28

B Yk in exponential form 30

C Operators in terms of modular flow 31
C.1 Infinitesimal dynamical Uhlmann holonomy ak 32

C.2 Bures metric Gk 33

References 33

1



1 Introduction

It has become increasingly clear that there is a deep connection between entanglement and the struc-

ture of spacetime in quantum gravity. This idea has its roots in the realisation that the Bekenstein-

Hawking entropy of a black hole [1, 2] can be attributed to entanglement between degrees of freedom

on either side of the horizon [3, 4]; in holography this was generalised to the Hubeney-Rangamani-

Ryu-Takayanagi (HRT) formula [5–7], which associates the areas of a large class of bulk surfaces

with entanglement entropies of appropriate subsystems. Many other similar relationships have been

proposed, equating various measures of entanglement with other geometric properties of the bulk

spacetime. Motivated additionally by the fact that an eternal black hole spacetime is holographically

dual to a thermofield double [8] (which has a very specific pattern of entanglement), this led to the

suggestion that these relationships are more than just a coincidence, and that the bulk spacetime

itself somehow emerges from the entanglement in the quantum state [9, 10]. An important perspec-

tive on this has come from tensor network and quantum error correction approaches to holographic

duality [11–15].

Despite all this, an explanation of how exactly the bulk spacetime emerges has been lacking.

Additionally, it is not at all clear what role entanglement plays in the string theoretic arguments which

underpin the most concrete example of holography, AdS/CFT [16, 17]. Indeed, if gravity actually is a

consequence of entanglement, then this shouldn’t depend on any of the fine details of the fundamental

theory – only on whether it provides the right type of entanglement. So what is really needed is a

more ‘phenomenological’ perspective, in which we make some basic qualitative assumptions about

the entanglement and dynamics of the quantum theory, and then see if those assumptions lead to

holography. The assumptions should be as broadly applicable as possible, and physically reasonable.

In this paper, we discuss one possible approach from this point of view.

The starting point is a generic isolated quantum system with a classical limit ~ → 0; this system

should be thought of as part of the lower-dimensional ‘boundary theory’ on one side of the holographic

duality. The parameter ~ is usually Planck’s constant – it could also be 1/N in a large N gauge theory,

or something else, but for simplicity we will just continue to use the symbol ~. A particularly useful and

general description of the classical limit is given by coherent states. We will give some relevant basic

facts about this description; for more information, see for example [18, 19]. One fixes a Lie group

G consisting of all the possible dynamical transformations that can be performed on the physical

system. For each value of ~ we assume there is a Hilbert space H = H~, and a unitary irreducible

representation u = u~ of G acting on H. We also pick a normalised ‘base’ state |0〉 ∈ H, and by acting

on |0〉 with u we then obtain a set of states

{|x〉 = u(x) |0〉 , x ∈ G}. (1.1)

These are the coherent states. For the classical limit to exist, we require the Berry connection of these

states

i 〈x|d|x〉 , (1.2)

which is a real 1-form on G, to be O(1/~) as ~ → 0. Operators can depend on ~, so when we talk

about an ‘operator’, what we really mean is a family of operators, one acting on each Hilbert space

H~. The coherent states allow us to discuss the asymptotics of these operators as ~ → 0. In particular,

when we write

O = O(f(~)) (1.3)

for some function f(~), what we mean is that the coherent state correlators of O obey

〈x1|O|x2〉
〈x1|x2〉 = O(f(~)) for all x1, x2 ∈ G. (1.4)
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A special case of this is O = O(1); an operator with this property is called a ‘classical’ operator.

The second requirement for the existence of a classical limit is that the Hamiltonian H is a classical

operator. In [18], it is shown that [O1, O2] = O(~) for any two classical operators O1, O2, and a

corollary of this is that

eiO1/~O2e
−iO1/~ = O(1). (1.5)

So the automorphism generated by iO1/~ preserves the asymptotics of any operator. Because u is an

irrep, Schur’s lemma implies that the coherent states give a resolution of the identity

I =

∫

dx |x〉 〈x| , (1.6)

where dx is the invariant measure on G (appropriately normalised). By inserting this many times,

we can write the transition amplitude after a time T between coherent states |x〉 and |x′〉 as a path

integral in the usual way, obtaining

〈

x′∣∣e−iHT/~
∣
∣x
〉

=

∫

Dx exp(iS[x]/~), (1.7)

where the integral is done over paths x(t) which begin at x and end at x′, and the action is

S[x] =

∫ T

0

(

i~ 〈x|ẋ〉 − 〈x|H|x〉
)

dt . (1.8)

By the requirements on the Berry connection and Hamiltonian, we have S[x] = O(1), so this can be

treated as a classical action, and we can apply the usual methods of stationary phase to the path

integral.

In this paper, we will consider a pair of subsystems with classical limits in terms of coherent states,

corresponding to two disconnected components of the ‘boundary theory’. We label the two subsystems

A,B, and use HA,HB to denote their respective Hilbert spaces. We will want to consider a limit in

which these two systems are very highly entangled. To make this precise, we take inspiration from

a known feature of AdS/CFT. Suppose the combined state of the two systems is |ψ〉, so that the

reduced states in the two subsystems are given by

ρA = trB |ψ〉 〈ψ| , ρB = trA |ψ〉 〈ψ| , (1.9)

where trA, trB denote partial traces over HA,HB respectively. We will assume that ρA, ρB are invert-

ible. The modular Hamiltonians of |ψ〉 in A and B are

KA = − log ρA, KB = − log ρB. (1.10)

These operators contain a large amount of information about the entanglement between A and B.

For example, the entanglement entropy may be computed with

SA = 〈KA〉ρA
= tr(ρAKA). (1.11)

In AdS/CFT, the modular Hamiltonian of a boundary subregion is given at leading order by [20]

K =
Â

4GN~
+ . . . . (1.12)

Here Â is an operator which gives the area of the HRT surface corresponding to the boundary subre-

gion, and GN is Newton’s constant. For us, the important feature of this formula is the factor of 1/~,
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which implies that there is a very large amount of entanglement in the classical limit ~ → 0. We will

assume that this scaling holds for the modular Hamiltonians of A and B, so

KA = O
(

1

~

)

, KB = O
(

1

~

)

(1.13)

for any relevant states |ψ〉 ∈ HA ⊗ HB . This property will be essential for the holographic interpreta-

tion of these states.

But what exactly do we mean by ‘relevant’ states? To answer this, let us first recognise that it is

not enough to just assume that the initial state of the combined system is highly entangled. We also

need this property to be conserved during the evolution of the system, and this is not immediately

guaranteed. One way to ensure it happens is to just assume that the Hamiltonian of the combined

system takes the form

H = HA ⊗ IB + IA ⊗HB , (1.14)

where HA,HB are Hamiltonians for each of the two subsystems, and IA, IB are the identities acting

on HA,HB respectively. In other words, there are no interactions between the two subsystems. Under

time evolution we would then have

ρA(t) = e−iHAt/~ρA(0)eiHAt/~, ρB(t) = e−iHBt/~ρB(0)eiHB t/~, (1.15)

which implies

KA(t) = e−iHAt/~KA(0)eiHAt/~, KB(t) = e−iHBt/~KB(0)eiHB t/~. (1.16)

Since HA,HB are assumed to be classical operators, this evolution would preserve the asymptotics of

the modular Hamiltonians, so (1.13) will hold at all times.

However, this kind of evolution is far too trivial for our purposes. For example, with this evolution

the entanglement entropy

SA(t) = tr(ρA(t)KA(t)) = tr(ρA(0)KA(0)) (1.17)

would not depend on time. So, comparing with the HRT formula, if an emergent holographic bulk

did exist, the area of the HRT surface would be fixed for all time. Similarly, any other quantity which

only depended on the density matrix ρA up to unitary conjugation would be constant in time. But

we would like to allow such quantities, and their purported geometric bulk duals, to fluctuate.

So to get anything interesting we will need some kind of non-trivial dynamical process involving

interactions between A and B. There are potentially many different processes which have the right

properties, but in this paper we will make a particular choice. Let us introduce a third component to

our setup: the ‘environment’. We assume that the environment has a very large number of degrees

of freedom and is evolving chaotically. We will not allow A and B to interact directly, but instead

couple them both to the environment. Such a coupling can be difficult to analyse in general, but a

characteristic phenomenon known as decoherence can occur. We will give a rather brief description of

this phenomenon, but the general theory of decoherence is quite subtle. For more information, see for

example [21–25]. Decoherence and chaos in quantum gravity have previously been studied in [26–30].

Depending on the exact details of the coupling, there is an emergent set of states in HA ⊗ HB

known as ‘pointer’ states, and the effect of decoherence is essentially indistinguishable from a projective

measurement onto these states. To be more precise, let M be a space equipped with a measure dX

and a map X → |X〉 from M to HA ⊗ HB . The states |X〉 are the pointer states. We require

I =

∫

dX |X〉 〈X| (1.18)
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to be a resolution of the identity acting on HA ⊗ HB . Suppose the state of A and B is initially given

by a joint density matrix ρ. Then after decoherence the state becomes

ρ →
∫

dX 〈X|ρ|X〉 |X〉 〈X| . (1.19)

This is exactly what happens in a projective measurement onto the pointer states, as we have already

stated. The most general possible quantum measurement (described by a positive operator valued

measure or POVM) does not require the measurable states to be orthogonal to each other, and the

same is true here: in general the pointer states |X〉 need not be orthogonal to each other.

We will assume that the evolution of the entire setup is such that A and B periodically come into

contact with the environment,1 and that the result of this contact is for the state of A and B to

undergo decoherence. Thus, the map (1.19) is periodically applied to the state of the system. For

simplicity, we will assume that the time period ∆t between each instance of decoherence is fixed, and

moreover that the decoherence itself happens so quickly as to be effectively instantaneous. When

decoherence is not happening, we will assume that A and B are not in contact with the environment,

and so just evolve unitarily according to some Hamiltonian H. So, after a time ∆t, if the state of the

system was initially ρ = |ψ〉 〈ψ| it will have evolved into2

ρ(∆t) =

∫

dX 〈X|e−iH∆t/~|ψ〉 〈ψ|eiH/∆t/~|X〉 |X〉 〈X| . (1.20)

This accounts for both the unitary evolution and the decoherence. To get the evolution of the state

after a time T = n∆t with n an integer, we can just repeat (1.20) n times. We end up with

ρ(T ) =

∫ n∏

l=1

dXl

∣
∣
∣ 〈X1|e−iH∆t/~|ψ〉

∣
∣
∣

2
(

n∏

k=2

∣
∣
∣ 〈Xk|e−iH∆t/~|Xk−1〉

∣
∣
∣

2
)

|Xn〉 〈Xn| . (1.21)

With this, we can compute the transition probability from an initial state |ψ〉 to a final state |ψ′〉:

〈ψ′|ρ(T )|ψ′〉 . (1.22)

Actually, in this paper we will be interested in more than just transition probabilities – we will also

consider correlators of operators Oi acting on HA ⊗ HB, inserted during the evolution between |ψ〉
and |ψ′〉. We assume that we are completely ignorant of the state of the environment, and this is an

obstruction to computing these correlators exactly. However, what we can do is compute expectation

values of correlators by averaging over an appropriate random distribution of environment states. In

Appendix A, we show that these correlator expectation values can be computed with a generating

function

Z[ψ,ψ′;J ] =

∫ n∏

l=1

dX l

〈
ψ′∣∣Xn

〉
〈X1|e−iJ1·O1/~e−iH∆t/~|ψ〉 〈ψ|eiH∆t/~|X1〉

〈
Xn

∣
∣ψ′〉

×
n∏

k=2

〈Xk|e−iJk·Ok/~e−iH∆t/~|Xk−1〉 〈Xk−1|eiH∆t/~|Xk〉 . (1.23)

1 For intuition, one might picture the environment as a gas of particles, with each particle occasionally colliding with

A and B.

2 We have chosen to write this in such a way that the unitary evolution happens before the decoherence, rather

than at any other time. This choice is made without loss of generality. To see this, note that we can redefine the

pointer states |X〉 → e−iH∆t/~ |X〉, and the expression on the right-hand side of (1.20) will be transformed into one

such that decoherence appears to happen before unitary evolution. Similarly, by a redefinition |X〉 → e−iHt/~ |X〉 for

any t ∈ [0, ∆t], we can transform the expression so that decoherence happens at any point during the unitary evolution.

