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Abstract

We discuss the quantum and classical dynamics of a particle with spin in the gravitational

field of a rotating source. A relativistic equation describing the motion of classical spin in curved

spacetimes is obtained. We demonstrate that the precession of the classical spin is in a perfect

agreement with the motion of the quantum spin derived from the Foldy-Wouthuysen approach for

the Dirac particle in a curved spacetime. We show that the precession effect depends crucially on

the choice of a tetrad. The results obtained are compared to the earlier computations for different

tetrad gauges.
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I. INTRODUCTION

A rotation of a central body, defining a difference between stationary and static space-

times, leads to an appearance of specific gravitational effects. The most important effect

has been predicted by Lense and Thirring [1]. It consists in frame dragging around rotating

bodies and is manifested in a precession of satellite orbits and gyroscopes (i.e. classical

spins). The nonrelativistic formula for the latter effect has been derived by L. Schiff [2] (and

further refined and generalized in [3]).

In the present work, we analyze quantum and classical spins in stationary spacetimes.

We use the weak-field approximation when all components of the metric tensor gij are close

to the corresponding components of the Minkowski tensor ηij (|hij| ≡ |gij − ηij| ≪ 1).

The formulas calculated for classical spins extend the previously obtained results to the

relativistic case. The investigation of the quantum dynamics of spins is carried out for the

first time.

The theory of classical spin in the first-order (linear) approximation can be formulated as

follows. A particle is characterized by its position in spacetime, xi(τ) which is a function of

the proper time τ , and by the 4-vector of spin Sα. The 4-velocity of a particle Uα = eαi dx
i/dτ

is normalized by the condition gαβU
αUβ = c2 where gαβ = diag(c2,−1,−1,−1) is the flat

Minkowski metric. In order to be able to describe spinning particles both in flat and curved

spacetime (as well as in arbitrary curvilinear coordinates), we use the tetrad eαi to transform

the components of different objects from the coordinate basis (associated with the local

coordinates xi) to a local orthonormal frame. When the gravitational field is absent, it is

possible to choose the Cartesian coordinates everywhere and use the holonomic orthonormal

frame which coincides with the natural frame, so that eαi = δαi then. In general, the tetrad

coefficients satisfy gαβe
α
i e

β
i = gij for an arbitrary spacetime metric gij .

The foundations of the classical theory of particles with spin were laid down by Mathisson

and Papapetrou [4, 5] (for a review see [6], e.g.). Pomeransky, Khriplovich [7] and Dvornikov

[8] developed the relativistic approach for the equation of motion defining the dynamics of

three-component physical spin in curved spacetimes. This equation perfectly describes the

dynamics of the spin in static spacetimes. Here we present a rigorous deduction of the

equation of motion of the three-component spin, confirming the heuristic arguments of [7].

At the same time, we show here that this equation can be used for nonstatic spacetimes
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only with the special choice of tetrads satisfying the condition e0
ba = 0.

In this paper, we consider the two important problems. One aim is to generalize the

methods of the Foldy-Wouthuysen transformations, that we previously used for the analysis

of the spin in static gravitational fields, to the case of the stationary gravitational configu-

rations. Another aim is to systematically investigate the dependence of the spin dynamics

on the choice of a tetrad. In particular, we derive the general result for the angular velocity

of spin precession that is valid for an arbitrary tetrad gauge.

The paper is organized as follows. In Sec. II we consider the Dirac equation in a weak

gravitational field of a rotating source. The Hermitian Hamiltonian is derived. Sec. III

presents the derivation of the precession angular velocity of spin in a stationary gravitational

field. The dynamics of a classical spin is analyzed in Sec. IV where we find a general

expression for the precession velocity of the physical spin in arbitrary external classical fields.

These results are then applied in Sec. V to the derivation of the classical spin dynamics

in arbitrary gravitational field configurations. Sec. VI is devoted to the analysis of the

dependence of the spin precession effect on the choice of a tetrad. We find a general equation

that makes it possible to directly compare results obtained in the literature in different tetrad

gauges. Specifically, we demonstrate the complete agreement of the classical and quantum

spin dynamics in the Schwinger gauge. In Sec. VII we show that our general results can be

also used for the study of the motion of spin in the flat spacetime for the rotating reference

frame. Our derivations confirm the earlier observations obtained on the basis of the Thomas

precession arguments. Finally, in Sec. VIII we draw the conclusions.

