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Motivated by the next generation of gravitational wave (GW) detectors, we study the wave
mechanics of a twisted light beam in the GW perturbed spacetime. We found a new gravitational
dipole interaction of photons and gravitational waves. Physically, this interaction is due to coupling
between the angular momentum of twisted light and the GW polarizations. We demonstrate that
for the higher-order Laguerre-Gauss (LG) modes, this coupling effect makes photons undergoing
dipole transitions between different orbital-angular-momentum(OAM) eigenstates, and leads to some
measurable optical features in the 2-D intensity pattern. It offers an alternative way to realize
precision measurements of the gravitational waves, and enables us to extract more information
about the physical properties of gravitational waves than the current interferometry. With a well-
designed optical setup, this dipole interaction is expected to be justified in laboratories.
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The direct detection of gravitational waves by the ad-
vanced LIGO interferometer [1] and the advanced Virgo
interferometer [2] marks the beginning of the era of gravi-
tational wave astronomy. These discoveries stimulate the
great efforts devoted to develop more advanced optical
detection technology. With upgrading to next genera-
tion of interferometer, it is expected to move to design
sensitivity and observe ever-increasing numbers of GW
sources. The next generation of GW laser-interferometric
GW detector will be upgraded to have an unprecedented
sensitivity by minimizing various technical noises. One
limiting noise arises from mirror thermal noise, produc-
ing by Brownian motion of particles in coatings and sub-
strates. Besides the physically cooling of mirror by choos-
ing an appropriate optical material, an alternative solu-
tion is to change the mode shape of the laser beam in-
side the interferometer. One option is to resonate the
higher-order Laguerre Gauss (LGl

p) modes in the detec-
tor arm cavities to smooth out the thermal noise fluc-
tuations over a bigger portion of the mirror surface[3].
A well-developed technology has made it possible to pro-
duce higher-order LG-modes with high power output and
high mode purity as required in the GW detection[4].
Therefore, it would be crucial to understand the wave
mechanics of the higher-order LG modes interacting with
the passing gravitational wave.

For light propagation in a gravitational field, the
curved space background can be transformed to a lin-
ear optical medium, whose optical properties character-
ized by the effective dielectric tensor are fully specified
by the spacetime geometries[5]. A typical example is
the deflection of light in gravitational fields, this phe-
nomenon can be illustrated by the correspondence be-
tween the refractive index and the scalar gravitational
potential. Again, a rotating gravitational field exhibits
the optical activity attributed to the vortical dragging

vector. Basically, it can be also equivalently described
by the coupling between the macroscopic rotation Ω and
the internal spin s of photon[6, 7]. This coupling has a
typical form of ∼ γsΩ · s(γs is introduced to quantify
the coupling strength), which may give rise to an extra
phase shift for circular polarized light[6, 8], and the he-
licity flip for spin-1/2 particles[9]. Moreover, we noted
that there exists another classical phase shift referred as
Sagnac factor[10], currently explained by the dragging
effect of frame in general relativity[11], can be under-
stood alternatively by the coupling between the rotation
and the orbital angular momentum (OAM) of photons,
∼ γLΩ · L, γL is the coupling strength.

On the other hand, the study of rotational feature in
light phenomena has a long history, even tracking back
to nineteen century. In 1898, Sadovsky [12] gave the
first prediction that the light with circular and elliptic
polarization can exert a rotatory action upon material
objects in context of classical Maxwell theory, and the
repeated discovery had been made by Poynting based on
analysis of the energy flow of polarized light. Later on, a
circulatory flow of light energy has been realized in the
focused flied structure. Actually, this vortical properties
of light is associated with the OAM of photons. The
blooming of researches on the OAM of light has been until
1992, when the angular momentum of a paraxial beam
with the Laguerre-Gaussian modes was explicitly worked
out by Allen and co-workers[13]. Particularly, the twisted
light propagating in an inhomogeneous optical medium
has receive much attentions, leading to some interesting
predictions including optical Magnus effect [14] or optical
spin Hall effect[15] etc.

This paper does not focus on the technical aspects
of higher-order LG-beams in optical cavity, but on how
the high-mode twisted light propagating in the ripples
of spacetime disturbed by the gravitational waves. To
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formulate a possible coupling effect between angular mo-
mentum of photon and the GWs polarization, we will
take a Schrödinger’s view of the Maxwell theory in curved
space, and explore how this coupling effect manifests its
significance in future GW experiments.

