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We present a candidate quantum field theory of gravity with dynamical critical exponent equal to z ¼ 3

in the UV. (As in condensed-matter systems, zmeasures the degree of anisotropy between space and time.)

This theory, which at short distances describes interacting nonrelativistic gravitons, is power-counting

renormalizable in 3þ 1 dimensions. When restricted to satisfy the condition of detailed balance, this

theory is intimately related to topologically massive gravity in three dimensions, and the geometry of the

Cotton tensor. At long distances, this theory flows naturally to the relativistic value z ¼ 1, and could

therefore serve as a possible candidate for a UV completion of Einstein’s general relativity or an infrared

modification thereof. The effective speed of light, the Newton constant and the cosmological constant all

emerge from relevant deformations of the deeply nonrelativistic z ¼ 3 theory at short distances.
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I. INTRODUCTION

In recent decades, string theory has become the domi-
nant paradigm for addressing questions of quantum grav-
ity. There are many indications suggesting that string
theory is sufficiently rich to contain the answers to many
puzzles, such as the information paradox or the statistical
interpretation of black hole entropy. Yet, string theory is
also a rather large theory, possibly with a huge landscape of
vacua, each of which leads to a scenario for the history of
the universe which may or may not resemble ours. Given
this richness of string theory, it might even be logical to
adopt the perspective in which string theory is not a can-
didate for a unique theory of the universe, but represents
instead a natural extension and logical completion of
quantum field theory. In this picture, string theory would
be viewed—just as quantum field theory—as a powerful
technological framework, and not as a single theory.

If string theory is such an apparently vast structure, it
seems natural to ask whether quantum gravitational phe-
nomena in 3þ 1 spacetime dimensions can be studied in a
self-contained manner in a ‘‘smaller’’ framework. A useful
example of such a phenomenon is given by Yang-Mills
gauge theories in 3þ 1 dimensions. While string theory is
clearly a powerful technique for studying properties of
Yang-Mills theories, their embedding into string theory is
not required for their completeness: In 3þ 1 dimensions,
they are UV complete in the framework of quantum field
theory.

In analogy with Yang-Mills, we are motivated to look for
a ‘‘small’’ theory of quantum gravity in 3þ 1 dimensions,
decoupled from strings. One attempt to construct such a
small theory is offered by loop quantum gravity. In this
paper, we present a new strategy for addressing this prob-
lem. Compared to the previous approaches to quantum
gravity, the novelty of our approach is that it takes advan-
tage of theoretical concepts developed in recent decades in

condensed-matter physics, in particular in the theory of
quantum critical phenomena.
In the context of quantum field theory, the main obstacle

against perturbative renormalizability of Einstein’s theory
of gravity in 3þ 1 dimensions is well understood (see,
e.g., [1] for an excellent introduction). The main problem is
that the gravitational coupling constant GN is dimension-
ful, with a negative dimension ½GN� ¼ �2 in mass units.
The Feynman rules also involve the graviton propagator,
which scales with the four-momentum k� � ð!;kÞ sche-
matically as

1

k2
; (1)

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � k2

p
. At increasing loop orders, the

Feynman diagrams of this theory require counterterms of
ever-increasing degree in curvature. The resulting theory
can still be treated as an effective field theory, but it
requires a UV completion. Usually, this completion is
assumed to take the form of string or M-theory.
An improved UV behavior can be obtained if relativistic

higher-derivative corrections are added to the Lagrangian
(see [2] for a review of higher-derivative gravity). Terms
quadratic in curvature not only yield new interactions (with
a dimensionless coupling), they also modify the propaga-
tor. Schematically, we get

1

k2
þ 1

k2
GNk

4 1

k2
þ 1

k2
GNk

4 1

k2
GNk

4 1

k2
þ � � �

¼ 1

k2 �GNk
4
: (2)

At high energies, the propagator is dominated by the 1=k4

term. This cures the problem of UV divergences, and in
fact the calculations in Euclidean signature suggest that the
theory exhibits asymptotic freedom. However, this cure
simultaneously produces a new pathology, which prevents
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this modified theory from being a solution to the problem
of quantum gravity: The resummed propagator (2) exhibits
two poles:

1

k2 �GNk
4 ¼ 1

k2
� 1

k2 � 1=GN

: (3)

One describes candidate massless gravitons, but the other
corresponds to ghost excitations and implies violations of
unitarity, at least in perturbation theory.

