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Abstract

In the framework of the so-called gravitoelectromagnetic formalism, according to which the

equations of the gravitational field can be written in analogy with classical electromagnetism, we

study the gravitomagnetic field of a rotating ring, orbiting around a central body. We calculate

the gravitomagnetic component of the field, both in the intermediate zone between the ring and

the central body, and far away from the ring and central body. We evaluate the impact of the

gravitomagnetic field on the motion of test particles and, as an application, we use these results,

together with the Solar System ephemeris, to infer information on the spin of ring-like structures.
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I. INTRODUCTION

In General Relativity (GR) mass currents give rise to gravitomagnetic (GM) fields, in

analogy with classical electromagnetism: actually, the field equations of GR, in linear post-

newtonian approximation, can be written in form of Maxwell equations for the gravito-

electromagnetic (GEM) fields[1, 2], [3], where the gravito-electric (GE) field is just the

Newtonian field. Even though these effects are normally very small and hard to detect,

there have been many efforts to measure them. For instance, the famous Lense-Thirring

effect[4], that is the precessions of the node and the periapsis of a satellite orniting a central

spinning mass, has been analyzed in different contexts: there are the LAGEOS tests around

the Earth [5, 6], the MGS tests around Mars [7, 8] and other tests around the Sun and

the planets [9]; see [10–13] for a discussion and a review of the recent results. In February

2012 the LARES mission [14] has been launched to measure the Lense-Thirring effect of the

Earth, and is now gathering data; a comprehensive discussion on this mission can be found

in [15–20]. In the recent past, the Gravity Probe B [21] mission was launched to measure

the precession of orbiting gyroscopes[22, 23]. The GM clock effect, that is the difference in

the proper periods of standard clocks in prograde and retrograde circular orbits around a

rotating mass, has been investigated but not detected yet [24–28]. A non-standard form of

gravitomagnetism has been recently analyzed [29, 30] in a purely phenomenological context.

Eventually, the possibility of testing GM effects in a terrestrial laboratory has been consid-

ered by many authors in the past[31–39]; a recent proposal pertains to the use of an array

of ring lasers[40, 41], and is now underway[42] .

In a recent paper[43], we have investigated the gravitational field of massive rings: ex-

ploiting the GEM analogy, we have studied both the GM and the GE components of the

field, produced by a thin rotating ring, orbiting the central body along a Keplerian orbit.

The ring field can be dealt with as a perturbation of the background field determined by the

central body. We have used a power series expansion to calculate the field in the intermedi-

ate zone between the central body and the ring. Massive rings are ubiquitous and important

in astrophysics, as suggested in [44]; in [45] the effects of geometrical deformations on ring-

like structures are studied, together with the implications for stability and regularity of the

motion of test particles (also for Saturn’s and Jupiter’s rings). Hence, motivated by the

relevance of ring-like structures, in [43] we have focused on the GM component of the field
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(the GE one is exhaustively studied in [44]), and studied its impact on some gravitational

effects, such as gyroscopes precession, Keplerian motion and time delay in some simplified

geometric configurations. The underlying idea is the possibility of using these tests to es-

timate the mass and the angular momentum of matter rings. Here, we want to pursue the

study of the GM field of rotating rings: to be specific, we want to calculate the GM field in

the whole space, both in the intermediate zone between the ring and the central body and

far away from the ring and central body. As for the effects of the ring field, we will focus on

the perturbations of the Keplerian orbital elements of a test particle: while in the previous

paper[43] we have considered just the case of coplanarity between the ring and the test

particle orbit, here we will consider an arbitrary configuration. Then, we will compare the

predicted secular variations with the recent observations of Solar System ephemeris [46–48].

The paper is organized as follows: we review the foundations of the GEM formalism in

Section II, while in Section III we obtain the GM field of the ring; in Section IV we focus

on the perturbations of the orbital elements determined by the GM field, and use the recent

data of Solar System ephemeris to estimate the spin of ring-like structures. Conclusions are

eventually in Section V.

