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Abstract

In these informal lecture notes we outline different approaches used in
doing calculations involving the Dirac equation in curved spacetime. We
have tried to clarify the subject by carefully pointing out the various con-
ventions used and by including several examples from textbooks and the
existing literature. In addition some basic material has been included
in the appendices. It is our hope that graduate students and other re-
searchers will find these notes useful.
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1 The spinorial covariant derivative

1.1 The Fock-Ivanenko coefficients

In the calculations that follow we will specify our metric signature as needed.
We adopt the convention that upper case latin indices run over (0, 1, 2, 3). Also
we shall adopt Planck units so that, c = G = ~ = 1. A review of the gamma
matrix representations and the Dirac equation in Minkowski spacetime is given
in Appendices B and D.

Fermion fields are described by spinors ψ(x), and in order to accommodate
spinors in general relativity we need the tetrad formalism. The tetrad formal-
ism is briefly reviewed in Appendix A, where apart from the standard material
we have included some additional material relevant to spinors [1].

From the basic tetrad expression, Eq. (A.4) in Appendix A, namely,

ηAB = eA
α eB

β gαβ , (1.1)

we see that η00 = e0
α e0

β gαβ , and thus by definition the tetrad vector e0 is
a velocity field at least momentarily tangent to a timelike path. This is what
Schutz [2] refers to as the “momentarily comoving reference frame” (MCRF)
and it is in this sense that our choice of a tetrad vector set, eA

α, determines the
frame we shall refer to as the the reference frame for the Dirac particle, or the
particle frame for short.

For example in reference [3], Sec. VI, Parker considers a freely falling hydro-
genic atom, with its nucleus on the geodesic (an approximation), and constructs
approximate Fermi coordinates along the chosen geodesic. The corresponding
tetrad is referred to as the proper frame. In general the choice of a tetrad set
may be dictated for reasons of convenience and one should read the comments
in Remark 9 and keep in mind the fact that from a given tetrad one can obtain
an infinity of tetrads related to each other by local Lorentz transformations (see
Sec. 3.2).

In general relativity the spinors, ψ(x), are sections of the spinor bundle. We
limit ourselves to presenting the bare essentials required for calculations, and on
clarifying the different sign conventions related to the definition of the spinorial
covariant derivative, the spinor affine connection, Γµ, and Fock-Ivanenko coef-
ficients ΓC .

Each component of a spinor transforms as a scalar function under general coor-
dinate transformations, so this kind of transformation is straightforward. How-
ever, the transformation of spinors under tetrad rotations requires additional
formalism.
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If we change from an initial set of tetrad vector fields, hA, to another set, eA,
then the new tetrad vectors can be expressed as linear combinations of the old
as shown below

eA
µ = ΛA

BhB
µ , (1.2)

We show in Appendix A.4 that Λ is a Lorentz matrix. So in the context of
general relativity the Lorentz group is the group of tetrad rotations [1]. We also
remark that the Λ matrices are in general spacetime-dependent and we refer to
them as local Lorentz transformations.

In order to write the Dirac equation in general relativity, we also need to intro-
duce the spacetime dependent matrices γ̄α(x). The γ̄α matrices are related to
the constant special relativity gamma matrices, γA, by the relation

γ̄α(x) := eA
α(x)γA , (1.3)

Using Eq. (A.4) we can now relate the anti-commutators below,

{γA, γB} = ε 2ηABI , (1.4)

{γ̄α(x), γ̄β(x)} = ε 2gαβI , (1.5)

where ε = ±1. We note that the matrices in Eq. (1.23) anticommute for α 6= β,
only if the metric is diagonal.

A spinor, ψ, may be defined as a quantity that transforms as

ψ̃e = Lψh , (1.6)

where L = L(x) is the spacetime-dependent spinor representative of a tetrad
rotation Λ = Λ(x) [1]. We initially follow the sign conventions of references [4]
- [6], and although all these references use the metric signature (+,−,−,−), we
shall maintain, wherever possible, greater generality.

The derivative of a spinor does not transform like a spinor since

ψ̃,µ = Lψ,µ +L,µ ψ . (1.7)

Therefore we define the covariant derivative of a spinor by the expression,

Dµ ψ = Iψ,µ +Γµ ψ , (1.8)

with the spinor affine connection, Γµ to be determined. The connection Γµ is a
matrix, actually four matrices, that is, (Γµ)a

b. We require that,

D̃µ ψ̃ = LDµ ψ , (1.9)

where
D̃µ ψ̃ = Iψ̃,µ +Γ̃µ ψ̃ . (1.10)
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Eq. (1.9) is satisfied if we let

Γ̃µ = LΓµL
−1 − L,µ L−1, (1.11)

since then

D̃µψ̃ = ∂µ(Lψ) + Γ̃µ ψ̃ , (1.12)

= (L,µ )ψ + Lψ,µ +LΓµψ − (L,µ )ψ . (1.13)

= L(Iψ,µ + Γµ ψ) . (1.14)

With a slight abuse of notation we write the spinor covariant derivative acting
on a spinor ψ(x) as

Dµ ψ = (I∂µ + Γµ)ψ := (∂µ + Γµ)ψ , (1.15)

where we may omit the identity matrix factor I in the second part of Eq. (1.15).
We now proceed to deduce the expression for Γµ.

Under the assumption that the operator Dµ is a connection and therefore a
derivation (i.e., satisfies the product rule for tensor products), it may be ex-
tended as an operator on a matrix-valued field M , [6], [7]. By writing M as a
linear combination of tensor products of vectors with co-vectors, a calculation
shows that

DµM = ∇µM + [Γµ,M ] . (1.16)

In particular, if M = I, then DµM = 0. We now impose the additional require-
ment that the derivative, Dµ, is metric compatible, i.e.,

Dµ g
αβI = 0 , (1.17)

where gαβ in this expression is understood to be a scalar (the element of a
matrix) rather than a matrix. Recalling Eq. (1.23),

ε 2gαβI = {γ̄α(x), γ̄β(x)} , (1.18)

we see that Eq. (1.17) is equivalent to

Dµ

(
{γ̄α(x), γ̄β(x)}

)
= 0 , (1.19)

and a sufficient condition for the above equation is

Dµγ̄
ν(x) = 0 . (1.20)

The operator Dµ of Eq. (1.16) acting on γ̄ν is,

Dµγ̄
ν = ∇µγ̄ν + [Γµ, γ̄

ν ] . (1.21)

Thus Eq. (1.20) is

Dµγ̄
ν = γ̄ν ,µ + Γνλµγ̄

λ + Γµγ̄
ν − γ̄νΓµ = 0 . (1.22)

We refer the reader to Appendix C, for further details of the effect of signature
choices on the Γµ and the Dirac equation.
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Remark 1. Reference [1], Eq. (13.27), for example, has a (−) sign in front of
the commutator in Eq. (1.21) thus, effectively, changing the sign of Γµ. This
is compensated for by writing (∂µ − Γµ) in Eq. (1.15).

We now introduce the spin connection (coefficients) ωABµ by the relation below
(e.g., see [8], pp.222-224, and [9], p. 487),

ωABµ := −eBν
(
∂µe

A
ν − Γλµνe

A
λ

)
. (1.23)

ωABµ = eAβ ∇µ eBβ = gβαeA
α∇µ eBβ = ηAC e

C
β ∇µ eBβ . (1.24)

We see from the second (or third) equality in Eq. (1.24) that the metric signa-
ture will affect the signs of the ωABµ.

Exercise 1. Obtain Eq. (1.23) using Eq (1.24) and the result of Proposition
1 below. (Hint: Pay attention to the ordering of the indices A and B in Eqs.
(1.23) and (1.24).)

Proposition 1. The ωABµ are antisymmetric in A and B.

Proof : Recall Eq. (A.4), then we have that (cf. [9], p.489),

∇µ ηAB = eB
β (∇µ eAα) gαβ + eA

α
(
∇µ eBβ

)
gαβ = 0 ,

eBα (∇µ eAα) + eAβ
(
∇µ eBβ

)
= 0 ,

ωBAµ + ωABµ = 0 . (1.25)

Remark 2. The ωABµ are also written as ωµAB, [8]. Lord refers to ∇µ eBβ
as the Ricci rotation coefficients while in our nomenclature the Ricci rotation
coefficients are given by Eq. (1.45), namely their components along the tetrad
field eC

µ. Our point here is that the terminology varies a little in the literature
and care is required.

Using Eq. (1.3) and (1.4) in Eq. (1.21), one can show that the Γµ below satisfies
Eq. (1.22) and hence (1.17),

Γµ =
ε

4
ωABµ γ

AγB =
ε

2
ωABµ ΣAB , (1.26)

where

ΣAB =
1

4

[
γA, γB

]
. (1.27)

We have included an ε factor in the expression for Γµ in order take into account
the choice made in Eq. (1.4). The factor of 1/4 in Γµ, Eq. (1.26), compensates
for the factor of 2 in Eq. (1.4) and thus is dimension independent. The reader
may consult Fursaev and Vassilevich [10], p.16 for a different line of reasoning.
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Remark 3. We caution the reader that Parker and Toms [8] define a Γµ on p.
145 which is our Eq. (1.26) with ε = −1 and a Bµ on p. 228, which is our Eq.
(1.26) with ε = +1. No problem arises since the corresponding Dirac equations
also differ in the appropriate sign.

The Fock-Ivanenko coefficients, ΓC , are given by

ΓC = eC
µ Γµ , (1.28)

thus we may write
DC ψ = (eC + ΓC)ψ . (1.29)

Finally, for a free spin 1/2 particle of mass m we have the Dirac equation in
curved spacetime,

iγCDC ψ −mψ = 0 . (1.30)

Using Eqs. (1.3), (1.15), and (1.28), we may also write Eq. (1.30) in the form

iγ̄µ(∂µ + Γµ)ψ −mψ = 0 , (1.31)

iγ̄µDµψ −mψ = 0 . (1.32)

Remark 4. We note that the eC = eC
γ ∂γ , in Eqs. (1.29), (1.30), is regarded

as a differential operator, thus for our four component spinor ψ, we have, after
re-inserting the identity matrix I,

eCI ψ =



eC
γ ∂γ ψ1

eC
γ ∂γ ψ2

eC
γ ∂γ ψ3

eC
γ ∂γ ψ4


. (1.33)

Proposition 2. If the tetrad eB
β in Eq. (1.24) is parallel along a path with

tangent e0
µ, then it is a Fermi tetrad, (see Eq. (A.15)) and it turns out that the

Fock-Ivanenko coefficient Γ0 = 0.

Proof : Using Eqs. (1.24), (1.26), we obtain the expression below for Eq. (1.28),

ΓC =
ε

4
eAβ

(
eC

µ∇µeBβ
)
γAγB , (1.34)

thus if eB
β is parallel, the terms in parentheses vanish for C = 0.

Remark 5. Conversely, if Γ0 6= 0, then eB
β is not parallel. However, it may

happen that Γ0 = 0, while eB
β is not parallel.
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1.2 The Ricci rotation coefficient approach

We now give an alternative, and possibly more efficient, way of calculating the
Fock-Ivanenko coefficients. We remark again that the terminology and defini-
tions of some the quantities below vary in the literature and one has to be very
careful. We work in the tetrad frame and define the structure coefficients (or
structure constants), CDAB , by the relations below, [11], [12], [13].

deD = −1

2
CDAB e

A ∧ eB . (1.35)

An equivalent expression is

[eA, eB ]
γ

= eA
α ∂α eB

γ − eBβ ∂β eAγ = CDAB eD
γ , (1.36)

while a most convenient expression is

CDAB =
(
eDα, β − eDβ,α

)
eA

αeB
β . (1.37)

We derive below Eq. (1.37) from Eq. (1.36). We begin by multiplying both
sides of Eq. (1.36) by eCγ and using Eq. (A.2). Thus

eA
α (∂α eB

γ) eCγ − eBβ (∂β eA
γ) eCγ = CDAB δD

C = CCAB . (1.38)

We also have the identities

∂α
(
eB

γeCγ
)

= ∂αδB
C = (∂αeB

γ) eCγ + eB
γ∂αe

C
γ = 0 , (1.39)

∂β
(
eA

γeCγ
)

= ∂βδA
C = (∂βeA

γ) eCγ + eA
γ∂βe

C
γ = 0 . (1.40)

Therefore Eq. (1.38) is

− eAαeBγeCγ, α + eB
βeA

γeCγ, β = CCAB , (1.41)

which, after relabeling the dummy indices, reduces to Eq. (1.37).

