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ABSTRACT

A recent work by Farnes (2018) proposed an alternative cosmological model in which both dark matter and dark energy are replaced
with a single fluid of negative mass. This paper presents a critical review of that model. A number of problems and discrepancies with
observations are identified. For instance, the predicted shape and density of galactic dark matter halos are incorrect. Also, halos would
need to be less massive than the baryonic component or they would become gravitationally unstable. Perhaps the most challenging
problem in this theory is the presence of a large-scale version of the “runaway” effect, which would result in all galaxies moving in
random directions at nearly the speed of light. Other more general issues regarding negative mass in general relativity are discussed,
such as the possibility of time-travel paradoxes.
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1. Introduction

In a recent paper, Farnes (2018) (hereafter F18) put forward an
audacious proposal to explain dark matter and dark energy in a
unified scenario with a single fluid of negative-mass particles.
This fluid would be continuously created everywhere to main-
tain its density constant in spite of the cosmological expansion.
To support his hypothesis, F18 presented a number of simple
numerical simulations showing the formation of halos around
galaxies and indications of filament and void structures in a cos-
mological volume. In the spirit of healthy scientific debate, this
paper presents the results of a critical look at the F18 model and
some objections derived from the analysis of similar simulations.

The idea of matter with negative mass is not new in physics.
In fact, some speculative work dates back to the nineteenth cen-
tury (see e.g., the introduction of Bonnor 1989). After the de-
velopment of general relativity, when physicists were struggling
with the conflict between the crunching action of a universal
gravity and the prevailing notion at the time of a static universe,
it was seen by some authors as a promising solution to one of the
biggest problems in cosmology. A repulsive form of gravity em-
anating from negative masses could provide the necessary force
to counterbalance the universal collapse (Einstein 1918). In re-
ality, this statement is deceivingly simple and many important
complications lurk behind it. To begin with, one has to define
exactly what is meant by negative mass and this is not straight-
forward. In general relativity, the source of gravitation is the
energy-stress tensor, a complex set of quantities that involves the
density and flux of mass, energy and stress. Remarkably, differ-
ent observers in different reference frames might even measure
opposite signs of some of these quantities.

It is tempting to draw a parallelism between a dual-sign grav-
itation (with positive and negative masses) and the dual-charge
nature of electromagnetism. However, this would be a very naïve
conception, as the two situations are completely different. The

crucial difference is that, in the case of electromagnetism, two
equal [opposite] charges repel [attract] each other, whereas in a
dual-sign gravitation the opposite process would take place. The
difference may sound subtle but it is of paramount importance.
Gravity is able to attract many particles of the same sign together
and make them coalesce into arbitrarily large structures.

In general relativity, the solution to the simple scenario
where we have a point-like mass in an otherwise empty
Minkowskian space-time is the Schwarzschild (1916) metric.
This solution has a singularity at the mass position but the sin-
gularity is hidden from external observers by an event horizon
that surrounds it. No information may propagate from the singu-
larity to the outside world. The equivalent of the Schwarzschild
solution for a negative mass does not represent a symmetric situ-
ation. It also has a singularity at the mass position but now there
is no horizon. The singularity is naked, in violation of the weak
cosmic censorship conjecture (Penrose 1969). While the cosmic
censorship remains an unproven conjecture, it is widely recog-
nized by the community as a sensible hypothesis and solutions
with naked singularities are generally regarded as unsatisfactory.
Of course, point-like masses do not exist in reality but it is of-
ten the case that one may mathematically construct a continu-
ous mass distribution by integration of infinitesimal points. This
raises yet another problem. If we consider a finite-size negative
mass object, how are its pieces held together? In principle, each
portion of it would be subject to a repulsive force from the rest of
the object, with the force increasing to infinity for decreasing dis-
tances. Particles with electric charge are held together by quan-
tum physics and the existence of an elementary charge. However,
there is no such thing for gravity, at least in the context of gen-
eral relativity. All of these are conceptual problems which, while
not necessarily ruling out the existence of negative mass in the
Universe, should at least serve as a warning sign that it is a com-
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plex issue and certainly not a symmetric counterpart of ordinary
matter.

The concept of mass may have four different meanings in
physics: the ability of matter to produce gravity (“active” gravi-
tational mass), the response of matter to gravity (“passive” grav-
itational mass), the inertia of matter (its resistance to accelerate
when subject to a force) or its energy equivalence. Classically,
all of these definitions of mass refer to the same quantity and are
positive by definition. General relativity requires by construction
(by virtue of the equivalence principle) that passive gravitational
and intertial mass must be the same. The theory does not explic-
itly require that they must be positive although some restrictions
exist, as discussed in Sect. 4 below.