II. THE GEM FORMALISM

If we work in the weak-field and slow-motion approximation, we may write the space-

time metric in the form1 gµν = ηµν + hµν , in terms of the Minkowski tensor ηµν and the

gravitational potentials hµν which are supposed to be a small perturbation of the flat space-

time metric: |hµν | ≪ |gµν |. Hence, in linear approximation, on setting h̄µν = hµν − 1

2
hηµν

with h = tr(hµν), and imposing the transverse gauge condition h̄µν
,ν = 0, the Einstein

equations take the form[49, 50]

⊓⊔ h̄µν = −16πG

c4
Tµν . (1)

1 Greek indices run to 0 to 3, while Latin indices run from 1 to 3; bold face letters like x refer to space

vectors.
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It is a well known fact that, due to the analogy with electromagnetism[51–56], the solution

of the field equations (1) can be written in the form2

ds2 = −c2
(

1− 2
ϕ

c2

)

dt2 − 4

c
(A · dr)dt+

(

1 + 2
ϕ

c2

)

∆ijdx
idxj (2)

in terms of the gravitoelectric ϕ (h̄00
.
= 4

ϕ

c2
) and gravitomagnetic Ai (h̄0i = −2Ai

c2
) poten-

tials, which are related to the sources of the gravitational field by

ϕ(ct, r) =

∫

V

ρ(ct− |r−R|,R)

|r−R| dV, (3)

Ai(ct, r) =
2G

c

∫

V

ji(ct− |r−R|,R)

|r−R| dV. (4)

In the above equations ρ is the mass density and ji is the mass current of the sources. So,

we see that, besides the usual Newtonian contribution ϕ, related to the mass of sources,

there is a contribution related to the mass current of the sources. The gravitoelectric E and

gravitomagnetic B fields are then defined as

E = − 1

2c

∂A

∂t
−∇ϕ, B = ∇ ∧A (5)

For stationary sources, the equation of motion (i.e. the spatial components of the geodesics)

of a test mass mtest moving with speed v in GEM fields E,B turns out to be (see e.g. [55])

mtest

dv

dt
= −mtestE − 2mtest

v

c
×B, (6)

to lowest order in v/c. In the convention used, a test particle of inertial mass mtest has

gravito-electric charge qE = −mtest and gravito-magnetic charge qB = −2mtest; the GEM

Lorentz acceleration acting on a test particle is

A = −E − 2
v

c
×B (7)

III. THE GRAVITOMAGNETIC FIELD OF ROTATING RINGS

In this Section, we calculate the gravitomagnetic field produced by a rotating ring; we

suppose that the ring is thin and made of continuously distributed matter with constant

2 Here and henceforth we use the convention introduced by Mashhoon [56] to exploit the standard results

of electrodynamics to describe gravity in post-Newtonian linear approximation. Other conventions are

used elsewhere[49, 50].
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FIG. 1: The point P has spherical coordinates (r, θ, φ), and the origin of the coordinate system

coincides with the central body; they are related to the Cartesian ones by r =
√

x2 + y2 + z2,

φ = arctan(y/x), θ = arctan(
√

x2 + y2/z). The ring is in the xy plane, where θ = π/2.

density, orbiting a central body. Furthermore, for the sake of simplicity, we assume that

the ring is circular: actually, the case of an elliptically shaped ring has been considered in

[43], but the resulting expressions are in general unmanageable, even to lowest order in the

eccentricity.

The central body is supposed to produce its gravitational field, which is determined by

its mass M , and angular momentum S. In the inertial frame where the central body is at

rest, we set a Cartesian coordinate system {x, y, z}, with the corresponding unit vectors

ux,uy,uz; if the body is located at the origin and its angular momentum is directed along

the z axis, S = Suz, the space-time metric to lower order has the form (2), with ϕ =
GM

r
,

A =
G

c

(S ∧ r)

r3
, where r = |r| =

√

x2 + y2 + z2. In particular, the GM field turns out to be

B =
G

c

[

3(S · r)r
r5

− S

r3

]

(8)

and has a typical dipole-like behaviour: in other words, it is analogous to the magnetic field

produced by a dipole.

In order to evaluate the gravitomagnetic field of the rotating ring, we proceed as follows:

an infinitesimal mass element dm of the ring is orbiting around the central body; we know

the total mass m of the ring, and its angular momentum s, which we assume to be constant :
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in other words, we consider a stationary ring. In our perturbative approach, we do suppose

that m ≪ M , s ≪ S. Due to the presence of this ring, the gravitomagnetic potential (4) is

perturbed, so that A → A+Aring, where |Aring| ≪ |A|. In particular, we are interested in

calculating this perturbation, by means of a power series expansion, (i) in the intermediate

region between the central body and the ring, (ii) in the outer region of the system, i.e.

away from the ring and the central body.