We denote world indices by Latin letters i, j, k, · · · = 0, 1, 2, 3 and reserve first Greek

letters for tetrad indices, α, β, · · · = 0, 1, 2, 3. Spatial indices are denoted by Latin letters

from the beginning of the alphabet, a, b, c, · · · = 1, 2, 3. The separate tetrad indices are

distinguished by hats.
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II. DIRAC HAMILTONIAN FOR A STATIONARY METRIC

The approximate gravitational field of a rotating body at a large distance is described by

the Lense-Thirring (LT) metric [1]:

ds2 =

[

1−
2GM

c2ρ

]

c2dt2 − a sin2θ
4GM

c2ρ
cdt dφ

−

[

1 +
2GM

c2ρ

]

dρ2 − ρ2
[

dθ2 + sin2 θdφ2
]

. (1)

With the help of the coordinate transformation

ρ = r

(

1 +
GM

2c2 r

)2

, (2)

one can bring the line element to the isotropic form and subsequently use the Cartesian

coordinate system. The final form of the line element is given by

ds2 = V 2c2dt2 −W 2 δab (dx
a −Kacdt) (dxb −Kbcdt), (3)

with

V =

(

1−
GM

2c2r

)(

1 +
GM

2c2r

)−1

, (4)

W =

(

1 +
GM

2c2r

)2

, (5)

Ka =
1

c
ǫabc ωb xc. (6)

The non-diagonal components of the metric (that reflect the rotation of the source) are

described by the so-called Kerr field K that is given by Eq. (6) with

ω =
2G

c2r3
J =

(

0, 0,
2GM a

c r3

)

, (7)

where J =Mcaez is the total angular momentum of the source.

The exact metric of the flat spacetime seen by an accelerating and rotating observer also

has form (3). In the latter case [9], however,

V = 1 +
a · r

c2
, W = 1, Ka = −

1

c
(ω × r)a, (8)

where a describes acceleration of the observer and ω is an angular velocity of a noniner-

tial reference system. Both are independent of the spatial coordinates, but may depend

arbitrarily on time t.
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The similarity between the two cases is not occasional. Lense and Thirring have discov-

ered in 1918 that rotating bodies “drag” the spacetime around themselves (frame dragging

[1]). In other words, they have demonstrated the equivalence between rotating frames and

spacetimes created by rotating bodies. In the weak-field approximation, the motion of par-

ticles in a gravitational field of a rotating source is identical to their motion in a noninertial

frame rotating with the angular velocity (see, e.g., Ref. [10])

ω =
c

2
curl g, ga = −g0a. (9)

Let us choose the orthonormal tetrad

e
b0
i = V δ 0

i , eba
i =W

(

δai −Ka δ 0
i

)

, a, b = 1, 2, 3. (10)

The covariant Dirac equation for spin-1/2 particles in curved spacetimes has the form

(i~γαDα −mc)ψ = 0, α = 0, 1, 2, 3. (11)

The Dirac matrices γα are defined in local Lorentz (tetrad) frames. The spinor covariant

derivatives are given by

Dα = eiαDi, Di = ∂i +
i

4
σαβΓi

αβ , (12)

where Γi
αβ = −Γi

βα are the Lorentz connection coefficients, σαβ = i(γαγβ − γβγα)/2. Eqs.

(11),(12) show that the gravitational and inertial effects are encoded in coframes (see Refs.

[11, 12] and references therein).

Eq. (11) is recast into the familiar Schrödinger form

i~
∂ψ

∂t
= Hψ (13)

with the Hamilton operator

H = βmc2V +
V

W
c(α · p)−

i~c

2W
(α ·∇V )−

i~cV

W 2
(α ·∇W )

− i~cK ·∇−
i~c

2
(∇ ·K)−

3i~c

2W
(K ·∇W ) +

~c

4
(∇×K) ·Σ. (14)

Here p = −i~∇, and we remind that β = γ 0̂,α = {αa},Σ = {Σa}, where the 3-vector-valued

Dirac matrices have their usual form: αa = γ 0̂γa and Σa = iǫabcγ
bγc/2 (a, b, c, · · · = 1, 2, 3).

Redefining the spinor field and the Hamiltonian,

ψ′ =W 3/2 ψ, (15)
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we obtain the new Hamiltonian (which is explicitly Hermitian with respect to the usual flat

space scalar product):

H′ = βmc2V +
c

2
[(α · p)F + F(α · p)]

+
c

2
(K · p+ p ·K) +

~c

4
(∇×K) ·Σ. (16)

Here F = V/W .

Substituting (4)-(7) into (16), we find:

H′ = βmc2V +
c

2
[(α · p)F + F(α · p)]

+
2G

c2r3
J · (r × p) +

~G

2c2r3

[

3(r · J)(r ·Σ)

r2
− J ·Σ

]

. (17)

Note that the angular momentum operator l = r × p commutes with ω which depends on

the radius. Dirac Hamiltonian (17) contains the first part describing the static gravitational

field and the second one characterizing the contribution of rotation of the central body.