Various ideas were proposed and discussed in the decades
following the development of general relativity, regarding the in-
terpretation and implications of negative sources of gravitation in
that theory. Critically important was the work of Bondi (1957).
First Luttinger (1951) and then Bondi (1957) (using Newtonian
and relativistic frameworks, respectively), studied the concept of
what is known as the “runaway motion”: Two particles having
opposite mass would start accelerating in one direction. In the
Newtonian framework, this happens because the negative mass
is attracted towards the positive one (the force is in the opposite
direction but the negative inertial mass makes it accelerate to-
wards the positive mass), whereas the positive mass is repelled
and accelerates away from the negative. The same effect occurs
in general relativity.

Following these developments, interest in the physics of neg-
ative masses declined, at least as a practical idea (exploratory
theoretical works were still being pursued), mainly for two rea-
sons. First, the runaway effect was considered so “preposterous”
that it was viewed by many authors as unphysical. Second, the
discovery of the Hubble-Lemaître law (Lemaître 1927; Hubble
1929) and the later confirmation of the Big Bang model with the
detection of the cosmic microwave background (Penzias & Wil-
son 1965), removed what had been the original motivation for
a repulsive gravitational force, i.e. a means to sustain a steady-
state universe (e.g., Bondi & Gold 1948).

However, the disinterest did not last long. A renewed interest
on the issue of negative mass was sparked by the recent discov-
ery of the accelerated cosmological expansion and its association
with a mysterious dark energy and the cosmological constant
(Riess et al. 1998; Peebles & Ratra 2003).

Modern negative-mass cosmologies typically attempt to ex-
plain dark energy as a repulsive form of gravity. Hossenfelder
(2008) and Petit & d’Agostini (2014) explored an extension
of general relativity with two different metrics, having posi-
tive and negative mass distributions, respectively (and a different
speed of light). Benoit-Lévy & Chardin (2012) proposed the so-
called Dirac-Milne universe, a cosmology combining positive-
mass matter in a sea of negative-mass anti-matter. It is worth
noting that, while anti-matter has positive mass in the standard
model of particle physics, this prediction has not yet been tested
experimentally due to the overwhelmingly larger effect of the
electromagnetic force compared to gravity at the atomic scale.
Experiments are currently underway that may soon resolve this
question (see, e.g., Alemany et al. 2019), at least for the passive
gravitational mass. In any case, the inertial mass of anti-matter
must be positive, given that its acceleration has been measured
in electro-magnetic fields.

The negative-mass cosmology proposed by F18 is funda-
mentally new in that it replaces both dark matter and dark energy
with one single ingredient, namely the negative-mass fluid. His
claim is sustained on numerical simulations of how this fluid

would operate in different physical processes, such as galaxy
evolution or cosmological collapse. The simulations presented
in F18 are encouraging and show a remarkable agreement with
the observations (formation of halos, flat galactic rotation curves,
cosmological structures, etc). While we have rather robust con-
straints on the mass of dark matter concentrations by means of
gravitational lensing observations, we are are not able in most
situations to determine the sign of the lensing mass (Takahashi
& Asada 2013). If the F18 ideas were proven correct, the im-
plications for all of physics would be formidable. Thus, a close
scrutiny by the community of this model is clearly warranted.

This paper presents a critical analysis of the F18 results,
identifying a number of problems and incompatibilities with ex-
isting observations. Section 2 has an analytical derivation of the
expected properties of galactic halos in the F18 scenario. This
will be helpful to understand and validate some of the results in
Sect. 3, which presents simulations and the discrepancies with
observations. Section 4 emphasizes other conceptual difficulties
facing the model that are not directly testable against observa-
tions. Finally, the overall conclusions are summarized in Sect. 5.

2. Galactic halos

One of the remarkable results of F18 was the formation of neg-
ative mass halos around galaxies which have a density struc-
ture strikingly similar to a Navarro-Frenk-White (NFW, Navarro
et al. 1996) dark matter profile. This paper presents new simu-
lations very similar in nature to those of F18 but the resulting
halo densities exhibit what appears to be an exponential stratifi-
cation instead. In order to have a better physical insight on the
simulation results, or even to serve as a sanity check, it is usu-
ally helpful to conduct an analytical study of the system. In this
section we seek the functional form of the density profile of a
spherical negative mass halo surrounding a central core of posi-
tive masses.