Recently, a new class of gravity models was introduced
in [3]. These models exhibit scaling properties which are
anisotropic between space and time. Such an anisotropic
scaling is common in condensed-matter systems, where the
degree of anisotropy between space and time is character-
ized by the ‘‘dynamical critical exponent’’ z. (Relativistic
systems automatically satisfy z ¼ 1 as a consequence of
Lorentz invariance.) In models of gravity with anisotropic
scaling, the problem of renormalizability of gravity is put
in a new context. Consider, for example, the case of gravity
with z ¼ 2 studied in [3]. As a consequence of the non-
relativistic value of z, the dimension of the gravitational
coupling constant changes. The critical dimension in
which the coupling is dimensionless shifts to 2þ 1, mak-
ing the system a suitable candidate for describing the
world-volume theory on a bosonic membrane.

The techniques used in the construction of gravity mod-
els with anisotropic scaling in [3] closely parallel methods
developed in the theory of dynamical critical systems [4,5]
and quantum criticality [6]. The prototype of the class of
condensed-matter models relevant here is the theory of a
Lifshitz scalar in Dþ 1 dimensions [7,8], first proposed as
a description of tricritical phenomena involving spatially
modulated phases (and reviewed in [3,9], see also [10,11]).
The action of the Lifshitz scalar is

S ¼
Z

dtdDxfð _�Þ2 � ð��Þ2g; (4)

where the overdot denotes the time derivative, and � �
@i@i is the spatial Laplacian. This action describes a free-
field fixed point with anisotropic scaling and z ¼ 2. At this
fixed point, we can add a relevant deformation to the
action,

� c2
Z

dtdDx@i�@i�: (5)

Under the influence of this deformation, the theory flows in
the infrared to z ¼ 1, with Lorentz invariance emerging as
an accidental symmetry at long distances. Note that from
the short-distance point of view, the emergent long-
distance speed of light c originates from the dimensionful
coupling constant associated with the relevant deformation
(5) of the z ¼ 2 fixed point [12].

In our approach to quantum gravity, we consider systems
whose scaling at short distances exhibits a strong anisot-
ropy between space and time, with z > 1. This will im-

prove the short-distance behavior of the theory. The price
we have to pay is that our theory will not exhibit relativistic
invariance at short distances. In fact, many developments
in string theory suggest that giving up Lorentz invariance
as a fundamental symmetry may not be so unreasonable.
Indeed, it is difficult to imagine how Lorentz symmetry can
survive as a fundamental symmetry in a framework in
which the space itself is viewed as an emergent property
of the theory. In string theory, quantum mechanics appears
to be more fundamental than the symmetries of special or
general relativity. As a result, we adopt the perspective that
Lorentz symmetry should appear as an emergent symmetry
at long distances, but can be fundamentally absent at high
energies.
Despite being fundamentally nonrelativistic at short dis-

tances, our models of gravity with anisotropic scaling will
describe propagating polarizations of the metric. Restoring
the explicit factors of the speed of light, the propagator for
such gravitons will schematically take the form

1

!2 � c2k2 �Gðk2Þz ; (6)

where G is a coupling constant. (Generally, the denomina-
tor will also contain other powers of k2 between 1 and z,
which we omit here to keep this introductory discussion
simple.)
At high energies, the propagator is dominated by the

anisotropic term 1=ð!2 �Gðk2ÞzÞ. The high-energy be-
havior of the theory is controlled by a free-field fixed point
with anisotropic scaling. For a suitably chosen z, this
modification improves the short-distance behavior, shifting
the critical dimension at which the theory is power-
counting renormalizable. The ck2 term in (6) becomes
important only at lower energies: This term originates
from a relevant deformation of the anisotropic UV fixed
point, with c a dimensionful coupling. The propagator (6)
is reproduced by the resummation of the high-energy
propagator in the theory deformed by this relevant opera-
tor,