Regardless of this redefinition, the time between each occurrence of decoherence in (1.21) will always be ∆t.

5



∫

dX1

∫

dXn−1

∫

dXn

∆t

|ψ〉

〈

ψ ′ ∣∣

|X1〉
〈X1|

|Xn−1〉
〈Xn−1|

|Xn〉
〈Xn|

|ψ〉

〈

ψ ′ ∣∣

|X1〉
〈X1|

|Xn−1〉
〈Xn−1|

|Xn〉
〈Xn|

J1 ·O1

Jn−1 ·On−1

Jn ·On

Figure 1.1: The generating function for a system undergoing decoherence

involves two copies of the system, one with sources, and the other without.

The effect of the decoherence is to project both copies onto the same pointer

state |Xk〉 periodically with time period ∆t. The pointer states are then

integrated over.

Here Ok are a set of operators inserted at times tk = k∆t, and Jk are sources for these operators.

The · in Jk ·Ok is supposed to denote a sum over all possible operators we want to be able to insert.

Note that at J = 0 the generating function is equal to the transition probability. Also, the correlator

expectation value is given by

〈Om(tm) . . . O1(t1)〉 =
(i~)m

Z[ψ,ψ′; 0]

∂

∂Jm
. . .

∂

∂J1
Z[ψ,ψ′;J ]

∣
∣
∣
∣
J=0

. (1.24)

Despite the coupling between the system and environment, one can observe that the generating

function does not depend at all on the fine details of the evolution of the environment. All that is

relevant are the set of pointer states |X〉, the system Hamiltonian H, and the sources and operators

J,O.

There are two instances of the state undergoing time evolution in this generating function. This

is typical of generating functions describing the evolution of open systems, the most commonly en-

countered example of this being within the Schwinger-Keldysh formalism [31–39]. The effect of the

environment usually manifests in the generating function as a kind of interaction between the two in-

stances, and a common way to handle this is in terms of a Feynman-Vernon ‘influence functional’ [40].

Here the interaction is expressed slightly differently: the two instances evolve more or less indepen-

dently, except for when decoherence happens. The effect of the decoherence is to effectively bring

the two instances into contact, by projecting both onto the same pointer state. This is depicted in

Figure 1.1, which also portrays the fact that operators are only inserted in one of the instances.

From now on we will just refer to (1.24) as a correlator, but it is worth keeping in mind that it is

really an expectation value of a correlator. It has recently been argued that such expectation values

of correlators are an essential feature of any kind of holographic theory [41].

For a system experiencing decoherence, the pointer states |X〉 should be viewed as the macroscopic

classical states of the system. In the lab, decoherence is essentially the reason why it is difficult to

set up long-lived superpositions of such states – the coupling with the environment quickly destroys
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the superposition, converting it to correlations with the environment that rapidly disperse. In our

case, we should think of the pointer states as the classical states of the bulk theory. Thus, the pointer

states are the ‘relevant’ states described previously, so we will assume that they are highly entangled

in the classical limit, in the sense given above.

We will make a further assumption about the structure of the pointer states, inspired again by

holography. Suppose UA ∈ U(HA) and UB ∈ U(HB) are unitary operators acting on HA and HB

respectively. Then if |X〉 is one pointer state, we assume for all such UA, UB that |X ′〉 is also a pointer

state, where
∣
∣X ′〉 =

(
UA ⊗ UB

)
|X〉 . (1.25)

Moreover, we assume that the pointer state measure dX is invariant under this action of U(HA) ×
U(HB). One way of interpreting this is as follows. UA ⊗ UB is an operator which changes only

the degrees of freedom which are local to A and B. Bulk holographic states should share all the

local symmetries of the boundary states. In other words, if we take a bulk state, and apply a local

operator at the boundary, we should get back another bulk state, which is why we need |X ′〉 to be

a pointer state. The invariance of dX means that decoherence does not affect the local degrees of

freedom. Instead, it only has an impact on non-local degrees of freedom encoded in the structure of

the entanglement between the two systems.

Let us summarise the assumptions we have made so far.

• Decoherence happens, and it happens quickly and frequently. We assume that the

quantum theory under consideration consists of two components: a ‘system’ and an ‘environ-

ment’. We assume that the environment evolves in such a way that the coupling between the

two components leads to the system experiencing decoherence onto a set of pointer states |X〉.
We also assume that the decoherence happens so quickly as to be effectively instantaneous, and

that it happens frequently, with a time period ∆t between each occurrence. The simple model

described above will be the one we use to analyse the resulting evolution.

• The system is made of two subsystems with classical limits. We assume that the

system Hilbert space decomposes as H = HA ⊗HB, where HA,HB are the Hilbert spaces of two

subsystems A and B. Furthermore, we require these individual subsystems to have a classical

limit ~ → 0 in terms of coherent states.

• The decohering process is compatible with the local symmetries of A and B. By this

we mean the pointer states |X〉 and measure dX are invariant under the action of U(HA) ×
U(HB), in the way just described.

• The pointer states are highly entangled in the classical limit. Let

ρA(X) = trB |X〉 〈X| , ρB(X) = trA |X〉 〈X| (1.26)

be the reduced density matrices of the pointer state |X〉 in subsystems A,B respectively. We

will assume that ρA and ρB are invertible, and that their corresponding modular Hamiltonians

KA(X) = − log ρA(X), KB(X) = − log ρB(X) (1.27)

obey

KA = O
(

1

~

)

, KB = O
(

1

~

)

. (1.28)

In addition to the classical limit ~ → 0, we will take another limit in this paper: ∆t → 0. This

essentially means that decoherence happens very frequently. It is important to carefully specify the
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relative scaling of ~,∆t, so that the simultaneous limit ∆t, ~ → 0 has a well-defined outcome. Different

phenomena will arise in different scaling regimes, but for us the most interesting physics will happen

when the scaling obeys our final key assumption:

• ~ and ∆t obey a certain scaling relationship. In the limit ∆t, ~ → 0, we require

∆t

~
→ 0,

∆t

~2
→ ∞. (1.29)

Thus, decoherence happens very frequently in the classical limit, but not too frequently.

It is worth noting the particular meaning of ‘small’ for each of these quantities: small ~ means ~ is

much smaller than the classical action, and small ∆t means ∆t ≪ T where T is the timescale on

which we are making observations.

There are a few other assumptions we will make in this paper. However, we view these as less

essential, and our main reason for making them is to avoid overcomplicating the calculations. We

expect (or hope) that they could be dropped, and the mechanism we describe in this paper would still

work in a generalised form.3 First, we will consider the case where the two subsystems A and B are

actually just two copies of the same system, so that HA = HB and the coherent states are the same.

For notational purposes, we will in some cases continue to use subscripts A,B to label the subsystems.

Second, the Hamiltonian H can in general be written as

H = HA ⊗ IB + IA ⊗HB +Hint, (1.30)

where Hint is an interaction term. We will assume that Hint = 0, so that when decoherence is not

happening there are no interactions between the two systems. It would be interesting in the future to

allow Hint 6= 0, to see if one could reproduce the results of [42]. Third, we will consider only correlators

of operators acting on one of the subsystems – without loss of generality let that subsystem be A.

This means the operators can be written O⊗ IB. A final convenient assumption can be made without

loss of generality: we choose the sources and operators such that J ·O is Hermitian. This can always

be made to be true by an appropriate linear redefinition of the sources.

We will argue in this paper that the assumptions described above have the following consequence.

Suppose the semiclassical physics of A and B when they are isolated from the environment is d-

dimensional. By this we mean that all correlators of quantum operators around a classical background

may be computed in terms of a field theory living in d dimensions. Then the semiclassical physics

of the systems coupled to the environment is (d + 1)-dimensional. Moreover, the fields have non-

trivial dynamics in the extra dimension, so this gives a genuine example of emergent holography. One

attractive feature of the additional dimension is that it is generated by modular flow, in line with

previous research [43].

We should emphasise that we have not tried to find an example of a fundamental theory that

satisfies all the assumptions. However, given the genericity of the assumptions, we would be very

surprised if such a theory did not exist. Additionally, a major point in favour of the assumptions is

the resulting mechanism that we describe in this paper. Although several of the assumptions were

inspired by holography, it is far from obvious that they were enough to lead to actual holograhy. In

this sense, the consequences we describe are greater than the sum of the assumptions, and so are

worth studying, a posteriori.

Let us provide a roadmap for the rest of the paper.

3 Of course, it may also be true that the previous ‘essential’ assumptions can be weakened.
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First, in Section 2.1 we will describe a useful parametrisation of the pointer states |X〉 in terms

of the reduced state ρA = tr |X〉 〈X|, and a unitary operator U . Our assumptions will imply that ρA

and U can be independently specified, and this allows us to consider their dynamics separately.

Next, in Section 2.2, we will consider the limit in which decoherence happens very frequently, i.e.

∆t → 0. This will mean that there will be a very large number of pointer states that we integrate

over in the generating function, and we end up with an integral over paths of pointer states. We will

obtain an expression for the ‘action’ of this path integral in terms of the variables ρA and U , and

show that it involves a dynamical generalisation of Uhlmann holonomy [44–46], which is a notion of

parallel transport of U along the path of density matrices ρA, and the Bures metric [47–50], which is

a metric on the space of density matrices ρA. We will describe these further in Sections 2.3 and 2.4.

We will then consider the classical limit ~ → 0 in Section 2.5, showing that the terms involving

the dynamical Uhlmann holonomy scale like 1/~2, while the terms involving the Bures metric scale

like 1/~. We will use this to show that, in the combined limit ∆t, ~ → 0, the path of density matrices

ρA must fall within a certain class of paths which includes all differentiable paths, while the path

of unitary operators U must follow the dynamical Uhlmann holonomy along ρA. This provides an

alternate perspective on the results of [51].

The reduced state ρA has no knowledge of the dynamical Uhlmann holonomy, so one might wonder

whether the Uhlmann holonomy is actually observable from the point of view of system A. After all,

expectation values

〈O〉 = tr(ρAO) (1.31)

of operators O acting on A clearly do not depend on the holonomy. In fact, the holonomy is observable.

There is an indirect coupling between systems A and B through the environment. This coupling means

that evolution of the system in B can affect the evolution of the system in A, and vice versa. Thus,

the correlator of two operators O1, O2 acting on A at two different times t1 < t2

〈O2(t2)O1(t1)〉 (1.32)

depends on the state in B. In particular, the insertion of O1 at t1 will result in changes that propagate

into B, and then back into A, where they will be detected by O2 at t2. Thus, these correlators are

sensitive to the Uhlmann holonomy. In Section 2.6 we will obtain a path integral formula for correlators

of an arbitrary number of operators using a generating function. In this way we will explicitly show

how the correlators depend on the dynamical Uhlmann holonomy.

Section 3 is the crux of the paper. In it we will demonstrate that the generating function obtained

in Section 2.6 is secretly a holographic one. We will do this by deriving a path integral formula for the

dynamical Uhlmann holonomy in terms of coherent states. The action for this path integral involves

one more dimension than the original action (1.8) of the coherent states.

We conclude the paper in Section 4 with some speculation on future directions.

2 Highly entangled decohering systems

2.1 Polar decomposition of pointer states

Consider a pointer state |X〉 ∈ HA ⊗ HB. By dualising on the HB part, we can view this state as a

linear map WX : HB → HA. The reduced state in A is given by

ρA(X) = trB |X〉 〈X| = WXW
†
X . (2.1)
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Let MA denote the space of all such reduced states for all X ∈ M. For notational simplicity we will

drop the subscript A on ρA, i.e. just write ρ = ρA. Because we are assuming HA = HB, WX is really

a map from HA to itself, so we can do a polar decomposition of WX to get

WX =
√

WXW
†
XU

† =
√

ρ(X)U †, (2.2)

where U ∈ U(HA) is some unitary operator. Here the square root
√
ρ is the unique positive operator

satisfying (
√
ρ)2 = ρ; this exists because ρ is positive. We are assuming ρ(X) is invertible, so this

polar decomposition is unique, i.e. U is uniquely determined. Moreover, because we are assuming

compatibility of the pointer states with the local symmetries of A and B,

WX′ = WXU
′† =

√

ρ(X)U †U ′† =
√

ρ(X)(U ′U)† (2.3)

is also a pointer state, for any unitary operator U ′ ∈ U(HA). This gives the space of pointer states

M the structure of a U(HA)-principal bundle, where the base space is the space MA of all reduced

pointer states ρ(X), the projection map is X → ρ(X), and the fibre over ρ(X) is given by all states

of the form (2.2). Because dX is invariant under the action (2.3) of U(HA), we can decompose it as

dX = dρ dU , (2.4)

where dρ is a measure of integration over the space of fibres (with each fibre labelled by the reduced

pointer state ρ), and dU is the invariant measure on U(HA).