III. FOLDY-WOUTHUYSEN HAMILTONIAN AND OPERATOR EQUATIONS

OF MOTION

To obtain the FW Hamiltonian, we perform the FW transformation by the method de-

veloped in Refs. [13, 14]. In the weak field approximation, there are three small parameters:

|V − 1| ≪ 1, |F − 1| ≪ 1, |K| ≪ 1. (18)

Evidently, any bilinear combinations of these parameters can be neglected. The FW Hamil-

tonian can be presented as a sum of a free particle Hamiltonian and terms proportional to

|V − 1|, |F − 1|, and K. Only the last term, H
(2)
FW , defines the contribution of rotation

of the central body, while the other terms characterize the FW Hamiltonian of the particle

in a static gravitational field. The rotation-independent contribution H
(1)
FW was calculated

earlier [15]:

H
(1)
FW = βǫ+

β

2

{

m2c4

ǫ
, V − 1

}

+
β

2

{

c2p2

ǫ
,F − 1

}

−
β~mc4

4ǫ(ǫ+mc2)

[

Σ · (φ× p)

−Σ · (p× φ) + ~∇·φ

]

+
β~2mc6(2ǫ3 + 2ǫ2mc2 + 2ǫm2c4 +m3c6)

8ǫ5(ǫ+mc2)2
(p ·∇)(p ·φ)

+
β~c2

4ǫ
[Σ · (f × p)−Σ · (p× f ) + ~∇·f ]−

β~2c4(ǫ2 +m2c4)

4ǫ5
(p ·∇)(p ·f ). (19)
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Here ǫ =
√

m2c4 + c2p2 and the curly bracket {· · · , · · · } denotes the anticommutator. We

also use the notation of [11, 15] for the gradients: φ = {∂aV }, f = {∂aF}, a = 1, 2, 3.

To find the rotation-dependent term H
(2)
FW , it is sufficient to keep the leading term in the

FW transformation operator [15] corresponding to the free particle transformation:

U =
ǫ+mc2 + βcα · p
√

2ǫ(ǫ+mc2)
. (20)

Corrections to this approximation can be neglected because they only affect terms in the

FW Hamiltonian which are bilinear in small parameters |V − 1|, |F − 1|, and K.

This FW transformation leads after straightforward but tedious calculations to the final

FW Hamiltonian which is given by

HFW = H
(1)
FW +H

(2)
FW , H

(2)
FW =

2G

c2r3
J · l+

~G

2c2r3

[

3(r · J)(r ·Σ)

r2
− J ·Σ

]

−
3~G

8

{

1

ǫ(ǫ+mc2)
,

[

2{(J · l), (Σ · l)}

r5
+

1

2

{

(Σ · (p× l)−Σ · (l × p)) ,
(r · J)

r5

}

+

{

Σ · (p× (p× J)),
1

r3

}]}

−
3~2c2G

8

{

(5p2r − p2)
2ǫ2 + ǫmc2 +m2c4

ǫ4(ǫ+mc2)2
,
(J · l)

r5

}

,

(21)

where l = r×p is an angular momentum operator, and the operator p2r = −
~
2

r2
∂

∂r

(

r2
∂

∂r

)

is

proportional to the radial part of the Laplace operator. The equation of rotation of the spin

is obtained via commuting the FW Hamiltonian with the polarization operator Π = βΣ

and is given by
dΠ

dt
=
i

~
[HFW ,Π] = Ω(1) ×Σ+Ω(2) ×Π, (22)

where Ω(1) is the operator of angular velocity of rotation of the spin in the static gravitational

field derived in Ref. [15],

Ω(1) = −
mc4

ǫ(ǫ +mc2)
(φ× p) +

c2

ǫ
(f × p) , (23)

and the newly obtained contribution from the LT effect is equal to

Ω(2) =
G

c2r3

[

3(r · J)r

r2
− J

]

−
3G

4

{

1

ǫ(ǫ+mc2)
,

[

2{l, (J · l)}

r5

+
1

2

{

(p× l− l × p),
(r · J)

r5

}

+

{

(p× (p× J)),
1

r3

}]}

. (24)

The second term on the right-hand side of Eq. (22) contains an additional β factor as

compared to the first term. This is a manifestation of the gravitoelectric and the grav-

itomagnetic origin of the static gravitational field and of the Kerr (Lense-Thirring) field,
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respectively. The equation of spin motion in the electromagnetic field has a similar form

(see Eq. (36) in Ref. [15]). The difference between the two terms on the right-hand side of

Eq. (22) is caused by the fact that Ω(1) should contain the velocity operator rather than

the momentum one. Since the velocity operator is proportional to an additional β factor

and is equal to v = βcp/ǫ for free particles, the operator Ω(1), expressed in terms of v, also

acquires an additional β factor.

