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Gravity-induced geometric spin Hall effect as a probe of universality of free fall of

quantum waves
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We present a novel fundamental effect that for the matter waves the space-averaging free-fall
point of quantum particles undergoes a spin-dependent transverse shift in the gravitational field of
Earth. This effect is similar to the geometric spin Hall effect (GSHE) [Aiello et al., Phys. Rev.
Lett. 103, 100401 (2009)] and can be called gravity-induced GSHE. This effect suggests that there
might be violations of the universality of free fall (UFF) or weak equivalence principle (WEP) in
the quantum domain.

PACS numbers: 03.70.+k, 03.75.b, 04.20.Cv

The universality of free fall (UFF) is tested as one of
the so-called weak form of the Einstein equivalence prin-
ciple which is the most important guide on establishing
Einstein’s general relativity. The classical tests of UFF
with macroscopic masses have achieved a high precision
of about 10−13 [1, 2] and no violations are found so far.
Since 1960s, to extend the domain of the test body, the
verifications of the UFF based on microscopic particles in
the quantum regime have been studied theoretically and
experimentally (for a recent review see [3]). Recently,
WEP test experiments using atom interferometers are
proposed to reach the level of 10−15 [4, 5]. The increasing
interest of using quantum systems is not only to pursue
high precision tests based on quantum systems offering
a varied properties, e.g. charge [6], properties of anti-
matter [7–9], spin [10–12] and internal structure, but also
to test possible violations of equivalence principle allowed
by theoretic work, such as spin-gravity coupling [13–16],
spin-torsion coupling [17–19], extended or modified the-
ories of gravity, and almost all of tentative theories to
reconcile or unify the general relativity and the standard
model of particle physics [20, 21].
In fact, quantum particles, which are different from

classical point-like particles, are extended in space and
display wave-like features. Thus, the notion of quantum
WEP should be different from the conventional WEP for
classical particles [22–24]. In this paper, considering the
properties of matter waves, we present a remarkable phe-
nomenon that the space-averaging free-fall point of quan-
tum particles allows a spin-dependent transverse split in
the gravitational field. Since such effect is similar to the
result of geometric spin Hall effect, we call it gravity-
induced GSHE.
The geometric spin Hall effect of light [25, 26] was

proposed in 2009, which states that a spin-dependent
transverse displacement of a light intensity centroid is
observed in a plane tilted with respect to the propaga-
tion of the light beam. Unlike the conventional spin Hall
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effect of light as a result of light-matter interaction [27–
29], the GSHE of light is of purely geometric nature. On
the other hand, the gravity-induced GSHE differs from
the gravitational Hall effect (or similar effects) presented
in the literatures [30–32]. For light beams, the so-called
gravitational Hall effect describes a helicity-dependent
local deviation from the photon geodesic in general rela-
tivity. Since the gravitational deflection of light is small
in terrestrial experiments, in the following discussion we
discuss the gravity-induced GSHE with polarized elec-
tron beam. It can be extends to other matter waves such
as polarized neutron and atom beams, etc.
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FIG. 1. (a): A sketch of a longitudinally polarized electron
beam originally propagating in the x direction and the detec-
tion plane X −Y in the horizontal direction. θd is the deflec-
tion angular of the electron beam in the action of the Earth’s
gravity and θg = π/2 − θd. (b): The equivalent schematic
diagram of geometric spin Hall effect occurring without the
Earth’s gravitational effect. The electron beam moving to-
wards the horizontal detection plane with titled angular θg,
energy εg, momentum pg and spin in the horizontal direction
approximately for every electron. The laboratory frame is
denoted by XY Z frame, and the beam frame is x′y′z′ frame.