Throughout this section we assume spherical symmetry, non-
interacting particles and a steady state equilibrium in which the
system has reached a stable macroscopic configuration. The ra-
dial density profiles for the positive mass core and the negative
mass halo are arbitrary and may overlap. For simplicity, let us
consider a maximum radius RC and RH for the core and halo,
respectively (RC < RH). We assume that the negative masses are
initialized with a constant density ρH

i and no initial velocity. This
last assumption is probably not very realistic but that is how the
F18 simulations are initialized and those starting conditions are
mimicked in the present work, as well.

At any given time, the amount of halo particles contained
in a spherical shell of radius r and thickness dr is given by the
number of particles that have fallen from higher layers, balanced
by those that have fallen from the opposite side, crossed the ori-
gin and are moving upwards through r. Particles in layers below
r will never reach this height. Consider another shell of radius
r′ and thickness dr′. The probability that a particle which origi-
nated at shell r′ is inside shell r at any given time may be calcu-
lated as the time spent by such particle within shell r divided by
the total time it takes to fall all the way to the center:

P(r′, r)dr =

{
0 r′ < r
dτ/T r < r′ < RH (1)

with

dτ =
dr

v(r′, r)
, (2)

Article number, page 2 of 8



H. Socas-Navarro : Can a negative-mass cosmology explain dark matter and dark energy?

and

T =

∫ r′

0

dr′′

v(r′, r′′)
. (3)

In the expressions above v(r′, r) is the velocity that particles orig-
inating at r′ have when they reach position r. Our initial condi-
tions require v(r′, r′) = 0∀r′. We can then write down the fol-
lowing equation for the halo density profile ρH(r):

4πr2ρH(r)dr =

∫ RH

r
ρH

i 4πr′2P(r′, r)dr′dr =∫ RH

r
ρH

i 4πr′2
1

v(r′, r)
1∫ r′

0 dr′′/v(r′, r′′)
dr′dr , (4)

Since both ρH and v are unkown, another relationship is
needed to close the system, accounting for the action of grav-
ity. The gravitational potential of an arbitrary mass distribution
is given by Poisson’s equation:

∇2ϕ = 4πρ . (5)

Given the symmetry of our problem, we may take advantage of
the Gauss’s theorem1 (Gauss 1813), or even the shell theorem
(Newton 1833), to express the gravitational field as:

g(r) = −G
m(r)
r2 , (6)

where g(r) is the field, G is the universal gravitational constant
and m(r) is the total mass encircled by a sphere of radius r. This
expression, along with the force derived from the field, remains
valid in the Newtonian negative mass formalism of F18, with
m(r) accounting for masses of both signs.

For both positive and negative masses, the acceleration a is
equal to the field g. Replacing dt with dr/v in the relation a =
dv/dt and using a = g, we conclude that:

vdv = −G
m(r)
r2 dr , (7)

which may be integrated between two shells r and r′ to yield:

v2(r′, r) = −2G
∫ r

r′

m(r′′)
r′′2

dr′′ . (8)

Since m(r) =
∫ r

0 4πr′2ρ(r′)dr′, and ρ is the addition of the
core and halo mass densities, Eqs. (4) and (8) constitute a com-
plete system whose solutions may be explored to investigate the
properties of the density and velocity profiles.

Motivated by the results presented in Sect. 3 below, we try
an exponential profile ansatz for the halo density:

ρH(r) = −ρH
0 e−kr . (9)

The total halo mass encircled below a certain radius r may be
calculated after some tedious but straightforward series of inte-
grations by parts:

mH(r) = −4πρH
0

2 − (k2r2 + 2kr + 2)e−kr

k3 . (10)

1 Also credited to M. V. Ostrogradsky or G. Green. Sometimes also
known as the divergence theorem.

At any point in the halo r > RC , the total (core and halo) mass
encircled inside r is then m(r) = mH(r) + MC (with MC denot-
ing the total core mass). Substituting in Eq. (8) and rearranging
terms we obtain:

v2(r′, r) = −2G
[∫ r

r′

MC

r′′2
dr′′+

4πρH
0

k3

(
2(1 − e−kr′ )

r′
−

2(1 − e−kr)
r

+ k(e−kr − e−kr′ )
)]
. (11)

The first term in Eq. (11) accounts for the gravity produced by
the core and has a simple form because it is always underneath.
By virtue of the Gauss or the shell theorems, the field outside is
equivalent to that of a point mass at the center. The second term
is due to the gravitational field produced by the halo itself. If we
take this equation and insert it into Eq. (4) we would obtain the
solution of the system.