In Eq. (21), the Hamiltonian HFW defines the zero component of the covariant four-

momentum operator, while its spatial components are expressed by the operator p taken

with the opposite sign:

pi = i~
∂

∂xi
=

(

HFW

c
,−p

)

.

The equation of motion of the particle defines the evolution of the contravariant four-

momentum operator which spatial components (a, b = 1, 2, 3) are given by

pa = gabpb + g0ap0.

In a stationary metric, the evolution of the contravariant momentum operator in the

weak field approximation is defined by

F a =
dpa

dt
= −

dpa
dt

+
1

4

{{

vb,
∂gai

∂xb

}

, pi

}

,
dp

dt
=
i

~
[HFW ,p], (25)

where F a is the force operator and va ≈ βc2pa/ǫ ≈ c2pa/HFW is the velocity operator.

One can calculate the force operator caused by the LT effect without allowance for con-

tributions from V,W . This operator is equal to

F =
c

2
(curlK × p− p× curlK) + Fs, (26)

where

curlK =
2G

c3r3

[

3(r · J)r

r2
− J

]

, Fs = −∇

(

~G

2c2r3

[

3(r · J)(r ·Σ)

r2
− J ·Σ

]

−
3~G

8

{

1

ǫ(ǫ+mc2)
,

[

2{(J · l), (Σ · l)}

r5
+

1

2

{

(Σ · (p× l)−Σ · (l × p)) ,
(r · J)

r5

}

+

{

Σ · (p× (p× J)),
1

r3

}]})

. (27)

The operator equation (26) for the small spin-dependent force Fs is in the best compliance

with the corresponding classical equation [10]. Since the Dirac spin operator is s = ~Σ/2,

the Eqs. (26), (27) yield the corresponding semiclassical equation:

F = c curlK × p+F s, (28)
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F s = −∇

(

G

c2r3

[

3(r · J)(r · s)

r2
− J · s

]

−
3G

ǫ(ǫ+mc2)

[

2(J · l)(s · l)

r5
+

(s · [p× l]) (r · J)

r5
+

(s · [p× [p × J ]])

r3

])

. (29)

Our relativistic result (27), (29) for the spin-dependent force perfectly agrees with the cor-

responding nonrelativistic classical formulas previously obtained in Ref. [16] on the basis of

the Mathisson-Papapetrou equations [4, 5].

Our quantum Eqs. (26)-(29) actually agree with the classical results of both Mathisson-

Papapetrou and Pomeransky-Khriplovich approaches. This follows from the fact that the

spin-dependent part of Hamiltonian has the form Hs = ~(Ω(1) ·Σ+Ω(2) ·Π)/2 that perfectly

agrees with the general classical Eq. (47) of the Ref. [7]. This is also in accordance with

the earlier attempts (see Ref. [17], for example) to establish a direct general correspondence

between the quantum dynamics and the classical equations of motion of the Mathisson-

Papapetrou type.

The semiclassical formula corresponding to Eq. (24) and describing the motion of average

spin has the form

Ω(2) =
G

c2r3

[

3(r · J)r

r2
− J

]

−
3G

r3ǫ(ǫ+mc2)

[

2l(J · l) + (p× l)(r · J)

r2
+ p× (p× J)

]

.

(30)

In a nonrelativistic approximation, the Eq. (30) coincides with the equation obtained by

Schiff [2]. The second term in the Eq. (30) describes relativistic corrections. The Eq. (30)

can also be expressed in the equivalent form:

Ω(2) =
G

c2r3

[

3(r · J)r

r2
− J

]

−
3G

r5ǫ(ǫ+mc2)
[l(l · J) + (r · p)(p× (r × J))] . (31)

The quantum mechanical and semiclassical equations (21), (24), (26)-(31) are principal

new results.

IV. CLASSICAL SPIN IN EXTERNAL FIELDS

The dynamical equations that determine the motion of a spinning particle in external

classical fields can be written, quite generally, in the form

dUα

dτ
= Fα, (32)

dSα

dτ
= Φα

βS
β. (33)
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The forces Fα are determined by the external fields (electromagnetic, gravitational, etc.)

acting on a particle. Similarly, the spin is affected by the external fields through a spin

transport matrix Φα
β . Normalization of the velocity, UαU

α = c2, and its orthogonality to

the spin, SαU
α = 0, impose on the right-hand sides of (32),(33) the conditions

UαF
α = 0, UαΦ

α
βS

β = SαF
α. (34)

Since

SαΦ
α
βS

β =
1

2

d(SαS
α)

dτ
= 0, (35)

the spin transport matrix is skew-symmetric: Φαβ = −Φβα.

