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Abstract

The idea of wave mechanics leads naturally to assume the well-known
relation E = ~ω in the specific form H = ~W , where H is the classi-
cal Hamiltonian of a particle and W is the dispersion relation of the
sought-for wave equation. We derive the expression of H in a curved
spacetime with an electromagnetic field. Then we derive the Dirac
equation from factorizing the polynomial dispersion equation corre-
sponding with H. Conversely, summarizing a recent work, we imple-
ment the geometrical optics approximation into a canonical form of
the Dirac Lagrangian. Euler-Lagrange equations are thus obtained for
the amplitude and phase of the wave function. From them, one is led
to define a 4-velocity field which obeys exactly the classical equation
of motion. The complete de Broglie relations are then derived exact
equations.
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1 Introduction

1.1 Context of this work

The long-standing problem of quantum gravity may mean, of course, that
we should try to better understand gravity and the quantum. More specif-
ically, it may mean that we should try to better understand the transition
between the classical and the quantum, especially in a curved spacetime.
Quantum effects in the classical gravitational field are indeed being observed
on neutral particles such as neutrons [11, 19, 15] or atoms [18, 13], with the
neutrons being spin 1

2
particles. This together motivates investigating the

“classical-quantum correspondence”—the correspondence between a classi-
cal Hamiltonian and a quantum wave equation—for the Dirac equation in a
curved spacetime.

1.2 Foregoing results

In a past work [1], the classical-quantum correspondence was analyzed gener-
ally from an exact mathematical correspondence, observed by Whitham [20],
between a linear wave operator and its dispersion polynomial, and from the
de Broglie-Schrödinger idea according to which a classical Hamiltonian de-
scribes the skeleton of a wave pattern. This analysis led later to deriving the
Dirac equation from the classical Hamiltonian of a relativistic test particle
in an electromagnetic field or in a curved spacetime [2, 3]. In the latter case,
this derivation led to two alternative Dirac equations, in which the Dirac
wave function is a complex four-vector, with the set of the components of
the Dirac matrices building a (2 1) tensor [2, 3]. (This transformation be-
haviour may be designated by the acronym “TRD”: tensor representation of
the Dirac fields.) In order to see if that makes sense physically, the quantum
mechanics associated with the Dirac equation was then investigated in detail.

First, it was found [4] that in a Minkowski spacetime in Cartesian coor-
dinates, the quantum mechanics of the original Dirac equation is the same
whether, on a coordinate change, the wave function is transformed as a spinor
and the Dirac matrices are left invariant (which, as is well known, is the stan-
dard transformation for this case), or if alternatively the TRD transformation
mode is used. Moreover, the way in which this equivalence was obtained [4]
makes it obvious that this equivalence holds also with the third transforma-
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tion mode which can be considered for the Dirac equation, for which the wave
function is left invariant and the set of the four Dirac matrices is transformed
as a four-vector. (This is the transformation mode for the standard Dirac
equation in a gravitational field [9, 16, 10].) Then it was found that also in a
general spacetime, the standard equation and the two alternative equations
based on TRD [3] behave similarly: e.g. the same hermiticity condition for
the Hamiltonian holds for these equations [5], and similar non-uniqueness
problems of the Hamiltonian theory occur [5, 6].

1.3 Outline of this work

In this conference paper, we intend to summarize the main part of the recent
work [8], and to present a few additional results. Those belong to Section 2,
which extends the former derivation of the Dirac equation from the classical
Hamiltonian of a relativistic test particle [2, 3] to the situation with an elec-
tromagnetic field and in a curved spacetime. Then, summarizing the main
results of Ref. [8], Section 3 will go conversely from the Dirac equation to
the classical motion through the geometrical optics approximation.

2 From classical motion to Dirac equation

2.1 Dispersion equation of a wave equation

Consider a wave equation which is a linear PDE of the second order:

Pψ ≡ a0(X)Ψ + aµ
1
(X)∂µΨ+ aµν

2
(X)∂µ∂νΨ = 0, (1)

where X is the position in the space-time, or more generally in the extended
configuration manifold V of a system of particles. [V has dimension N + 1,
where N is the dimension of the configuration manifold.] To be more precise,
Eq. (1) is the local expression of the intrinsic differential operator P (which
acts on smooth sections ψ of some vector bundle E with base V) in a local
chart χ : X 7→ (xµ) and in a local frame field (ea) on E, with Ψ = (Ψa) the
column matrix made with the components of ψ in the frame field (ea), such
that ψ = Ψaea in the domain of (ea). The time coordinate is t ≡ x0/c.