To this end, we consider the following geometric configuration: we suppose that the ring

is in the xy plane, that is the symmetry plane of the central body. In order to deal with the

symmetries of the problem in a simpler way, we will also use spherical coordinates {r, θ, φ},
togheter with the corresponding unit vectors ur,uθ,uφ.

Let P denote the point where we want to evaluate the GM field (see Figure 1): its

spherical coordinates are {r, θ, φ} and its position vector is r; the position vector of a mass

element dm of the ring is R, where R = |R| is the radius of the ring, and its spherical

coordinates are {R, π/2,Φ}.The ring uniform density is λ =
m

2πR
; furthermore, v is the

(constant) modulus of the mass elements speed. We must substitute jidV → λvidL in (4):

vi are the components of the velocity, which may be written as v = −v sinΦux+ v cos Φuy,

and dL is the infinitesimal arc length of the ring. Accordingly, we get

Aring =
2G

c

∫

L

λ (−v sin Φux + v cos Φuy) dL

|r−R| (9)

We may write dL = R dΦ; hence, on introducing the angular momentum per unit mass

σ = v R, the above integral can be written as

Aring =
2Gλσ

c

∫ Φ=2π

Φ=0

(− sinΦux + cosΦuy) dΦ

|r−R| (10)

This expression can be expanded in power series: for (i) r < R, we expand in powers of

ǫ =
r

R
, while for(ii) r > R, we expand in powers of ǫ =

R

r
. Consequently, we may write

|r−R| in the form

(i) r < R : |r−R| = R

√

1− 2
r

R
sin θ cos(φ− Φ) +

( r

R

)2

(ii) r > R : |r−R| = r

√

1− 2
R

r
sin θ cos(φ− Φ) +

(

R

r

)2

or

|r−R| = d
√

1− 2ǫ sin θ cos(φ− Φ) + ǫ2 where :
(i)r < R : d = R, ǫ = r/R

(ii)r > R : d = r, ǫ = R/r
(11)
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Hence, we may write

Aring =
2Gλσ

cd

∫ Φ=2π

Φ=0

(− sinΦux + cosΦuy) dΦ
√

1− 2ǫ sin θ cos(φ− Φ) + ǫ2
(12)

Because of the cylindrical symmetry, we may choose the observation point at φ = 0: as a

consequence the x component of Aring is null, and the y component is equal to Aring

φ :

Aring

φ =
2Gλσ

cd

∫ Φ=2π

Φ=0

cosΦdΦ
√

1− 2ǫ sin θ cos(Φ) + ǫ2
(13)

As shown in [57], the above integral (13) can be evaluated in terms of elliptic intergrals:

∫ Φ=2π

Φ=0

cosΦdΦ
√

1− 2ǫ sin θ cos(Φ) + ǫ2
=

4√
1 + ǫ2 + 2ǫ sin θ

[

(2− p2)K(p)− 2E(p)

p2

]

(14)

where p2 =
4ǫ sin θ

ǫ2 + 1 + 2ǫ sin θ
and K(p), E(p) are the complete elliptic integrals of first and

second kind. For ǫ ≪ 1 (that is for R ≪ r or r ≪ R) the result of the integral in Eq. (14)

becomes
πǫ sin θ

(1 + ǫ2 + 2ǫ sin θ)3/2
and, consequently, we may write the gravitomagnetic potential

in the form

Aring

φ =
2Gλσ

cd

πǫ sin θ

(1 + ǫ2 + 2ǫ sin θ)3/2
(15)

If we perform a power-series expansion we obtain:

(i) r ≪ R : Aring

φ =
Gs sin θ

cR2

r

R
− 3

Gs sin2 θ

cR2

r2

R2
+

[

15

2

Gs sin3 θ

cR2
− 3

2

Gs sin θ

cR2

]

r3

R3
+O

(

r4

R4

)

(ii) r ≫ R : Aring

φ =
Gs sin θ

cr2
− 3

Gs sin2 θ

cr2
R

r
+

[

15

2

Gs sin3 θ

cr2
− 3

2

Gs sin θ

cr2

]