In the polar decomposition (2.2), the part of the state in subsystem A is completely accounted

for by the factor involving the density matrix ρ(X). By this, we mean that all expectation values

of operators acting on A only depend on ρ(X), and not U . Clearly, therefore, U must account for

everything else, including the state in B, as well as some details of the entanglement between A and

B.

Consider the generating function (1.23) for evolution from an initial pointer state |X0〉 to a final

pointer state |Xn+1〉 in the presence of sources J after a time T = n∆t. This may be written

Z[X0,Xn+1;J ] =

∫ n∏

k=1

(

dXk 〈Xk|e−iJk·Ok/~e−iH∆t/~|Xk−1〉 〈Xk−1|eiH∆t/~|Xk〉
)

|〈Xn+1|Xn〉|2.

(2.5)

We are only considering operators which act on HA, so we can replace Ok → Ok ⊗ IB. Also, whenever

we compute correlators or transition probabilities we eventually set J = 0, so we can assume J is

arbitrarily small, and use this to rescale J → ∆tJ . Finally, we are assuming that Hint = 0 in (1.30).

Thus, using the polar decomposition (2.2), we can write the factors in the generating function as

〈Xk|e−iJk·Ok⊗IB∆t/~e−iH∆t/~|Xk−1〉 = tr
(

Uk
√
ρke

−iJk·Ok∆t/~e−iHA∆t/~√ρk−1U
†
k−1e

iHB∆t/~
)

, (2.6)

〈Xk−1|eiH∆t/~|Xk〉 = tr
(

Uk−1
√
ρk−1e

iHA∆t/~√ρkU
†
ke

−iHB∆t/~
)

. (2.7)

where we have written the pointer states |Xk〉 as linear maps WXk
=
√

ρ(Xk)U †
k , and set ρk = ρ(Xk).

In terms of these variables, we can therefore write

Z[X0,Xn+1;J ] =

∫ n∏

k=1

(

dρk dUk Yk

)∣
∣
∣tr
(

Un+1
√
ρn+1

√
ρnU

†
n

)∣
∣
∣

2
. (2.8)

where

Yk = tr
(

Uk
√
ρke

−iJk·Ok∆t/~e−iHA∆t/~√ρk−1U
†
k−1e

iHB∆t/~
)

× tr
(

Uk−1
√
ρk−1e

iHA∆t/~√
ρkU

†
ke

−iHB∆t/~
)

(2.9)
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2.2 Frequent decoherence (∆t → 0)

Consider the limit ∆t → 0, keeping T approximately fixed, so that the integer n becomes very large.

Then the generating function (2.8) takes on the characteristics of a path integral. In particular, it

is dominated by those sequences ρk, Uk for which each of the factors in the integrand is near to its

maximum. Such sequences can be approximated as points along continuous paths ρk = ρ(tk) and

Uk = U(tk), with tk = k∆t.

The typical paths which contribute to the path integral are not differentiable, but instead obey

|Xk〉 − |Xk−1〉 = O
(√

∆t
)

(2.10)

with measure 1 (with regard to the path integral measure). The space of paths with this behaviour

is sometimes called an abstract Wiener space, and the structure theorem for Gaussian measures

essentially says that all path integrals must be done over such a space. Given (2.10), it is shown in

Appendix B that Yk then takes the form

Yk = exp
[

tr
(

−δ(√ρk)δ(
√
ρk) − (

√
ρkδ(

√
ρk) − δ(

√
ρk)

√
ρk)Ck + ρ̃kC

2
k

)

− tr(ρ̃kCk)2

+
i∆t

~
tr

((

HA +
1

2
Jk ·Ok

)
(
δ(

√
ρk)

√
ρk − √

ρkδ(
√
ρk) − 2

√
ρkCk

√
ρk

)
)

+
2i∆t

~
tr

(

ρk

(

HA +
1

2
Jk ·Ok

))

tr(ρ̃kCk) − i∆t

~
tr(ρ̃kJk ·Ok) + O

(

∆t2
)]

, (2.11)

where ρ̃k = 1
2 (ρk + ρk−1) and

Ck =
1

2

(

U †
k−1e

iHB∆t/~Uk − U †
ke

−iHB∆t/~Uk−1

)

= O
(√

∆t
)

. (2.12)

This can be inverted to get

U †
k−1e

iHB∆t/~Uk = exp
(

Ck + O
(

∆t3/2
))

. (2.13)

In (2.11) and the following, the symbol δ is defined such that δqk = qk − qk−1 for any quantity qk with

an index k ∈ 1, . . . n+ 1.

The exponent in (2.11) is essentially just a complicated quadratic in Ck, and we will now complete

the square. To find the stationary point, we can consider a linearised variation Ck → Ck + ∆Ck.

Under such a variation, the exponent changes by

tr

(

∆C

[

ρ̃kCk + Ckρ̃k − √
ρkδ(

√
ρk) + δ(

√
ρk)

√
ρk − 2i∆t

~

√
ρk

(

HA +
1

2
Jk ·Ok

)√
ρk

])

− 2 tr(ρ̃k∆Ck) tr

(

ρ̃kCk − i∆t

~
ρk

(

HA +
1

2
Jk ·Ok

))

+ O
(

∆t2
)

. (2.14)

At the maximum, this must vanish for arbitrary ∆Ck, so we must have

ρ̃kCk +Ckρ̃k − √
ρkδ(

√
ρk) + δ(

√
ρk)

√
ρk − 2i∆t

~

√
ρk

(

HA +
1

2
Jk ·Ok

)√
ρk

= 2ρ̃k tr

(

ρ̃kCk − i∆t

~
ρk

(

HA +
1

2
Jk ·Ok

))

+ O
(

∆t3/2
)

. (2.15)

The final term is O
(

∆t3/2
)

because we have ‘factored out’ ∆C = O
(√

∆t
)

. Later we will solve (2.15),

but for now suffice it to say that its solutions are of the form

Ck = ak + iσk + O
(

∆t3/2
)

, (2.16)
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where ak = O
(√

∆t
)

is the unique fixed anti-Hermitian operator which solves the simpler equation

ρ̃kak + akρ̃k − √
ρkδ(

√
ρk) + δ(

√
ρk)

√
ρk − 2i∆t

~

√
ρk

(

HA +
1

2
Jk ·Ok

)√
ρk = 0, (2.17)

and σk is any real number. The freedom in σk comes from the fact that Yk is invariant under

Uk → eiσkUk, which is just a reflection of the usual phase ambiguity in the physical state of a

quantum system.

Armed with this solution, we can now actually complete the square, obtaining

Yk = exp
[

tr

(

−δ(√ρk)δ(
√
ρk) − 1

2
ak

(√
ρkδ(

√
ρk) − δ(

√
ρk)

√
ρk

)
)

+ tr
(

ρk(Ck − ak)2
)

− tr(ρk(Ck − ak))2 − i∆t

~
tr(ρkJk ·Ok) + O

(

∆t3/2
)]

. (2.18)

It suffices at this point to compute Yk to this order.

The final term in the generating function can be written similarly by just setting J = HA = HB = 0.

One obtains

∣
∣
∣tr
(

Un+1
√
ρn+1

√
ρnU

†
n

)∣
∣
∣

2
=

exp
[

tr
(

− δ(
√
ρn+1)δ(

√
ρn+1) − 1

2
an+1

(√
ρn+1δ(

√
ρn+1) − δ(

√
ρn+1)

√
ρn+1

))

+ tr
(

ρn+1(Cn+1 − an+1)2
)

− tr(ρn+1(Cn+1 − an+1))2 + O
(

∆t3/2
)]

, (2.19)

where Cn+1 = 1
2(U †

nUn+1 − U †
n+1Un), and an+1 satisfies

ρ̃n+1an+1 + an+1ρ̃n+1 − √
ρn+1δ(

√
ρn+1) + δ(

√
ρn+1)

√
ρn+1 = 0. (2.20)

Substituting (2.18) and (2.19) into the generating function (2.8) gives

Z[X0,Xn;J ] =

∫ n∏

k=1

(

dρk dUk

)

exp(−S), (2.21)

where the ‘action’ is

S =
n+1∑

k=1

(

Dk −
(
∆(Ck − ak)

)2
+
i∆t

~
tr(ρkJk ·Ok)

)

+ O
(√

∆t
)

. (2.22)

Here

Dk = tr

(

δ(
√
ρk)δ(

√
ρk) +

1

2
ak(

√
ρkδ(

√
ρk) − δ(

√
ρk)

√
ρk)

)

, (2.23)

and
(
∆(Ck − ak)

)2
= tr

(

ρk(Ck − ak)2
)

− tr(ρk(Ck − ak))2, (2.24)

and we have set Jn+1 = 0 to make the notation convenient.
(
∆(Ck − ak)

)2
is the variance of Ck − ak

in the state ρk.

In the limit ∆t → 0, we may discard the O
(√

∆t
)

part of (2.22). We end up with

S = lim
∆t→0

n+1∑

k=1

(

Dk −
(
∆(Ck − ak)

)2
+
i∆t

~
tr(ρkJk ·Ok)

)

. (2.25)
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ρ |ψ〉
space of reduced

states

(base space)

space of purifications

(total space)

Figure 2.1: The space of density matrices acting on a Hilbert space H may

be viewed as the base space of a fibre bundle whose fibre over ρ consists of all

purifications of ρ. Uhlmann holonomy provides us with a notion of parallel

transport in this bundle, i.e. it gives us a way to ‘lift’ a curve of density matrices

in the base space to a curve in the full bundle of purifications.

2.3 Dynamical Uhlmann holonomy

In the previous section, we defined a sequence of operators ak associated with a sequence of density

matrices ρk. These operators might seem obscure, but actually they are a natural generalisation of

an idea due to Uhlmann which has been given the name ‘Uhlmann holonomy’ [44–46]. One considers

a curve ρ(t) of density matrices acting on a Hilbert space H, and an initial purification |ψ(0)〉 of ρ(0),

i.e. a state in an extended Hilbert space H ⊗ H′ obeying

ρ(0) = tr′ |ψ(0)〉 〈ψ(0)| . (2.26)

If dim(H) ≤ dim(H′), then there are many ways to extend |ψ(0)〉 to a curve |ψ(t)〉 of states in H ⊗H′,
such that |ψ(t)〉 is a purification of ρ(t) for all t. Let us assume that H = H′, and the density

matrices ρ(t) are invertible. Uhlmann holonomy then defines a unique such curve |ψ(t)〉 (up to phase

shifts) with a certain privileged property described below. In this way it provides a notion of parallel

transport of the purification |ψ〉 around the curve of density matrices. This is shown in Figure 2.1.

The property defining Uhlmann holonomy is as follows. Suppose we pick some sequence ρk = ρ(tk),

k = 0, . . . , n − 1 of density matrices ordered along the curve, and let |ψk〉 = |ψ(tk)〉 be the associ-

ated purifications. Then, under Uhlmann holonomy, the curve |ψ(t)〉 must maximise the ‘transition

probability’

|〈ψn+1|ψn〉|2 . . . |〈ψ2|ψ1〉|2|〈ψ1|ψ0〉|2 (2.27)

in the limit as n → ∞ and the density matrices ρk densely cover ρ(t).

Let us write the states |ψk〉 as linear maps H′ → H by dualising on the H′ part. In fact, let us

write them in terms of a polar decomposition, so that |ψk〉 ∼ √
ρkU

†
k for some unitary operator Uk.