Let us look for “locally plane-wave” solutions: Ψ(X) = A exp[iθ(X)],
with, at the point X0 ∈ V considered, ∂νKµ(X0) = 0, where Kµ ≡ ∂µθ
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are the components of the wave covector. Note that K0 = −ω/c, where
ω ≡ −∂tθ is the angular frequency, and that k ∼= (Kj) is the spatial wave
covector. (A Latin index j = 1, ..., N , while a Greek one µ = 0, ..., N .)

This leads [1, 2] to the dispersion equation:

ΠX(K) ≡ a0(X) + i aµ
1
(X)Kµ + i2aµν

2
(X)KµKν = 0. (2)

Substituting Kµ →֒ ∂µ/i determines the linear operator P uniquely from the
function (X,K) 7→ ΠX(K), which is polynomial in K at fixed X [20, 1]. This
is also true [2, 3] in the case that Ψ(X) ∈ Cm with m > 1 in Eq. (1), in
which case the coefficients common to P and ΠX are m×m matrices [2], so
that ΠX(K) is then an m×m matrix, too.

2.2 The classical-quantum correspondence

For any fixed X ∈ V, consider the dispersion equation (2): ΠX(K) = 0, here
assumed scalar (m = 1). This is a polynomial equation for ω ≡ −cK0.
By following smoothly as a function of X ∈ V a particular root, assumed
real, of this equation, we get a dispersion relation(s): ω = W (k;X). (The
existence of a such real root depending smoothly on X ∈ V is equivalent to
the existence of a definite wave mode for the PDE (1) [20].) As shown by
Whitham [20] (see also Ref. [1]), the propagation of k obeys a Hamiltonian
system:

dKj

dt
= −∂W

∂xj
,

dxj

dt
=
∂W

∂Kj

(j = 1, ..., N). (3)

On the other hand, according to the wave mechanics inaugurated by
de Broglie and Schrödinger, a classical Hamiltonian H(p,x, t) = H(p;X)
describes the skeleton of a wave pattern. Then, the wave equation should give
a dispersion W with the same Hamiltonian trajectories as H . The simplest
way to get that is to assume that H and W are proportional, H = ~W ...
This leads first to the de Broglie relations in traditional form: E = ~ω and
p = ~k. Then, substituting Kµ →֒ ∂µ/i, it leads to the correspondence

between a classical Hamiltonian and a wave operator. See Refs. [1, 2] for
details. Thus, setting

Pj ≡ pj (j = 1, ..., N) and P0 ≡ −H
c
, (4)
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we get the de Broglie relations in a condensed form:

Pµ = ~Kµ (µ = 0, ..., N). (5)

2.3 The classical-quantum correspondence needs using
a connection

The dispersion polynomial ΠX(K) and the condition ∂νKµ(X) = 0 stay in-
variant only inside any class of coordinate systems connected by “infinitesimally-
linear” changes [1], i.e., ones such at the pointX((xµ

0
)) = X((x′ρ

0
)) considered:

∂2x′ρ

∂xµ∂xν
= 0, µ, ν, ρ ∈ {0, ..., N}. (6)

One example [1, 2] of a such class is constituted by the locally-geodesic
coordinate systems at X for a pseudo-Riemannian metric g on V, i.e.,

gµν,ρ(X) = 0, µ, ν, ρ ∈ {0, ..., N}. (7)

Specifying, at each point X ∈ V, a class CX of coordinate systems valid

in a neighborhood of X , any two of which exchange by a transition map
satisfying (6), is exactly equivalent to choosing a torsionless connection D
on the tangent bundle TV [3]. Given any such connection, one substitutes
∂µ →֒ Dµ into the wave equation (1), into the local plane-wave condition
which rewrites thus DνKµ(X0) = 0, and into the correspondence from the
dispersion equation (2) to the wave equation. That correspondence writes
thus Kµ →֒ Dµ/i. It applies also to the case where Ψ(X) ∈ Cm with m > 1,
provided that the dispersion equation (2) and the wave equation are first-
order in fact, i.e. aµν

2
= 0 [3].