The components of the 4-velocity are conveniently parametrized by the spatial 3-velocity

va (a = 1, 2, 3) as

Uα =





γ

γva



 , (36)

where γ = (1− v2/c2)−1/2 is the Lorentz factor (v2 = δabv
avb). When the particle is at rest,

va = 0, its 4-velocity reduces to

uα = δα0 =





1

0



 . (37)

The actual 4-velocity Uα is obtained from the rest-frame components with the help of the

Lorentz transformation Uα = Λα
βu

β where

Λα
β =





γ γvb/c
2

γva δab + (γ − 1)vavb/v
2



 . (38)

Hereafter the Latin indices from the beginning of the alphabet (a, b, · · · = 1, 2, 3 which label

the spatial components of the objects) are raised and lowered with the help of the Euclidean

3-dimensional metric δab.

The physical components of spin sα are defined in the rest frame of a particle. Accordingly,

we have Sα = Λα
βs

β. The dynamical equation for the physical spin is derived by substituting

this relation into (33) which yields

dsα

dτ
= Ωα

βs
β. (39)

Here we introduced Ωα
β = φα

β + πα
β where

φα
β = (Λ−1)αγΦ

γ
δΛ

δ
β, πα

β = − (Λ−1)αγ
d

dτ
Λγ

β. (40)
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The physical spin has only three spatial components. One can verify that the 0-th component

of (39) is identically satisfied [in fact, it is identical to the second compatibility condition

(34)]. As a result, the dynamical equation (39) reduces to the 3-vector form

dsa

dτ
= Ωa

bs
b, or

ds

dτ
= Ω× s. (41)

Here Ω = φ+π and the components of the 3-vectors are introduced by s = (s1, s2, s3) and

Ω = (Ω32,Ω13,Ω21).

The new general equations (40)–(41) are valid for a spinning particle interacting with any

external fields. In the next section, we specify these equations to the case of the gravitational

field.

V. EQUIVALENCE PRINCIPLE AND DYNAMICS OF CLASSICAL AND

QUANTUM SPINS IN CURVED SPACETIMES

The equivalence principle (EP) is known to be the cornerstone of general relativity. The

EP results in the general equation of motion of classical test particles in curved spacetimes:

DUα

dτ
= 0, (42)

where D/(dτ) denotes the covariant derivative along the curve. The corresponding equation

of motion of the four-component spin used in Refs. [7, 8] and many other works is very

similar:
DSα

dτ
= 0. (43)

In the present work, we do not consider a relatively weak influence of the spin on particle’s

trajectory produced by the Mathisson-Papapetrou force [4, 5, 7] which results in a weak

violation of the equivalence principle by the curvature-dependent terms [18]. For the Kerr

spacetime, the deviation from the geodetic motion under the influence of spin was recently

comprehensively studied in the framework of the analytic perturbation approach in [19], see

also the relevant references there.

In the context of our present investigation of the dynamics of spin, it is worthwhile to

stress that the account of the Mathisson-Papapetrou terms does not change the spin dynam-

ics in the current approximation. There is thus no any difference between the Mathisson-

Papapetrou and Pomeransky-Khriplovich approaches within our framework. Nevertheless
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we find it more convenient to refer specifically to [7] where the exact equation of motion for

the three-component spin was obtained in explicit form.

The Eq. (42) states identical motion of all classical particles in curved spacetimes. Simi-

larly, the Eq. (43) states identical motion of all classical spins (gyroscopes). This important

conclusion leads to a great difference between dynamics of the spin in electrodynamics and

gravity. Angular velocities of precession of all classical and quantum spins moving with

the same velocity in the curved spacetime are equal. Thus, spinning particles cannot have

any anomalous gravitomagnetic moments [20]. It has been proved that both the anomalous

gravitomagnetic moment and the gravitoelectric dipole moment being gravitational analogs

of the anomalous magnetic moment and the electric dipole moment, respectively, are iden-

tically zero [20]. Relations obtained by Kobzarev and Okun predict equal frequencies of

precession of classical and quantum spins in any curved spacetimes [21, 22]. Nevertheless,

this conclusion was discussed for a long time (see Refs. [15, 22, 23, 24] and references

therein).