1

!2 � c2k2 �Gðk2Þz

¼ 1

!2 �Gðk2Þz þ
1

!2 �Gðk2Þz c
2k2 1

!2 �Gðk2Þz þ � � � :
(7)

At low energies, the theory naturally flows to z ¼ 1. The
relativistic scaling of space and time is ‘‘accidentally re-
stored,’’ in the technical sense of renormalization theory. In
this low-energy regime, it is natural to adopt the perspec-
tive of a theory with relativistic scaling and absorb c into
the redefinition of the time coordinate, effectively setting
c ¼ 1. From the perspective of the z ¼ 1 IR fixed point, the
higher-curvature terms which dominate the UV fixed point
represent small corrections to the z ¼ 1 scaling, and the
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propagator (6) can be interpreted as

1

!2 � k2 �Gðk2Þz ¼ 1

!2 � k2
þ 1

!2 � k2
Gðk2Þz

� 1

!� k2
þ � � � : (8)

Unlike in relativistic higher-derivative theories mentioned
above, higher time derivatives are not generated, and the
usual problem of higher-derivative gravities with perturba-
tive unitarity is eliminated.

In this paper, we use these ideas to formulate a theory of
gravity which would be power-counting renormalizable in
3þ 1 dimensions. Given the arguments above, this implies
that z ¼ 3. We develop the theory of gravity at such a
‘‘z ¼ 3 Lifshitz point’’ in Sec. II. Under the additional
condition of ‘‘detailed balance,’’ this theory turns out to
be intimately related to topological gravity in three dimen-
sions and the geometry of the Cotton tensor. We discuss
various properties of the z ¼ 3 UV fixed points, and study
the relevant deformations which induce the flow at low
energies to z ¼ 1, the value of the dynamical exponent in
general relativity.

In addition to z ¼ 3 gravity in 3þ 1 dimensions and its
infrared flow to z ¼ 1, in Sec. III we briefly discuss the
case of z ¼ 4 in 4þ 1 and 3þ 1 dimensions. We also point
out that another example of gravity with z � 1 has already
appeared in the literature, under the name of ‘‘ultralocal
theory’’ of gravity. Section III D contains a brief discussion
of possible applications of anisotropic models of gravity in
the context of AdS=CFT correspondence.

II. QUANTUM GRAVITY IN 3þ 1 DIMENSIONS AT
A z ¼ 3 LIFSHITZ POINT

Our aim is to construct a theory of gravity in 3þ 1
dimensions with anisotropic scaling using the traditional
framework of quantum field theory, i.e., path-integral
methods or canonical quantization. Such an anisotropic
theory of gravity, characterized by dynamical critical ex-
ponent z ¼ 2, was introduced in [3]. The main novelty of
the present paper is that we are now interested in the case of
z ¼ 3, which will lead to a power-counting renormalizable
theory in 3þ 1 dimensions. Our construction parallels that
of [3], which also contains additional details involving the
general class of gravity models with anisotropic scaling.

A. Fields, scalings, and symmetries

The quantum fields of our theory will include the spatial
metric field gijðx; tÞ, which upon quantization describes

propagating, interacting gravitons. In this paper, we will
define this theory on a fixed spacetime manifold M, and
will not consider the possibility of summing over distinct
topologies of spacetime. On M, we will use coordinates

ðt;xÞ � ðt; xiÞ; i ¼ 1; . . .D; (9)

with D denoting the dimension of space. For most of the
paper, we will be interested in the case of D ¼ 3, but some
of our arguments will be more instructive if we keep D
arbitrary. Our notation throughout will be strictly nonrela-
tivistic, unless stated otherwise. For example, the covariant
derivative ri is defined with respect to the spatial metric
gij, and we use R

i
jk‘, Rij � Rk

ikj, and R � Ri
i to denote the

Riemann tensor, the Ricci tensor, and the Ricci scalar of
the spatial metric gij and its associated connection ri.