Then (2.27) takes the form
∣
∣
∣tr
(

Un+1
√
ρn+1

√
ρnU

†
n

)∣
∣
∣

2
. . .
∣
∣
∣tr
(

U1
√
ρ1

√
ρ0U

†
0

)∣
∣
∣

2
. (2.28)
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One should recognise this as exactly the integrand in the generating function (2.8), but with J =

HA = HB = 0.

Another polar decomposition makes it easy to maximise (2.28). In particular, let us write

√
ρk+1

√
ρk = Vk+1

√√
ρkρk+1

√
ρk, (2.29)

where Vk+1 is some unitary operator. Since ρk, ρk+1 are invertible, Vk+1 is uniquely determined.

Since
√√

ρkρk+1
√
ρk is a positive Hermitian operator, the maximum of (2.28) is obtained when

U †
k+1Uk = Vk+1e

iσk for some arbitrary real constants σk, and is given by

∣
∣
∣
∣tr

(√√
ρnρn+1

√
ρn

)∣
∣
∣
∣

2

. . .

∣
∣
∣
∣tr

(√√
ρ0ρ1

√
ρ0

)∣
∣
∣
∣

2

. (2.30)

Given the initial state
√
ρ0U

†
0 , we can then write the final state as

√
ρn+1U

†
n+1 =

√
ρn+1V U

†
0e

iσ, (2.31)

where

V = Vn+1Vn . . . V1, and σ =
n∑

k=1

σk. (2.32)

The limit of V as n → ∞ is a unitary operator characterising the parallel transport of the purification

around the curve of density matrices.

Another way to compute V at large n is to use the results of the previous section, but setting

HA = HB = J = 0. Then at leading order (2.28) is equal to exp(−S), with S defined in (2.25). Since

Ck − ak is anti-Hermitian, its variance
(
∆(Ck − ak)

)2
(2.33)

must be non-positive. Furthermore, assuming ρk is invertible for all k, the variance vanishes if and

only if Ck − ak = iσk for some arbitrary real number σk, and one may show that these σk are the

same as the previous ones. Thus, to minimise (2.28), we need Ck = ak + iσk, and we can solve (2.13)

for Vk to obtain

Vk = exp
(

−ak + O
(

∆t3/2
))

. (2.34)

Defining â(tk) = ak/∆t, in the n → ∞ limit we can then formally write V as a path-ordered expo-

nential

V = V [ρ] = P exp

(

−
∫

â(t) dt

)

. (2.35)

This is why the operators ak are important – they describe the infinitesimal version of Uhlmann

holonomy.

Usually, Uhlmann holonomy does not involve any Hamiltonians or sources. However, in the scenario

described in this paper, we turn on HA, HB and J . This effectively introduces dynamics into the

Uhlmann holonomy. For this reason, and for lack of a better name, we call this ‘dynamical’ Uhlmann

holonomy.

Let us actually solve for ak now. By definition, ak obeys

ρ̃kak + akρ̃k − √
ρkδ(

√
ρk) + δ(

√
ρk)

√
ρk − 2i∆t

~

√
ρk(HA +

1

2
Jk ·Ok)

√
ρk = 0. (2.36)

We claim that the solution to this is

ak =

∫

ds e−sρ̃k

(√
ρkδ(

√
ρk) − δ(

√
ρk)

√
ρk +

2i∆t

~

√
ρk

(

HA +
1

2
Jk ·Ok

)√
ρk

)

e−sρ̃k . (2.37)
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This integral is convergent because ρ̃k is positive, so it gives a well-defined operator. One may confirm

that (2.37) solves (2.36) by direct substitution, using the fact that the anticommutator with ρ̃k converts

into an s derivative in the integral. Moreover, since the linear map

a 7→ ρ̃ka+ aρ̃k (2.38)

is invertible, (2.37) is the unique solution to (2.36).

Until now, we have been using δρk = O
(√

∆t
)

, but suppose for future reference that we instead

have the stronger condition δρk = o(
√

∆t).4 In this case, it will actually be more convenient for us

to write a in a slightly different form, in terms of modular flow. Given a density matrix ρ : H → H,

modular flow is a one-parameter automorphism of the algebra of operators acting on H. It is defined

by

O 7→ ρiαOρ−iα, (2.39)

where α is the parameter. In Appendix C.1, it is shown that

ak =
1

2π

∫ ∞

−∞
dy

∫ ∞

−∞
dαe2iαyρiα

k

(
1 − sech(y)

y
δKk +

2i∆t

~

(

HA +
1

2
Jk ·Ok

)

sech(y)

)

ρ−iα
k + o(∆t),

(2.40)

where Kk = − log ρk.

Note that, by assumption, Kk = O(1/~). This implies δKk = O(1/~), since it is just the difference

of two O(1/~) quantities. Also, by (1.5) modular flow preserves the asymptotics of the operators it

acts on, so ρiα
k δKkρ

−iα
k = O(1/~). We thus have ak = O(1/~).

2.4 Bures metric

The other term in S which we need to analyse is

Dk = tr

(

δ(
√
ρk)δ(

√
ρk) +

1

2
ak(

√
ρkδ(

√
ρk) − δ(

√
ρk)

√
ρk)

)

. (2.41)

It will be useful for us to write this in a different form. First, we have

δ(
√
ρk) + ak

√
ρk =

∫ ∞

0
ds e−sρk

(

δ(
√
ρk)ρk + ρkδ(

√
ρk) +

(√
ρkδ(

√
ρk) − δ(

√
ρk)

√
ρk

)√
ρk

)

e−sρk

+O(∆t) (2.42)

=
√
ρk

∫ ∞

0
ds e−sρkδρke

−sρk + O(∆t). (2.43)

Similarly,

δ(
√
ρk) − √

ρkak =

∫ ∞

0
ds e−sρkδρke

−sρk
√
ρk + O(∆t). (2.44)

Combining these, we deduce

Dk = tr

(

δ(
√
ρk)δ(

√
ρk) +

1

2
ak

(√
ρkδ(

√
ρk) − δ(

√
ρk)

√
ρk

)
)

=
1

2
tr(δρkGk) + O

(

∆t3/2
)

, (2.45)

where

Gk =

∫ ∞

0
ds e−sρkδρke

−sρk . (2.46)

4 To remind the reader of the difference between these two equations, suppose ǫ is a small parameter. Then f = O(ǫ)

means f/ǫ is finite in the ǫ → 0 limit, whereas f = o(ǫ) means f/ǫ → 0 in the ǫ → 0 limit.
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An alternate way to define Gk is as the solution of

ρkGk +Gkρk = δρk. (2.47)

Note that 1
2 tr(δρkGk) is quadratic in δρk, vanishes only if δρk = 0, and is positive otherwise. Thus,

it provides us with a metric on the space of density matrices MA, called the ‘Bures metric’ [49, 50].

Assuming δρk = O
(√

∆t
)

, in Appendix C.2 it is shown that

Gk = Rk + O(∆t), (2.48)

where

Rk =
1

2π

∫ ∞

−∞
dy

∫ ∞

−∞
dαe2iαy tanh(y)

y
ρiα

k δKkρ
−iα
k . (2.49)

Therefore, we have

Dk =
1

2

(

tr(ρkRk) − tr(ρk−1Rk)
)

+ O
(

∆t3/2
)

. (2.50)

In other words, Dk is half of the difference between the expectation values of Rk in the two states ρk

and ρk−1.

As in the previous section, we have ρiα
k δKkρ

−iα
k = O(1/~), which implies Rk = O(1/~). Taking

the expectation value preserves this scaling, so the leading order part of Dk is O(1/~).

2.5 Classical limit (~ → 0)

Let us now consider the classical limit ~ → 0. Ignoring subleading contributions for notational

convenience, we may write S as the sum of three terms

S = SD + SU + SJ , (2.51)

where

SD =
n+1∑

k=1

Dk, (2.52)

SU = −
n+1∑

k=1

(
∆(Ck − ak)

)2
, (2.53)

SJ =
i

~

n∑

k=1

∆t tr(ρkJk ·Ok). (2.54)

SD and SU are both real and non-negative, whereas SJ is imaginary.

Let us first consider SD, which is O(1/~) by the results of Section 2.4. In the classical limit the

factor of e−SD in the generating function will therefore be sharply peaked, and we should seek to

minimise SD. Since Dk = 0 if and only if δρk = 0, the exact minimum is attained when ρk is constant.

However, we want to be able to consider evolution between different states, so this would be too

trivial. Luckily, in the simultaneous limit ~,∆t → 0, a much larger class of sequences of states ρk is

allowed. Suppose for example that the curve ρ(t) which ρk approximates is differentiable. Then we

have δρk = O(∆t), so Dk = O
(

∆t2
)

. This implies that the overall scaling of SD with respect to both

∆t and ~ is SD = O(∆t/~). By our assumptions, ∆t/~ → 0 in the simultaneous limit, so SD → 0. So

all differentiable paths minimise SD. Actually, there will be a larger set of paths which minimise SD,

and this set depends on the exact relationship between ∆t and ~. Let us call the set C . Certainly C
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will contain all differentiable paths, as we have just argued. We also have δρk = o(
√

∆t) for all paths

in C , because otherwise SD grows at least as fast as 1/~.

Let us assume now that SD is minimised, so that the path ρ(t) is in C . Since this means δρk =

o(
√

∆t), by the results of Section 2.3 we now have ak = O(1/~). Let us write Ck − ak = iσk + Bk,

where Bk satisfies tr(ρkBk) = 0; this can always be made to be true by appropriately choosing σk.

Then we have

SU = −
∑

k=1

tr
(

ρkB
2
k

)

. (2.55)

This is non-negative because Bk must be anti-Hermitian. It is zero if and only if Bk = 0, but Bk

doesn’t have to be exactly at this minimum. Suppose Bk 6= o(∆t/~). Then SU grows at least as fast

as ∆t/~2. By our assumptions, ∆t/~2 → ∞ in the simultaneous limit, so SU → ∞, i.e. exp(−SU ) → 0.

To avoid this, we need Bk = o(∆t/~), in which case we may write

Ck = ak + iσk + o

(
∆t

~

)

. (2.56)

Without loss of generality we can at this point assume σk = 0, as it is an arbitrary phase factor that

cancels out in all the following calculations. Then, using (2.13), we have

U †
k−1e

iHB∆t/~Uk = exp

(

ak + o

(
∆t

~

))

, (2.57)

which implies

Un+1 = e−iHBT/~U0V [ρ, J ]† (2.58)

where

V [ρ, J ] = e−an+1+o(∆t/~)e−an+o(∆t/~) . . . e−a1+o(∆t/~). (2.59)

As we have pointed out, C contains more paths that just the differentiable ones. However, from

this point on the effects of non-differentiability will not be so important, so we will take the notational

shortcut of assuming that derivatives are well-defined. This is fairly standard when dealing with path

integrals, but one should always keep in mind that whenever a derivative appears it is technically a

formal one, and it should be understood in an appropriately regularised sense.

We can then in the ∆t → 0 limit write V [ρ, J ] as a path-ordered exponential

V [ρ, J ] = P exp

(

−
∫ T

0
a(t) dt+ o

(
1

~

))

, (2.60)

where

a(t) =
1

2π

∫ ∞

−∞
dy

∫ ∞

−∞
dαe2iαyρ(t)iα

(
1 − sech(y)

y
K̇(t) +

2i

~

(

HA +
1

2
J(t) ·O(t)

)

sech(y)

)

ρ(t)−iα.

(2.61)

The arguments in square brackets indicate that V [ρ, J ] depends on the path ρ(t) and the sources J(t).

Since a(t) ∼ 1/~, the o(1/~) term in (2.60) is subleading in the classical limit ~ → 0, so we can ignore

it in the following.

Suppose the state of the system is initially |X(0)〉. To determine the classical evolution of the

system after a time T , we need to maximise the transition probability to the final state |X(T )〉.
Recall that this probability is proportional to the generating function if we set J = 0. If the evolution

of the state does not obey the conditions we have just laid out, the transition probability will be

exponentially suppressed. To be precise, there must be some path ρ(t) of density matrices in C which

starts at ρ(0) = trB |X(0)〉 〈X(0)| and ends at ρ(T ) = trB |X(T )〉 〈X(T )|. Furthermore, if we write
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the states |X(0)〉 and |X(T )〉 as linear maps
√

ρ(0)U(0)† and
√

ρ(T )U(T )†, then U(0) and U(T ) must

be related by the dynamical Uhlmann holonomy along ρ(t) in the absence of sources, i.e.