R2

r2
+O

(

R4

r4

)

According to Eq. (5), the corresponding gravitomagnetic field can be obtained from

Bring = ∇ ∧Aring. For r ≪ R, the gravitomagnetic field has the following components

Bring
r =

2Gs

cR3
cos θ − 9Gs

cR3
cos θ sin θ

r

R
+

Gs

cR3
cos θ

(

30 sin2 θ − 3
) r2

R2
+O

(

r3

R3

)

(16)

Bring

θ = −2Gs

cR3
sin θ +

9Gs

cR3
sin2 θ

r

a
+

Gs

cR3
sin θ

(

6− 30 sin2 θ
) r2

R2
+O

(

r3

R3

)

(17)

While, for r ≫ R, we obtain

Bring
r =

2Gs

cr3
cos θ − 9Gs

cr3
cos θ sin θ

R

r
+

Gs

cr3
cos θ

(

30 sin2 θ − 3
) R2

r2
+O

(

R3

r3

)

(18)

Bring

θ =
Gs

cr3
sin θ − 6Gs

cr3
sin2 θ

R

r
+

Gs

2cr3
sin θ

(

45 sin2 θ − 9
) R2

r2
+O

(

R3

r3

)

(19)
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We notice that, to lowest approximation order, the gravitomagnetic field has the following

expressions

(i) r ≪ R : Bring =
2Gs

cR3
(cos θur − sin θuθ) =

2G

cR3
s (20)

(ii) r ≫ R : Bring =
Gs

cr3
(2 cos θur + sin θuθ) =

G

c

[

3(s · r)r
r5

− s

r3

]

(21)

The expression (20) of the field inside the ring is in agreement with the one obtained in

[43]; on the other hand, we see that the expression (21) of the field outside the ring is,

as expected, the usual dipole field. In the following Section we are going to use these

expressions to calculate the perturbing acceleration on the motion of orbiting bodies and,

then, the corresponding variations of the orbital elements.

IV. GRAVITOMAGNETIC PERTURBATIONS

In this Section we evaluate the impact of the GM of the rings on the orbital elements

of test particles: in particular, we consider below the effects on Solar System bodies. To

this end, we use the expressions of the GM field (20) and (21) to calculate the perturbing

acceleration

W = −2
v

c
×Bring (22)

then, we can evaluate its effects on planetary motions using the Gauss equations for the

variations of the elements, which enable us to study the perturbations of the Keplerian

orbital elements due to a generic perturbing acceleration.

We consider an arbitrary configuration of the test particle orbit, with respect to the ring

plane, as shown in Figure 2. Besides the already mentioned Cartesian coordinate system

{x, y, z}, we introduce another Cartesian coordinate system {X, Y, Z}, with the same origin,

and unit vectors uX ,uY ,uZ . The orbital plane is the XY plane, and we denote with Ω the

angle between the x axis and the line of the nodes, while the angle between the z and Z axes

is i. The periastron is along the X axis, and we denote by ω the argument of the periastron,

i.e. the angle between the line of nodes and the X axis.

The following relations hold between the unit vectors of the two Cartesian coordinate
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FIG. 2: Unperturbed orbit of the test particle

systems (see e.g. [58]):

uX = (cosω cosΩ− sinω cos i sinΩ)ux + (cosω sinΩ + sinω cos i cosΩ)uy + sinω sin iuz

uY = (− sinω cos Ω− cosω cos i sinΩ)ux + (− sinω sinΩ + cosω cos i cos Ω)uy + cosω sin iuz(23)

uZ = sin i sinΩux − sin i cosΩuy + cos iuz

Let X denote the position vector of the test particle which, in the orbital plane can be

written as

X = ρ(f) cos f uX + ρ(f) sin f uY (24)

where the Keplerian ellipse, parameterized by the true anomaly f , is written as

ρ(f) =
a (1− e2)

1 + e cos f
(25)

in terms of the semi-major axis a and eccentricity e. In the orbital plane, it is useful

to introduce the polar unit vectors3 uρ,uf ; as a consequence, X = ρuρ and the velocity

vector is expressed by v(f) =
ℓ

ρ
[g (f)uρ + uf ], where g(f)

.
=

e sin f

1 + cos f
; ℓ is the angular

momentum per unit mass (see e.g. [58]), which is constant in the Keplerian motion. Then,

by straightforward algebra , it possibile to write:

v(f) =
ℓ

ρ(f)
[g(f) cos f − sin f ]uX + [g(f) sin f + cos f ]uY . (26)

3 Usually defined by uρ = cos f uX + sin f uY , uf = − sin f uX + cos f uY .
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On taking into account the expressions (25),(26), we are able to evaluate the perturb-

ing acceleration (22) onto the unperturbed Keplerian ellipse; then Wr, Wτ , Wν are the

radial, transverse (in-plane components) and normal (out-of-plane component) projections

of the perturbing acceleration W , respectively, on the orthonormal frame comoving with

the particle.