2.4 Hamiltonian of a particle in a curved spacetime

In a curved spacetime (V, g) with an electromagnetic field of 4-potential
Vµ, the world line of a test particle corresponds with an extremum of the
generally-covariant action integral

S =

∫
−mcds− e

c
Vµdx

µ, (8)
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where
ds2 = gλρdx

λdxρ. (9)

It follows that the motion derives from the following Lagrangian:

L (xµ, u′ν) = −mc
√
gµνu′µu′ν − (e/c)Vµu

′µ, u′ν ≡ dxν/dξ, (10)

with ξ an arbitrary parameter along the world line of the particle. The
canonical momenta derived from this Lagrangian are

Pµ ≡ ∂L/∂u′µ = −mc
u′µ√

gλρu′λu′ρ
− (e/c)Vµ. (11)

The Lagrangian (10) is an “extended Lagrangian” in the sense of Johns [12].
As shown by Johns [12] (Sect. 11.9), we may associate with an extended
Lagrangian like L a “traditional Lagrangian” L, by setting

L(xj ,
dxk

dx0
, x0) ≡ dξ

dx0
L(xµ, dx

ν

dξ
). (12)

From the latter, we deduce by Legendre transform a “traditional Hamilto-
nian” H ′(pj, x

k, x0). The “traditional momenta” pj coincide with the corre-
sponding “extended momenta” Pµ (for µ = 1, ..., N), the latter ones being
canonically derived from the extended Lagrangian L by Eq. (11)1 (Ref. [12],
Eq. (11.12)). That is, we have

pj = Pj (j = 1, ..., N). (13)

The traditional Hamiltonian is simply (Ref. [12], Eq. (11.14))

H ′(pj, x
k, x0) = −P0(x

µ, u′ν). (14)

At this stage, we can specialize the parameter ξ to be the four-length s,
Eq. (9). In that case, the vector with components u′µ is the four-velocity,
u′µ = uµ ≡ dxµ/ds. From (9), it verifies gµνuµuν = 1, as is well known.
Hence, with ξ = s the canonical momenta (11) become:

Pµ = −mcuµ − (e/c)Vµ. (15)

Again because gµνuµuν = 1, they verify the following energy equation:

gµν
(
Pµ +

e

c
Vµ

)(
Pν +

e

c
Vν

)
−m2c2 = 0. (16)

6



In the expression (14) of the traditional Hamiltonian H ′, the time coordinate
x0 is arbitrary. Let us get H ′ as function of the same momenta pj and the
same space coordinates xk, but with the time coordinate t ≡ x0/c. We do
that directly in Hamilton’s equations for H ′. We must set:

H(pj, x
k, t) = cH ′(pj , x

k, x0) = −cP0 (x
µ, uν). (17)

Note that Eqs. (13) and (17) are consistent with the definition (4).

2.5 A variant derivation of the Dirac equation

The dispersion equation associated with the energy equation (16) by wave
mechanics, i.e., by the de Broglie relations (5), is:

gµν
(
~Kµ +

e

c
Vµ

)(
~Kν +

e

c
Vν

)
−m2c2 = 0. (18)

Applying directly the correspondence Kµ →֒ Dµ/i to the dispersion equation
(18), leads to a specific form of the curved-spacetime Klein-Gordon equation
[3]. Instead, one may try a factorization with matrix coefficient α, γµ, etc.:

ΠX(K) ≡
[
gµν (Kµ + eVµ) (Kν + eVν)−m2

]
1

=? (α + iγµKµ)(β + iζνKν). (~ = 1 = c) (19)

Identifying the coefficients (with noncommutative algebra), and substi-
tuting Kµ →֒ Dµ/i, leads to the Dirac equation [2, 3]:

(iγµ (Dµ + ieVµ)−m)ψ = 0, (20)

with the anticommutation relation, resulting from the identification in Eq.
(19):

γµγν + γνγµ = 2gµν 1. (21)

3 From Dirac equation to classical motion

3.1 General Dirac Lagrangian in a curved spacetime

The following Lagrangian (density) [6] generalizes the “Dirac Lagrangian”
(e.g. [9, 14]) valid for the standard Dirac equation in a curved spacetime:

l =
√
−g i

2

[
Ψγµ(DµΨ)−

(
DµΨ

)
γµΨ+ 2imΨΨ

]
, (22)
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where Ψ ≡ Ψ†A is the generalized Dirac adjoint of Ψ ≡ (Ψa). The field X 7→
A(X) designates the hermitizing matrix, such that A† = A, (Aγµ)† = Aγµ