Clearly
CDAB = −CDBA , (1.42)

and we have,

CABC = ηADC
D
BC , (1.43)

CABC = −CACB . (1.44)

Finally we give two expressions for the Ricci rotation coefficients, ΓABC . The
ΓABC are related to the ωABµ, defined in Eq. (1.24), by the relation Eq. (1.45)
below, where the metric signature affects the ωABµ and hence the ΓABC .

ΓABC = ωABµ eC
µ . (1.45)
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Another expression for the ΓABC , which is written here specifically for the metric
signature (+,−,−,−) is

ΓABC = −1

2
(CABC + CBCA − CCAB) . (1.46)

Eqs. (1.45) and (1.46) agree with the definitions in ref. [13], Eqs. (253), p.
37, and (272), p. 39. For metric signature (−,+,+,+) one has to change the
overall sign in Eq. (1.46), in addition note that the C’s in Eq. (1.36) are the
negatives of the C’s defined in [14], Eq. (2.11) (see also Remark 15). From Eq.
(1.45) we see that

ΓABC = −ΓBAC . (1.47)

It is important to keep in mind the difference in index antisymmetry in Eqs.
(1.44) and (1.47). Finally, using Eqs. (1.26), (1.28), and(1.45), we may now
express the Fock-Ivanenko coefficients in terms of the ΓABC ,

ΓC =
ε

4
ΓABC γ

AγB . (1.48)

We have used as references, [11], [12], and [14]. (Ref. [11] has some misprints in
Sec. 11.4.) If one were to adopt the definitions and terminology of Soleng [14],
one would have the advantage of being able to use the Mathematica package
Cartan to calculate all of these quantities (symbolically) by computer.

Remark 6. Apart from being tetrad-dependent, it is clear from the above deriva-
tion, that the sign of the Ricci rotation coefficients, ΓABC , will depend on the
metric signature since CABC = ηADC

D
BC (we add that certain authors, e.g.,

[12], define their spin connection Eq. (1.24) with the opposite sign). Further-
more, it is after Eq. (1.48), that is, when we write Eq. (1.30),that we have to
choose a metric compatible representation of the γ matrices.

1.3 The electromagnetic interaction

As mentioned above, the requirement Eq. (1.20) is sufficient but not necessary.
In general one may add a (possibly complex) [3] vector multiple of the unit
matrix to the solution, Eq. (1.26). In this way we may generalize the Γµ’s for
the case where an arbitrary electromagnetic potential Aµ is present [3], [15]. We
simply make the replacements:

Γµ → Γµ + iqAµI , (1.49)

Dµ → Dµ + iqAµI , (1.50)

where q is the charge of the particle described by ψ. Thus Eq. (1.32) is now
generalized to

iγ̄µDµψ −mψ = 0 , (1.51)

iγC
(
eC +

1

4
ΓABC γ

AγB + iqAC

)
ψ −mψ = 0 , (1.52)
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where
γ̄µAµ = eC

µγCAµ = γCeC
µAµ = γCAC . (1.53)

This is consistent with the so-called minimal coupling procedure. One can easily
deduce the correctness of this term by considering the Minkowski limit (e.g., see
[16], pp. 64-67). For example, in the case of the hydrogenic atom, q = −e,
e > 0, and in the standard notation the components AC of electromagnetic
potential due to the proton are

A = (A0, A1, A2, A3) =

(
Ze

r
, 0, 0, 0

)
, (1.54)

so that iqA0 = −iZe
2

r
.

Of course in curved spacetime one has to use appropriate Maxwell’s equations.
We refer the reader again to [3], Sec. VII, or [12].

1.4 The Newman-Penrose formalism

In this section we give a short introduction to the Newman-Penrose formalism
[17], [18]. Apart from the Newman-Penrose paper, we have found useful the
exposition in the following texts [19], [20], and [21]. In addition the software
package Cartan, [14], may be used with the N-P formalism for considerably
faster calculations. However one has to be careful because, as usual, there are
differences in some definitions and conventions among these references.

In the Newman-Penrose formalism the calculations are done using a complex
null tetrad. One straightforward way to construct a complex null tetrad for
a given metric, is to choose a set, eA, of orthonormal tetrad vector fields (as
discussed in Appendix A). These satisfy

ηAB = eA
α eB

β gαβ . (1.55)

Then we define the complex null tetrad l, n,m,m, below [22]:

λ1 = l =
1√
2

(e0 + e3) , (1.56)

λ2 = n =
1√
2

(e0 − e3) , (1.57)

λ3 = m =
1√
2

(e1 + ie2) , (1.58)

λ4 = m =
1√
2

(e1 − ie2) . (1.59)
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Note that m = m∗, so that, in general, we will use A∗ for the complex conjugate
of A. Using Eq. (1.63) we can show that the null tetrad vectors l, n,m,m, of
Eqs. (1.56) - (1.59), satisfy the relations

lµlµ = nµnµ = mµmµ = mµmµ = 0 , (1.60)

lµmµ = nµmµ = lµmµ = nµmµ = 0 , (1.61)

lµnµ = +1 , mµmµ = −1 . (1.62)

The frame field metric components, ζAB , for the λA of Eqs. (1.56) - (1.59), are
given by

ζAB = λA
α λB

β gαβ = λA
αλBα , (1.63)

where A,B = 1, 2, 3, 4. We find that

(
ζAB

)
= (ζAB) =



0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0


. (1.64)

Exercise 2. Use Eq. (1.63) to derive Eq. (1.64).

We also have the relations

gαβ = ζABλA
αλB

β , (1.65)

ζCBζAB = λA
α ζCBλBα = λA

α λCα = δA
C . (1.66)

In order to conform to the notation in the NP formalism literature, we shall
change slightly the notation for the Ricci rotation coefficients given by Eq.
(1.46), and write ΓABC = γABC (with A,B,C = 1, 2, 3, 4 where 4 is the time
label). The collection of equations below is very important and handy:

λAα = gαβ ζ
ABλB

β , (1.67)

γDBC = λB
βλC

α∇α λDβ , (1.68)

γABC = ζAD γ
D
BC , (1.69)
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and the equivalents to Eqs. (1.37), (1.42), and (1.46),

CDBC =
(
λDα, β − λDβ,α

)
λB

αλC
β , (1.70)

CABC = ζAD C
D
BC , (1.71)

γABC = −1

2
(CABC + CBCA − CCAB) . (1.72)

Remark 7. It is clear from Eqs. (1.56) - (1.59) that if the tetrad, eA, is a
Fermi tetrad, then the null tetrad, λB, is parallelly transported along the chosen
congruence of timelike geodesics.

Remark 8. A choice of a null tetrad, λB, is equivalent to a choice of an or-
thonormal tetrad, eA, since we can solve Eqs. (1.56) - (1.59), to express the eA
in terms of the λB, [22], thus,

e0 =
1√
2

(l + n) , (1.73)

e1 =
1√
2

(m+m) , (1.74)

e2 =
−i√

2
(m−m) , (1.75)

e3 =
1√
2

(l − n). (1.76)

Remark 9. From Eq. (1.73) we may deduce the properties of the observer
frame tetrad by finding the acceleration,

a = ∇e0e0 . (1.77)

Moreover, evaluating, ∇e0eA , A = 0, 1, 2, 3, will tell us whether the tetrad is a
Fermi tetrad or not (see Eq. (A.15)).

Exercise 3. Starting with Eq. (1.65), show that

gαβ = nαlβ + lαnβ −mαmβ −mαmβ . (1.78)

The null tetrad l, n,m,m, is not uniquely defined by Eqs. (1.56)-(1.59). Without
changing the direction of the field l, we may rescale it by an arbitrary factor A,
where A is a non-vanishing real function. Thus

l′α = Alα. (1.79)
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This amounts to a reparametrization of the curves tangent to l. The vectors m
and m may be rotated in their plane by an arbitrary angle φ; moreover, their
scalar products with l, do not change when a multiple of l is added to them.
Thus m,m, are defined up to the transformations

m′α = eiφmα +Blα, (1.80)

where φ is a real function and B is a complex function. The remaining vector
n, may be changed by a fixed multiple of l and a fixed multiple of a fixed vector
in the m,m plane, so finally, we have [20]

n′α =
1

A

(
nα +B∗eiφmα +Be−iφmα +BB∗lα

)
. (1.81)

We can express these transformations as three classes of transformations [23],

l′ = l, m′ = m+Bl, n′ = n+B∗m+Bm+BB∗l, (null rotation), (1.82)

n′ = n, m′ = m+Bl, l′ = l +B∗m+Bm+BB∗n, (null rotation), (1.83)

l′ = Al, m′ = eiφm, n′ = A−1n, (boost and orthogonal rotation). (1.84)

We shall use the standard notation below, to designate the null tetrad vectors
as directional derivatives

λ1 = l = D, λ2 = n = ∆, λ3 = m = δ, λ4 = m = δ∗ . (1.85)

The above is expressed very clearly in reference [22]. “The role of the (vector)
covariant derivative operator ∇α is taken over in the NP formalism by four
scalar operators:”

D = lα∇α, ∆ = nα∇α, δ = mα∇α, δ∗ = mα∇α . (1.86)

Thus, e.g., for any scalar function f we write

Df = lαf,α, ∆f = nαf,α, δf = mαf,α, δ∗f = mαf,α . (1.87)

We give below the twelve so-called spin coefficients in terms of the Ricci rotation
coefficients.

κ = γ311, ρ = γ314, ε = 1
2 (γ211 + γ341) ,

σ = γ313, µ = γ243, γ = 1
2 (γ212 + γ342) ,

(1.88)

λ = γ244, τ = γ312, α = 1
2 (γ214 + γ344) ,

ν = γ242, π = γ241, β = 1
2 (γ213 + γ343) .
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Remark 10. One could choose the functions, A,B, φ, in Eqs. (1.79), (1.80),
and (1.81), so as to maximize the number of vanishing the spin coefficients, thus
possibly making the Dirac equation easier to solve. However it may not be easy
to determine what observer frame the new tetrad corresponds to (see Remark
8).

We finally write the Dirac equation in the N-P formalism [13], [24], [25], [26].

(∆ + µ∗ − γ∗)G1 − (δ∗ + β∗ − τ∗)G2 = iµ∗F1 ,

(D + ε∗ − ρ∗)G2 − (δ + π∗ − α∗)G1 = iµ∗F2 ,

(1.89)

(D + ε− ρ)F1 + (δ∗ + π − α)F2 = iµ∗G1 ,

(∆ + µ− γ)F2 + (δ + β − τ)F1 = iµ∗G2 ,

where µ∗
√

2 = m = the mass of the particle. Eqs. (1.89) are in the chiral
representation given by Eqs. (B.11), see ref. [27].

2 Examples

2.1 Schwarzschild spacetime N-P

In this section we compare the two approaches, N-P and F-I. Chandrasekhar
uses the metric signature (+,−,−,−) and so we write the Schwarzschild metric,

ds2 =

(
1− 2M

r

)
dt2 − dr2(

1− 2M

r

) − r2(dθ2 + sin2 θdφ2) . (2.1)

We adopt essentially Chandrasekhar’s null tetrad cf., [13], Eq. (281) p. 134,
where l = (lt, lr, lθ, lφ), etc.

l =
1√
2

(
1

X
, 1, 0, 0

)
, (2.2)

n =
1√
2

(1, −X, 0, 0) , (2.3)

m =
1√
2

(
0, 0,

1

r
,

i

r sin θ

)
, (2.4)

m =
1√
2

(
0, 0,

1

r
,
− i
r sin θ

)
, (2.5)
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where

X = 1− 2M

r
. (2.6)

We find the spin coefficients below.