U(T ) = e−iHBT/~U(0)V [ρ, 0]†. (2.62)

If this were not true, then by the above arguments the integrand of the generating function (2.21) would

always be exponentially suppressed in the classical limit, so the transition probability itself would be

exponentially suppressed. However, when this condition is obeyed, there are contributions to the

generating function which are not exponentially suppressed, and integrating over these contributions

gives a non-suppressed transition probability.

To summarise, in the classical limit the dominant evolution of the system takes the form

√

ρ(0)U † →
√

ρ(T )V [ρ, 0]U †eiHBT/~, (2.63)

where ρ = ρ(t) is any path in C from ρ(0) to ρ(T ). There is no classically dominant choice of ρ in C .

2.6 Semiclassical correlators

In this section, we will compute semiclassical correlators of operators acting on the system. This means

that we will assume that the ‘background’ evolution of the system is classical, so that correlators

measure quantum fluctuations about this classical background.

Let the classical background be described by a path ρ̄(t) of reduced states that begins at ρ̄(0) = ρ(0)

and ends at ρ̄(T ) = ρ(T ), so that the initial and final states of the system are

√
ρ0U

†
0 =

√

ρ(0)U †
0 and

√
ρn+1U

†
n+1 =

√

ρ(T )V [ρ̄, 0]U †
0e

iHBT/~ (2.64)

respectively. Substituting this into the generating function (2.8), one finds

Z[X0,Xn+1;J ] =

∫ n∏

k=1

(

dρk dUk Yk

)∣
∣
∣tr
(

e−iHBT/~U0V [ρ̄, 0]†
√
ρn+1

√
ρnU

†
n

)∣
∣
∣

2
, (2.65)

Now, in the limit ∆t, ~ → 0, all the reasoning of the previous sections still holds. One finds therefore

that this integral is dominated by sequences of states ρk which approximate a path ρ(t) in C starting

at ρ(0) and ending at ρ(T ), and by sequences of operators Uk such that

Un = e−iHBT/~U0V [ρ, J ]†. (2.66)

Substituting this in, the generating function takes the form

Z[ρ̄;J ] =

∫

Dρ exp(−SJ)
∣
∣
∣tr
(

ρ(T )V [ρ, J ]V [ρ̄, 0]†
)∣
∣
∣

2
, (2.67)

where SJ is defined in (2.54), and may be written in the ∆t → 0 limit as

SJ =
i

~

∫ T

0
tr(ρ(t)J(t) ·O(t)) dt . (2.68)

The integral in (2.67) is done over all paths of reduced states in C that begin at ρ(0) and end at

ρ(T ). We have indicated that the generating function depends on the entire background path ρ̄ by

including it in the square brackets on the left-hand side. Notice that the generating function now

does not depend at all on U0 or HB.
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It remains to evaluate the trace term in (2.67), which can be done by using a coherent state path

integral. This proceeds in the usual way. In particular, we can write

〈
x′∣∣V [ρ, J ]

∣
∣x
〉

= lim
∆t→0

〈
x′∣∣e−∆ta(tn)e−∆ta(t−1) . . . e−∆ta(t1)

∣
∣x
〉
, (2.69)

and inserting (1.6) multiple times leads to

〈
x′∣∣V [ρ, J ]

∣
∣x
〉

= lim
∆t→0

∫ n−1∏

l=1

dxl

n∏

k=1

〈xk|e−∆ta(tk)|xk−1〉 , (2.70)

where x0 = x and xn = x′. For small ∆t, the sequences of coherent states which contribute to this

integral approximate continuous paths, and we can write it as

〈
x′∣∣V [ρ, J ]

∣
∣x
〉

=

∫

Dx exp(is[x, ρ, J ]/~), (2.71)

where

s[x, ρ, J ] =

∫ T

0
(i~ 〈x|ẋ〉 + i~ 〈x|a|x〉) dt . (2.72)

(Again, most paths which contribute to the path integral are non-differentiable, so the time derivative

here is formal.) Using this twice, we can write

tr(ρ(T )V [ρ, J ]V [ρ̄, 0]) =

∫

DxDx̄ 〈x̄(T )|ρ(T )|x(T )〉 exp
(
i
(
s[x, ρ, J ] − s[x̄, ρ̄, 0]

)
/~
)
, (2.73)

where the integral is done over paths of coherent states x(t), x̄(t) which obey x(0) = x̄(0).

We can now substitute this into the generating function (2.67). Actually, (2.73) appears twice

in (2.67), once as a complex conjugate. We can deal with this by doubling the degrees of freedom

x → xL, xR and x̄ → x̄L, x̄R. We end up with

Z[ρ(0), ρ(T );J ] =

∫

DρDxL DxR Dx̄L Dx̄R p exp(iS/~), (2.74)

where the overall action is

S = s[xL, ρ, J ] − s[xR, ρ, J ] − s[x̄L, ρ̄, 0] + s[x̄R, ρ̄, 0] −
∫ T

0
tr(ρJ ·O) dt , (2.75)

and

p = 〈x̄L(T )|ρ(T )|xL(T )〉 〈xR(T )|ρ(T )|x̄R(T )〉 . (2.76)

Since ρ = e−O(1/~), p is sharply peaked in the classical limit. Therefore, its effect is just to set some

boundary conditions on xL,R, x̄L,R at t = T .

Since the Berry connection i 〈x|ẋ〉 is assumed to be O(1/~), and we have shown a is O(1/~), the

action (2.75) is O(1), so we can treat it as a classical action. Thus, we can compute all semiclassical

correlators by applying methods of stationary phase, and other similar tools, to the formula

〈O(tm) . . . O(t1)〉 =
(i~)m

Z[ρ̄; 0]

δ

δJ(tm)
. . .

δ

δJ(t1)
Z[ρ̄;J ]

∣
∣
∣
∣
J=0

. (2.77)
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3 Emergent holography

We will now show that (2.74) is a holographic generating function in disguise.

Let us define a set of new states |x, α〉 by acting on the coherent states |x〉 with modular flow:

|x, α〉 = ρ−iα |x〉 . (3.1)

These states clearly obey the ‘modular Schrödinger equation’

∂α |x, α〉 = iK |x, α〉 , (3.2)

which implies that

〈x, α|K̇|x, α〉 = 〈x, α|
(
∂

∂t
(K |x, α〉) −K

∂

∂t
|x, α〉

)

(3.3)

= −i 〈x, α| ∂
∂t

∂

∂α
|x, α〉 − i

∂

∂α
〈x, α| ∂

∂t
|x, α〉 (3.4)

= −i ∂
∂α

(

〈x, α| ∂
∂t

|x, α〉
)

. (3.5)

Using this we can write the diagonal coherent state elements of (2.61) as

〈x|a|x〉 =
1

2π

∫ ∞

−∞
dy

∫ ∞

−∞
dαe2iαy 〈x, α|

(
1 − sech(y)

y
K̇ +

2i

~

(

HA +
1

2
J ·O

)

sech(y)

)

|x, α〉 (3.6)

=
1

π

∫ ∞

−∞
dy

∫ ∞

−∞
dαe2iαy

(

〈x, α| ∂
∂t

|x, α〉 (sech(y) − 1)

+
i

~
〈x, α|

(

HA +
1

2
J ·O

)

|x, α〉 sech(y)

)

(3.7)

= − 〈x| ∂
∂t

|x〉 +

∫ ∞

−∞
dα sech(πα)

(

〈x, α| ∂
∂t

|x, α〉 +
i

~
〈x, α|

(

HA +
1

2
J ·O

)

|x, α〉
)

. (3.8)

In the second line we integrated by parts with respect to α on the K̇ term, and in the third line we

used the well-known Fourier transforms
∫ ∞

−∞
e2iαy dy = πδ(α) and

∫ ∞

−∞
e2iαy sech(y) = π sech(πα). (3.9)

Substituting this into (2.72), we find

s[x, ρ, J ] =

∫ T

0
dt

(

i~ 〈x| ∂
∂t

|x〉 + i~ 〈x|a|x〉
)

(3.10)

=

∫ T

0
dt

∫ ∞

−∞
dα sech(πα)

(

i~ 〈x, α| ∂
∂t

|x, α〉 − 〈x, α|
(

HA +
1

2
J ·O

)

|x, α〉
)

. (3.11)

Recall the action (1.8) for the evolution of the coherent states in the isolated case:

S =

∫ T

0
dt

(

i~ 〈x| ∂
∂t

|x〉 − 〈x|H|x〉
)

. (3.12)

In a very immediate sense, we see that (3.11) has one more dimension than (3.12). This dimension is

parametrised by α, i.e. it is generated by modular flow.

In the isolated case, we can recognise (3.12) as a Hamiltonian action with symplectic form

ω = lim
~→0

i~d 〈x| ∧ d |x〉 . (3.13)
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and Hamiltonian function

h(x) = lim
~→0

〈x|H|x〉 . (3.14)

By choosing canonical coordinates pi, qi on the space of coherent states, we can write this as

ω =
∑

i

dqi ∧ dpi and h = h(pi, qi). (3.15)

These canonical coordinates pi, qi represent the classical degrees of freedom.

In the classical limit, modular flow reduces to a kind of classical evolution on the space of coherent

states. To see this, note that

|x, α〉 = ρ−iα |x〉 = eiαK |x〉 (3.16)

can be computed with a coherent state path integral by replacing H → −~K in the usual transition

amplitude. Then, because of our assumption that the modular Hamiltonian obeys K = O(1/~), there

will be a dominant path in the classical limit. So |x, α〉 corresponds to a single coherent state in the

classical limit; let us write its canonical coordinates as pi(α), qi(α).

The action (3.11) is also a Hamiltonian action. The symplectic form is

Ω = lim
~→0

i~

∫ ∞

−∞
dα sech(πα) d 〈x, α| ∧ d |x, α〉 . (3.17)

In terms of the canonical coordinates this is

Ω =

∫ ∞

−∞
dα sech(πα)

∑

i

dqi(α) ∧ dpi(α) . (3.18)

The Hamiltonian function can be found by setting the sources to zero; it is

H(x, ρ) = lim
~→0

∫ ∞

−∞
dα sech(πα) 〈x, α|HA|x, α〉 . (3.19)

If the HA here is the same operator as the H in the isolated case, then we have in terms of the

canonical coordinates

H(x, ρ) =

∫ ∞

−∞
dα sech(πα)h

(
pi(α), qi(α)

)
. (3.20)

(3.18) and (3.20) provide another perspective on the emergent holographic dimension generated by

modular flow. We clearly see that there is an additional dimension’s worth of classical degrees of

freedom labelled by α.

On the other hand, the degrees of freedom p(α1), q(α1) and p(α2), q(α2) for α1 6= α2 are not

actually independent of one another, but are related by the modular Schrödinger equation. However,

this kind of spacelike constraint on the degrees of freedom is actually something we should expect to

happen in the bulk theory, because the bulk theory should have some gauge symmetries. Thus we

can view the modular Schrödinger equation as a bulk gauge constraint.

The action (3.11) appears four times in the overall action for the generating function (2.74). Two

of these just account for the background evolution ρ̄ without sources, and should be viewed as coun-

terterms. So really there are two different sourced holographic ‘sectors’ to the path integral, labelled

by L and R. This factor of 2 accounts for the factor of 1
2 in front of the sources in (3.11).

Let us summarise exactly what the emergent holographic theory looks like.

• There is a fixed path ρ̄ of density matrices which represents the classical ‘background’ around

which we are considering fluctuations.
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ρt

α

|xL, α〉
t

α

|xR, α〉

L R

Figure 3.1: The emergent bulk spacetime has two sides L and R, which are

both generated by the modular flow of a single evolving density matrix ρ.

• There is another path ρ of density matrices which is not fixed. Instead, we integrate over ρ ∈ C

in the path integral, subject to the constraints ρ(0) = ρ̄(0) and ρ(T ) = ρ̄(T ).

• There are two ‘sides’, which we have been labelling left and right, L and R.