Given the components of the perturbing acceleration, we may write the Gauss equations

for the variations of the semi-major axis a, the eccentricity e, the inclination i, the longitude

of the ascending node Ω, the argument of pericentre ω and the mean anomaly M (see e.g.

[59])

da

dt
=

2

n
√
1− e2

[

eWr sin f +Wτ

(p

r

)]

, (27)

de

dt
=

√
1− e2

na

{

Wr sin f +Wτ

[

cos f +
1

e

(

1− r

a

)

]}

, (28)

di

dt
=

1

na
√
1− e2

Wν

(r

a

)

cos(ω + f), (29)

dΩ

dt
=

1

na sin i
√
1− e2

Wν

(r

a

)

sin(ω + f), (30)

dω

dt
= − cos i

dΩ

dt
+

√
1− e2

nae

[

−Wr cos f +Wτ

(

1 +
r

p

)

sin f

]

, (31)

dM
dt

= n− 2

na
Wr

(r

a

)

−
√
1− e2

(

dω

dt
+ cos i

dΩ

dt

)

, (32)

In the above equations, n = 2π/T is the mean motion4, T is the test particle’s orbital period,

p = a (1− e2) is the semilatus rectum. In order to make a comparison with the data, it is

useful to consider the longitude of the pericenter ̟ = ω + cos i Ω, whose Gauss equation is

d̟

dt
=

√
1− e2

nae

[

−Wr cos f +Wτ

(

1 +
r

p

)

sin f

]

+ 2
dΩ

dt
sin2 i

2
(33)

In summary, we must evaluate the perturbing acceleration onto the unperturbed Keplerian

ellipse, and then it must be inserted into Eqs.(27)-(33); then, we must average over one

orbital period T . To this end, the following relation [59]

dt =
(1− e2)3/2

n(1 + e cos f)2
df (34)

will be used. We want to stress that, as we said before, the ring is assumed to be stationary :

this amounts to saying that the motion of the ring matter is constant during the particle’s

4 For an unperturbed Keplerian ellipse in the gravitational field of a body with mass M , it is n =
√

GM/a3.
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timescale. Moreover, it is interesting to point out that the case of a single mass element

(such as, for instance, a planet), revolving so quickly to be considered as a sort of continuos

ring by the test particle, can be treated in the same way. Actually, this problem was faced

and solved by Gauss, who used it to state his averaging theorem, according to which it

is possible to replace a perturbing body by an equivalent continuous mass spread over its

orbit: this does not change the secular effects, while it removes the periodic terms of the

perturbation [60].

For the test particles orbiting outside the ring, on using the expression (21) of the GM

field, we have non null secular variations only for the argument of periastron and the node:

< ω̇ >= −6Gs

c2
1

a3 (1− e2)3/2
(35)

< Ω̇ >=
2Gs

c2
1

a3 (1− e2)3/2
(36)

Eventually, for the longitude of the pericenter we have

< ˙̟ >= −2Gs (3 cos i− 1)

c2
1

a3 (1− e2)3/2
(37)

On the other hand, for test particles orbiting inside the ring, on using the expression (20),

we have the following non null secular variations:

< Ω̇ >=
2Gs

c2R3
(38)

< Ṁ >= n +
2Gs cos i

c2R3

(

4
√
1− e2 + 1

)

(39)

Moreover, for the longitude of the pericenter we have

< ˙̟ >=
2Gs

c2R3
(40)

The above results can be used to make a comparison with the recent observations [46–