The structure of this paper is as follows. We first derive
our result of gravity-induced GSHE in a simple method
without knowledge of the detailed wavefunction of the
particle beam. Next, we discuss other possible case of
gravity-induced GSHE further. Finally, we give our con-
clusions.
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Specifically, let us first consider a system of a longi-
tudinally polarized electron beam originally propagating
in the horizontal direction (x-axis) at a certain height hg
and the detection plane sitting in the horizontal plane
in the action of the Earth’s gravity [see Fig. 1(a)]. Our
results show that the electron’s space-averaging point of
free fall will be shifted by δ ∝ λg/(2π)σ cos

−1 θg along
the y axis with respect to its classical point of free fall.
Here σ = ±1/2 is the original spin of electron in the prop-
agation direction of the electron beam and the sign of σ
denotes its handedness with respect to the original direc-
tion of propagation. This displacement’s magnitude is of
the order of the original wavelength λ of the beam. This
effect implies that electrons or other quantum particles in
different spin orientations follow “different paths”, which
suggests possible violations of the UFF to some extent.

To understand the gravity-induced GSHE, we just
transform it to the case of GSHE without gravitational
effect. Here we adopt two approximations. First, the spin
rotation or precession of the electron due to the action of
the Earth’s gravity can be omitted. Second, the move-
ment of the electron’s wave-packet-center can be approxi-
mately replaced by its classical trajectory. These two ap-
proximations are acceptable and for related discussions
please refer to Refs [33–35]. Based on such approxima-
tions, our question can be treated as a pure question
of GSHE. Now consider an electron beam moving to-
wards the horizontal detection plane with titled angular
θg, energy εg, momentum pg and spin in the horizon-
tal direction approximately for every electron, and the
gravitational effect no longer appears [see Fig. 1(b)]. As
long as we treat approximately the electron as a classical
particle, the titled angular θg, energy εg , momentum pg
can be calculated by Newton’s law of gravitation, all of
which are determined by the original wavelength λ (or
momentum) of the electron beam and the height hg.

To get the space-averaging free-fall point of electron,
what we should evaluate is the spatial distribution of
the intensity of electron beam in the horizontal detec-
tion plane. In fact, the energy-momentum (E-M) tensor
T µν of field, which bands together the energy density,
momentum density, energy flux density and momentum
flux density, is a very convenient tool to analyze the prop-
erties of field. Following the article of Aiello et al. [25],
here we also use the energy flux to represent the inten-
sity of electron beam in the horizontal detection plane.
Thus, the space-averaging free-fall point of electron can
be determined by the barycenter of the energy flux T z0

across the horizontal detection plane:

〈y〉gk =

∫

y T
z0

dxdy
/

∫

T
z0

dxdy. (1)

For simplicity, we transform from the laboratory frame
to the beam frame. The beam frame and laboratory
frame are connected by a rotation transformation i.e.
xµ = Λµ

νx
′ν [or x′µ = (Λ−1)µνx

ν ]. Here the rotation

transformation matrix is

Λµ
ν =







1 0 0 0
0 cos θg 0 sin θg
0 0 1 0
0 − sin θg 0 cos θg






, (2)

and so we get the related transformation of energy flux
in these two frames

T z0(x) = Λz
αΛ

0
βT

′αβ(x′) = T ′z0 cos θg−T
′x0 sin θg. (3)

Then we obtain

〈y〉gk =

∫

y′ (T
′z0

cos θg − T
′x0

sin θg)dx
′dy′

∫

(T
′z0

cos θg − T
′x0

sin θg)dx
′dy′

. (4)

For electron field as Dirac field, we can take the familiar
symmetric E-M tensor [36]:

T µν
sym =

i

4
ψ(γµ∂ν + γν∂µ)ψ + h.c. (5)

where +h.c. indicates the addition of the Hermitian con-
jugate of the foregoing terms. One important use of the
symmetric E-M tensor is to construct a conserved angu-
lar momentum tensor in a fully orbital-like form:

Mλµν
sym = xµT λν

sym − xνT λµ
sym. (6)

In the beam frame, T ′x0 can be ignored compared to
T ′z0 because the beam mainly carries energy along the
propagation direction. Thus, the denominator in Eq. (4)
leaves only the term T ′z0, and we have