Adopting the Hanni’s 3+1 decomposition[16], and in-
troducing a complex wavefunction defined by |Ψ〉 =
D + iB, the Maxwell equation in curved space {gµν}
takes the Schrödinger-like form[6],

i
∂

∂t
|Ψ〉 = ∇×

(
|Ψ〉/

√
g00 + ig × |Ψ〉

)
(1)

together with the transverse condition ∇ · |Ψ〉 = 0. In
Eq.(1), g is the 3d dragging vector gi = g0i, g

i = gi0/g00

and the vectorial operations are performed in the 3d
curvilinear space γij = −gij , γij = −gij + g0ig0j/g00,
and the electromagnetic vectors are identified by Di =
F 0i/

√
g00, Bi = εijkFjk/2

√
γ ,γ is the determinant of

γij . it is easy to verify that, in a free space, the Hamilto-
nian in Eq.(1) reduces to H = k · s, where k = −i∇
is the momentum operator, s is the spin-1 operator
given by the adjoint representation of group SO(3), i.e.,
{si}jk = −iεijk. Obviously, for a plane wave, it has two
helicity states, the positive helicity with positive energy
ω = |k|, and the negative one with ω = −|k|, correspond-
ing the right and left polarization states of photon. The
zero helicity state is eliminated by the transverse condi-
tion k·|Ψ〉 = 0. The opposite helicity states are mutually
complex conjugates.

Without loss of generality, suppose an incident light
propagating in z-axis, and the wavefunction |Ψ〉 is de-
composed into the transverse component |Ψ〉⊥ = Ψxex+
Ψyey with respective to the z-component |Ψ〉z. we intro-
duce a ‘helicity basis’ {e±, ez}, satisfying (ez · s)e± =
±e±, which is related to the ‘Cartesian frame’ explicitly
by e± = (ex ± iey)/

√
2. In the ‘helicity basis’ (denoted

by superscript c), we define the transverse component
|Ψ〉h⊥ = Ψ+e+ + Ψ−e−, the differential operator is thus
∇⊥ = ∇+e+ + ∇−e− with ∇± = (∇x ∓ i∇y)/

√
2, ac-

cordingly. By these conventions, it is easy to write down
the Maxwell equation in the following matric form

i
∂

∂t
Ψh = ∇× (UΨh) (2)

where U is the 3 × 3 dielectric tensor specified by the
space metric of the GW, under the weak field approxi-
mation, g = 0, and gij = ηij + hij ,

U =

 I + Q q

q† 1 + q0

 (3)

here I is the 2 × 2 unit matrix, q = {Q+1, Q−1}T is the
dipole momentum with the components Q±1 = 1√

2
(h13∓

ih23), q0 = h33, and Q is the 2×2 matrix with the matrix

elements, the monopoles Q11 = Q22 = 1
2 (h11 + h22), and

the quadrupoles Q12 = 1
2 (h11 − h22)− ih12, Q21 = Q∗12.

For simplicity, we consider the positive helicity state
only, in this case, we take the wavefunction in the form
of |Ψ〉h⊥ = Ψ+

0 e
−iωt+ikze+, accordingly, the z-component

can be derived from the transverse condition, Ψz = i
k∇⊥·

|Ψ〉⊥ where the paraxial approximation was used. Since
GW’s wavelength is always assumed to be much larger
than light beam, the geometric-optics approximation is
valid, and the leading terms at the lowest order gives
the eigenstate equation, from which we have ω = (1 +
Q0)k and an extra phase shift along the optical path
φ = k

∫
Q0dz. Keeping the first order terms yields

i
∂Ψ+

0

∂z
=− 1

k′
∇+∇−Ψ+

0 − (q · 1

i
∇⊥)Ψ+

0 (4)

where k′ = k(1+Q0)/(1+q0) resulting from the gravita-
tional frequency shift. In addition, the GW’s wavelength
is also assumed to be much larger than the optical length
L, thus the spatial derivative of the GW fields {hij} can
been neglected. If we keep the zeroth order only, Eq.(4)
reduces to the familiar paraxial equation in the flat space

∇2
⊥Ψ0+ + 2ik′

∂

∂z
Ψ0+ = 0 (5)

which has a set of solutions of the Laguerre-Gaussian
modes in the cylindrical coordinates

LGln =
aln
w(z)

(√2ρ

w(z)

)|l|
L|l|n

( 2ρ2

w(z)2

)
e−ρ

2/w(z)2eikρ
2/2Reilφe−iϕ(z)

(6)
where n and l are the radial and the azimuthal indices,
the order of the model is given by N = 2n + |l|, the
constant aln = (2n!/π(n + |l|)!)1/2, w(z) is the width of
mode, R the radius of the wavefront curvature, and the
Gouy phase factor ϕ(z) = (N + 1) tan−1(z/zR), zR =
1
2kw

2
0, here w0 = w(z = 0) is the beam waist.