1. Anisotropic scaling in gravity

The theory will be constructed so that it is compatible
with anisotropic scaling with dynamical critical exponent
z,

x ! bx; t ! bzt: (10)

In order for the theory to be power-counting renormaliz-
able in 3þ 1 spacetime dimensions, we will choose z ¼ 3,
but for now we keep z arbitrary.
The scaling in (10) is of course not diffeomorphism

invariant (nor is it invariant under the gauge symmetries
that we will impose on our system below), and should be
interpreted in the following sense: The theory will be
designed such that it has a solution which describes an
ultraviolet free-field fixed point with scaling properties
given by (10). At this fixed point, we will measure canoni-
cal dimensions of all objects in the units of spatial mo-
menta. In particular, the spacetime anisotropy is reflected
in the dimensions of time and space coordinates,

½x� ¼ �1; ½t� ¼ �z; (11)

at this ultraviolet fixed point.
In addition to the spatial metric gij [of signature (þ

� � � þ )], the field content of the theory will be given by a
spatial vector Ni, and a spatial scalar N. The fields N and
Ni are essentially the ‘‘lapse’’ and ‘‘shift’’ variables famil-
iar from general relativity, where they appear in the process
of the 3þ 1 split of the four-dimensional spacetime metric.
(The precise way in which these variables are related to the
full spacetime metric can be found in [3].) Using such
ADM-like variables is particularly natural because of the
fundamentally nonrelativistic nature of our system.
In the case of general z, we postulate the classical

scaling dimensions of the fields to be

½gij� ¼ 0; ½Ni� ¼ z� 1; ½N� ¼ 0: (12)

In the specific case z ¼ 3 of interest here, we have ½Ni� ¼
2, while N and gij are dimensionless.

2. Foliation-preserving diffeomorphisms

In the anisotropic scaling (10), the time dimension plays
a privileged role. Wewill encode this special role of time in
the theory by assuming that in addition to being a differ-
entiable manifold, our spacetimeM carries an extra struc-
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ture—that of a codimension-one foliation [13]. This folia-
tion structure F is to be viewed as a part of the topological
structure of M, before any notion of a Riemannian metric
is introduced. The leaves of this foliation are the hyper-
surfaces of constant time. Coordinate transformations
adapted to the foliation are of the form

~x i ¼ ~xiðxj; tÞ; ~t ¼ ~tðtÞ: (13)

Thus, the transition functions are foliation-preserving dif-
feomorphisms. We will denote the group of foliation-
preserving diffeomorphisms of M by DiffF ðMÞ. In the

local adapted coordinate system, the infinitesimal genera-
tors of DiffF ðMÞ are given by

�xi ¼ �iðt;xÞ; �t ¼ fðtÞ: (14)

We will simplify our presentation by further assuming that
the spacetime foliation is topologically given by

M ¼ R� �; (15)

with all leaves of the foliation topologically equivalent to a
fixed D-dimensional manifold �.

Differential geometry of foliations is a well-developed
branch of mathematics, and represents the proper mathe-
matical setting for the class of gravity theories studied
here. We will not review the geometric theory of foliations
in any detail here, instead referring the reader to [14–16].
For example, there are two natural classes of functions that
can be defined on a foliation: In addition to functions that
are allowed to depend on all coordinates, there is a special
class of functions which take constant values on each leaf
of the foliation. We will call such functions ‘‘projectable.’’