[17, 4]. (Here M † ≡ (M∗)T is the hermitian conjugate of a matrix M .) In
a curved spacetime, that matrix becomes indeed generally a field [5]. In the
usual Dirac Lagrangian, the field A is the constant matrix γ♮0, where (γ♮α)
is a set of constant “flat” Dirac matrices, i.e., ones obeying the anticommu-
tation relation (21) with the Minkowski metric ηαβ—provided the set (γ♮α)
is chosen such that γ♮0 be a hermitizing matrix for that set.

The Euler-Lagrange equation for the Lagrangian (22) is the generalized
Dirac equation [5, 6]:

γµDµΨ = −imΨ − 1

2
A−1(Dµ(Aγ

µ))Ψ. (23)

This coincides with the usual form iff Dµ(Aγ
µ) = 0. That is always the case

[5] for the standard Dirac equation in a curved spacetime (the “Dirac-Fock-
Weyl” or DFW equation). In Eqs. (22) and (23), the covariant derivatives
Dµ correspond to an arbitrary connection D defined on the complex vector
bundle E, in which the Dirac wave function ψ is living. 1 That vector bundle
is assigned to be a “spinor bundle”, i.e. essentially, one for which it exists a
global field γ of Dirac matrices, consistent with the anticommutation relation
(21). See Ref. [7] for details.

3.2 Local similarity (or gauge) transformations

Admissible coefficient fields (γµ, A) for the general Dirac equation (23) are
ones such that the anticommutation relation (21) is satisfied and that the
field A is hermitizing. Given any local similarity transformation S : X 7→
S(X) ∈ GL(4,C), depending smoothly on X ∈ V, other admissible coefficient
fields are

γ̃µ = S−1γµS (µ = 0, ..., 3), Ã ≡ S†AS, (24)

in the sense that the anticommutation relation (21) remains satisfied [in the
same spacetime (V, g) !] with the new field of Dirac matrices γ̃µ, and more-

1 The connection D and the covariant derivatives Dµ extend as usual to the dual
bundle E◦ of E, and to tensor products such as E ⊗ E◦. Moreover, on a tensor product
such as TV⊗E⊗E◦ (which is the relevant bundle for the Dirac matrices [7]), the relevant
connection is got from considering the Levi-Civita connection on the component bundle
TV [5, 7].
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over the matrix field Ã is a hermitizing matrix field for γ̃µ [5].

The relevant Hilbert space scalar product is [5]

(Ψ | Φ) ≡
∫

Ψ†Aγ0Φ
√−g d3x. (25)

It transforms isometrically under the gauge transformation (24), if one trans-

forms the wave function according to Ψ̃ ≡ S−1Ψ [6].

The Dirac equation (23) is covariant under the similarity (24), if the
connection matrices Γµ, such that Dµ = ∂µ + Γµ, change thus [10, 6]:

Γ̃µ = S−1ΓµS + S−1(∂µS). (26)

For the DFW equation, the gauge transformation (24) is restricted to be-
long to the spin group: ∀X S(X) ∈ Spin(1, 3). Then, the relation (26) is
automatically satisfied [6].

3.3 Reduction of the Dirac equation to canonical form

If Dµ(Aγ
µ) = 0 and the Γµ’s are zero, the Dirac equation (23) writes

γµ∂µΨ = −imΨ. (27)

Theorem 1 [8]. In the neighborhood of any event X, the Dirac equation
(23) can be put into the canonical form (27) by a local similarity transfor-
mation.

Outline of the proof: i) By Theorem 3 of Ref. [5] [Sect. 3.4, Eq. (54)], a
similarity T defined by Eq. (24) [with T instead of S] brings the general
Dirac equation (23) to the “normal” form (Dµ(Aγ

µ) = 0), iff

AγµDµT = −(1/2)[Dµ(Aγ
µ)]T . (28)

ii) By Theorem 2 of Ref. [7] [Sect. 6.2, Eq. (65)], a similarity S defined by
Eq. (24) and such that Eq. (26) is satisfied, brings a normal Dirac equation
to the canonical form (27), iff

Aγµ∂µS = −AγµΓµS. (29)
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iii) Due to the hermitizing character of matrix A, and due to the fact that,
by construction, the Hermitian matrix Aγ0 which defines the scalar product
(25) is positive definite [5], both (28) and (29) are symmetric hyperbolic
systems. �

3.4 Geometrical optics approximation of Dirac Lagrangian

The Lagrangian for the Dirac equation in an electromagnetic (e.m.) field is
got by substituting Dµ →֒ Dµ+

ie
~c
Vµ, where e is the particle’s electric charge.

