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There are numerous reasons to study modifications of general relativity and the Standard

Model of particle physics, ranging from modelling inflation to exploring galaxy rotation

curves and the nature of dark matter. Here we study the most general linear theory

of electromagnetism, which admits vacuum birefringence, and derive weak gravitational

field equations for the underlying area metric spacetime geometry. We discuss the weak

gravitational field sourced by a point mass in an area metric spacetime and find first

order corrections to the linearized Schwarzschild metric of general relativity.
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1. Introduction

Could there be weak birefringence of light in vacuo? How can we predict whether

and where such splitting of light rays in vacuo occurs? Standard Maxwell electrody-

namics, for which the electromagnetic field couples to a metric spacetime geometry,

a priori excludes the possibility of vacuum birefringence. The spacetime geome-

try must be refined, from a metric to a tensor field of the fourth rank, in order

to obtain a linear theory of electrodynamics allowing for vacuum birefringence to

occur. The such obtained matter theory is known as the theory of general linear

electrodynamics1–3 and the fourth rank spacetime tensor field as an area metric.

Because the matter field equations of general linear electrodynamics depend on the

area metric background, finding any concrete solution for the electromagnetic field

requires to simultaneously solve some yet-to-be-determined field equations for the

area metric, which thus take the role played by Einstein’s field equations for a met-

ric background. In particular, also the splitting of light rays depends crucially on

such gravitational field equations underlying general linear electrodynamics. We

can thus rephrase the question of whether and where birefringence of light in vacuo

occurs as follows: What are the gravitational field equations underlying general

linear electrodynamics, and what are the solutions to these field equations?

This question can be answered by means of the recently discovered procedure of

gravitational closure4,5, which employs the causal structure of given matter field

equations in order to provide causally compatible canonical dynamics6,7 for the

underlying geometry. For instance, starting from Maxwell electrodynamics, one

obtains the familiar Einstein equations in this way. Exactly along the same lines,
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when starting instead from general linear electrodynamics, one obtains the gravi-

tational field equations for an area metric geometry. Based on Ref. [8], this paper

reviews the derivation of the weak gravitational field equations underlying general

linear electrodynamics, followed by a discussion of a concrete solution to these equa-

tions, namely the weak gravitational field sourced by a point mass in an area metric

spacetime, revealing first order corrections to the linearized Schwarzschild metric.

2. General linear electrodynamics

We start our discussion with a brief review of the theory of general linear electro-

dynamics1–3,9–11. The action of this matter theory is

Smatter[A,G)] = −
1

8

∫

M

d4xωGFabFcdG
abcd , (1)

where M is an orientable four-dimensional spacetime manifold, F = dA de-

notes the electromagnetic field strength tensor, the fourth-rank contravariant ten-

sor field G denotes the area metric spacetime geometry, and the scalar density

ωG = 4!(ǫabcdG
abcd)−1 is constructed by virtue of the canonical top form density ǫ.

In a spacetime equipped with a tensorial spacetime geometry, general linear electro-

dynamics is the most general theory of electrodynamics for which the classical linear

superposition principle still holds. By virtue of the appearance of the fourth-rank

tensor field in the above matter action, the algebraic symmetries

Gabcd = Gcdab and Gabcd = −Gbacd (2)

may be assumed without loss of generality. Consequently, an area metric spacetime

geometry features 21 independent degrees of freedom at each spacetime point, as

opposed to only 10 independent degrees of freedom for a metric spacetime geome-

try. It is ultimately due to these additional degrees of freedom that general linear

electrodynamics allows not only to describe all of Maxwell electrodynamics, but

also various new phenomena such as vacuum birefringence.

The causal structure of the equations of motion of general linear electrodynamics

is prescribed by the principal tensor field PG, which was shown in Ref. [2, 3] to be

a totally symmetric tensor field density of the fourth rank, determined entirely in

terms of the spacetime geometry,

P abcd
G = −

1

4!
ω2
G ǫmnpqǫrstuG

mnr(aGb|ps|cGd)qtu . (3)

The principal tensor field is the reason why generic area metric spacetime geometries

feature vacuum birefringence: The null cone of general linear electrodynamics, that

is the set of covectors annihilating the principal tensor field, is a quartic surface.

However, if the splitting of light rays in vacuo was a large effect, it would most

likely have been observed by now. Therefore, instead of studying generic area

metric spacetimes, this paper focuses on spacetime geometries which are small area

metric perturbations H around metric Minkowski spacetime η,

Gabcd = ηacηbd − ηadηbc − ǫabcd +Habcd . (4)
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Once we know the linearized gravitational field equations underlying general linear

electrodynamics, we can derive the area metric perturbationsH for given small mat-

ter distributions. In the following two sections, we therefore discuss the derivation

of these linearized gravitational field equations by means of gravitational closure.