The second term in Eq.(4) is the perturbation due to
the passing GW, which appears as a dipole interaction,

HI = −q · k⊥ (7)

where k⊥ = −i∇⊥ is the transverse momentum operator,
and the dipole momentum q is given by

q = h+[ek − (eg · ek)eg] + h×(eg × ek) (8)

where eg and ek denote for the unit vectors in the propa-
gation directions of the gravitational wave and light beam
respectively. Following Eq.(8), q · eg = 0, which im-
plies the dipole momentum q being in the polarization
plane of the GW. if the incident GW is propagating par-
allelly with the light beam, the dipole is identically zero,
q = 0. This dipole interaction is physically due to the
coupling of GW polarization and the transverse momen-
tum of photons. The coupling term actually consists of
the two contributions, one is ∝ h+(eg · k⊥), another is
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∝ h×[eg · (ek × k⊥)]. Formally, the former is from the
GW polarization coupled with the OAM density flow of
photons, and the latter from the spin density flow.

In the ”helicity basis”, the dipole interaction can be
alternatively written by

HI = i
[
Q−1∇+ +Q+1∇−

]
(9)

where Q±1 = ±ihe±iβ(eg · e∓), h and β are given by

h =
√
h2+ cos2 θg + h2× tanβ =

h+
h×

cos θg (10)

The complex differential operators ∇± in the cylindrical
coordinates become

∇± =
1√
2
e∓iφ(∂ρ ±

1

ρ
Lz) (11)

where Lz = −i∂φ is the orbital angular momentum oper-
ator in z-direction. Obviously, ∇± play a role similar to
the creation and destruction operators. While operating
on the LG modes. ∇± will either lowers or raises the
orbital angular momentum by one unit. It is not difficult
to work out the ladder relation,

∇±|n,±l〉LG = kw
[√
n+ l|n,±(l − 1)〉LG

+
√
n+ 1|n+ 1,±(l − 1)〉LG

]
(12)

∇∓|n,±l〉LG = −kw
[√
n+ l + 1|n,±(l + 1)〉LG

+
√
n|n− 1,±(l + 1)〉LG

]
(13)

where we define the wavenumber kw = 1/w0. Combining
Eqs.(9) (12) and (13) states that, for a given LG mode
|n, l〉LG, the dipole interaction will make the initial mode
converting into two modes with the OAM number of l−1
and l+1, the difference between them is 2. It can be eas-
ily understood by the polarization states of gravitational
wave having helicity h = ±2. Because Q+1 and Q−1 are
conjugates of each other, the total orbit angular momen-
tum is conserved. It’s noted that the system modeled by
Eq.(7) is an analogous to Jaynes-Cummings model de-
scribing the interaction of a two-level atom with a single
quantized mode of the radiation field.

Since the Laguerre-Gaussian modes form a complete
and orthonormal set with respect to the mode indices n
and l in the polar plane {ρ, φ}, we can make a decompo-
sition such that

Ψ0+ =
∑
m,k

ξm.k(z)|m, k〉LG (14)

Inserting this expansion Eq.(14) into Eq.(4), we have

dξn,l(z)

dz
=
∑
m,k

〈n, l|Q−1∇+ +Q+1∇−|m, k〉 (15)

ξn,l(z) can be obtaind by direct integration over the sum-
mation in above equation.

FIG. 1. The transverse self-interference intensity pattern for
an incident Gaussian beam LG0

0 (upper left) and the dipole
structure with the rotation angles α = 0◦, (upper right) α =
45◦ (lower left) and α = 90◦ (lower right), the color bar is
labeled by the relative intensity.

In the following, we will present two typical ideal ex-
periments to demonstrate the optical features induced by
the dipole interaction. As a simplest case, let the inci-
dent beam is a Gaussian beam or LG0

0 mode with zero
OAM. Under the GW’s perturbation, the dipole transi-
tion generates two splitting modes with the opposite unit
OAMs, i.e., l = ±1,

|out〉 = |in〉 −Q1kwL
[
eiα|0,+1〉LG + e−iα|0,−1〉LG

]
(16)

where we have taken Q±1 = Q1e
±iα. The overall am-

plitude of |0,±1〉LG is proportion to Q1 =
√
h213 + h223.