On the contrary, angular velocities of spin precession of different particles which are

determined by the Thomas-Bargmann-Michel-Telegdi equation [25, 26] do not coincide and,

generally speaking, differ from an angular velocity of precession of a classical rotator.

Comparing (42)-(43) with (32) and (33), we find the explicit expressions for the force and

the spin transport matrix

Fα = Φα
βU

β , Φα
β = −U iΓiβ

α, (44)

in terms of the gravitational field Γiβ
α. Using this in (40), we find explicitly

φab = −U i

[

Γi
ba +

γ2

γ + 1

vc
c2

(

Γic
avb − Γic

bva
)

+
γ

c2
(

Γib0
avb − Γib0

bva
)

]

, (45)

πab = U i γ2

γ + 1

[

vc
c2

(

Γic
avb − Γic

bva
)

+
1

c2
(

Γib0
avb − Γib0

bva
)

]

. (46)

Hence the precession of the physical spin in the gravitational field is described by

Ωa = ǫabc U
i

(

1

2
Γi

cb +
γ

γ + 1
Γib0

bvc/c2
)

. (47)

This exact formula can be used also in the flat spacetime for noninertial reference frames,

since the connection Γiβ
α contains information about both gravitational and inertial effects.

The Eq. (47) has been first obtained by Pomeransky and Khriplovich [7] as a result of

a comparison of the equations of motion of spin in electrodynamics and gravity, and more
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recently has been consistently derived by Dvornikov [8]. Note that unlike Ref. [8], our

results can be easily extended to any external fields (electromagnetic, gravitational, scalar,

and other).

VI. CLASSICAL SPIN IN NONSTATIC SPACETIMES

Description of a spin requires the introduction of a tetrad (the frame eα = eiα∂i and the

dual coframe ϑα = eαi dx
i). In physical terms a choice of a tetrad means a selection of a local

reference system of an observer.

Mathematically, there are infinitely many tetrads since a reference frame of an observer

can obviously be constructed in an infinitely many ways. In particular, from a given tetrad

field eαi we can obtain a continuous family of tetrads by performing the Lorentz transforma-

tion e′αi = Λα
βe

β
i , where the elements of the Lorentz matrix Λα

β(x) are arbitrary functions

of the spacetime coordinates. In practice, there are three most widely used gauges.

Schwinger gauge. Probably for the first time introduced independently by Schwinger [27]

and Dirac [28] (and widely used in many works, including [9] and our current study), this

choice demands that the tetrad matrix eαi , and its inverse eiα, both have the trivial elements

in the upper-right blocks:

eαi =





e
b0
0 0

eba
0 eba

b



 , eiα =





e0b0 0

eab0 eabb



 . (48)

Landau-Lifshitz gauge (see, e.g., Ref. [29]) fixes the tetrad matrices so that they both

have the trivial elements in the lower-left blocks:

eαi =





e
b0
0 e

b0
b

0 eba
b



 , eiα =





e0b0 e0bb

0 eabb



 . (49)

Symmetric gauge. Using the Minkowski flat metric gαβ = diag(c2,−1,−1,−1), we can

move the anholonomic index down and construct the matrix eαi := gαβe
β
i . The tetrad is

called symmetric (hence the name, symmetric gauge) when the resulting matrix is invariant

under the transposition operation which we symbolically can write as

eαi = eiα. (50)

Such a tetrad was used by Pomeransky and Khriplovich [7] and Dvornikov [8].
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In the framework of our current study, we choose the Schwinger gauge by specifying the

coframe as (10).

The other tetrads are obtained from our eαi with the help of the Lorentz transformation

e′αi = Λα
βe

β
i , where

Λα
β =





λ λqb/c

λcqa δab + (λ− 1)qaqb/q
2



 . (51)

Here we denote

qa = ξ
WKa

V
, λ =

1
√

1− q2
. (52)

(As usual, q2 = δabq
aqb). The constant ξ conveniently parametrizes different choices of

tetrads. Namely, for ξ = 1/2 the Lorentz matrix (51) transforms our tetrad to that of

Pomeransky and Khriplovich, and for ξ = 1 we obtain the tetrad of Landau and Lifshitz.

Under the Lorentz transformation e′αi = Λα
βe

β
i , the connection changes from Γiα

β to the

new one: Γ′
iα

β = Λα
γΓiδ

γ(Λ−1)δβ + Λα
γ∂i(Λ

−1)γβ. Specifically, for the weak gravitational

field of a slowly rotating source (3) we find

Γ′
iba

b0 =
GM xa
c2r3

e′i
b0 −

3x(aKb)

cr2
e′i

bb + ξ
ǫabcω

b

c2

(

− δcd +
3xcxd
r2

)

e′i
bd, (53)

Γ′

ibb
ba =

1

2
ǫabcω

d

(

− δcd +
3xcxd
r2

)

e′i
b0 +

GM

c2r3

(

xae′i
bb − xbe′i

ba
)

. (54)

Recall that Γ′

ib0
ba = c2δabΓ′

ibb

b0. We can drop the primes now, since the value of the ξ parameter

identifies the reference frame anyway.