48]: for instance, on using the available supplementary advances ∆ ˙̟ , we may give estimates

on the spin of ring-like structures in the Solar System. Let us start from planets orbiting

outside the ring; in particular, we consider a hypothetical ring of matter, inside the orbits

of Mars or Mercury. We obtain the following expressions for < ˙̟ >, on taking into account

the orbit of Mars (e = 9.34× 10−2, i = 1.84, a = 1.52 AU, [61]):

< ˙̟ >Mars= −7.69s× 10−28mas cty−1 (41)
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while for Mercury (e = 2.05× 10−1, i = 7.00, a = 3.87× 10−1 AU, [61]):

< ˙̟ >Mercury= 3.44s× 10−26mas cty−1 (42)

On using the data obtained by [46], ∆ ˙̟ Mars = −0.04 ± 0.15 mas cty−1; we obtain s ≤
1.43× 1026 kg m2 s−1. As for Mercury, it is [46] ∆ ˙̟ Mercury = 0.4± 0.6; similarly, we obtain

s ≤ 2.90× 1025 kg m2 s−1.

As for planets orbiting inside the ring, we see that < ˙̟ > in Eq. (40) is constant, so

that it does not depend on the orbit of the test particle (even though the orbit is not in the

plane of the ring): as for its magnitude, we obtain

< ˙̟ >= s 2.9× 10−43

(

1AU

R

)3

mas cty−1 (43)

As a consequence, the spin magntiude s of a hypothetical ring at R = 1 AU can be

constrained by using the data of Venus, measured by [46]: ∆ ˙̟ Venus = 0.2 ± 1.5 mas

cty−1; we obtain s ≤ 5.9 × 1042 kg m2 s−1. Similarly, we can constrain the spin of the

minor asteroids belt between Mars and Jupiter, by considering R = 2.8 AU, and using

the perihelion of Mars, measured by ([46]) ∆ ˙̟ Mars = −0.04 ± 0.15 mas cty−1; we obtain

s ≤ 8.3× 1042 kg m2 s−1.

It is important to explain the meaning of the above estimates: indeed, they should be

considered just as upper limits, useful to evaluate the order of magnitude of the effects. In

fact, in actual physical situations, the GM perturbations due to the ring are present together

with other effects, such as the Lense-Thirring, the J2 effects of the central body and the

Newtonian or GE effects of the rings. This is true, in particular, in the case of planets

orbiting outside the ring: actually, we notice that the expression of the GM field (21) is the

same as the GM field of the central body, in terms of its own angular momentum (8); in

particular, the secular variations are the same as those of the classical Lense-Thirring effect

[62]. As a consequence, far away from the central body and the ring, the total GM field will

depend on the sum of the angular momenta of the central body and the ring, and it would

be very difficult (at least for the chosen ring configuration) to set constraints on the angular

momentum of the ring.

Actually, as we said before, the case of a planet quickly revolving around the central

body can be treated as a continuous ring: if the motion of the planet is stationary, the
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effect on another planet can be obtained by using the approach outlined above. Indeed,

this could be the case, for instance, of extrasolar systems, where it is possible to find giant

planets orbiting very close to the star. The possibility of testing general relativistic or

post-Newtonian effects with exoplanets has been considered by various authors [63–66]. In

particular, the impact of gravitomagnetic effects has been addressed in [67] and [68], where

the case of the WASP-33 system has been considered: in this system a hot Jupiter moving

along an orbit with semi-major axis a = 0.02 AU is present, giving rise to large relativistic

effects. The gravitomagnetic field of such giant planets could be relevant for the dynamics

of the other bodies in the extrasolar system.

V. CONCLUSIONS

In this paper we have focused on the GM field produced by rotating rings of matter,

orbiting around a central body, regarded as a small perturbation of the leading gravitational

field of the central body. In particular, we have considered a thin circular ring, with constant

matter density, and calculated its field, in the form of power law, in the intermediate zone

between the central body and the ring, and also far away from the ring and the central body.