α = − cot θ

2
√

2 r
, (2.7)

β =
cot θ

2
√

2 r
, (2.8)

γ =
M√
2 r2

, (2.9)

µ = − X√
2 r

, (2.10)

ρ = − 1√
2 r
, (2.11)

Now we use Eqs. (1.87) and (1.89) to write the Dirac equations. We write below
only the first two of the four equations for those who wish to check their results

∂tG1 −X∂r G1 +
M − r
r2

G1 −
1

r
∂θ G2 +

i

r sin θ
∂φG2−

cot θ

2r
G2 = imF1 , (2.12)

1

X
∂tG2 + ∂r G2 +

1

r
G2 −

1

r
∂θ G1−

i

r sin θ
∂φG1−

cot θ

2r
G1 = imF2 . (2.13)

where the Dirac wavefunction is

ψ =


F1

F2

G1

G2

 . (2.14)

We remark that the details of these calculations can be carried using the soft-
ware package Cartan.
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To do the calculations following the Fock-Ivanenko approach, we recall Remark
8 and use Eqs. (1.73) - (1.76), to obtain the orthogonal tetrad corresponding to
the null tetrad given by Eqs. (2.2) - (2.5). We have

e0 =

(
1 +X

2X
,

1−X
2

, 0, 0

)
, (2.15)

e1 =

(
0, 0,

1

r
, 0

)
, (2.16)

e2 =

(
0, 0, 0,

1

r sin θ

)
, (2.17)

e3 =

(
1−X

2X
,

1 +X

2
, 0, 0

)
, (2.18)

where eA = (eA
t, eA

r, eA
θ, eA

φ), and X is given by Eq. (2.6). Recalling Remark
9, we find that a = ∇e0e0 6= 0, so this is not a freely falling particle frame. Fi-
nally the Dirac equations obtained with this approach are, of course, identical
to Eqs. (2.12), (2.13), etc.

2.2 Schwarzschild spacetime F-I

In this example we calculate the Fock-Ivanenko coefficients for the Schwarzschild
metric, using the tetrad below and write the resulting Dirac equations. This
calculation may be found in Ryder [11] although there are several misprints
there. We use Ryder’s conventions, i.e., the metric signature below, the stan-
dard representation of the γ matrices Eqs. (B.8), (B.9), and ε = −1.

The Schwarzschild metric is

ds2 = −
(

1− 2M

r

)
dt2 +

dr2(
1− 2M

r

) + r2(dθ2 + sin2 θdφ2) , (2.19)

and we choose the orthonormal 1-forms and corresponding vectors below which
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satisfy gαβ = ηAB e
A
α e

B
β , (see Appendix A.1).

e0 =

(
1− 2M

r

) 1
2

dt , e0 =

(
1− 2M

r

)− 1
2

∂t , (2.20)

e1 =

(
1− 2M

r

)− 1
2

dr , e1 =

(
1− 2M

r

) 1
2

∂r , (2.21)

e2 = r dθ , e2 =
1

r
∂θ , (2.22)

e3 = r sin θ dφ , e3 =
1

r sin θ
∂φ . (2.23)

Equations (2.20) - (2.23) are the tetrad 1-forms and vectors of an observer with
ṙ = 0, θ̇ = 0, φ̇ = 0. Using Eq. (1.24) we find the nonvanishing spin connection
coefficients,

ω10t =
M

r2
, (2.24)

ω21θ =

(
1− 2M

r

) 1
2

, (2.25)

ω31φ = sin θ

(
1− 2M

r

) 1
2

, (2.26)

ω32φ = cos θ . (2.27)

We now use Eqs. (1.26) and (1.28), to obtain the Fock-Ivanenko coefficients ΓC .

Γ0 =
M

2r2

(
1− 2M

r

)− 1
2

γ0γ1 , (2.28)

Γ1 = 0 , (2.29)

Γ2 =
1

2r

(
1− 2M

r

) 1
2

γ1γ2 , (2.30)

Γ3 =
1

2r

(
1− 2M

r

) 1
2

γ1γ3 cot θ

2r
γ2γ3. (2.31)
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The Dirac equation, (1.28) and (1.30), is

i
[
γ0
(
e0
t ∂t + Γ0

)
+ γ1e1

r ∂r + γ2
(
e2
θ ∂θ + Γ2

)
+ γ3

(
e3
φ ∂φ + Γ3

) ]
ψ −mψ = 0 . (2.32)

From Eq. (2.28) we see that the term γ0Γ0 appearing in Eq. (2.32) simplifies
to

γ0Γ0 =
M

2r2

(
1− 2M

r

)− 1
2

γ1 , (2.33)

and so on.

2.3 Nonfactorizable metric

In this example we shall write the Dirac equation in the spacetime considered
by Hounkonnou and Mendy [28]

ds2 = −dt2 + a2(t)
(
dx2 + b2(x)

[
dy2 + c2(y)dz2

])
. (2.34)

We remark that the de Sitter universe metric and the usual Friedman-Lemâıtre-
Robertson-Walker metric of standard cosmology, for each curvature parameter
k separately, are special cases of the above form.

As in the example of Sec. 2.2 we again choose the tetrad for an observer with
ẋ = 0, ẏ = 0, ż = 0. The 1-forms and corresponding vectors are given below.

e0 = dt , e0 = ∂t , (2.35)

e1 = a(t) dx , e1 =
1

a(t)
∂x , (2.36)

e2 = a(t)b(x) dy , e2 =
1

a(t)b(x)
∂y , (2.37)

e3 = a(t)b(x)c(y) dz , e3 =
1

a(t)b(x)c(y)
∂z . (2.38)

Using Eq. (1.24) we find the nonvanishing spin connection coefficients,

ω10x = a,t , ω20y = b a,t , ω21y = b,x , (2.39)

ω30z = b c a,t , ω31z = c b,x , ω32z = c,z . (2.40)
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Again we use Eqs. (1.26) and (1.28), to obtain the the Fock-Ivanenko coefficients
ΓC .

Γ0 = 0 , (2.41)

Γ1 = −a,t
2a

γ0γ1 , (2.42)

Γ2 = −a,t
2a

γ0γ2 − b,x
2ab

γ1γ2 , (2.43)

Γ3 = −a,t
2a

γ0γ3 − b,x
2ab

γ1γ3 − c,y
2abc

γ2γ3. (2.44)

Note that Hounkonnou and Mendy in ref. [28], define their Γµ with opposite
sign from the one adopted here, Eq. (1.26), and in the first part of their paper
they effectively multiply their γ matrices by (−i). Thus using Eq. (C.11) and
the relations (B.19), we write the resulting Dirac equation as,

γC (eC + ΓC)ψ +mψ =

[
γ0

(
∂t +

3a,t
2a

)
+ γ1

(
1

a
∂x +

b,x
ab

)
+

γ2

(
1

ab
∂y +

c,y
2abc

)
+ γ3 1

abc
∂z

]
ψ +mψ = 0 . (2.45)

A further simplification is achieved if we let

ψ ≡ a− 3
2 b−1 c−

1
2 Ψ. (2.46)

A short calculation shows that we may now rewrite the Dirac equation in the
simplified form[

γ0∂t +
1

a
γ1∂x +

1

ab
γ2∂y +

1

abc
γ3∂z

]
Ψ +mΨ = 0 . (2.47)

At some point in ref. [28] the authors specifically adopt the Jauch-Rohrlich
representation of the γ matrices discussed in Sec. B.5. Further clarification
may be obtained by reviewing Sec. B.3.

2.4 de Sitter spacetime, Fermi coordinates

In this section we shall consider the Dirac equation in the de Sitter universe using
exact (global) Fermi coordinates

(
x0, x1, x2, x3

)
with respect to the reference

observer (τ, 0, 0, 0). We shall first write the de Sitter metric in the standard
coordinates used in ref. [29], (but we adopt a different notation from the one
used there in order to avoid confusion).

ds2 = −d(y0)2 + e2ay0δijdy
idyj , (2.48)
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A Fermi tetrad field on the set of geodesics γ(τ) = (τ, y1
0, y

2
0, y

3
0), i.e., y0 = τ

and yi = const., is

λ0 = ∂y0 , λI = e−aτ∂yI , I = (1, 2, 3). (2.49)

We transform the metric of Eq. (2.48) to the metric in global Fermi coordinates
using the transformation derived in [29], [30], relating the yµ to the Fermi xµ,

eay
0

= eax
0

cos (aρ) (2.50)

yi = e−ax
0 tan (aρ)

aρ
xi, (2.51)

where ρ =
√
δijxixj , a =

√
Λ/3 , and 0 ≤ ρ < π/(2a).

The resulting metric is,

ds2 = − cos2 (aρ) d(x0)2 +

[
xixj

ρ2
+

sin2(aρ)

a2ρ2

(
δij −

xixj

ρ2

)]
dxidxj , (2.52)

We may obtain a set of Fermi tetrad 1-form field in Fermi coordinates by trans-
forming the 1-forms corresponding to the vectors of Eq. (2.49), using the trans-
formation Eqs. (2.50), (2.51). The Fermi tetrad field obtained is complicated
because the set of geodesics corresponding to the set γ(τ) has lost its original
simplicity in the xµ coordinates. We can find the inverse of the transformation
Eqs. (2.50), (2.51), which we shall refer to as F , thus

x0 =

(
1

a

)
ln

(
eay

0

√
1− a2e2ay0R2

)
, (2.53)

xi =
arccos

√
1− a2e2ay0R2

aR
yi, (2.54)

where R =
√
δijyiyj . We know that if F : M → N is an isometry and γ is a

geodesic in M , then F ◦ γ is a geodesic in N . Therefore the set of geodesics,
γ(τ), are now given by (recall that y0 = τ)

F ◦ γ =
(
x0(τ), x1(τ), x2(τ), x3(τ)

)
. (2.55)

The above complications do not prevent us from carrying on with our calcu-
lations for the Dirac equation. We give the set of tetrad 1-forms we obtained
below.
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e0 = dx0 − f(ρ)
(
x1 dx1 + x2 dx2 + x3 dx3

)
, (2.56)

e1 = −x1h(ρ) dx0

+
aρ
(
x1
)2

sec (aρ) +
[(
x2
)2

+
(
x3
)2]

sin (aρ)

aρ3
dx1

+ x1x2 p(ρ) dx2 + x1x3 p(ρ) dx3, (2.57)

e2 = −x2 h(ρ) dx0 + x1x2 p(ρ) dx1

+
aρ
(
x2
)2

sec (aρ) +
[(
x1
)2

+
(
x3
)2]

sin (aρ)

aρ3
dx2

+ x2x3 p(ρ) dx3, (2.58)

e3 = −x3 h(ρ) dx0 + x1x3 p(ρ) dx1 + x2x3 p(ρ) dx2

+
aρ
(
x3
)2

sec (aρ) +
[(
x1
)2

+
(
x2
)2]

sin (aρ)

aρ3
dx3, (2.59)

where

f(ρ) =
tan (aρ)

ρ
, (2.60)

h(ρ) =
sin (aρ)

ρ
, (2.61)

p(ρ) =

(
sec (aρ)

ρ2
− sin (aρ)

aρ3

)
, (2.62)

q(ρ) =

(
−a csc (aρ)

ρ
+

sec (aρ)

ρ2

)
. (2.63)

The corresponding tetrad vectors are,
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e0 = sec2 (aρ) ∂x0 + f(ρ)
(
x1 ∂x1 + x2 ∂x2 + x3 ∂x3