3. Canonical geometry

The procedure of gravitational closure enables the derivation of causally compatible

gravitational field equations for the spacetime geometry underlying any predictive

and quantizable matter field theory4–7. The first step in this gravitational closure

procedure is to determine the canonical geometry for which one ultimately wishes to

obtain canonical dynamical field equations. The canonical geometry of an area met-

ric spacetime geometry can be determined as follows. Let Σ be a three-dimensional

manifold and let Xt : Σ →֒ M be a one-real-parameter family of embedding maps,

which specifies a foliation of the spacetime manifold into initial data surfaces. For

each point σ ∈ Σ and each embedding parameter t ∈ R, one can construct an or-

thonormal frame {ǫ0(t, σ), ǫα(t, σ)}, where α ∈ {1, 2, 3}, which allows to project the

area metric spacetime geometry onto the initial data surfaces,

(g1)
αβ [Xt] := −G(ǫ0, ǫα, ǫ0, ǫβ) , (5)

(g2)αβ [Xt] :=
1

4

ǫαµν
√

det(g1)

ǫβστ
√

det(g1)
G(ǫµ, ǫν , ǫσ, ǫτ ) , (6)

(g3)
α
β [Xt] :=

1

2

ǫβµν

det(g1)
G(ǫ0, ǫα, ǫµ, ǫν)− δαβ . (7)

resulting in three one-real-parameter families of induced tenor fields. By construc-

tion, the induced tensor fields g1 and g2 are symmetric,

(g1)
[αβ] = 0 and (g2)[αβ] = 0 . (8)

Moreover, the orthonormality conditions satisfied by the four frame fields imply

(g1)
σ[α(g3)

β]
σ = 0 and (g3)

α
α = 0 . (9)

Therefore, only 17 of the components of the induced tensor fields are independent

degrees of freedom. In order to obtain the canonical geometry from this induced ge-

ometry, we need to parametrize the three induced tensor fields {g1, g2, g3} in terms of

unconstrained canonical configuration variables {ϕ1, . . . , ϕ17}. Note that since the

four frame conditions (9) are non-linear, any parametrization {g1(ϕ), g2(ϕ), g3(ϕ)}

respecting the symmetry conditions (8) and frame conditions (9) is non-linear in

the canonical configuration variables. One possible parametrization—particularly

suited for the perturbative approach pursued in this paper—is the following. Con-

sider a constant intertwiner Iαβ
A, distributing the unconstrained configuration vari-

ables {ϕ1 , ... , ϕ17} over three second rank tensor fields,

(ϕ1)
αβ :=

6∑

A=1

I αβ
Aϕ

A, (ϕ2)
αβ :=

12∑

A=7

I αβ
Aϕ

A, (ϕ3)
αβ :=

17∑

A=13

I αβ
Aϕ

A. (10)
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Now let γ denote a flat three-dimensional Euclidean metric on Σ and let the inter-

twiner I αβ
A and its inverse IA

αβ satisfy the completeness relations

Iαβ
AI

B
αβ = δBA ,

6∑

A=1

Iαβ
AI

A
µν = δ(αµ δβ)ν ,

12∑

A=7

Iαβ
AI

A
µν = δ(αµ δβ)ν ,

17∑

A=13

Iαβ
AI

A
µν = δ(αµ δβ)ν −

1

3
γαβγµν . (11)

By means of this particular choice of intertwiner, the tensor fields ϕ1 and ϕ2 are

symmetric, while ϕ3 is symmetric and trace-free. We find that the parametrization

(g1(ϕ))
αβ := γαβ + (ϕ1)

αβ , (12)

(g2(ϕ))
αβ := γαβ + (ϕ2)

αβ , (13)

(g3(ϕ))
αβ := (ϕ3)

αβ +

∞∑

n=1

(−1)n−1 1

2n

{

ϕ1,
{

ϕ1,
{

. . . ,
{

︸ ︷︷ ︸

n−1 anti-commutator
brackets

ϕ1,
[
ϕ1, ϕ3

]

︸ ︷︷ ︸

commutator
bracket

}

. . .
}}}αβ

(14)

meets all symmetry and frame conditions, leaving us with an explicit expression of

the canonical geometry in terms of the 17 independent geometric degrees of freedom.