Substituting (53) and (54) into (47), we obtain the precession of the physical spin in the

gravitational field of rotating object:

Ω = γ

{

G

c2r3

[

3r(r · J)

r2
− J

]

+
ρ× v

c2

}

, (55)

where we denote

ρ =
2γ + 1

γ + 1

GM

r3
r +

γ

γ + 1

3G

c2r3

[

r

r2
(r · (J × v))−

2ξ

3
J × v + (2ξ − 1)

(r · v)

r2
J × r

]

.

(56)

Putting ξ = 0, thus specifying to the Schwinger tetrad, we find that the classical formula

(55) perfectly reproduces the quantum result (31). The extra Lorentz factor is due to the

fact that the classical evolution of spin was measured by using the proper time τ , whereas

the quantum evolution was analyzed by using the coordinate time t. If we choose another
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tetrad by putting ξ = 1/2 in (56), the equation (55) yields the result by Pomeransky and

Khriplovich [7] and Dvornikov [8]:

Ω(PK) =
G

c2r3

[

3(r · J)r

r2
− J

]

−
γ

γ + 1

G

c2r3

{

3[r × v](J · [r × v])

r2
+ v × (v × J)

}

.

(57)

This result evidently differs from the Eq. (31).

It is worthwhile to mention that our result (55)-(56) (together with its quantum (31)

counterpart) presented in Ref. [38] was confirmed in the recent paper [39] (specifically, cf.

the eq. (6.19) therein). This is very satisfactory, since the authors of [39] worked in a

different framework developing the Hamiltonian theory of a spinning particle in a curved

spacetime. In Ref. [39], the first relativistic corrections were calculated, while our Eqs.

(55)-(56) and the corresponding quantum equations are the exact formulas suitable also for

the discussion of an ultrarelativistic spin-1/2 particle. It is also stressed in [39] that the

results obtained are consistent, in the test-particle limit, with the earlier analysis [40] of the

dynamics of two gravitationally interacting rotating extended bodies.

VII. PARTICLE WITH SPIN IN A ROTATING FRAME

One can straightforwardly show that Eq. (47) yields the correct angular velocity of spin

precession in a rotating frame. The spacetime is flat in this case with the line element [9]

given by

ds2 =
[

c2 − (ω × r)2
]

dt2 − 2(ω × r)adx
adt− (dxa)2. (58)

We choose the Schwinger gauge for the tetrad, which is then described by (10) with (8), where

we have to put a = 0 for the pure rotation. Other tetrads are easily obtained with the help

of the Lorentz transformation (51) which is much simpler now because V = W = 1. One can

verify that the choosing ξ = 1/2 we indeed obtain a symmetric tetrad (which corresponds

to the gauge of Pomeransky and Khriplovich), whereas ξ = 1 yields the Landau-Lifshitz

tetrad.

The corresponding family of the (transformed) connection reads

Γ′
iba

b0 = −
ξ

c2
ǫabcω

c e′i
bb, Γ′

ibb
ba = − ǫbacω

c e′i
b0. (59)
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Substituting this into the eq. (47), we find the precession angular velocity

Ω = γ

(

−ω +
ξ γ

γ + 1

v × (v × ω)

c2

)

. (60)

The overall Lorentz factor is again due to the use of the proper time in the evolution

equations.

The correct result for the Schwinger gauge (that is recovered for ξ = 0) was first obtained

in [30, 31]. A transparent and simple explanation of the dependence of the angular velocity

of the spin precession on the gauge of a tetrad, and thus of the additional terms which are

present in (60) in the symmetric gauge (for ξ = 1/2) and in the Landau-Lifshitz gauge (for

ξ = 1), was presented recently [23] on the basis of the Thomas precession.

The study of a rotating frame helps to clarify the difference between the tetrad gauges.

The line element (58) describes the flat spacetime. Indeed, we can bring the metric to

the explicitly flat form by a coordinate transformation that replaces (t, xa) with the new

coordinates (T,Xa) using the formulas

t = T, xa = La
bX

b. (61)

Here the 3× 3 matrix

La
b = na nb + (δab − na nb) cosϕ+ ǫacb n

c sinϕ (62)

defines a rotation around the unit vector na on an angle ϕ(T ) = ω T with the constant

angular velocity ϕ̇ = ω, where ωa = ω na. Differentiating (61), we easily verify

dxa −Kacdt = La
b dX

a. (63)

Accordingly, the transformation (61) brings the line element (58) to ds2 = c2dT 2 −

δab dX
adXb which is the flat Minkowski world described in the Cartesian coordinates (T,Xa).