• On each side there are two families of states |x, α〉 and |x̄, α〉. The first family represents the

holographic bulk generated by the modular flow of the fluctuating density matrix ρ in the

presence of sources J , while the second family represents the holographic bulk generated by the

modular flow of the background density matrix ρ̄.

• On each side we integrate over x and x̄, subject to the constraint x(0) = x̄(0). Since ρ(0) = ρ̄(0),

this more or less says that at t = 0 the state of the holographic bulk contains no fluctuations

around the background.

The emergent bulk spacetime is depicted in Figure 3.1.

We can measure the extra dimension by computing correlators, i.e. by taking derivatives of the

generating function with respect to the sources J and using the formula (2.77). One might be con-

cerned that the extra dimension is trivial, in the sense that the degrees of freedom pi(α), qi(α) for

different values of α might evolve more or less independently of one another. However, this seems

very unlikely, given that the density matrix ρ is a fluctuating object. Since ρ is what determines

the relationship between the degrees of freedom at different values of α, this relationship must also

fluctuate. Moreover, these fluctuations contribute to the action, and so should be measurable.

Another concern may be that the operators O in the action (3.11) must be applied uniformly

for all α. This could mean we won’t be able to measure individual degrees of freedom in the extra

dimension. However, we should point out that if we are allowed to define state-dependent observables

then we can insert operators at fixed points in the emergent dimension. Indeed, by the methods of
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Appendix C.1, the part of a involving the sources, i.e.

aJ =
i

2~

∫ ∞

−∞
dα sech(πα)ρiαJ ·Oρ−iα, (3.21)

is the solution to

ρaJ + aJρ =
i

~

√
ρJ ·O√

ρ. (3.22)

If we want to insert an operator at α = α0, then we need to find a J ·O such that

aJ =
i

2~
ρiα0j(α0) ·Oρ−iα0 , (3.23)

where j(α0) has the interpretation of a local source at α0. Substituting this into (3.22) and rearranging,

we find

J ·O = j(α0) ·O(α0), (3.24)

where

O(α0) =
1

2
ρiα0

(

ρ1/2Oρ−1/2 + ρ−1/2Oρ1/2
)

ρ−iα0 . (3.25)

If we insert O(α0) into the correlator, this will result in an insertion of O at α = α0 in the holographic

bulk. To be precise, we will get an action of the form

s[x, ρ, J ] =

∫ T

0
dt

[
∫ ∞

−∞
dα sech(πα)

(

i~ 〈x, α| ∂
∂t

|x, α〉 − 〈x, α|HA |x, α〉
)

− i

2~
〈x, α0|j(α0) ·O|x, α0〉

]

. (3.26)

Of course, we do not have access to the full quantum state ρ during the evolution, and even if

we did it would not be consistent with the postulates of quantum mechanics to define these kinds of

non-linear observables. However, what we do have access to is the fixed background evolution ρ̄. If

we replace ρ by ρ̄ in (3.25), we will get a kind of local operator which is fully consistent with quantum

mechanics. We should also point out that in a gravitational theory there are no local gauge-invariant

bulk observables. A common way to deal with this is to define observables with respect to some fixed

background, which is exactly what we would be doing in this case. It is interesting that an often-

claimed desirable feature of a fundamental theory of quantum gravity is background independence,

whereas here the background is built into the mechanism.

4 Discussion

So, starting with a highly entangled system undergoing frequent decoherence, we have obtained a

genuine, non-trivial, emergent holographic theory. Let us now discuss some potential future directions.

The most obvious thing to do first would be to try to relax some of the assumptions laid out in the

Introduction. In the paper we assumed that HA = HB, but it should not be too difficult to consider

the case where the subsystems are different. Likewise, it should be straightforward to generalise the

calculations to include correlators of operators applied to both A and B. A potentially more difficult

and more interesting problem would be to allow an interaction term in the system Hamiltonian (1.30).

Next, although the mechanism clearly gives a holographic bulk, it is not completely obvious that

the bulk theory includes gravity, and there are many questions that one could ask about this. For

example, is there a fluctuating bulk metric, and do the bulk fields respect a bulk diffeomorphism gauge
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symmetry? One aspect of the bulk spacetime that clearly hints at gravity is the sense in which it re-

sembles a wormhole. Indeed, it has two sides L and R, and wormholes often have hyperbolic functions

appearing in their geometry, which the factor of sech(πα) in (3.11) seems to account for (although ob-

viously this could just be a coincidence). A gravitational theory should also involve some kind of sum

over topologies, and this could be explored by going beyond the bipartite entanglement considered

in this paper. In particular, we could expand to some large number of subsystems A,B,C, . . . , and

consider pointer states with a large amount of multipartite entanglement among these subsystems.

It may be reasonable to consider pointer states formed from tensor networks. If we sum over tensor

network pointer states with different underlying graphs, this would then give a sum over topologies.

Of course, to extend the techniques in this paper to multipartite entanglement, one would have to

have some kind of multipartite generalisation of Uhlmann holonomy. This could be a worthwhile topic

to explore in its own right.

There are several approximations which are made in the paper, and it would be worthwhile to

investigate corrections to these approximations. This includes the simple model of decoherence we

have used – it would be interesting to see if a more complicated model leads to significant changes

to our results. There are quantum corrections to the ~ → 0 limit that should be computed. Indeed,

one should figure out whether the mechanism can be made to work at all, if we are away from this

classical limit, which has seemed quite essential to our derivation. There will also be corrections to

the ∆t → 0 limit. In reality, ∆t is not arbitrarily small, but represents a lower limit on the temporal

resolution of the theory. In the gravitational context, it is tempting to interpret this lower limit as

being associated with some kind of underlying discreteness of the bulk spacetime, so that ∆t is the

Planck time. It would be very interesting to see how far this interpretation goes.

One question worth asking is: what is the Hilbert space of the bulk theory? From a certain point

of view, the answer is trivial. The Hilbert space must be HA ⊗ HB ⊗ HE, where HE is the Hilbert

space of the environment, because that is what we started with in our construction. However, suppose

we didn’t know that this was the starting point, and we were unaware of the mechanism described in

this paper. Instead, suppose that after many experiments we had empirically deduced that physics is

well-described by the generating function (2.74), with each side of spacetime described by an action

of the form (3.11). Let’s just focus on one side. What Hilbert space would be consistent with this

action?

Using the fact that at each moment in time we have a state |x, α〉 ∈ HA for each α ∈ R, a reasonable

first guess at an answer would be

Ĥbulk =
⊗

α∈R

Hα
A. (4.1)

Here we have attached a label α to each copy of HA. Suppose we have two states in Ĥbulk:

|Φ〉 =
⊗

α∈R

|Φα〉 , (4.2)

|Φ̃〉 =
⊗

α∈R

|Φ̃α〉 , (4.3)

where |Φα〉 , |Φ̃α〉 ∈ Hα
A. Then we define the inner product of these states as

〈Φ|Φ̃〉 =

∫ ∞

−∞
dα sech(πα) 〈Φα|Φ̃α〉 . (4.4)

The factor of sech(πα) here ensures that the right factor of sech(πα) would appear in the action of a

path integral formed from these states. It also means that if |Φα〉 is normalised for all α, then so is

|Φ〉, since
∫ ∞

−∞
dα sech(πα) = 1. (4.5)
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More generally, if 〈Φα|Φα〉 grows less quickly than eπ|α| as |α| → ∞, then |Φ〉 will be a normalisable

state.

It seems however that (4.1) contains too many states. Indeed, the bulk states that we have

constructed obey the modular Schrödinger equation

∂α |Φα〉 = iK(X) |Φα〉 , (4.6)

where K(X) is the modular Hamiltonian of some pointer state X ∈ M. Clearly most states in (4.1)

do not obey this equation. It is tempting to try to define the bulk Hilbert space so that we restrict

to states for which the equation is obeyed, writing something like

Hbulk
?
=
{

|Φ〉 ∈ Ĥbulk : ∂α |Φα〉 = iK(X) |Φα〉 for some X ∈ M
}

. (4.7)

But this cannot possibly work in general. The reason is that if two states obey (4.6) for different

pointer states X1,X2, then their sum in general will not obey (4.6) for any pointer state. So the Hbulk

in (4.7) would not be a vector space. What we could do instead is fix X to start with, and define

Hbulk[X] =
{

|Φ〉 ∈ Ĥbulk : ∂α |Φα〉 = iK(X) |Φα〉
}

. (4.8)

Because X is fixed, (4.6) now is preserved if we add two states in Hbulk(X). It seems that the correct

thing to do may be to define the bulk Hilbert space as the sum of these spaces over all X, i.e.

Hbulk =
∑

X∈M
Hbulk[X] = span

{

|Φ〉 ∈ Ĥbulk : ∂α |Φα〉 = iK(X) |Φα〉 for some X ∈ M
}

. (4.9)

This Hbulk will in general be a proper subspace of Ĥbulk. It will also in general contain states which

do not obey the modular Schrödinger equation – the interpretation of these states is a puzzle which

needs solving.

It would be interesting to see if one could make a connection with quantum error correction

approaches to holography by interpreting Hbulk as a code subspace inside of Ĥbulk. Note that the

usual technological purpose of quantum error correction is to protect a system from decoherence with

the environment. Here we seem to have the opposite: the decohering process is what causes the code

subspace to be favoured.

Finally, although this paper has mainly taken a phenomenological point of view, we will at some

point have to provide a fundamental theory which fulfils the assumptions we have made. It would be

interesting to see whether the string theoretic setups that lead to AdS/CFT do this. But it may be

possible to find a much simpler toy theory with the right properties.
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A Generating function for a decohering system

A.1 Correlators in open systems

Consider an open system with Hilbert space H, coupled to an environment with Hilbert space HE,

evolving with a combined Hamiltonian H. Suppose we are completely ignorant of the state of the

environment. Then we could describe the environment in terms of the maximally mixed density

matrix

ρ0,E =
IE

dim(HE)
. (A.1)

However, here it will be more useful to think of the environment as being in a random normalised

pure state |φ〉, distributed according to some probability measure dφ. This is equivalent to the density

matrix description. The probability measure must be invariant under |φ〉 → V |φ〉 for any unitary

operator V , since

〈φ|ρ0,E|φ〉 = 〈φ|V †ρ0,EV |φ〉 . (A.2)

There is essentially only one such probability measure, induced from the invariant measure dV on

U(HE) by setting |φ〉 = V |Ω〉 for some fixed |Ω〉. This measure obeys the useful formula
∫

dφ |φ〉 〈φ| = ρ0,E. (A.3)

Suppose the combined system-environment initial and final states |Ψ〉 , |Ψ′〉 take the form

|Ψ〉 = |ψ〉 ⊗ |φ〉 ,
∣
∣Ψ′〉 =

∣
∣ψ′〉⊗

∣
∣φ′〉 , (A.4)

where |φ〉 , |φ′〉 ∈ HE are distributed according to the above probability measure. These states involve

no entanglement between H and HE, i.e. no correlations between the system and environment.

For a given |φ〉 , |φ′〉, the transition amplitude for the evolution between these states after a time

T is
〈
Ψ′∣∣e−iHT/~

∣
∣Ψ′〉 =

〈
ψ′∣∣⊗

〈
φ′∣∣ e−iHt/~ |ψ〉 ⊗ |φ〉 . (A.5)

If we average this over |φ〉 and |φ′〉, it should be clear that we get 0, because there is a uniform inte-

gration over an arbitrary phase. Thus, the transition amplitude should not be viewed as a measurable

quantity.