)
, (2.64)

e1 = x1f(ρ) sec (aρ) ∂x0

+
aρ
[(
x2
)2

+
(
x3
)2]

csc (aρ) +
(
x1
)2

sec(aρ)

ρ2
∂x1

+ q(ρ)
(
x1x2 ∂x2 + x1x3∂x3

)
, (2.65)

e2 = x2f(ρ) sec (aρ) ∂x0 + x1x2 q(ρ) ∂x1

+
aρ
[(
x1
)2

+
(
x3
)2]

csc (aρ) +
(
x2
)2

sec(aρ)

ρ2
∂x2

+ x2x3 q(ρ) ∂x3 , (2.66)

e3 = x3f(ρ) sec (aρ) ∂x0 + q(ρ)
(
x1x3 ∂x1 + x2x3∂x2

)

+
aρ
[(
x1
)2

+
(
x2
)2]

csc (aρ) +
(
x3
)2

sec(aρ)

ρ2
∂x3 . (2.67)

We now use the Mathematica package Cartan [14] to obtain the nonvanishing
Ricci rotation coefficients, ΓABC , of Eqs. (1.45), (1.46), (but see comment below
(1.46)). Then the Fock-Ivanenko coefficients, ΓC , of Eq. (1.48). We have

Γ101 = Γ202 = Γ303 = a, (2.68)

and
Γ0 = 0, ΓA = −a

2
γ0γA, A = 1, 2, 3. (2.69)

Using Eqs. (2.69), we write the Dirac equation (C.9),[
γ0 e0 + γ1

(
e1 −

a

2
γ0 γ1

)
+ γ2

(
e2 −

a

2
γ0 γ2

)
+

γ3
(
e3 −

a

2
γ0 γ3

)]
ψ −mψ = 0 . (2.70)
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We note that because of our (−,+,+,+, ) signature, the γ matrices will satisfy
Eq. (B.19) and the Dirac equation, simplifies to[

γA eA + γ0

(
e0 +

3a

2

)]
ψ −mψ = 0, A = 1, 2, 3. (2.71)

Equation (2.71) looks deceptively simple, but the complications arise from the
expressions for the eA, therefore it may be better to work in the original coor-
dinates, Eq. (2.48) with the original tetrad Eq. (2.49).

3 The Dirac equation in (1+1) GR

3.1 Introduction to (1+1)

We shall adopt the metric signature (+,−). In (1+1) general relativity the
Dirac equation simplifies and may be written as follows [31], [32], [33].[

iγAeA
µ∂µ +

i

2
γA

1√
−g

∂µ
(√
−g eAµ

)
−mI2

]
ψ = 0 , (3.1)

where the zweibein vector label A runs over 0, 1, and for the spinor we write

ψ =

(
ψ1

ψ2

)
. (3.2)

In what follows we will further restrict ourselves to the chiral (Weyl) represen-
tation of the Dirac γ matrices, specifically we choose [31]

γ0 =

(
0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
. (3.3)

Thus (
γ0
)2

= I2 ,
(
γ1
)2

= −I2 , (3.4)

and
{γA, γB} = 2ηABI2 . (3.5)

We also define the matrix

γ5 := γ0γ1 =

(
1 0
0 −1

)
. (3.6)

One great advantage of the chiral representation is the ease of decoupling of
Eq. (3.1). Of course the spinor wave function components of Eq. (3.2) are now
eigenstates of the operator γ5, so we may write

ψ =

(
ψ(+)

ψ(−)

)
, (3.7)

with the eigenvalues γ5ψ(+) = +ψ(+), and, γ5ψ(−) = −ψ(−).
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3.2 The Dirac equation in the Milne universe

We shall consider solutions of the Dirac equation in the Milne universe in two
different charts: (a) in standard comoving coordinates (t, x), in which case the
metric is

ds2 = dt2 − a2
0 t

2dx2 , (3.8)

and (b) in exact Fermi coordinates (τ, ρ), in which case the Milne universe is
the interior of the forward lightcone of Minkowski spacetime, [34], [35] thus

ds2 = dτ2 − dρ2 , (3.9)

where τ > |ρ|.

(a) We use the default zweibein

ē0 = ∂t, ē1 =
1

a0 t
∂x . (3.10)

Since the metric in Eq. (3.8) does not depend on x the corresponding canonical
momentum px is a constant both in classical and quantum mechanics. We take
advantage of this fact and write the 2-component spinor ψ as

ψ(t, x) =

(
ψ1

ψ2

)
= e−ipxx

(
f1(t)
f2(t)

)
, (3.11)

where px is the 1-form of the particle’s momentum.

One finds that the only nonvanishing term from the second set of terms in Eq.
(3.1) is

i

2
γ0 1

a0t

[
∂t
(
a0t ē0

t
)]

=
i

2t
γ0 . (3.12)

Thus Eq. (3.1) reduces to[
iγ0∂t +

i

a0t
γ1∂x +

i

2t
γ0 −mI2

]
ψ = 0 . (3.13)

Now we substitute Eqs. (3.3) and (3.11) in Eq. (3.13) and obtain the coupled
equations,

f1 =
1

m

(
i∂t −

px
a0t

+
i

2t

)
f2 , (3.14)

f2 =
1

m

(
i∂t +

px
a0t

+
i

2t

)
f1 . (3.15)

Finally, decoupling Eqs. (3.14) and (3.15), we obtain

t2f ′′1 + tf ′1 +

[
m2 t2 −

(
1

2
− ipx

a0

)2
]
f1 = 0, (3.16)
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where the primes denote derivatives with respect to t. The solution of this
equation is given below in terms of the Bessel functions Jν and Yν of the first
and second kind respectively,

f1(t) = AJν(mt) +BYν(mt) , (3.17)

where A and B are arbitrary (complex) constants and

ν =
1

2
− ipx

a0
. (3.18)

Using Eq. (3.15), we find that

f2(t) = iAJν−1(mt) + iBYν−1(mt) . (3.19)

(b) Now we transform the solution to the exact Fermi coordinates (τ, ρ). The
transformation and its inverse is given by [34]

t =
√
τ2 − ρ2 , (3.20)

x =

(
1

a0

)
tanh−1

(ρ
τ

)
, (3.21)

τ = t cosh (a0x) , (3.22)

ρ = t sinh (a0x) . (3.23)

Under the above coordinate transformation the original tetrad 1-form fields,

ē0 = dt, ē1 = a0 t dx , (3.24)

transform into the 1-form fields hA below

h0 =
τ√

τ2 − ρ2
dτ − ρ√

τ2 − ρ2
dρ, (3.25)

h1 =
−ρ√
τ2 − ρ2

dτ +
τ√

τ2 − ρ2
dρ, (3.26)

which, of course, satisfy the relation

hAαh
B
β η

αβ = ηAB , (3.27)

where the upper case latin indices run over 0, 1, while the greek indices run over
τ, ρ. We shall write ψh(τ, ρ) for the ψ(t, x) of Eq. (3.11) transformed using Eqs.
(3.20) and (3.21). Thus

ψh(τ, ρ) = e
−ipx

(
1
a0

)
tanh−1 ( ρτ )

(
f1(
√
τ2 − ρ2)

f2(
√
τ2 − ρ2)

)
. (3.28)
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We will now perform a local Lorentz transformation, Λ, which will transform
the zweibein 1-form fields hA into the canonical zweibein for the metric (3.9),

e0 = dτ, e1 = dρ . (3.29)

The transformation Λ is given by

eAα = ΛAB h
B
α . (3.30)

We find

Λ =

(
Λ0

0 Λ0
1

Λ1
0 Λ1

1

)
=

1√
τ2 − ρ2

(
τ ρ
ρ τ

)
. (3.31)

We can calculate the matrix L used in Eq. (1.6) following the prescription given
in Appendix B of [36],

L =


(
τ+ρ
τ−ρ

)1/4

0

0
(
τ−ρ
τ+ρ

)1/4

 . (3.32)

The solutions using the zweibein set eA Eq. (3.29) is

ψe(τ, ρ) = Lψh(τ, ρ), (3.33)

where ψh(τ, ρ) is given by Eq. (3.28). We have then,

ψe(τ, ρ) = e−ipx tanh−1 ( ρτ )


(
τ+ρ
τ−ρ

)1/4

(AJν(z) +B Yν(z))

i
(
τ−ρ
τ+ρ

)1/4

(AJν−1(z) +B Yν−1(z))

 , (3.34)

where

ν =
1

2
− ipx

a0
, (3.35)

z = m
√
τ2 − ρ2 . (3.36)

The wavefunction ψe(τ, ρ), satisfies Eq. (3.1) which now reduces to the usual
Minkowski spacetime Dirac equation, namely,(

iγA∂A −mI2
)
ψe = 0. (3.37)

In order to show that ψe(τ, ρ) satisfies Eq. (3.37), one has to use the Bessel
function identity,

Cν−1(z) + Cν+1(z) =
2ν

z
Cν(z) , (3.38)

where Cν(z) denotes either of the Bessel functions Jν(z) , Yν(z).
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(c) In this subsection we shall consider the normalization integral [16], p. 69.
This integral is referred to as the “probability integral” in [37]. Thus in Fermi
coordinates with the canonical zweibein we have,

(ψe |ψe) =

∫
Σ

ψ̄e γ
0ψe dρ . (3.39)

In our case the spacelike hypersurface Σ is the usual (τ0, ρ), τ0 > 0, hyperplane.
Using Eq. (3.4) we have

(ψe |ψe) =

∫ τ0

−τ0
ψ†e ψe dρ . (3.40)

For the remainder of this section we will write ā to denote the complex conjugate
of a. We shall make use of the fact that

Cν(z) = Cν̄(z̄), (3.41)

where again Cν(z) denotes either of the Bessel functions Jν(z) , Yν(z). Since in
our case z is real we have that

Cν(z) = Cν̄(z). (3.42)

In order to check the behavior of the integrand in Eq. (3.40) at the endpoints
of integration, we use the limiting forms of the Bessel functions when ν is fixed
and z ∼ 0. Using Abramowitz and Stegun’s Eqs. (9.1.2), p.358 and (9.1.7),
p.360, [38], one easily deduces that for ν 6= negative integer,

Yν(z) =
Jν(z) cos (νπ)− J−ν(z)

sin (νπ)
, (3.43)

Jν(z) ∼
(z

2

)ν 1

Γ(ν + 1)
, (3.44)

Yν(z) ∼ −
(z

2

)−ν Γ(ν)

π
, Re(ν) > 0, (3.45)

Yν(z) ∼ −
(z

2

)ν cot (νπ)

Γ(ν + 1)
, Re(ν) < 0. (3.46)

Using Eqs. (3.44)-(3.46) in the integrand of Eq. (3.40), we see that some
terms blow up at the endpoints like ∼ 1/(τ0 − ρ) as the integration variable
ρ → τ0, regardless of the value of px. We can eliminate these terms by setting
B = B1 + iB2 = 0, where B1, B2 ∈ Reals. Thus the solution ψe of Eq. (3.34)
reduces to

ψe(τ, ρ) = Ae−ipx tanh−1 ( ρτ )


(
τ+ρ
τ−ρ

)1/4

Jν(z)

i
(
τ−ρ
τ+ρ

)1/4

Jν−1(z)

 , (3.47)
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where A is a complex normalization constant.