Notice that v(r′, r) appears in denominators in Eq. (4), which
means that it must be non-zero for the system to have a physical
solution. Moreover, Eq. (11) gives us an expresion for the square
of v(r′, r). Therefore, our system admits a real solution only if
the right-hand side of Eq. (11) is strictly positive. If we can prove
that this is the case, then our ansatz is correct and an exponential
density profile is a solution to our equations.

The first term, proportionally to MC is trivially positive. The
second term is more complex. With some rearrangement, our
problem is equivalent to proving that ∀r < r′:

2(1 − e−kr) + kre−kr

r
−

2(1 − e−kr′ ) + kr′e−kr′

r′
> 0 . (12)

The above statement is equivalent to proving that the following
function is monotonically decreasing:

f (u) =
2(1 − e−u) + ue−u

u
. (13)

Taking the derivative of f (u), we can deduce that f ′(u) is zero
only if u→ ∞ or if:

eu = −
u2

2
+ u + 1 . (14)

We can prove that Eq. (14) has no solution for u > 0 because
in this domain the left-hand side eu is always greater than 1,
whereas the right-hand side is a convex parabola with a maxi-
mum value of 3/4. In other words, we have proven that the func-
tion f ′(u) has no roots, which means that f (u) is monotonic (for
u > 0). Now all that is left is proving that f ′(u) is negative some-
where, which is easy to see by evaluating the function. For large
values of u, it is obvious that f ′(u) is negative.

We have proven that f (u) is monotonically decreasing, which
automatically means that the condition expressed in Eq. (12) is
true for all r < r′ and that the right-hand side of Eq. (11) is
positive. We have then proven that Eq. (4) has a real solution
and that the ansatz is correct: An exponential profile of the form
ρH(r) = −ρH

0 e−kr is a solution to our system.

3. Numerical simulations

One of the most interesting novelties of F18 is that it presents
the first negative-mass cosmological model to be implemented
in actual numerical simulations. The author generously made his
simulation code available to the community, a practice that will
hopefully become increasingly widespread among researchers as
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it greatly facilitates verification and reproducibility of results.
The importance of these two elements in the scientific method
cannot be overstated. The results discussed in this section have
been obtained with my own simulation code, which follows the
philosophy of F18 as closely as possible but with some relevant
differences, as explained in this section.

After initially struggling to reproduce the F18 results, a care-
ful inspection of his source code revealed a subtle bug in the
computation of the gravitational acceleration. Unfortunately, the
simulations in F18 are seriously compromised by this coding er-
ror whose effect is that the gravitational force decreases with the
inverse of the distance, instead of the distance squared. There-
fore, in order to analyze the negative-mass cosmological model,
it is necessary to recalculate the F18 simulations with the correct
gravity.

The code employed here has been developed from scratch
with the specific purpose of conducting the simulations pre-
sented in this paper. The source code, written in Fortran90 with
MPI (message-passing interface, MPI Forum 1994) paralleliza-
tion, is publicly available2. The main difference with F18 resides
in the boundary conditions. Oddly enough, the boundary treat-
ment, which is a crucial aspect of any simulation, was not explic-
itly discussed in his paper. Analysis of the source code reveals
that the F18 simulations are initialized in a cubic box in which
all particles are placed. This initial box has open boundaries and
the particles are free to spread away from it throughout a much
larger box. This second box has reflecting boundary conditions.
Any particle that reaches one of its sides will bounce back by
flipping the sign of the velocity vector component in the corre-
sponding direction. In practice, however, the second box is so
much larger than the first one that very few particles will ever
reach its boundary within the time span of the simulations. Thus,
for all practical purposes, we can consider the F18 simulations
as defined in the initial box with open boundary conditions. This
is critically important.