Then, we have used the lowest order expression of the GM field, both inside and outside

the ring, to calculate the corresponding perturbing acceleration on the Keplerian orbit of

a test particle, with arbitrary inclination with respect to the ring plane, thus extending

some previous results. As a possible application, we have evaluated the impact of the GM

perturbations on the Keplerian orbital elements, to make a comparison with the available

data in the Solar System: namely, on taking into account the data of the planetary ephemeris,

we have used the predicted perturbations of the orbital elements to give rough estimates

on the spin of ring-like structures. These results are preliminary: the simple model that

we have considered, in fact, can be used to obtain upper limits on the spin of the rings,

since we have not taken into account the other perturbations that are present. However we

suggest that, at least in principle, by means of a more realistic and systematic analysis of

the perturbations, it could be possibile to infer more information on the spin of ring-like

structures. Eventually, we suggest also that these effects could be relevant in extrasolar
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systems, where giants planets orbiting very close to the central star are present.
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[34] A. Ljubičić, B.A. Logan, Phys. Lett. A 172 (1992) 3.

[35] A. Camacho, D.W. Ahluwalia, Int. J. Mod. Phys. D 10 (2001) 9.

[36] L. Iorio, Class. Quant. Grav. 20 (2003) L5.

[37] J.F. Pascual-Sanchez, TELEPENSOUTH Project: Measurement of the Earth Gravitomag-

netic Field in a Terrestrial Laboratory. Current Trends in Relativistic Astrophysics, Edited

by L. Fernandez-Jambrina, L.M. Gonzalez-Romero, Lecture Notes in Physics, vol. 617, p.330,

2003

[38] G.E. Stedman, K.U. Schreiber, H.R. Bilger, Class. Quant. Grav. 20 (2003) 2527.

[39] L. Iorio, J. Geophys. Res. 167 (2006) 567.

[40] F. Bosi, G. Cella, A. Di Virgilio, A. Ortolan, A. Porzio, S. Solimeno, M. Cerdonio and J. P. Zen-

dri et al., Phys. Rev. D 84 (2011) 122002 [arXiv:1106.5072 [gr-qc]].

[41] M.L. Ruggiero, Galaxies 2015 (2015) 84-102

[42] A. Di Virgilio, M. Allegrini, A. Beghi, J. Belfi, N. Beverini, F. Bosi, B. Bouhadef and M. Cala-

mai et al., Comptes rendus - Physique 15 (2014) 866 [arXiv:1412.6901 [gr-qc]].

15

http://arxiv.org/abs/1105.3456
http://arxiv.org/abs/1106.5072
http://arxiv.org/abs/1412.6901


[43] M.L. Ruggiero, Int. J. Mod. Phys. D 24 (2015) 1550060 [arXiv:1502.01473[gr-qc]]

[44] L. Iorio, Earth Moon Planets 108 (2012) 189 [arXiv:1201.5307 [gr-qc]].

[45] J. Ramos-Caro, J. F. Pedraza, P. S. Letelier, Monthly Notices of the Royal Astronomical

Society 414 (2011) 3105.

[46] A. Fienga, J. Laskar, P. Kuchynka, H. Manche, G. Desvignes, M. Gastineau, I. Cognard, and

G. Theureau, Celestial Mechanics and Dynamical Astronomy 111 no. 3, (2011) 363.

[47] E.V. Pitjeva, N.P. Pitjev, Mon. Not. Roy. Astron. Soc. 432 (2013) 3431.

[48] N.P. Pitjev, E.V. Pitjeva, Astronomy Letters 39 (2013) 141.

[49] I. Ciufolini, J.A. Wheeler, Gravitation and Inertia, (Princeton: Princeton University Press)

(1995).

[50] H.C. Ohanian and R. Ruffini, Gravitation and Spacetime (New York: W.W. Norton and

Company) (1994).

[51] B. Mashhoon in: Reference Frames and Gravitomagnetism, edited by J.-F. Pascual-Sánchez,

L. Floria, A. San Miguel and F. Vicente (Singapore: World Scientific), (2001).

[52] B. Mashhoon in: The Measurement of Gravitomagnetism: A Challenging Enterprise, edited

by L. Iorio (Nova Science, New York) (2007), [arXiv:gr-qc/0311030].

[53] B. Mashhoon, Int. J. Mod. Phys. D 14 (2005) 2025.

[54] B. Mashhoon, F. Gronwald, H.I.M Lichtenegger, Lect. Notes Phys. 562 (2001) 83.

[55] D. Bini, C. Cherubini,C. Chicone, B. Mashhoon, Class. Quant. Grav. 25 (2008) 225014.

[56] B. Mashhoon, Phys. Lett. A 73 (1993) 347.

[57] J.D. Jackson, Classical Electrodynamics (New York: J. Wiley and Sons) (1999).
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