4 Scalar product

4.1 Conservation of j in SR

The probability current density for a Dirac field is given by

jA = ψ̄γAψ , (4.1)

where the adjoint spinor is ψ̄ = ψ†γ0. The probability current density jA

transforms like a 4-vector under a Lorentz transformation, Λ, so that,

j′A = ΛAB j
B , (4.2)

moreover jA is conserved, that is,

∂Aj
A = 0 . (4.3)

First we will prove Eq. (4.2). We know that under a tetrad rotation (local
Lorentz transformation) Λ,

ψ′ = Lψ ⇒ ψ′† = ψ†L† , (4.4)

where L and Λ are related as in (1.6). Thus, using Eqs. (A.37) and (A.38), we
have that

j′A = ψ′†γ0γAψ′, (4.5)

= ψ†L†γ0γALψ (4.6)

= ψ†γ0
(
L−1γAL

)
ψ, (4.7)

= ψ†γ0ΛABγ
Bψ, (4.8)

= ΛABψ
†γ0γBψ, (4.9)

= ΛAB j
B . (4.10)

Next in order to show that the current is conserved it will be useful to write
the expression for the adjoint of the Dirac equation. We begin with the usual
special relativity Dirac equation,

iγA∂Aψ −mψ = i/∂ ψ −mψ = 0. (4.11)

Then the adjoint is obtained as follows:(
iγA∂Aψ −mψ

)†
= 0 , (4.12)

−i∂Aψ†
(
γA
)† −mψ† = 0 , (4.13)

i∂Aψ
†γ0γAγ0 +mψ† = 0 , (4.14)

i
(
∂Aψ̄

)
γA +mψ̄ = 0 , (4.15)
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where we used the relations (B.4) and (B.12). Thus we shall use the notation

ψ̄
←−
/∂ = ∂Aψ̄γ

A , (4.16)
−→
/∂ ψ = ∂Aψγ

A . (4.17)

So we have the shorthand Feynman slash notation for the Dirac equation and
its adjoint: (

i
−→
/∂ −mI

)
ψ = 0 , (4.18)

ψ̄
(
i
←−
/∂ +mI

)
= 0 . (4.19)

Multiplying Eq. (4.18) on the left with ψ̄, and Eq. (4.19) on the right with ψ
and adding, we obtain

ψ̄
(←−
/∂ +
−→
/∂
)
ψ ≡ ∂A

(
ψ̄γAψ

)
= 0, (4.20)

which completes the proof of the conservation Eq. (4.3).

It follows from Eq. (4.3) that

d

dt

∫
V

j0d3x = −
∫
V

∂K j
Kd3x = −

∫
∂V

jKdSK = 0, K = (1, 2, 3). (4.21)

In Eq. (4.21) we have used Gauss’ theorem where ∂V is the boundary of the
volume V , so that we may write jKdSK = j1 dx2∧dx3 + j2 dx3∧dx1 + j3 dx1∧
dx2. The last step of Eq. (4.21) is valid for infinite volumes, with surface at
infinity, provided ψ vanishes sufficiently fast there. Eq. (4.21) is an expression
of conservation of (total) probability in time.

4.2 The current density in GR

The probability current density in general relativity (curved spacetime) is given
by

jα = ψ̄ γ̄α(x)ψ, (4.22)

where ψ is a solution of Eq. (1.31), the γ̄α(x) are given by Eq. (1.3) and
ψ̄ = ψ†γ0. The curved spacetime proof of Eq. (4.3) is given in [3] and [8],
p. 145, and follows similar steps as the above derivation except that partial
derivatives become covariant derivatives and, of course, one has to use Eq.
(1.31) instead of the Minkowski spacetime Dirac equation. A discussion of the
generalization of Eq. (4.21) is given in Appendix E in ref. [9]. We also refer the
reader to our Proposition 3 below.
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4.3 The Scalar product in SR

We now define the usual scalar product (see for example ref. [16], p. 69)

(φ |ψ) =

∫
Σ

φ̄ γ0ψ d3x . (4.23)

In the case where our spacelike hypersurface Σ is not the usual (t0, x, y, z) hy-
perplane, Eq. (4.23) generalizes to

(φ |ψ) =

∫
Σ

φ̄ γAnA ψ dΣ , (4.24)

where n is the future-directed normal to Σ, and dΣ is the invariant “volume
element” on Σ. The probability integral (ψ|ψ) is then given by

(ψ |ψ) =

∫
Σ

jAnA dΣ . (4.25)

In special relativity one usually chooses Σ to be the t = 0 hyperplane.

4.4 Scalar product in GR

We follow ref. [37] and define the scalar product

(φ |ψ) =

∫
Σ

φ̄ γ̄α(x)nαψ dΣ , (4.26)

where φ̄ = φ†γ0, and the γ̄α(x) are given by Eq. (1.3). The vector n is the
future-directed normal to the spacelike Cauchy hypersurface Σ, and dΣ is the
invariant “volume element” on Σ. Using Eq. (4.22) we have that the probability
integral (ψ|ψ) is given by

(ψ |ψ) =

∫
Σ

jαnα dΣ . (4.27)

We briefly comment on Parker’s definitions [3], [39]. Parker defines the current
of Eq. (4.22) with a minus sign in front. This is necessary because he has chosen

a representation where
(
γ0
)2

= −I and metric the signature (−,+,+,+) (see
also his argument regarding the positive definiteness of (ψ |ψ) around his Eq.
(3.5)). In addition he defines the scalar product

(φ |ψ) = −
∫

Σ

φ̄ γ̄0(x)ψ
√
−g d3x , (4.28)

where the integration is over a constant x0 Cauchy hypersurface (d3x = dΣt).
Parker is essentially using the lapse and shift formulation [40], where the metric
is written in the (3 + 1) decomposition (in his signature)

ds2 = −N2dt2 + hαβ (dxα +Nαdt)
(
dxβ +Nβdt

)
. (4.29)
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In Eq. (4.29) N and Nα are the lapse and shift functions respectively, hαβ is
the induced metric on Σt and one can show that

√
−g = N

√
h. (4.30)

Therefore definitions (4.26) and (4.28) agree.

We would now like to prove Proposition 3 below.

Proposition 3.
Dµ

(
φ̄ γ̄µψ

)
= 0. (4.31)

The proof of this proposition is simple provided one has certain preliminary
results available. So we first derive the required results.

We give the derivation implied in ref. [4], Eq. (21), in order to find the expres-
sion for Dµψ̄, where ψ is a solution of the Dirac equation. We use the fact that
ψ̄ψ is a 0-form field, therefore

Dµ

(
ψ̄ψ
)

=
(
Dµψ̄

)
ψ + ψ̄Dµψ , (4.32)

=
(
Dµψ̄

)
ψ + ψ̄ (I∂µ + Γµ)ψ , (4.33)

≡
(
I∂µψ̄ + Gµψ̄

)
ψ + ψ̄∂µψ + ψ̄Γµψ , (4.34)

=
(
∂µψ̄

)
ψ + ψ̄∂µψ . (4.35)

Eqs. (4.34) and (4.35) imply that(
Gµψ̄

)
ψ + ψ̄Γµψ = 0 , (4.36)

(
Gµψ̄ + ψ̄Γµ

)
ψ = 0 , (4.37)

Gµψ̄ + ψ̄Γµ = 0 . (4.38)

Thus
Gµψ̄ = −ψ̄Γµ , (4.39)

so, finally, using Eqs. (4.33), (4.34), and (4.39) we may write

Dµψ̄ = I∂µψ̄ − ψ̄Γµ . (4.40)

Now we would like to find the adjoint of the Dirac equation in curved spacetime,
i.e.,

(γ̄µDµψ + imψ)
†

= 0 . (4.41)
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The derivation requires three steps. The first step to note that

(γ̄µ)
†

= eA
µ
(
γA
)†

= eA
µγ0γAγ0 = γ0γ̄µγ0 . (4.42)

The second step is to recall the expression for Γµ and obtain the result below

Γ†µ =
1

4
ωABµ

(
γAγB

)†
, (4.43)

=
1

4
ωABµ

(
γB
)† (

γA
)†
, (4.44)

=
1

4
ωABµ

(
γ0γBγ0γ0γAγ0

)
, (4.45)

=
1

4
ωABµ

(
γ0γBγAγ0

)
, (4.46)

= −1

4
ωABµ

(
γ0γAγBγ0

)
, (4.47)

= −γ0Γµγ
0 , (4.48)

In the third and final step we make use of Eqs. (4.42) and (4.48) and re-write
Eq. (4.41) as follows,

(Dµψ)
†

(γ̄µ)
† − imψ† = 0 , (4.49)

[(I∂µ + Γµ)ψ]
†

(γ̄µ)
† − imψ† = 0 , (4.50)

(
∂µψ

† + ψ†Γ†µ
)

(γ̄µ)
† − imψ† = 0 , (4.51)

(
∂µψ

†) γ0γ̄µγ0 − ψ†γ0Γµγ
0γ0γ̄µγ0 − imψ† = 0 , (4.52)

(
∂µψ̄

)
γ̄µγ0 − ψ̄Γµγ̄

µγ0 − imψ† = 0 , (4.53)

(
∂µψ̄

)
γ̄µ − ψ̄Γµγ̄

µ − imψ̄ = 0 , (4.54)

(
I∂µψ̄ − ψ̄Γµ

)
γ̄µ − imψ̄ = 0 , (4.55)

(
Dµψ̄

)
γ̄µ − imψ̄ = 0 . (4.56)
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Finally, we return to the proof of Proposition 3. We assume that φ and ψ satisfy
the Dirac Eq. (1.32) and its adjoint Eq. (4.56), namely,

iγ̄µDµψ −mψ = 0, i
(
Dµψ̄

)
γ̄µ +mψ̄ = 0, (4.57)

from which it follows that,

γ̄µDµψ = −imψ,
(
Dµψ̄

)
γ̄µ = imψ̄. (4.58)

The proof of Proposition 3 now follows by applying the Leibniz rule to Eq.
(4.31) and using Eqs. (4.58) and (1.20).

Proposition 4. The scalar product, (φ |ψ), Eq. (4.28), is conserved, i.e.,

d

dt
(φ |ψ) = 0 , (4.59)

where t = x0, and provided φ and ψ satisfy the Dirac Eq. (1.30) and its adjoint.

Proposition 4 follows from Proposition 3 provided, as stated in ref. [3], “we
assume that φ and ψ, vanish sufficiently rapidly at spatial infinity or obey
suitable boundary conditions in a closed universe, so that the spatial components
of Eq. (4.31) give vanishing contributions upon integration and the various
products are well defined” (c.f. Eq. (4.21)). For more details refer to [3] and
[39].

4.5 Example. The closed FRW universe

In this section we go over the example from Finster and Reintjes, ref. [37]. We
consider the closed FRW universe whose line element, in conformal coordinates,
is (this is in lapse and shift form, Eq. (4.29))

ds2 = S(η)2
(
dη2 − dχ2 − f(χ)2

(
dθ2 + sin2 θ dφ2

))
. (4.60)

In the metric (4.60) η is the conformal time, χ is the radial coordinate, and
θ ∈ (0, π), φ ∈ [0, 2π), are the angular coordinates. The scale function S(η)
depends on the type of matter under consideration. In the present example
S(η) is left unspecified and is an arbitrary positive function. We have

f(χ) =


sin(χ), closed universe, χ ∈ (0, π)

sinh (χ), open universe, χ > 0 .

χ, flat universe, χ > 0 .

(4.61)

We choose the tetrad vectors in the Cartesian gauge (see Sec. A.3). In this
example these tetrad vectors correspond to a class of static observers on the
timelike path σ(s) = (

∫ s
0

ds
S(η(s)) , χ0, θ0, φ0). One can show that ∇e0eA = 0, for
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all A and any well-behaved S(η), so the tetrad eA is a Fermi tetrad field, Eq.
(A.15).

e0 =
1

S(η)
∂η, (4.62)

e1 =
sin θ cosφ

S(η)
∂χ +

cos θ cosφ

S(η)f(χ)
∂θ −

sinφ

S(η)f(χ) sin θ
∂φ, (4.63)

e2 =
sin θ sinφ

S(η)
∂χ +

cos θ sinφ

S(η)f(χ)
∂θ +

cosφ

S(η)f(χ) sin θ
∂φ, (4.64)

e3 =
cos θ

S(η)
∂χ −

sin θ

S(η)f(χ)
∂θ, (4.65)

and using Eq. (1.3) we obtain the spacetime-dependent gamma matrices,

γ̄η =
1

S(η)
γ0, (4.66)

γ̄χ =
1

S(η)

(
sin θ cosφγ1 + sin θ sinφγ2 + cos θ γ3

)
, (4.67)

γ̄θ =
1

S(η)f(χ)

(
cos θ cosφγ1 + cos θ sinφγ2 − sin θ γ3

)
, (4.68)

γ̄φ =
1

S(η)f(χ) sin θ

(
− sinφγ1 + cosφγ2

)
. (4.69)

In Eqs. (4.66) - (4.69) the γA are the constant γ matrices in the standard rep-
resentation.