In cosmological simulations, it is customary to consider the
opposite approach, with periodic boundary conditions. Periodic
conditions are suitable in cosmology because they ensure that the
Universe does not end abruptly outside the simulation domain.
They produce simulations that are automatically compliant with
the cosmological principle, in the sense that the box is a typi-
cal region and, in particular, there is no center of the Universe.
In contrast, a simulation with open boundary conditions has a
preferred direction and all matter tends to fall towards (or be
repelled from, in the case of repulsive gravity) the center of the
box. For instance, if we consider a homogeneous sea of negative-
mass particles, open boundary conditions will make the initial
box expand, as all particles repel each other into the empty space
around it. With periodic boundary conditions, the fluid would re-
main stable as every particle would feel the same repulsive force
from all directions, even those close to the edge of the domain.

3.1. Halo mass

Let us begin by considering the galaxy halo formation which,
according to F18, plays the role of dark matter in his unified
model. I employed the same initial configuration and simulation
parameters but using periodic boundary conditions and the cor-
rect form for the newtonian gravitational force. Figure 1 shows
the starting and final frames of the simulation, using the same
color scheme and isometric perspective as F18 to facilitate com-
parisons. The initial configuration has a spherical distribution

2 https://github.com/hsocasnavarro/nbody_sim

Fig. 1: Simulation of galactic halo formation. Yellow (purple)
dots represent the positive (negative) mass particles. Upper im-
age: Starting conditions, representing a Hernquist positive mass
spherical galaxy embedded in a uniform distribution of nega-
tive masses. Lower image: Final state, exhibiting a non-spherical
halo of enhanced negative-mass density around the galaxy. The
galaxy center-of-mass is initially at rest. In the final frame it is
moving towards the left of the image.

of positive masses (the core) following the model of Hernquist
(1990) embedded in a uniform sea of negative mass particles.

This and other similar simulations produce halos of negative
masses around the galaxies. However, they exhibit important dif-
ferences with respect to the properties of real dark matter halos.
To begin with, the halos in these simulations are too light. The ra-
tio of halo to core mass in the simulations is between 0.3 and 0.8,
whereas real galaxies have dark matter halos that are typically a
factor of 4 to 5 more massive than their baryonic components.
Furthermore, it is easy to intuitively understand why negative
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Fig. 2: Radial density profile of the negative-mass halo in the
galactic simulation. Note that the axis of ordinates is logarith-
mic. The orange line shows an exponential density profile for
reference.

mass halos must be light. Halo particles repel each other. They
are held together by the attractive force from positive masses
at the center. Invoking again the shell theorem (and assuming
spherical symmetry), halo particles will only feel a central at-
tractive potential if the total encircled mass is positive. If a halo
had a ratio greater than 1, the total mass encircled by the outer
layers would be negative and such layers would be pushed away
from the galaxy. This behavior is confirmed by simulations in
which a galaxy is initialized with a massive halo. The halo is
unstable and the outer layers are rapidly ejected from the galaxy.

3.2. Density profile and rotation curve

The radial density profile of the negative-mass halo is shown in
Fig. 2. Outside the positive mass core, the simulation is in good
agreement with the results of Sect. 2 of an exponential density
profile (orange line). Dark matter halos, on the other hand, ex-
hibit a more complex radial dependence (see, e.g., Navarro et al.
1996).

Another discrepancy with the F18 results (and with obser-
vations) is the galactic rotation curve. Without dark matter, the
orbital velocity of stars should decrease as we move away from
the galactic center. However, observations clearly show a flat-
tening of this curve, in such a way that stars move with roughly
the same linear velocity independently of their radial position.
This observation is considered as one of the first historical evi-
dences of dark matter (Rubin & Ford 1970). F18 claims that his
simulation produces a flat rotation curve and argues that this is
evidence in favor of the negative-mass model as an alternative
to dark matter. However, this simulation exhibits different stellar
dynamics. Figure 3 shows that the orbital velocity of stars drops
with distance to the center, in disagreement with the observed
flattened rotation curves.

3.3. Accelerating galaxies

Perhaps the most important problem with the negative-mass sim-
ulations is that a galaxy, whose center of mass is initially at rest,
immediately starts accelerating in a random direction and con-

0 2 4 6 8 10

r

0.15

0.20

0.25

0.30

0.35

v

Fig. 3: Average orbital velocity as a function of radial distance
to the galactic center.

tinues to gain speed during the entire run. This odd acceleration
is present in all of the galactic simulations performed and, again,
may be understood intuitively, in this case as a large-scale ver-
sion of the runaway effect.