The story is different for the transition probability. For given |φ〉 , |φ′〉, this is

P(ψ → ψ′|φ, φ′) =
∣
∣
∣

〈
Ψ′∣∣e−iHt/~

∣
∣Ψ′〉

∣
∣
∣

2
(A.6)

=
〈
ψ′∣∣⊗

〈
φ′∣∣ e−iHt/~ |ψ〉 ⊗ |φ〉 〈ψ| ⊗ 〈φ| eiHt/~

∣
∣ψ′〉⊗

∣
∣φ′〉 (A.7)

= tr
((
ρ′ ⊗

∣
∣φ′〉 〈φ′∣∣ )e−iHt/~(ρ⊗ |φ〉 〈φ|

)
eiHt/~

)

. (A.8)

where ρ = |ψ〉 〈ψ| and ρ′ = |ψ′〉 〈ψ′|. The notation P(ψ → ψ′|φ, φ′) is meant to emphasise that this is

a conditional probability – it is the probability of a transition ψ → ψ′, conditional on the environment

states being φ and φ′. Using (A.3) the overall transition probability is then given by

P(ψ → ψ′) =
∑

φ,φ′

P(ψ → ψ′|φ, φ′)P(φ)P(φ′) (A.9)

=

∫

dφ

∫

dφ′ tr
((
ρ′ ⊗

∣
∣φ′〉 〈φ′∣∣ )e−iHt/~(ρ⊗ |φ〉 〈φ|

)
eiHt/~

)

(A.10)

=
1

(dim(HE))2
tr
((

ρ′ ⊗ IE

)

e−iHt/~ (ρ⊗ IE) eiHt/~
)

. (A.11)
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Note that this is identical to the transition probability between the density matrices ρ ⊗ ρ0,E and

ρ′ ⊗ ρ0,E .

Now suppose we know after the transition happens that the initial and final system states were

ρ = |ψ〉 〈ψ| and ρ′ = |ψ′〉 〈ψ′| respectively, but that we are ignorant of the environment states φ, φ′.
Then the correct probability distribution for φ, φ′ is a conditional one, which we can deduce with

Bayes’ law

P(φ, φ′|ψ → ψ′) =
P(ψ → ψ′|φ, φ′)P(φ)P(φ′)

P(ψ → ψ′)
(A.12)

= (dim(HE))2

∣
∣
∣ 〈Ψ′|e−iHt/~|Ψ〉

∣
∣
∣

2

tr
(
(ρ′ ⊗ IE) e−iHt/~ (ρ⊗ IE) eiHt/~

)P(φ)P(φ′), (A.13)

where again |Ψ〉 = |ψ〉 ⊗ |φ〉 and |Ψ′〉 = |ψ′〉 ⊗ |φ′〉. The correlator of operators Oi inserted at times

ti with i = 1, . . . ,m is also a conditional quantity. In particular, it is conditional on the initial and

final environment states, and may be written

〈Ψ′|e−iH(t−tm)/~Om . . . e−iH(t2−t1)/~O1 e
−iHt1/~|Ψ〉

〈Ψ′|e−iHt/~|Ψ〉
. (A.14)

Averaging this over the conditional probability distribution (A.13), we get the expectation value of

the correlator

〈Om(tm) . . . O1(t1)〉 =
∑

φ,φ′

〈Ψ′|e−iH(t−tm)/~Om . . . O1 e
−iHt1/~|Ψ〉 〈Ψ|eiHt/~|Ψ′〉

(dim(HE))−2 tr
(

(ρ′ ⊗ IE) e−iHt/~ (ρ⊗ IE) eiHt/~
) P(φ)P(φ′)

=

∫

dφ

∫

dφ′ 〈ψ′| ⊗ 〈φ′| e−iH(t−tm)/~Om . . . O1 e
−iHt1/~ |ψ〉 ⊗ |φ〉 〈ψ| ⊗ 〈φ| eiHt/~ |ψ′〉 ⊗ |φ′〉

(dim(HE))−2 tr
(
(ρ′ ⊗ IE) e−iHt/~ (ρ⊗ IE) eiHt/~

) . (A.15)

Using (A.3), we can do this integral, and obtain

〈Om(tm) . . . O1(t1)〉 =
tr
(

(ρ′ ⊗ IE) e−iH(t−tm)/~Om . . . e−iH(t2−t1)/~O1 e
−iHt1/~ (ρ⊗ IE) eiHt/~

)

tr
(

(ρ′ ⊗ IE) e−iHt/~ (ρ⊗ IE) eiHt/~
) .

(A.16)

This is the appropriate correlator to use when we know the initial and final states of the system, but

are ignorant of the environment. Note that, in the case where there are no interactions between the

system and the environment, and we are only considering operators Oi which act on the system, this

formula can be shown to reduce to the usual one for the correlator in a closed system. However, in

the presence of interactions this will not in general be true.

It is convenient to define a generating function

Z[ψ,ψ′;J ] = tr
((
ρ′ ⊗ IE

)
UJ (t) (ρ⊗ IE) U

†
0(t)

)

, (A.17)

where J = J(t) is a time-dependent source, and UJ is a sourced evolution operator, defined by

UJ(0) = I and

i~U̇JU
†
J = H + J ·O, (A.18)

which has the solution

UJ(T ) = P exp

(

− i

~

∫ T

0

(
H + J(t) ·O(t)

)
dt

)

. (A.19)

Here the · is supposed to denote a sum over all possible operators that we want to be able to insert.

Note that this generating function involves two instances of time evolution: one forwards in time with
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sources, and the other backwards in time but without sources. Unlike in the closed case, it is not

possible in general to define a generating function with only one instance of time evolution.

Note that U0(t) = e−iHt/~, so we have

Z[ψ,ψ′; 0] ∝ P(ψ → ψ′). (A.20)

Also, we can compute correlators by taking appropriate derivatives of Z with respect to J :

〈Om(tm) . . . O1(t1)〉 =
(i~)m

Z[ψ,ψ′; 0]

δ

δJ(tm)
. . .

δ

δJ(t1)
Z[ψ,ψ′;J ]

∣
∣
∣
∣
J=0

. (A.21)

A.2 Decoherence

Suppose the reduced state of the system is |ψ〉 〈ψ|, and recall from the Introduction that for (according

to our simple model of decoherence) after a time ∆t, this state changes to

ρ(∆t) →
∫

dX
∣
∣
∣ 〈X|e−iH∆t/~|ψ〉

∣
∣
∣

2
|X〉 〈X| . (A.22)

Let us consider what this implies about the evolution of the total state in the combined system and

environment. Suppose the initial combined state is

|Ψ〉 = |ψ〉 ⊗ |φ〉 , (A.23)

where |ψ〉 ∈ H and |φ〉 ∈ HE are normalised. Since the total evolution of the entire system has to be

unitary, ρ(∆t) must arise as the reduced state of some pure normalised state in H ⊗HE. In particular

we can write (ρ)ρ(∆t) = trE |Ψ′〉 〈Ψ′|, where

∣
∣Ψ′〉 = e−iH∆t (|ψ〉 ⊗ |φ〉). (A.24)

Using a Schmidt decomposition allows us to write this state as

∣
∣Ψ′〉 =

∫

dX fX |X〉 ⊗ |φX〉 , (A.25)

where

|fX |2 =
∣
∣
∣ 〈X|e−iH∆t/~|ψ〉

∣
∣
∣

2
, (A.26)

and the states |φX〉 ∈ HE are orthonormal with respect to the measure dX, i.e.

〈φX1
|φX2

〉 = δ(X1,X2). (A.27)

Here δ(X1,X2) is a Dirac delta distribution with respect to dX. By linearity, we must have

fX = 〈X|e−iH∆t/~|ψ〉 , (A.28)

and |φX〉 = QX |φ〉 for some operators QX satisfying

〈φ̃|Q†
X1
QX2

|φ̃〉 = 〈φ̃|φ̃〉 δ(X1,X2), (A.29)

where |φ̃〉 ∈ HE is any environment state. So the evolution of the combined state is given by

|Ψ〉 →
∣
∣Ψ′〉 = e−iH∆t/~ |Ψ〉 , (A.30)

where

e−iH∆t/~ =

∫

dX |X〉 〈X| e−iH∆t/~ ⊗QX . (A.31)
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The requirement of unitarity for this operator will imply some further constraints on QX , but we will

not need to discuss these in detail. For evolution after a time T = n∆t with n an integer, we can

use (A.31) repeatedly to obtain

e−iHT/~ =

∫ n∏

l=1

dXl

(
n∏

k=2

〈Xk|e−iH∆t/~|Xk−1〉
)

|Xn〉 〈X1| e−iH∆t/~ ⊗QXnQXn−1
. . . QX1

(A.32)

Suppose that, during the evolution, we insert operators Oi : H → H at times tk = k∆t, with

k = 1, . . . , n. We can analyse this using a sourced time evolution operator

UJ(t) =
(

e−iJn·On/~ ⊗ IE

)

e−iH∆t/~ . . . e−iH∆t/~
(

e−iJ1·O1/~ ⊗ IE

)

e−iH∆t/~. (A.33)

By using (A.31) repeatedly, one finds that

UJ (t) =

∫ n∏

k=1

dXk UJ [Xn,Xn−1, . . . ,X1] ⊗QXnQXn−1
. . . QX1

, (A.34)

where

UJ [Xn,Xn−1, . . . ,X1] =

(
n∏

k=2

〈Xk|e−iJk·Ok/~e−iH∆t/~|Xk−1〉
)

|Xn〉 〈X1| e−iJ1·O1/~e−iH∆t/~. (A.35)

As before, the generating function is

Z[ψ,ψ′;J ] = tr
((
ρ′ ⊗ IE

)
UJ (t) (ρ⊗ IE) U

†
0(t)

)

, (A.36)

where ρ = |ψ〉 〈ψ| and ρ′ = |ψ′〉 〈ψ′|. Actually, it will be more convenient to rescale this Z →
Z/dim(HE); this constant factor does not change the formula for computing correlators. Substituting

in (A.34), we find

Z[ψ,ψ′;J ] =

∫ n∏

k=1

(

dXk dX̃k

)

tr
(

ρ′UJ [Xn,Xn−1, . . . ,X1]ρU0[X̃n, X̃n−1, . . . , X̃1]†
)

trE(QXnQXn−1
. . . QX1

Q†
X̃1
. . . Q†

X̃n−1
Q†

X̃n
)/(dim(HE)) (A.37)

Let |i〉 be an orthonormal basis of HE. Using (A.29), we see that

trE(QXnQXn−1
. . . QX1

Q†
X̃1
. . . Q†

X̃n−1
Q†

X̃n
) =

∑

i

〈i|Q†
X̃1
. . . Q†

X̃n−1
Q†

X̃n
QXnQXn−1

. . . QX1
|i〉 (A.38)

= δ(Xn, X̃n)
∑

i

〈i|Q†
X̃1
. . . Q†

X̃n−1
QXn−1

. . . QX1
|i〉

(A.39)

= · · · =
n∏

k=1

δ(Xk , X̃k)
∑

i

〈i|i〉
︸ ︷︷ ︸

=dim(HE)

. (A.40)

Substituting this into (A.37) and integrating over the delta functions, we have

Z[ψ,ψ′;J ] =

∫ n∏

k=1

dXk tr
(

ρ′UJ [Xn,Xn−1, . . . ,X1]ρU0[Xn,Xn−1, . . . ,X1]†
)

(A.41)

=

∫ n∏

k=1

dXk

〈
ψ′∣∣UJ [Xn,Xn−1, . . . ,X1]

∣
∣ψ
〉 〈
ψ
∣
∣U0[Xn,Xn−1, . . . ,X1]†

∣
∣ψ′〉 (A.42)

=

∫ n∏

l=1

dX l

〈

ψ′∣∣Xn

〉

〈X1|e−iJ1·O1/~e−iH∆t/~|ψ〉 〈ψ|eiH∆t/~|X1〉
〈

Xn

∣
∣ψ′〉

×
n∏

k=2

〈Xk|e−iJk·Ok/~e−iH∆t/~|Xk−1〉 〈Xk−1|eiH∆t/~|Xk〉 . (A.43)
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B Yk in exponential form

Let Ũk−1 = Uk−1 and Ũk = eiHB∆t/~Uk. We will write

Yk = tr
(√

ρke
−iJk·Ok∆t/~e−iHA∆t/~√

ρk−1Ũ
†
k−1Ũk

)

tr
(√

ρk−1e
iHA∆t/~√

ρkŨ
†
kŨk−1

)

(B.1)

as an exponential, assuming

δŨk := Ũk − Ũk−1 = O
(√

∆t
)

, (B.2)

δρk := ρk − ρk−1 = O
(√

∆t
)

. (B.3)

We have

tr
(√

ρke
−iJk·Ok∆t/~e−iHA∆t/~√

ρk−1Ũ
†
k−1Ũk

)