We write the Dirac equation as in [37][
iγ̄η

(
∂η +

3

2

Ṡ

S

)
+ iγ̄χ

(
∂χ +

f ′ − 1

f

)
+ iγ̄θ∂θ + iγ̄φ∂φ −m

]
Ψ = 0, (4.70)

where Ṡ is the derivative with respect to η, and f ′ is the derivative with respect
to χ. Note that 3Ṡ/(2S) 6= Γη, etc. What happens here is similar to what
happened in deriving Eq. (2.71).

At this point Finster and Reintjes restrict themselves to the closed universe
case, f(χ) = sin (χ), and assume a solution of the form

Ψ(η, χ, θ, φ) =
1

S(η)
3
2

(
h1(η)ψλ(χ, θ, φ)

h2(η) ψ̃λ(χ, θ, φ)

)
. (4.71)
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We shall examine the probability integral, Eq. (4.27), using the above solution
of the Dirac equation in a closed FRW universe. We choose Σ to be a slice
of constant conformal time η, then the future-directed normal 1-form n has
components (cf. Eq. (4.62)),

(nη, nχ, nθ, nφ) = (S(η), 0, 0, 0) . (4.72)

Using Eqs. (4.27) and (4.66), we have

(Ψ |Ψ) =

∫
Σ

Ψ̄ γ̄αΨnα dΣ , (4.73)

=

∫
Σ

Ψ̄ γ̄ηΨnη dΣ , (4.74)

=

∫
Σ

Ψ†Ψ dΣ . (4.75)

In going from Eq. (4.73) to Eq. (4.75), we used Eqs. (4.66) and (4.72). Also

dΣ =
√
|gΣ| dχ dθ dφ = S3(η) dµS3 . (4.76)

In Eq. (4.76), gΣ is the determinant of the induced metric on Σ, and

dµS3 = sin2(χ) sin(θ) dχ dθ dφ, (4.77)

is the volume element on the unit sphere S3 in hyperspherical coordinates. So
substituting Eq. (4.71) in Eq. (4.73), we obtain

(Ψ |Ψ) =

∫
Σ

Ψ†Ψ dΣ , (4.78)

= |h1|2
∫
S3

|ψλ|2dµS3 + |h2|2
∫
S3

|ψ̃λ|2dµS3 , (4.79)

= |h1|2 + |h2|2 , (4.80)

where we have followed the normalization of ref. [37] (cf. Eq. (D.60)). It follows
from Eq. (4.59) that the probability integral is constant in time.
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Appendices

A Tetrads

A.1 The tetrad formalism

A tetrad is a set of four linearly independent vectors that can be defined at
each point in a (semi -) Riemannian spacetime. Here we give a summary of
useful relations for tetrad fields. Good detailed discussions can be found in
several texts see, for example, appendix J of [9]. We have the following basic
relations that determine the vector fields eA

α or the 1-forms (covector fields)
eAα, (we may use the notation, eA = eAα dx

α and eA = eA
α ∂α). The tetrads

by definition satisfy the relations (see [9], Eq. (J.3))

eAα eA
β = δα

β , (A.1)

eAα eB
α = δAB . (A.2)

The choice of the tetrad field determines the metric through Eq. (A.3) below.

gαβ = eAα e
B
β ηAB , (A.3)

ηAB = eA
α eB

β gαβ , (A.4)

where ηAB is the Minkowski spacetime metric in Cartesian coordinates. We
shall always assume that the velocity vector field, e0, is tangent to a congru-
ence of timelike paths and thus the tetrads are moving along these paths. The
reader should also read the comments in Sec. 1.1 below Eq. (1.3), and in Sec.
1.4 below Eq. (1.76).

Under coordinate transformations, greek indices are treated as tensor indices,
while latin indices are merely labels (thus the eA

α represent four different vector
fields). Equations (A.4) are also a statement of the orthonormality of the vectors
eA

α. The tetrad components may be determined using the Eqs. (A.3) or (A.4).

Remark 11. It is easy to convince oneself that relabeling the subscripts (or
superscripts) of the eA

α in a consistent way, does not affect the relation (A.4).
However, problems may arise, if one is careless with relabeling and reordering
variables while using a symbolic manipulation software.

Although in these notes we have considered spacetimes with dimensionality of
two or four, in general, if n is the dimensionality of the manifold, Eqs. (A.4) are
a set of ( 1

2 )n(n + 1) equations for the n2 unknown components of the vielbein
eA

α. Therefore ( 1
2 )n(n− 1) components can be freely chosen or determined by

extra conditions.
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Exercise 4. It is a simple exercise to show that Eqs. (A.2) and (A.3), imply
Eq. (A.4), while Eqs. (A.1) and (A.4), imply Eq. (A.3).

We have the following rules for raising and lowering indices,

eAα = gαβ eA
β , (A.5)

eAα = ηABeBα . (A.6)

The components of tensors in the tetrad frame are given by relations such as
the ones below

V A = eAαV
α, (A.7)

TAB = eAα eB
β Tαβ , (A.8)

and so on. Note that in Eq. (A.7) we are taking the product of a vector V with
n 1-forms eAα, as a result, we are replacing the vector V with n scalars V A.
Likewise in Eq. (A.8), we are replacing the

(
1
1

)
tensor T with n2 scalars TAB [41].

We can obtain the tensor components in the global chart from the “components”
in the tetrad frame using relations like the one below

V α = eA
α V A = eAα VA . (A.9)

Using the above relations we can show that UµV
µ = UAV

A.

gµνU
µV ν = ηABe

A
µe
B
ν U

µV ν , (A.10)

gµνU
µV ν = ηABU

AV B , (A.11)

UµV
µ = UAV

A. (A.12)

A.2 Fermi tetrad fields

A Fermi tetrad field must satisfy some special conditions. As usual the tetrad
field, satisfies Eq. (A.3), etc., but in the Fermi case, the velocity vector field,
e0, is tangent to a congruence of timelike geodesics, σ(τ), parametrized by the
proper time τ . Thus

e0 =
dσ(τ)

dτ
, (A.13)

and therefore,
∇e0e0 = 0 . (A.14)

A Fermi tetrad field must satisfy the equations

∇e0eA = 0, A = 0, 1, 2, 3, (A.15)

so that all the tetrad vectors are parallelly transported along the chosen con-
gruence of timelike geodesics.

(Recall that if ∇uu 6= 0 but ∇uv = 0, then v is parallel transported but not on
a geodesic).
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Remark 12. Given a Fermi tetrad enables one to obtain approximate Fermi
coordinates by the well-known process given in [42]. Examples of how to obtain
exact Fermi coordinates, in cases where this is possible, were given in [29], [30],
[43], [44].

A.3 The Cartesian gauge tetrad

A tetrad field referred to as the “Cartesian gauge” was introduced by Brill
and Wheeler [45], and has been found useful by many authors [46] - [51]). An
example of the Cartesian gauge tetrad used in the FRW universe was given
above, Eqs. (4.62) - (4.65). Here we first discuss it in the simplest case namely
flat Lorentz spacetime. Consider the standard tetrad 1-forms in (Cartesian)
Minkowski spacetime, namely,

e0 = dt , e1 = dx ,

(A.16)

e2 = dy , e3 = dz .

Then, if we transform to spherical coordinates (t, r, θ, φ), the above 1-forms
transform into the 1-form tetrad below

ω0 = dt , (A.17)

ω1 = sin θ cosφdr + r cos θ cosφdθ − r sin θ sinφdφ , (A.18)

ω2 = sin θ sinφdr + r cos θ sinφdθ + r sin θ cosφdφ, (A.19)

ω3 = cos θ dr − r sin θ dθ , (A.20)

For the case of the flat spacetime the Fock-Ivanenko coefficients vanish with this
tetrad in spherical coordinates. The metric is the usual spherical coordinate
metric,

ds2 = dt2 − dr2 − r2(dθ2 + sin2 θ dφ2) . (A.21)

Note that the default 1-form tetrad for the metric of Eq. (A.21), namely,

ω0 = dt , (A.22)

ω1 = dr , (A.23)

ω2 = r dθ, (A.24)

ω3 = r sin θ dφ , (A.25)
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is “rotated” (see Appendix A.4) with respect to the original Cartesian tetrad
Eq. (A.16) and the Fock-Ivanenko coefficients no longer vanish.

Exercise 5. (a) Write the Dirac equation using the tetrad, (A.17) - (A.20), for
the metric (A.21), in the chiral representation Eq. (B.11). (b) Transform the
chiral plane wave solutions Eq. (D.43) to spherical coordinates and show that
they satisfy the Dirac equation obtained in part (a).

A.4 Vielbeins, spinors and Lorentz matrices

In this section we present the results without proofs and we refer the reader to
the proofs given in [1]. We mention for the sake of clarity that if F ∈ G, where
G is a group of coordinate transformations, then we write

x̄ = Fx . (A.26)

Thus in general for a scalar function, φ(x), we have

φ(x) = φ̄(x̄). (A.27)

If in a coordinate system (x0, xi), we change from an initial chosen vielbein3

set, hA, to another set, eA, then the new vielbein vectors can be expressed as
linear combinations of the old4,

eA
µ = ΛA

BhB
µ . (A.28)

However, both vielbein sets must satisfy Eq. (A.4), i.e.,

ηAB = hA
α hB

β gαβ , (A.29)

ηAD = eA
µ eD

ν gµν . (A.30)

Substituting Eq. (A.28) in Eq. (A.29), we obtain

ΛA
B hB

µ ΛD
C hC

ν gµν = ηAD , (A.31)

ΛA
BΛD

CηBC = ηAD , (A.32)

ΛT ηΛ = η , (A.33)

where ΛT is the transpose of Λ. From Eq. (A.33) we have that det Λ = ±1.
Thus it follows then from Eq. (A.32) that ΛA

B is a Lorentz matrix. So in the

3We shall use the term vielbein whenever the dimensionality is not necessarily (3+1). We
reserve the term tetrad for the (3+1) case.

4A shorthand for Eq. (A.28) is e = Λ−1h, while Eq. (A.37) is L−1γL = Λγ, so that our
index positions agree with refs. [52], [53] and [54].
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context of general relativity the Lorentz group is the group of vielbein rotations
[1] p. 143. We also remark that the Λ matrices will in general be spacetime-
dependent.

Under coordinate transformations spinors, ψ, behave like scalars so that, [1] p.
147, (

φ̄(x̄)
χ̄(x̄)

)
=

(
φ(x)
χ(x)

)
. (A.34)

However when a vielbein hB , is rotated by Λ as in Eq. (A.28), then

ψe = Lψh , (A.35)

where L is a (spacetime-dependent) spinor representative of a vielbein rotation
Λ, [1] pp. 76, 147,

L =

(
S 0

0
(
S†
)−1

)
, (A.36)

with det(L) = 1, [52], that satisfies the relations, [1] p. 147,

L−1γAL = ΛABγ
B , (A.37)

and
γ0L†γ0 = L−1 , (A.38)

Given in [8], Eq. (5.396), p.246. For a derivation of Eq. (A.37) see, e.g., [53].