The total force exerted over a positive-mass particle standing
at the center of a spherical negative-mass halo is exactly zero be-
cause the forces from opposite directions balance each other out.
However, this equilibrium is unstable in the sense that, if the par-
ticle position is perturbed slightly, there would be more negative
particles pushing from behind and fewer pushing from the front.
Thus, there would be a net force pushing in the direction of the
motion. Mathematically, the stability condition requires that the
gravitational potential must be concave at the origin, i.e., a pos-
itive second derivative. Since by definition g(r) = −∇ϕ(r), the
second derivative of a spherically symmetric potential is:

d2ϕ(r)
dr2 = −

dg(r)
dr

= G
d
dr

(
m(r)

r
(r2)3/2

)
, (15)

where we now allow r to take positive or negative values to rep-
resent both sides of the origin. The density ρ must remain finite
as r → 0 and therefore, for a sufficiently small r we may approx-
imate it by its value at the origin ρ0 and then m(r) = 4

3πr3ρ0. It
is then straightforward to show that:

d2ϕ

dr2 (r = 0) =
4
3
πρ0 . (16)

If ρ is positive, then the potential ϕ(r) is a concave function (it
has a minimum at r = 0) and the central position is stable against
perturbations. For negative ρ, on the other hand, we have the op-
posite behavior. The potential ϕ(r) has a maximum at r = 0 and
it is a convex function of r. This latter situation is what we have
in the simulation and explains the large-scale runaway effect.

Figure 4 shows the temporal evolution of both position and
velocity of the galactic center-of-mass. Initially, the galaxy is at
rest while the halo density builds up. After some time, at approx-
imately t = 300 the halo is sufficiently dense to push the galaxy.
The entire system starts accelerating and it moves through the
box with a sustained acceleration, as evidenced by the constant
slope of the velocity curves in the lower panel.

Article number, page 5 of 8



A&A proofs: manuscript no. paper

0 200 400 600 800 1000 1200

0

10

20

30

40

50

60

70

Po
sit

io
n

0 200 400 600 800 1000 1200
Time

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Ve
lo

cit
y

Fig. 4: Upper panel: Evolution of the galactic core center-of-
mass position as a function of time during the simulation run.
The blue, orange and green curves represent the position in x,
y and z, respectively. Lower panel: Same as above but in this
case referring to the velocity vector components. After an initial
period of time at rest while the halo is building up, the entire sys-
tem starts accelerating (at approximately t = 300) and continues
to gain speed with a constant acceleration. The sign of the x and
y components have been reversed for better visualization in the
figure.

3.4. Halo shape

The shape of the halo produced in the negative-mass simulations
is also problematic. Figure 1 (lower panel) already hints that the
distribution of purple dots around the galaxy is not spherical. In
particular, it is very elongated in the direction of the runaway
motion. This is clearly seen in the simulation video, available
online.

Figure 5 shows the distribution of halo mass enclosed in bins
of azimuth around the galactic center at the end of the simula-
tion. The vertical lines represent the instantaneous direction of
motion, with green and orange representing the direction ahead
and behind the galaxy. As seen in the figure, the halo is extremely
elongated along the galactic motion, slightly narrower ahead and
broader behind the galaxy.

3.5. Cosmological structure formation

The choice of boundary conditions is most critical in the simula-
tion of structure formation inside a cosmological volume. Open
boundary conditions result in a much more rapid gravitational
collapse. The periodic boundary conditions imposed in the sim-
ulations presented here are more realistic, with each point feel-
ing approximately the same gravitational pull from all direc-
tions (at least initially, with a homogeneous density initializa-
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M
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s

Fig. 5: Distribution of mass in the galactic halo integrated in bins
of 10 degrees around the galactic center-of-mass in the xy-plane.
The green line (orange) marks the direction ahead (behind) of
the galactic runaway motion.

tion), except for the starting small random density fluctuations.
Figure 6 shows the result of a structure formation simulation in
a large cosmological volume. The box is one billion light-years
(307 Mpc) in each direction and the time step is 10 Myr. A total
of 50,000 particles are tracked in the simulation. They are ini-
tialized following a uniform distribution in the box with a total
matter density of 8.6 kg m−3. Two different runs are shown in the
figure. In the first simulation all particles have positive mass. In
the second one, 84% of particles (the observed fraction of dark
matter) have a negative mass. The positive mass simulation be-
haves as a normal cosmological model, with the initial random
inhomogeneities being amplified by gravity to form concentra-
tions and voids at an accelerated rate. The negative-mass sim-
ulation begins with the opposite behavior. The negative masses
are dominant in number and mass. Their mutual repulsion in the
initial overdensities creates and outward pressure which dilutes
them and tends to smooth out inhomogeneities. In fact, this is a
trick that is often employed to produce smooth initial conditions
for regular cosmological simulations (White 1994). Later on, the
positive masses begin to coalesce and form structures, dragging
some negative halos around them. Structure formation occur at a
much more slow rate in the negative-mass cosmological model.