For the GW propagating in the {θg, φg} direction, Q1 =
sin θgh(θg), and the rotation angle α, depending on the
incident direction of the GW, is related to β by

α+ φg =
π

2
+ β (17)

Eq.(16) indicates that, for the LG modes with the oppo-
site OAM, the dipole interaction lead to extra opposite
rotations by the angle α. This rotation should be visu-
alized in the intensity pattern of light beam. In the first
order of the GW strain O(h), the readout intensity is

I ≈ I0
[
1− 4

√
2hkwL

ρ

w(L)
sin θg cosϕ cos(φ+ α)

]
(18)

where the strain h is given by Eq.(10), and ϕ = ϕ(L)
is the Gouy phase. Fig.(1) displays clearly the excess
dipole components pointing to the direction α in the
transverse intensity frame. In addition, it should be em-
phasized here that there exists an addition rotation free-
dom from the GW polarization around eg, with respect to
which the polarizations {h+, h×} are defined. Perform-
ing an rotation in the transverse place e′⊥ = R(ψ)e⊥, (R
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FIG. 2. The normalized transverse intensity pattern for an
incident HG10 mode (upper left), and output excess mixed
modes in different angles of α = 0◦, (upper right) α = 45◦

(lower left) and α = 90◦ (lower right).

is a rotation transformation with an angle ψ), we have
{h′+, h′×}T = R(2ψ){h+, h×}T .

The second example illustrates an opposite case. Let
us consider an incident beam of the Hermite-Gauss mode
HG10, which can be written by a superposition of two LG
modes with the opposite OAM, l = ±1,

|in〉 = HG10 =
1√
2

(|0,+1〉LG + |0,−1〉)LG (19)

In the gravitational wave, there will appear extra four
modes, we have

|out〉 = |in〉+Q1kwL cosα
[
|0, 0〉LG + |1, 0〉LG

]
(20)

− 1√
2
Q1kwL

[
eiα|0,+2〉LG + e−iα|0,−2〉LG

]
In this numerical experiment, after substracting the inci-
dent light intensity, we focus on the intensity pattern of
the dipole induced modes only, which are thus quadratic
in the strain O(h2). Clearly, one significant feature is
brighten of the central intensity. For the LG±10 modes,
it carries ~ of OAM per photon and has a well-known
donut-like intensity profile since the amplitude goes to
zero at the center ρ = 0. Due to the dipole interaction,
the induced mode involves one by lowering one unit of
the OAM, which inevitably give rise to the vortex-free
|0, 0〉LG mode, i.e, the Gaussian beam with the bright
central spot. Fig.(2) demonstrates the normalized trans-
verse intensity distribution in this experiment. Though
this second order effect is quite small, it will be hopeful
to detect it using the well-developed OAM sorting tech-
nique in future[17].

We summary the paper and make some concluding
remarks as follows. Taking a Schrödinger view of the
Maxwell theory in curved space, we found a new grav-
itational dipole interaction between photons and GWs.

We demonstrate that this dipole interaction can produce
some striking optical features in the 2-D intensity pat-
tern, including (1) the induced dipole structure for the
Gaussian beams, (2) a macroscopic rotation of the in-
tensity pattern, depending not only on the GW incident
direction, also on the polarization in the transverse plane
as well as the ratio of cross and plus components of the
GW, and (3) the central intensity brighten adding on the
donut-like intensity profile for the lowest-order LG mode
(l = ±1). Obviously, these features suggest an alter-
native way to measure GWs in the 2-D intensity space.
Unlike the classical interference experiments for the GW
detections[18], the dipole interaction makes the incident
twisted light beam to form a multi-mode intensity profile
in the image plane. In the first order of O(h), the read-
out signal is weaker than the current interference exper-
iments by a factor of λ/w0, where λ is the wavelength of
the laser beam, and w0 the beam waist. This ratio may
take a value of, e.g., ∼ O(10−1) or even less. However,
the compensation for this decreasing signal strength can
be made by extending the entire optical-path length of
the 2-D coherent imaging. Most importantly, the benefit
is clearly more physical information of the GWs inferred
from the 2-D imaging. Finally, it is noted that the newly
found dipole interaction, only existing beyond the plane
wave approximation and having been unknown in the
previous studies[18, 19], must be important for quantify-
ing precisely the wave behaviors of the higher-order LG
modes in optical cavity for the next generation of GW
detectors.
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