It follows that, for the canonical Dirac equation (27), the Lagrangian in an
e.m. field is

l =
√−g i~c

2

[
Ψ†Aγµ(∂µΨ)− (∂µΨ)†AγµΨ+

2imc

~
Ψ†AΨ

]
−

−
√
−g (e/c)JµVµ, (30)

with ∇µ(Aγ
µ) = 0, where ∇µ is the covariant derivative obtained on the

relevant tensor product bundle (see Footnote 1) if the connection matrices
Γµ of the connection D are zero when D is acting specifically on the bundle E
[8]. To implement the geometrical optics approximation following Whitham
[20], we set first

Ψ = χeiθ, (31)

where χ = χ(X) is also a complex wave function with four components,
and θ = θ(X) is a real phase. We assume then that χ is slowly changing
compared to the rapidly changing phase θ. That is, the geometrical optics
approximation consists in assuming that

∂µχ≪ (∂µθ)χ. (32)

Substituting (31) into the Lagrangian (30) with this approximation, yields

l′ = c
√−g

[(
−~∂µθ −

e

c
Vµ

)
χ†Aγµχ−mcχ†Aχ

]
. (33)

The Euler-Lagrange equations are then [8]:

(
−~∂µθ −

e

c
Vµ

)
Aγµχ = mcAχ, (34)

∂µ
(
c
√−g χ†Aγµχ

)
= 0. (35)
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3.5 Classical trajectories

Theorem 2 [8]. From Ψ = χeiθ, define a four-vector field uµ and a scalar
field J thus:

uµ ≡ − ~

mc
∂µθ −

e

mc2
Vµ, (36)

uµ ≡ gµν uν , (37)

J ≡ c χ†Aχ. (38)

Then the Euler-Lagrange equations (34) imply

∇µ(Ju
µ) = 0, (39)

gµν uµuν = 1, (40)

∇µuν −∇νuµ = −(e/mc2)Fµν . (41)

The first equation is the conservation of the probability current. The two
last equations imply the classical equation of motion for a test particle in an
electromagnetic field in a curved spacetime.

3.6 De Broglie relations

The canonical momenta of a classical particle are given by Eq. (15):

Pµ = −mcuµ − (e/c)Vµ. (42)

On the other hand, following a Dirac quantum particle in the geometrical
approximation, we were led to define a 4-velocity field uµ from the phase θ
of the wave function, Eq. (36):

uµ ≡ − ~

mc
∂µθ −

e

mc2
Vµ. (43)

We saw that the field uµ obeys exactly the classical equations of motion,
which are Hamiltonian equations for which the canonical momenta are given
by Eq. (42). But, remembering the definition Kµ ≡ ∂µθ of the wave covector
from the phase θ of the wave function, we rewrite Eq. (43) as

−mcuµ − (e/c)Vµ ≡ ~Kµ. (44)

That is, we derive exactly the de Broglie relations (5).
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4 Conclusion

The Dirac equation in a curved spacetime with electromagnetic field may be
“derived” from the classical Hamiltonian H of a relativistic test particle. One
has to postulate H = ~W (i.e., E = ~ω), where W is the dispersion relation
of the sought-for wave equation. Then one factorizes the obtained dispersion
polynomial.

Conversely, to describe “wave packet” motion, we implemented the geo-
metrical optics approximation into a canonical form of the Dirac Lagrangian.
From the equations obtained thus for the amplitude and phase of the wave
function, one is led to define a 4-velocity field. This obeys exactly the clas-
sical equation of motion.

The de Broglie relations Pµ = ~Kµ are then derived exact equations.
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Ann. Inst. Henri Poincaré 6 (1936) 109–136).

[18] Riehle F., Kisters Th., Witte A., Helmcke J. and Bordé Ch. J., Optical Ramsey
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