4. Other considerations

General relativity does not preclude explicitly the existence of
negative mass but the dominant energy condition (Hawking &
Ellis 1973) and the positive energy theorem (Schoen & Yau
1981) are difficult to reconcile with a negative mass (at least
in the ADM sense, Arnowitt et al. 1960). Mbarek & Paranjape
(2014) argued that loopholes may be found by relaxing the theo-
rem assumptions and suggested that the best candidate is the re-
quirement for an asymptotically Minkowskian space-time. They
proved that, for an asymptotically de Sitter space-time, negative-
mass Schwarzschild solutions exist that everywhere satisfy the
dominant energy condition. However, this result does not apply
to the F18 cosmology, which is equivalent to an anti-de Sitter
space-time (a negative cosmological constant). Therefore, while
the existence of negative-mass particles is not ruled out, it re-
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Fig. 6: Structure formation in a cosmological simulation. The
plot represents the time evolution of relative overdensities, de-
fined as the standard deviation of density variations among sub-
domains of 1 cubic Mlyr. Blue: Run with positive masses. Or-
ange: Run with 84% of negative masses.

mains to be proven that they may coexist with the energy condi-
tion in a background anti-de Sitter space-time.

The runaway effect is certainly problematic. While it has
been argued that it does not violate momentum conservation,
one needs to bear in mind that momentum conservation was for-
mulated assuming that mass is a positive quantity. There are no
physical, philosophical or empirical arguments to assume that
it also holds when a mass is negative. Extending the applica-
bility of this principle to negative masses is a generalization
that should stand on its own merits. It should not be consid-
ered as validated by an abuse of notation. A particularly trou-
blesome thought experiment was considered by Gold in Bondi
et al. (1957), in which one imagines attaching a pair of runaway
particles to a wheel, essentially building a perpetual motion ma-
chine of the first kind.

If negative masses exist then it would be possible to build
an Alcubierre drive (Alcubierre 1994). Such a device would en-
able faster-than-light travel and, in consequence, closed timelike
loops, i.e. the possibility to travel back in time (see, e.g. Everett
& Roman 2012). Therefore, the existence of negative masses
would facilitate the ocurrence of physical paradoxes and causal-
ity violations.

The existence of a continuous negative-mass ocean of parti-
cles filling the intergalactic space would impact the propagation
of gravitational waves from distant sources, which should lead
to some effective screening of the waves (Mbarek & Paranjape
2014). However, no discrepancies have been found in the ob-
servation of several gravitational wave events by the LIGO and
VIRGO collaborations between the wave signal amplitude and
the theoretical expectation (The LIGO Scientific Collaboration
& the Virgo Collaboration 2018).

5. Conclusions

The model proposed by F18 is a testable alternative theory of
gravity which, if confirmed, would have a profound impact on
all areas of physics. This paper presents a detailed analysis of
his model, which identifies a number of problems and discrepan-
cies with observations. Perhaps the most obvious weakness is the

constantly accelerating motion of galaxies. Instead of the orderly
relation between distance and velocity given by the Hubble-
Lemaître law, we would see all galaxies in the sky moving in
random directions at nearly the speed of light. Other serious
problems include predicting an incorrect shape, mass and den-
sity profile for galactic halos, the keplerian rotation curves, low
mass of galactic halos and slow cosmological structure forma-
tion.

Other theoretical arguments, not directly testable with ob-
servations, are discussed. For instance, the relationship between
negative mass and backwards time travel, opening the possibil-
ity of causality violations, is an important issue for any theory or
model involving negative mass.

Overall, the conclusions of this study do not support the F18
model, at least in the original formulation. Since the simulations
are of simplistic nature, as they were intended for exploratory
purposes following the philosophy of F18, it is possible that
some of these issues might be resolved with better, more realistic
simulations. Likewise, some of the theoretical objections, such
as a possible dampening of gravitational waves, would need ac-
tual calculations to be formalized before they can be considered
conclusive evidence either for or against the theory.
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