∫

T
′z0

dx′dy′ = K ′z
g ≃ nεg, (7)

where n is the electron number per unit time across the
plane x′ − y′ , namely the electron number flux. More-
over, for the symmetric E-M tensor, we have the following
angular momentum sum rules:

∫

y′T
′z0

symdx
′dy′ =

1

2

∫

(y′T
′z0

sym − z′T
′y0

sym)dx
′dy′

=
1

2
Nσx′~ =

1

2
Nσ cos θg~, (8)

∫

−y′T
′x0

symdx
′dy′ =

1

2

∫

(x′T
′y0

sym − y′T
′x0

sym)dx
′dy′

=
1

2
Nσz′~ =

1

2
Nσ sin θg~. (9)

Here N is the electron number per unit length along
the direction of propagation and we have n = vgN =
Npg/εg, where vg is the velocity of the electron. Hence,
for a beam with spin polarization we obtain the barycen-
ter of energy flux of the symmetric E-M tensor:

〈ysym〉gk =
Nσ(cos2 θg + sin2 θg)~

2nεg cos θg
=
λg
4π
σ/ cos θg. (10)
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Here the angular-depended relation in Eq. (10) is
cos−1 θg, which is different from tan θ in Eq. (12) of
Ref. [25]. This is because the electron is no longer in
longitudinal polarization at the detection plane. We can
give a simple explanation of result (10). The denomi-
nator in Eq. (1) is related to the component of elec-
tron’s energy flux or momentum normal to the detec-
tion plane, pg cos θg; the nominator in Eq. (1) corre-
sponds to the projection of electron’s spin in the detec-
tion plane, σ~. Hence, we get immediately the result
〈y〉gk ∝ λgσ/(2π) cos

−1 θg. This means that the position
of the barycenter of the beam changes with its original
spin orientation.
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FIG. 2. (a): A sketch of static electrons freely falling to the
detection plane X−Y in the horizontal direction and carrying
spin along the x direction. (b): A sketch of static electrons
freely falling to the detection plane X − Y tilted by an angle
θ with respect to the horizontal direction and carrying spin
along the z direction. The laboratory frame is denoted by
XY Z frame, and the beam frame is xyz frame.

There are other possible configurations for the gravity-
induced GSHE of matter particles. Here we consider two
other simple systems. In both cases, depicted in Fig. 2,
the electrons are first static and then released into free
fall. Differences between the two cases are the spin polar-
izations of electron and the angles between the detection
planes and the horizontal direction. Following the above
analysis, we can easily get the result about the gravity-

induced GSHE for the case indicated by Fig. 2(a)

〈ysym〉
a

gk
=
Nσ~

2nεg
=
λg
4π
σ, (11)

and that for the case indicated by Fig. 2(b)

〈ysym〉
b

gk
=
Nσ~ sin θ

2nεg cos θ
=
λg
4π
σ tan θ. (12)

Both Eq. (11) and (12) show that the free-fall points
of electron yield asymmetric patterns in the detection
planes. For the free-falling electrons with transverse spin
polarization from the same height, they display the asym-
metric pattern in the horizontal detection plane; for the
free-falling electrons with longitudinal spin polarization
they display the asymmetric pattern in the tilted detec-
tion plane, and moreover, they reach the detection plane
with different fall distance and time. All of these results
imply that the electrons experience “different path”. Es-
pecially, if the electrons have different spin polarizations,
they yield “different path structure”.

In conclusion, we have demonstrated the existence of
gravity-induced GSHE. The “free-fall points” of quan-
tum particles vary with the polarization of spin, which
originates from the wave nature of quantum particles.
The measurement of this effect will be of great interest
and importance, for it implying possible observation of
the violation of universality of free fall in the quantum
realm. In comparison, the existing tests of universality
of free fall using atom interferometers mainly analyse the
phase information of matter wave by interference to ex-
tract the so-called acceleration caused by gravitational
field. We encourage experimentalists to test the gravity-
induced GSHE as a new probe of universality of free fall
of quantum particles, so as to clarify the notion of quan-
tum WEP.

This work is supported by the China NSF via Grants
No. 11535005 and No. 11275077.
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