B The gamma matrices

B.1 General summary

The 2× 2 Pauli spin matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (B.1)

For a free spin 1/2 particle of mass m we write the Dirac equation in Minkowski
spacetime as

iγA∂Aψ −mψ = 0 , (B.2)

where ψ is a 4-component (contravariant) spinor and the 4 × 4 γ (constant)
matrices 5, satisfy the anticommutation relation

{γA, γB} = ε 2ηABI , (B.3)

where ε = ±1, and the Hermiticity conditions

(γA)† = γ0γAγ0 . (B.4)

5So more precisely Eq. (B.2) is i(γA)ik ∂Aψ
k −mψi = 0, i, k = (1, 2, 3, 4).
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We raise and lower the indices using the metric η, e.g., γA = ηABγB .

With the exception of the Jauch-Rohrlich representation below, the other three
representations are given in a form so that they satisfy the relation

{γA, γB} = 2ηABI , (B.5)

with signature convention (+,−,−,−). We also define the matrix

γ5 := i γ0γ1γ2γ3 , (B.6)

which satisfies the representation and signature independent relations,

{γA, γ5} = 0 ,
(
γ5
)2

= I4 ,
(
γ5
)†

= γ5 . (B.7)

Remark 13. The sign choice in Eq. (B.3) depends on the metric sign con-
vention and the representation of the γ matrices. There are several commonly
used representations each with its own advantages. One can avoid the (ε = −1)
choice in Eq. (B.3) by multiplying the γ matrices with ±i, (e.g., both [3] and
[55] multiply by −i).

Remark 14. We also point out that the (−) sign in front of the mass m in the
Dirac equation (B.2), can be changed to a (+) by multiplying the Dirac equation
(from the left) by γ5. One finds that the spinor γ5ψ obeys the Dirac equation
with the opposite sign in the mass term. This is true also in curved spacetime,
see (1.30).

B.2 The standard or Dirac-Pauli representation

In the standard or Dirac-Pauli representation, (or the Bjorken-Drell represen-
tation) we have

γ0 =

(
I2 0
0 −I2

)
, γK =

(
0 σK

− σK 0

)
, K = (1, 2, 3) . (B.8)

It is easy to verify that, (
γ0
)2

= I ,
(
γK
)2

= −I . (B.9)

We also give below the Dirac β and αK matrices,

β =

(
I2 0
0 −I2

)
, αK =

(
0 σK

σK 0

)
, K = (1, 2, 3) , (B.10)

that is, γ0 = β, γK = βαK .
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B.3 The chiral or Weyl representation

In the chiral or Weyl representation, there are two possible choices for γ0, we
choose

γ0 =

(
0 −I2
− I2 0

)
, γK =

(
0 σK

− σK 0

)
, K = (1, 2, 3) , (B.11)

and (
γ0
)2

= I ,
(
γK
)2

= −I . (B.12)

Another option, in the chiral representation, is to choose the negative of the
above γ0, in which case γ5 changes sign, unless one defines it as the negative
of Eq. (B.13). Some authors define the chiral γ matrices by multiplying all of
the γ’s in Eq. (B.11) by (−1), then the γ5 does not change sign. In any of the
above-mentioned chiral representations the γ5 given by Eq. (B.13) is equal to

γ5 = ±
(
I2 0
0 −I2

)
, (B.13)

(see also Sec. D.4).

B.4 The Majorana representation

In the Majorana representation the γ matrices are imaginary and the spinors
are real.

γ0 =

(
0 σ2

σ2 0

)
, γ1 =

(
iσ3 0
0 iσ3

)
, (B.14)

γ2 =

(
0 −σ2

σ2 0

)
, γ3 =

(
−iσ1 0

0 −iσ1

)
, (B.15)

and (
γ0
)2

= I ,
(
γK
)2

= −I . (B.16)

B.5 The Jauch-Rohrlich representation

In the Jauch-Rorhlich representation [56], we have

γ0 = −i
(
I2 0
0 −I2

)
, γK =

(
0 σK

σK 0

)
, K = (1, 2, 3) , (B.17)

in fact form Eq. (B.10) we have that,

γ0 = −iβ , γK = αK , (B.18)

thus,
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(
γ0
)2

= −I ,
(
γK
)2

= I , (B.19)

and we satisfy
{γA, γB} = 2ηABI , (B.20)

with signature (−,+,+,+).

Jauch and Rorhlich define γ5 ≡ γ5 ≡ γ0γ1γ2γ3, so again γ5 satisfies Eqs. (B.7).
Furthermore, instead of Eq. (B.2), we now have

γA∂Aψ +mψ = 0 . (B.21)

C Metric signatures, the FI coefficients, etc.

For easy reference we begin by recalling our definitions of the spin connection co-
efficients, ωABµ, the spinor affine connection, Γµ, the Fock-Ivanenko coefficients,
ΓC , and the anticommutation relations of the γ matrices.

ωABµ = gβαeA
α∇µ eBβ , (C.1)

Γµ =
ε

4
ωABµ γ

AγB , (C.2)

ΓC = eC
µ Γµ , (C.3)

{γA, γB} = ε 2ηABI . (C.4)

C.1 Signature (-2)

It is clear that the sign of the ωABµ coefficients depends on the signature because
of the gβα factor in Eq. (C.1). We now let ε = +1 in Eqs. (C.2), (C.4) and use
any γ matrix representation whose matrices satisfy(

γ0
)2

= I ,
(
γK
)2

= −I , (C.5)

and consequently Eq. (C.4). We then obtain Γµ and ΓC and we may write the
Dirac equation as

iγC (eC + ΓC) ψ −mψ = 0 . (C.6)

Remark 15. Following the above assumptions and steps in the software package
Cartan, one will find that the resulting ΓC coefficients have the opposite sign
from ours. This is because the ΓC coefficients are defined with the opposite sign
in the software. However, this is compensated in Cartan by inserting another
minus sign so that the Dirac equation is now

iγC (eC − ΓC) ψ −mψ = 0 , (Cartan), (C.7)

thus identical to Eq. (C.6).
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C.2 Signature (+2)

We begin by again letting ε = +1 in Eqs. (C.2), (C.4). In order to satisfy Eq.
(C.4), we multiply the γ matrices by (+i) so that now, instead of Eqs. (C.5),
we have (

γ0
)2

= −I ,
(
γK
)2

= I . (C.8)

It is easy to see from Eq. (C.2) that the change of signature will also change
the sign of the coefficients ωABµ. Thus the latter sign change along with the
product of the two (+i) factors from the γ matrices in Eq. (C.2), will give us the
same ΓC coefficients as before (Sec. C.1). The Dirac equation is now written as

γC (eC + ΓC) ψ −mψ = 0 , (C.9)

since the (+i) factor has been absorbed in the γC .

Remark 16. The software package Cartan, also uses (+i) for this signature,
but recall that the ΓC coefficients have the opposite sign from ours. So that
Cartan’s Dirac equation is now

γC (eC − ΓC) ψ −mψ = 0 , (Cartan). (C.10)

A number of authors prefer to multiply their γ matrices with a factor (−i), e.g.,
[3], [55]. With the definitions in our paper or the ones in ref. [55] the Dirac
equation would be

γC (eC + ΓC) ψ +mψ = 0 . (C.11)

Parker in [3], using the Dirac β and αK matrices, Eq. (B.10), has γ0 = η00γ0 =
−iβ, and γK = γ0αK . In addition Parker defines his Γµ with the opposite sign
from the one adopted here and compensates with the usual (−) sign change in
the Dirac equation. Thus his Dirac equation is

γC (eC − ΓC) ψ +mψ = 0 . (C.12)

As another example we consider Ryder in ref. [11]. Ryder uses ε = −1 in Eqs.
in Eqs. (C.2), (C.4), so he can use the usual γ matrix representations with(

γ0
)2

= I ,
(
γK
)2

= −I . (C.13)

Note, however, that the ε = −1 along with the sign change due to the signature,
ultimately gives the same Γµ and ΓC coefficients as ours obtained in Sec. C.1.
Clearly, using ε = −1 is just completely equivalent to multiplying the γ matrices
with (±i), except that now we don’t have to hide the (i) in the Dirac equation,
which retains its standard form (see [11], Eq. (11.129)).

iγC (eC + ΓC) ψ −mψ = 0 . (C.14)

Finally one may use the Jauch-Rohrlich representation (see Secs. 2.3 and B.3).
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D Dirac plane wave solutions in SR

D.1 Notation

In the calculations below we use the metric sign convention (+,−,−,−). As
usual c = ~ = 1. Thus we write the Minkowski metric as

ds2 = ηµνdx
µdxν = dt2 − dx2 − dy2 − dz2 , (D.1)

where µ and ν run over (0, 1, 2, 3) or (t, x, y, z), Thus there is no distinction
between the upper case latin indices used in Sec. 1 and the greek indices in the
present section D. We write p =

(
p0,p

)
, where,

p0 = p0 , (D.2)

pj = −pj , j = (1, 2, 3) = (x, y, z), (D.3)

and

p0 = p0 = i∂t , (D.4)

pj = −pj = −i∂j . (D.5)

D.2 The Dirac equation

The Dirac equation for a free, spin 1/2, particle of mass m in Minkowski space-
time is usually written as

iγµ∂µψ −mψ = 0 , (D.6)

and introducing the Feynman “slash” notation,

/p = γµpµ , (D.7)

we may rewrite the Dirac Eq. (D.6) in the shorthand version

(/p−mI)ψ = 0, (D.8)

or,
iγ0∂tψ + iγ1∂xψ + iγ2∂yψ + iγ3∂zψ −mIψ = 0 , (D.9)

where ψ is a 4-component spinor,

ψ =


ψ1

ψ2

ψ3

ψ4

 . (D.10)

The γ matrices are reviewed in Appendix B.
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D.3 Plane wave solutions in the standard representation

In this section we will write the plane wave solutions of the Dirac equation, first
using the standard representation of the γ matrices (see Appendix B), then we
will show how this set of solutions can be transformed into the corresponding
set in the chiral representation of the γ matrices. The most useful references
for some of the material below are [16], [57], [58].

In general, to obtain solutions of the Dirac equation, one would have to solve
a set of coupled partial differential equations. For example, in the standard
representation of the γ matrices, the Dirac equation (D.9), for the ψi of Eq.
(D.10) becomes the set of coupled partial differential equations below

i∂tψ1 + i∂zψ3 + i∂xψ4 + ∂yψ4 −mψ1 = 0, (D.11)

i∂tψ2 + i∂xψ3 − ∂yψ3 − i∂zψ4 −mψ2 = 0, (D.12)

−i∂zψ1 − i∂xψ2 − ∂yψ2 − i∂tψ3 −mψ3 = 0, (D.13)

−i∂xψ1 + ∂yψ1 + i∂zψ2 − i∂tψ4 −mψ4 = 0. (D.14)

However in the present case we seek solutions for plane waves of the form

ψ(+) = u(p) e−ipµx
µ

, (D.15)

ψ(−) = v(p) eipµx
µ

, (D.16)

where ψ(+) will be the positive energy solutions and ψ(−) the negative energy
solutions. Substituting Eqs. (D.15) and (D.16) in Eq. (D.8), we find the set of
algebraic equations below,

(/p−mI)u(p) = 0, (D.17)

(/p+mI)v(p) = 0. (D.18)

We note that Eqs. (D.17) and (D.18) are systems of homogeneous equations for
the components of u(p) and v(p). These systems will have a non-trivial solutions
only if

det(/p±mI) = 0. (D.19)

Equation (D.19) 6 gives us the (representation independent) condition(
p2 −m2

)2
= 0, (D.20)

where p2 =
(
p0
)2 − p2 ≡ E2 − p2, and therefore Eq. (D.20) may be rewritten

as [(
E −

√
p2 +m2

)(
E +

√
p2 +m2

)]2
= 0. (D.21)

We see that condition (D.19) is satisfied for both E = ±
√
p2 +m2.