4. Linearized gravitational dynamics

The second step in the gravitational closure procedure is to set up and solve a set

of countably many linear homogeneous partial differential equations—the gravita-

tional closure equations—whose coefficients are determined by the principal tensor

field expressed in terms of the canonical configuration variables. A derivation of

these coefficients can be found in section IV.C of [4]. Starting from general linear

electrodynamics, the principal tensor field (3), together with the parametrization

(12-14), allows to determine these coefficients in terms of the canonical configuration

variables {ϕ1, . . . , ϕ17}. The gravitational closure equations then in turn determine

the coefficient functionals CA1...AN
[ϕ] of a power series ansatz for the gravitational

Lagrangian density

Lgrav[ϕ, k] =

∞∑

N=0

CA1...AN
[ϕ] kA1 . . . kAN , (15)

where k are the velocities associated with the canonical configuration variables ϕ.

Deriving gravitational field dynamics hence amounts to solving the gravitational

closure equations—which turns out to be a difficult task for a non-metric geometry.

However, we here only wish to study small area metric perturbations, which require

just linearized gravitational field equations. In order to obtain the gravitational

field equations underlying general linear electrodynamics to linear order in ϕ and

k, we only need to derive the Lagrangian density to second order

Lgrav[ϕ, k] = C[ϕ] + CA[ϕ]k
A + CAB [ϕ]k

AkB +O(3) . (16)
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That is, we only need to solve the gravitational closure equations for C[ϕ] to sec-

ond order, CA[ϕ] to first order and CAB [ϕ] to zeroth order in ϕ. We now also

see why the parametrization (12-14) is particularly suited for this perturbative ap-

proach: The configuration variables ϕ can be directly employed as the perturbative

degrees of freedom of an area metric perturbed around flat Minkowski spacetime

η = diag(1,−1,−1,−1). We then perturbatively expand both the coefficients of the

gravitational closure equations and the coefficient functionals CA1...AN
[ϕ] in orders

of ϕ, and evaluate the equations order by order. The such obtained gravitational

Lagrangian, to second order in ϕ and k, and the therefrom obtained linearized grav-

itational field equations can respectively be found in section III.D and IV.B of [8].

These field equations can now be solved for specific matter distributions of interest.

5. Solution around a point mass

For instance, let us consider the Hamiltonian Hmatter of a point mass M at rest,

δHmatter

δA(x)
= −Mδ(3)(x) , (17)

where A denotes the perturbation of the lapse vector field. Solving the linearized

gravitational equations of motion for this particular small matter distribution yields

the following area metric perturbations,

H0β0δ = γβδ(2A− 1
2U − 1

2V ) +O(2) , (18)

H0βγδ = ǫβγδ(−A+ 3
4U + 3

4V ) +O(2) , (19)

Hαβγδ = 2γα[γγδ]β(U + 2V ) +O(2) , (20)

where the scalar perturbations A, U and V can be expressed in terms of the Eu-

clidean radial distance r and undetermined integration constants α, β, γ and µ:

U =
M

4πr

(
α+ βe−µr

)
, V =

M

4πr
γe−µr , A =

M

16πr

(
α− (β + 3γ) e−µr

)
. (21)

Just like the gravitational and cosmological constants in the Einstein field equations

of general relativity, these constants need to be determined by experiment. For the

principal tensor field of an area metric spacetime sourced by a point mass we obtain,

P 0000
G = 1 + 2Φ +O(2) , Pα000

G = O(2) , P
αβ00
G = − 1

6γ
αβ +O(2) ,

P
αβγ0
G = O(2) , P

αβγδ
G = (1− 2Φ)γ(αβγγδ) +O(2) , (22)

where we defined Φ := M
4πr

[

−α
2 +

(
β
2 + 3γ

4

)

e−µr
]

. In order to decide whether

light rays split, one would need to determine the solution of the gravitational field

equations for the area metric to second order12. However, already to linear order, we

find corrections to the usual linearized Schwarzschild metric in the form of a Yukawa

potential. Allowing for vacuum birefringence, by assuming the electromagnetic field

to be described by general linear electrodynamics, hence leaves its imprints on the

spacetime geometry around a point mass. With the solution (22) one could now for

instance study weak gravitational lensing in area metric spacetimes.
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6. Conclusions

The weak gravitational field equations for the area metric spacetime geometry un-

derlying general linear electrodynamics can be obtained by means of the gravita-

tional closure mechanism. We find that modifying the spacetime geometry from

a metric to an area metric, thereby allowing for vacuum birefringence, affects the

canonical dynamical field equations and their solutions: For instance, for the weak

field around a point mass in an area metric spacetime, we find first order Yukawa

corrections to the Schwarzschild metric. The linearized gravitational field equa-

tions now also enable further studies, e.g. the propagation of gravitational waves8

or modifications of the standard Etherington relation13 in area metric spacetimes.
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