In order to compare different tetrad gauges, let us consider the continuous family that

arises from the Lorentz transformation (51). Explicitly, the tetrad components read

eαi =





e
b0
0 = λ(1− ξK2) e

b0
b = λξKb/c

eba
0 = λ(ξ − 1)cKa eba

b = δab + (λ− 1)KaKb/K
2



 . (64)

Here, as before, λ = 1/
√

1− ξ2K2. As we can easily verify, this family indeed contains all

the three main options: (i) for ξ = 0, the Schwinger gauge is obtained, (ii) the Landau-

Lifshitz gauge arises for ξ = 1, (iii) the symmetric gauge is recovered for ξ = 1/2.
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Let us now analyse a particle that is at rest with respect to a reference system described

by the tetrad (64). The tetrad components of the 4-velocity of such a particle read Uα =

δα
0̂
= (1, 0). Respectively, the world components of particle’s 4-velocity read dxi/dτ = U i =

eiαU
α = ei

0̂
. Explicitly we then find from the inverse of (64)

dt

dτ
= λ,

dxa

dτ
= λc(1− ξ)Ka =⇒

dxa

dt
= (1− ξ)ǫabcωbxc. (65)

This is how particle’s dynamics is described in the coordinates (t, xa) of a homogeneously

rotating flat world. But how does this motion look in terms of the genuinely inertial coor-

dinates? Substituting (61) into (65), we obtain

dXa

dT
= − ξǫabcωbXc. (66)

As we see, for ξ = 0 the particle is at rest in the inertial coordinates, Xa =const. That is, a

particle which is at rest in the Schwinger reference frame indeed does not physically move in

the Cartesian coordinates (T,Xa). However, when a particle is at rest with respect to the

Landau-Lifshitz ξ = 1 tetrad or with respect to the symmetric ξ = 1/2 tetrad, it actually

turns out to be moving (rotating) in the inertial coordinates!

In this sense, the Schwinger gauge is physically distinguished as it qualifies for defining

an almost inertial reference frame. In all the other tetrads with ξ 6= 0, the description of

physical effects is “spoiled” by non-inertiality. Such a spoiling effect is manifested by the

additional (last) term in (60), for example.

Certainly, one should be careful when generalizing the above observation to the case

of the nontrivial gravitational field. Note that we use the expression “almost inertial” to

distinguish the anholonomic Schwinger tetrad from a truly inertial tetrad which is holonomic.

In a curved spacetime one cannot, as a matter of principle, separate the inertial effects from

the gravitational ones. However, we recall again that Lense and Thirring have demonstrated,

in the weak-field approximation, the similarity of particle’s motion in a gravitational field of a

rotating source to its dynamics in a noninertial frame rotating with the angular velocity (9).

Our analysis thus demonstrates that the Schwinger choice clearly appears to be preferable.

VIII. DISCUSSION AND CONCLUSION

In this paper, we consider the quantum and classical dynamics of a particle with spin

in the gravitational field of a rotating source. Being primarily interested in the dynamics
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of spin, we derive the quantum-mechanical and semiclassical equations of motion of the

spin of a Dirac particle from the Foldy-Wouthuysen approach. We demonstrate that the

precession of the quantum spin is in a perfect agreement with the motion of the classical

spin derived within a general scheme of Sec. IV. The results obtained are compared to

the earlier computations for different tetrad gauges, and we show that the precession effect

depends crucially on the choice of a tetrad. At the same time, we find a perfect consistency

with the classical Mathisson-Papapetrou approach by explicitly calculating the quantum

and semiclassical expressions for the spin-dependent force on a Dirac particle.

The Lense-Thirring effect or frame dragging is one of the most impressive predictions

of the general relativity. This effect is currently analyzed in the Gravity Probe B experi-

ment [32, 33]. However, relativistic corrections to the LT effect are not observable in this

experiment as well as in other experiments inside the solar system [34].

Nevertheless, it is necessary to take the relativistic corrections to the LT precession into

account for the investigation of physical phenomena in the binary stars such as pulsar sys-

tems. In this case, both components of a system undergo a mutual Lense-Thirring precession

about the total angular momentum J . Since the spin precession effects are well observable

[35, 36, 37], the use of the results obtained in the present work may be helpful for the

high-precision calculations of spin dynamics in the binaries.
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