6Best evaluated with Mathematica for a couple of representations.
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Our set of solutions consists of four linearly independent 4-component spinors.
We will use ψ for the spinors in the standard representation and φ for the spinors
in the chiral representation (Sec. B.3). To avoid confusion, we define ε by

p0 = p0 ≡ ε = +
√

(px)2 + (py)2 + (pz)2 +m2 (D.22)

For the case of m 6= 0 we adopt the normalization of ref. [16] (see Section D.5
below),

N =

√
ε+m

2m
. (D.23)

It is now easy to verify, using Eq. (D.17) with p0 = ε, that we obtain the two
positive energy spinors u(1)(p) and u(2)(p), (Sz = +1/2 and Sz = −1/2, respec-
tively) below,

u(1)(p) = N



1

0

pz

ε+m

px + ipy

ε+m


, u(2)(p) = N



0

1

px − ipy

ε+m

−pz

ε+m


. (D.24)

We could repeat the calculations, with p0 = − ε, and obtain two negative energy
spinors. However it is preferable to use the convention adopted in most text-
books (following the Feynman-Stückelberg interpretation). So from Eq. (D.18),
we obtain the two negative energy spinors v(1)(p) and v(2)(p) below,

v(1)(p) = N



pz

ε+m

px + ipy

ε+m

1

0


, v(2)(p) = N



px − ipy

ε+m

−pz

ε+m

0

1


. (D.25)

We summarize here some notation and results. To avoid notational ambiguities
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we will write when necessary,

ψ(+)(α)(x) =



u
(α)
1 (p)

u
(α)
2 (p)

u
(α)
3 (p)

u
(α)
4 (p)


e−ipµx

µ

, (D.26)

and so on, thus,

ψ(+)(α)(x) = u(α)(p)e−ipµx
µ

, (D.27)

ψ(−)(α)(x) = v(α)(p)eipµx
µ

, α = (1, 2). (D.28)

Each member of the set ψ (or φ, Sec. B.3) is an eigenstate of the energy, and
momentum. We adopt the notation below so that Eqs. (D.15) and (D.16) are:

ψ(+)(1), Sz = + 1
2

ψ(+)(2), Sz = − 1
2

}
positive energy (D.29)

ψ(−)(1), Sz = + 1
2

ψ(−)(2), Sz = − 1
2

}
negative energy (D.30)

We note that since i∂tψ = Hψ = Eψ, we have

i∂tψ
(+)(α)(x) = p0 ψ

(+)(α)(x), (D.31)

i∂tψ
(−)(α)(x) = −p0 ψ

(−)(α)(x). (D.32)

Likewise,

−i∂zψ(+)(α)(x) = pz ψ(+)(α)(x), (D.33)

−i∂zψ(−)(α)(x) = −pz ψ(−)(α)(x). (D.34)

Remark 17. Note that although p0 > 0 in both Eqs. (D.27) and (D.28), some
of the 3-momenta have opposite directions.

D.4 Chiral representation set

There is a fundamental theorem by Pauli which states that for any two four-
dimensional representations of the Dirac γ matrices there exists a nonsingular
4 × 4 matrix U , such that γ′A = UγAU−1. Moreover if γ0† = γ0, γK† =
−γK , for K = 1, 2, 3, the matrix U is unitary (e.g., see [58]). The unitary
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matrix U below relates the standard representation to our version of the chiral
representation, Eqs. (B.11).

U =
1√
2

(
I2 I2
− I2 I2

)
. (D.35)

We have that
γµ(chiral) = Uγµ(stand)U

−1, (D.36)

compare Eqs. (B.8) and (B.11). Using Eq. (D.6) we write

iUγµU−1U∂µψ −mUψ = 0 , (D.37)

so instead of Eqs. (D.11) - (D.14), we now have,

−i∂tφ3 + i∂zφ3 + i∂xφ4 + ∂yφ4 −mφ1 = 0, (D.38)

i∂xφ3 − ∂yφ3 − i∂tφ4 − i∂zφ4 −mφ2 = 0, (D.39)

−i∂tφ1 − i∂zφ1 − i∂xφ2 − ∂yφ2 −mφ3 = 0, (D.40)

−i∂xφ1 + ∂yφ1 − i∂tφ2 + i∂zφ2 −mφ4 = 0, (D.41)

where
φ = Uψ. (D.42)

We use Eq. (D.42) and Eqs. (D.27), (D.28), and obtain the chiral positive and
negative energy solutions below,

φ(+)(1) =
N√

2



1 +
pz

ε+m

px + i py

ε+m

−1 +
pz

ε+m

px + i py

ε+m


e−ipµx

µ

, φ(+)(2) =
N√

2



px − i py

ε+m

1− pz

ε+m

px − i py

ε+m

−1− pz

ε+m


e−ipµx

µ

,

(D.43)

φ(−)(1) =
N√

2



1 +
pz

ε+m

px + i py

ε+m

1− pz

ε+m

−p
x + i py

ε+m


eipµx

µ

, φ(−)(2) =
N√

2



px − i py

ε+m

1− pz

ε+m

−px + i py

ε+m

1 +
pz

ε+m


eipµx

µ

.
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Remark 18. It is worth pointing out that if we use the notation of Eq. (D.26)
for the above (chiral) wavefunctions, and substitute these functions in the Dirac
equations Eqs. (D.38) - (D.41), and let px = py = pz = 0, we will find that for
the φ(+)(i), i = 1, 2, the equations are satisfied with p0 = ε = m, while for the
φ(−)(i), the equations are satisfied with p0 = −m.

The chiral operator γ5, Eq. (B.13), in the chiral representation is

γ5 =

(
I2 0
0 −I2

)
. (D.44)

We introduce the bispinor χ, [59] below to represent the spinors in Eqs. (D.43),

χ =

(
χR
χL

)
, (D.45)

where each entry is a 2-component spinor. We then have

γ5χ =

(
+χR
−χL

)
, (D.46)

χR being right-handed and χL left-handed.

Remark 19. As mentioned above, the results given in Eqs. (D.31) - (D.32) for
the ψ’s also hold for the φ’s of Eq. (D.43).

D.5 Normalization of ψ

We follow Itzykson and Zuber [16] and adopt the Lorentz invariant normaliza-
tions

ū(α)(p)u(β)(p) = δ αβ , ū(α)(p)v(β)(p) = 0 , (D.47)

v̄(α)(p)v(β)(p) = −δ αβ , v̄(α)(p)u(β)(p) = 0 . (D.48)

Remark 20. We remark that different authors adopt different normalizations
for the Lorentz invariant product ψ̄ψ (the invariance itself is a little tedious to
show, see, e.g., the last page of [57]).

The normalization factor N for the plane waves, given by Eq. (D.23), follows
from Eqs. (D.47), (D.48), using the solutions (D.24) and (D.25).

For easy reference for the proofs to follow, we write again some of the formulas
derived above: (

/p−mI
)
u(α)(p) = 0, ū(α)(p)

(
/p−mI

)
= 0, (D.49)(

/p+mI
)
v(α)(p) = 0, v̄(α)(p)

(
/p+mI

)
= 0. (D.50)
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We shall derive an expression for jµ = ψ̄γµψ. In the derivation we make use of
Eqs. (D.47) - (D.50). For the positive energy solutions we have,

ψ̄(+)(α)γµψ(+)(β) = ū(α)(p)γµu(β)(p),

=
1

2

[(
ū(α)γµ

)
u(β) + ū(α)

(
γµu(β)

)]
,

=
1

2m

[(
ū(α)mγµ

)
u(β) + ū(α)

(
γµmu(β)

)]
,

=
1

2m

[(
ū(α)

/pγ
µ
)
u(β) + ū(α)

(
γµ/pu

(β)
)]
,

=
1

2m

[
ū(α){/p, γµ}u(β)

]
,

=
1

2m

[
ū(α)pν{γν , γµ}u(β)

]
,

=
1

2m

[
ū(α)pν2ηνµIu(β)

]
=
pµ

m
δαβ . (D.51)

Repeating this derivation for the negative energy solutions we get

ψ̄(−)(α)γµψ(−)(β) = v̄(α)(p)γµv(β)(p),

= − 1

2m

[
v̄(α){/p, γµ}v(β)

]
,

= − 1

2m

[
v̄(α)pν2ηνµIv(β)

]
=
pµ

m
δαβ . (D.52)

It is important to show that positive and negative energy states are mutually or-
thogonal if we consider states with opposite energies but the same 3-momentum.
We recall Eqs. (D.31), (D.32) and write explicitly

ψ(+)(α)(x) = u(α)(p)e−i(p
0x0−pixi), (D.53)

ψ(−)(β)(x) = v(β)(q)ei(p
0x0+pixi) , (D.54)

where the vector (not the covector pµ) momenta are p = (p0,p), q = (p0,−p),
respectively, see Remark 17. Therefore, using again Eqs. (D.47) - (D.50), we
have

ψ̄(−)(β)ψ(+)(α) = e−2ip0x0

v̄(β)(q)γ0u(α)(p),

=
1

2m
e−2ip0x0

[(
v̄(β)(q)m

)
γ0u(α)(p) + v̄(β)(q)γ0

(
mu(α)(p)

)]
,

=
1

2m
e−2ip0x0

v̄(β)(q)
(
−/qγ0 + γ0

/p
)
u(α)(p) = 0. (D.55)

Showing the last step above requires care!

We now define the scalar product with the standard delta function normalization
for free particles,(

ψ
(α)
p′ |ψ

(β)
p

)
=

∫
ψ̄

(α)
p′ γ

0 ψ(β)
p d3x = δαβδ3 (p′ − p) , (D.56)
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where the delta function is given by

δ3 (p′ − p) =
1

(2π)3

∫
ei(p

′−p)rd3x, r =
(
x1, x2, x3

)
. (D.57)

As a consequence of result (D.55) we see that if, in the integrand of (D.56), the
ψ’s have opposite energies, the result of the integration is zero (either from Eq.
(D.55) or from the δ3 (p′ − p)).

Remark 21. Since ε = +
√
p2 +m2, if the absolute value of the p’s is the

same, then the absolute value ε of the energy is the same.

At this point we must introduce another normalization factor, Ñ , required by the
integration over space (we could have introduced Ñ in Eqs. (D.27) and (D.28)
but it would only have complicated the writing). Effectively this amounts to
re-defining the ψ’s as follows,

ψ(+)(α)(x) = Ñu(α)(p)e−ipµx
µ

, (D.58)

ψ(−)(α)(x) = Ñv(α)(p)eipµx
µ

. (D.59)

The calculation of Ñ is simpler if we consider “box normalization” with periodic
boundary conditions in a volume V . Then, instead of Eq. (D.56) we have(

ψ
(α)
p′ |ψ

(β)
p

)
=

∫
ψ̄

(α)
p′ γ

0 ψ(β)
p d3x = δαβδp′p , (D.60)

thus ∫
ψ̄(α)
p γ0 ψ(β)

p d3x =

∫
j0d3x =

p0

m
δαβÑ2 V, (D.61)

and so

ψ(+)(α)(x) =
1√
V

√
m

p0
u(α)(p)e−ipµx

µ

, (D.62)

ψ(−)(α)(x) =
1√
V

√
m

p0
v(α)(p)eipµx

µ

, (D.63)

where we recall that p0 = ε. If we had used Eq. (D.56) instead of Eq. (D.60),
we would have to do the replacement (cf. ref. [60]),

1√
V
→ 1

(2π)3/2
. (D.64)
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1-forms, 17, 18, 20, 38
Cartesian gauge, 38
Fermi, 7, 12, 20, 34, 37, 38
field, 36, 37
frame, 8, 37
null, 10–14, 16
orthogonal, 16
properties, 12
vectors, 3, 16, 18, 21, 33, 36

unitary matrix, 49
universe
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