= tr
(

ρk −

=O(
√

∆t)
︷ ︸︸ ︷√
ρkδ(

√
ρk) − ρkδŨ

†
kŨk

− iHkρk +
√
ρkδ(

√
ρk)δŨ †

kŨk
︸ ︷︷ ︸

=O(∆t)

+ i
√
ρkHkδ(

√
ρk) + i

√
ρkHk

√
ρkδŨ

†
k Ũk

︸ ︷︷ ︸

=O(∆t3/2)

+O
(

∆t2
))

(B.4)

where we have defined the Hermitian operator Hk = (HA + Jk · Ok)∆t/~ to slightly simplify the

notation. Since tr(ρk) = 1, we can write this as an exponential

tr
(√

ρke
−iJk·Ok∆t/~e−iHA∆t/~√

ρk−1Ũ
†
k−1Ũk

)

= exp
[

tr
(

− √
ρkδ(

√
ρk) − ρkδŨ

†
k Ũk

− iHkρk +
√
ρkδ(

√
ρk)δŨ †

kŨk + i
√
ρkHkδ(

√
ρk) + i

√
ρkHk

√
ρkδŨ

†
k Ũk

)

+

tr
(√

ρkδ(
√
ρk) + ρkδŨ

†
k Ũk

)

tr

(√
ρkδ(

√
ρk)δŨ †

kŨk − iHkρk − 1

2

(√
ρkδ(

√
ρk) + ρkδŨ

†
k Ũk

))

− 1

3

(

tr
(√

ρkδ(
√
ρk) + ρkδŨ

†
k Ũk

))3
+ O

(

∆t2
)]

. (B.5)

Similarly, we have

tr
(√

ρk−1e
iHA∆t/~√ρkŨ

†
kŨk−1

)

= exp
[

tr
(

− δ(
√
ρk)

√
ρk − ρkŨ

†
kδŨk

+ iH0ρk + δ(
√
ρk)

√
ρkŨ

†
kδŨk − iδ(

√
ρk)H0√

ρk − i
√
ρkH

0√
ρkŨ

†
kδŨk

)

+

tr
(

δ(
√
ρk)

√
ρk + ρkŨ

†
kδŨk

)

tr

(

δ(
√
ρk)

√
ρkŨ

†
kδŨk + iH0ρk − 1

2

(

δ(
√
ρk)

√
ρk + ρkŨ

†
kδŨk

))

− 1

3

(

tr
(

δ(
√
ρk)

√
ρk + ρkŨ

†
kδŨk

))3
+ O

(

∆t2
)]

, (B.6)

where H0 = HA∆t/~. Now

δρk = ρk − (
√
ρk−1

︸ ︷︷ ︸

=
√

ρk−δ(
√

ρk)

)2 =
√
ρkδ(

√
ρk) + δ(

√
ρk)

√
ρk − δ(

√
ρk)δ(

√
ρk). (B.7)

Using this and tr(δρk) = 0 we see that

tr(
√
ρkδ(

√
ρk)) =

1

2
tr(

√
ρkδ(

√
ρk) + δ(

√
ρk)

√
ρk) =

1

2
tr(δ(

√
ρk)δ(

√
ρk)) (B.8)

is actually O(∆t). We also have

0 = Ũ †
kŨk − Ũ †

k−1 Ũk−1
︸ ︷︷ ︸

=Ũk−δŨk

= Ũ †
kδŨk + δŨ †

kŨk − δŨ †
kδŨk, (B.9)
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which we can use to show

√
ρkδ(

√
ρk)δŨ †

k Ũk + δ(
√
ρk)

√
ρkŨ

†
kδŨk

=
1

2
(
√
ρkδ(

√
ρk) − δ(

√
ρk)

√
ρk)
(

δŨ †
kŨk − Ũ †

kδŨk

)

+
1

2
(δρk + δ(

√
ρk)δ(

√
ρk))δŨ †

kδŨk (B.10)

and

√
ρkδ(

√
ρk)δŨ †

k Ũk − δ(
√
ρk)

√
ρkŨ

†
kδŨk

=
1

2
(δρk + δ(

√
ρk)δ(

√
ρk))

(

δŨ †
k Ũk − Ũ †

kδŨk

)

+
1

2
(
√
ρkδ(

√
ρk) − δ(

√
ρk)

√
ρk)δŨ †

kδŨk. (B.11)

Using these formulae and other similar ones, we can compute Yk by taking the product of the two

exponentials (B.5) and (B.6) above, obtaining (after a certain amount of algebra)

Yk = exp
[

tr
(

−δ(√ρk)δ(
√
ρk) − (

√
ρkδ(

√
ρk) − δ(

√
ρk)

√
ρk)Ck + ρ̃kC

2
k

)

− tr(ρ̃kCk)2

+
i∆t

~
tr

((

HA +
1

2
Jk ·Ok

)
(
δ(

√
ρk)

√
ρk − √

ρkδ(
√
ρk) − 2

√
ρkCk

√
ρk

)
)

+
2i∆t

~
tr

(

ρk

(

HA +
1

2
Jk ·Ok

))

tr(ρ̃kCk) − i∆t

~
tr(ρ̃kJk ·Ok) + O

(

∆t2
)]

, (B.12)

where

Ck =
1

2

(

Ũ †
kδŨk − δŨ †

kŨk

)

(B.13)

=
1

2

(

U †
k−1e

iHB∆t/~Uk − U †
ke

−iHB∆t/~Uk−1

)

(B.14)

and

ρ̃k =
ρk + ρk−1

2
. (B.15)

C Operators in terms of modular flow

Consider an invertible density matrix ρk with modular Hamiltonian Kk = − log ρk. Let the spectral

decomposition of Kk be given by5

Kk =

∫ ∞

−∞
E dΠE . (C.1)

Here dΠE is a projection valued measure, defined such that

Π[E1,E2] =

∫ E2

E1

dΠE (C.2)

is the projector onto the space spanned by states with modular energy (i.e. Kk eigenvalue) in the

range [E1, E2]. The identity and ρk may be written in terms of this measure as

I =

∫ ∞

−∞
dΠE , (C.3)

ρk =

∫ ∞

−∞
e−E dΠE . (C.4)

It is useful to note the explicit formula

dΠE

dE
=

1

2π

∫ ∞

−∞
dαeiαEρiα

k , (C.5)

which is just a Fourier transform.

5 Technically, we could change the lower limit in this integrals to 0, because Kk > 0.
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C.1 Infinitesimal dynamical Uhlmann holonomy ak

The operator defining infinitesimal dynamical Uhlmann holonomy is

ak =

∫ ∞

0
ds e−sρ̃k

(√
ρkδ(

√
ρk) − δ(

√
ρk)

√
ρk +

2i∆t

~

√
ρk

(

HA +
1

2
Jk ·Ok

)√
ρk

)

e−sρ̃k . (C.6)

Let us assume δρk = o(
√

∆t). Then we can write

ak =

∫ ∞

0
ds e−sρk

(√
ρkδ(

√
ρk) − δ(

√
ρk)

√
ρk +

2i∆t

~

√
ρk

(

HA +
1

2
Jk ·Ok

)√
ρk

)

e−sρk +o(∆t). (C.7)

We will now rewrite this in terms of modular flow. Acting with (C.3) on the left and right, we get

ak =

∫ ∞

−∞
dΠE

(√
ρkδ(

√
ρk) − δ(

√
ρk)

√
ρk +

2i∆t

~

√
ρk

(

HA +
1

2
Jk ·Ok

)√
ρk

)∫ ∞

−∞
dΠẼ

∫ ∞

0
ds exp

(

−se−E
)

exp
(

−se−Ẽ
)

. (C.8)

=

∫ ∞

−∞
dΠE

(

δ(
√
ρk)(e− 1

2
E − e− 1

2
Ẽ) +

2i∆t

~

(

HA +
1

2
Jk ·Ok

)

e− 1

2
(E+Ẽ)

)∫ ∞

−∞
dΠẼ

1

e−E + e−Ẽ
.

(C.9)

For convenience we are leaving out the o(∆t) part. Note that for integer n we have

dΠE δ(ρ
n
k ) dΠẼ =

n−1∑

j=0

dΠE ρ
j
kδρkρ

n−1−j
k dΠẼ + o(∆t) (C.10)

= dΠE δρk dΠẼ

n−1∑

j=0

e−jEe−(n−1−j)Ẽ + o(∆t) (C.11)

= dΠE δρk dΠẼ

e−nE − e−nẼ

e−E − e−Ẽ
+ o(∆t). (C.12)

By analytic continuation of n, we have

dΠE δKk dΠẼ = − d

dn
dΠE δ(ρ

n
k ) dΠẼ

∣
∣
∣
∣
n=0

(C.13)

= − dΠE δρk dΠẼ

d

dn

e−nE − e−nẼ

e−E − e−Ẽ

∣
∣
∣
∣
∣
n=0

+ o(∆t) (C.14)

= dΠE δρk dΠẼ

E − Ẽ

e−E − e−Ẽ
+ o(∆t). (C.15)

We can combine these to write

dΠE δ(
√
ρk) dΠẼ = dΠE δKk dΠẼ

e− 1
2

E − e− 1
2

Ẽ

E − Ẽ
+ o(∆t). (C.16)

Substituting this into (C.9), one finds

ak =

∫ ∞

−∞
dΠE




1 − sech

(

(E − Ẽ)/2
)

E − Ẽ
δKk +

i∆t

~

(

HA +
1

2
Jk ·Ok

)

sech
(

(E − Ẽ)/2
)





∫ ∞

−∞
dΠẼ ,

(C.17)
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where again we are leaving out the o(∆t) part. Using now (C.5), we have

ak =
1

4π2

∫ ∞

−∞
dE

∫ ∞

−∞
dẼ

∫ ∞

−∞
dα

∫ ∞

−∞
dα̃ eiαEeiα̃Ẽ

ρiα
k




1 − sech

(

(E − Ẽ)/2
)

E − Ẽ
δKk +

i∆t

~

(

HA +
1

2
Jk ·Ok

)

sech
(

(E − Ẽ)/2
)



ρiα̃
k . (C.18)

Things simplify at this point if we change variables from E, Ẽ to

x =
1

2
(E + Ẽ), y =

1

2
(E − Ẽ), (C.19)

so that

ak =
1

4π2

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dα

∫ ∞

−∞
dα̃ ei(α+α̃)xei(α−α̃)y

ρiα
k

(
1 − sech(y)

y
δKk +

2i∆t

~

(

HA +
1

2
Jk ·Ok

)

sech(y)

)

ρiα̃
k . (C.20)

The x integral gives 2πδ(α + α̃), so

ak =
1

2π

∫ ∞

−∞
dy

∫ ∞

−∞
dαe2iαyρiα

k

(
1 − sech(y)

y
δKk +

2i∆t

~

(

HA +
1

2
Jk ·Ok

)

sech(y)

)

ρ−iα
k . (C.21)

C.2 Bures metric Gk

The operator defining the Bures metric is

Gk =

∫

ds e−sρkδρke
−sρk . (C.22)

We will write this in terms of modular flow; this proceeds in much the same way as in Appendix C.1.

In that Appendix we assumed δρ = o(
√

∆t), but here we will take δρ = O
(√

∆t
)

. Then, by similar

methods to (C.10)-(C.15), we obtain

dΠE δρk dΠẼ = dΠE δKk dΠẼ

e−E − e−Ẽ

E − Ẽ
+ O(∆t). (C.23)

From this we find that acting with (C.3) on the left and right of (C.22) yields

Gk =

∫ ∞

−∞
dΠE δKk

∫ ∞

−∞
dΠẼ

tanh
(

E − Ẽ
)

E − Ẽ
+ O(∆t). (C.24)

Now substituting in (C.5) and changing variables to

x =
1

2
(E + Ẽ), y =

1

2
(E − Ẽ), (C.25)

we get

Gk =
1

4π2

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dα

∫ ∞

−∞
dα̃ ei(α+α̃)xei(α−α̃)y tanh(y)

y
ρiα

k δKkρ
iα̃
k + O(∆t). (C.26)

Doing the x integral, we end up with

Gk =
1

2π

∫ ∞

−∞
dy

∫ ∞

−∞
dαe2iαy tanh(y)

y
ρiα

k δKkρ
−iα
k + O(∆t). (C.27)
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