Foliations can be equipped with a Riemannian structure.
A Riemannian structure compatible with our codimension-
one foliation ofM consists of three objects: gij,Ni, andN,

with N a projectable function; both N and Ni transform as
vectors under the reparametrizations of time. As pointed
out above, these fields can be viewed as a decomposition of
a Riemannian metric on M into the metric gij induced

along the leaves, the shift variableNi, and the lapse fieldN.
The generators of DiffF ðMÞ act on the fields via

�gij ¼ @i�
kgjk þ @j�

kgik þ �k@kgij þ f _gij;

�Ni ¼ @i�
jNj þ �j@jNi þ _�jgij þ _fNi þ f _Ni;

�N ¼ �j@jN þ _fN þ f _N:

(16)

In [3], these transformation rules were derived by starting
with the action of spacetime diffeomorphisms on the rela-
tivistic metric in the ADM decomposition, and taking the
c ! 1 limit. We also saw in [3] that Ni and N can be
naturally interpreted as gauge fields associated with the
time-dependent spatial diffeomophisms and the time rep-
arametrizations, respectively. In particular, since N is the
gauge field associated with the time reparametrization fðtÞ,

it appears natural to restrict it to be a projectable function
on the spacetime foliation F .
If we wish instead to treat N as an arbitrary function of

spacetime, we have essentially two options. First, we can
allow an arbitrary spacetime-dependent N as a background
field, but integrate only over space-independent fluctua-
tions of N in the path integral. As the second option, we
will encounter situations in which N must be allowed to be
a general function of spacetime, because it participates in
an additional gauge symmetry. When that happens, we will
integrate over the fluctuations of N in the path integral. An
example of such an extra symmetry is the invariance under
anisotropic Weyl transformations discussed in Sec. II C 3
below, and in Sec. 5.2 of [3].

B. Lagrangians

We formally define our quantum field theory of gravity
by a path integral,

Z
DgijDNiDN expfiSg: (17)

Here DgijDNiDN denotes the path-integral measure

whose proper treatment involves the Faddeev-Popov gauge
fixing of the gauge symmetry DiffF ðMÞ, and S is the most

general action compatible with the requirements of gauge
symmetry (and further restricted by unitarity). As is often
the case, this path integral is interpreted as the analytic
continuation of the theory which has been Wick rotated to
imaginary time � ¼ it.
Our next step is to construct the action S compatible with

our symmetry requirements. For simplicity, wewill assume
that all global topological effects can be ignored, freely
dropping all total derivative terms and not discussing pos-
sible boundary terms in the action. This is equivalent to
assuming that our space � is compact and its tangent
bundle topologically trivial. The refinement of our con-
struction which takes into account global topology and
boundary terms is outside of the scope of the present work.

1. The kinetic term

The kinetic term in the action will be given by the most
general expression which is (i) quadratic in first time
derivatives _gij of the spatial metric, and (ii) invariant under

the gauge symmetries of foliation-preserving diffeomor-
phisms DiffF ðMÞ. The object that transforms covariantly

under DiffF ðMÞ is not _gij, but instead the second funda-

mental form

Kij ¼ 1

2N
ð _gij �riNj �rjNiÞ: (18)

This tensor measures the extrinsic curvature of the leaves
of constant time in the spacetime foliation F . In terms of
Kij and its trace K � gijKij, the kinetic term is given by
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SK ¼ 2

�2

Z
dtdDx

ffiffiffi
g

p
NðKijK

ij � �K2Þ: (19)

This kinetic term contains two coupling constants: � and �.
The dimension of � depends on the spatial dimension D:
Since the dimension of the volume element is

½dtdDx� ¼ �D� z; (20)

and each time derivative contributes ½@t� ¼ z, the scaling
dimension of � is

½�� ¼ z�D

2
: (21)

As intended, this coupling will be dimensionless in 3þ 1
spacetime dimensions if z ¼ 3.

The presence of an additional, dimensionless coupling �
reflects the fact that each of the two terms in (19) is
separately invariant under DiffF ðMÞ. In other words, the

requirement of DiffF ðMÞ symmetry allows the general-

ized De Witt ‘‘metric on the space of metrics’’

Gijk‘ ¼ 1
2ðgikgj‘ þ gi‘gjkÞ � �gijgk‘ (22)

to contain a free parameter �. It is this generalized De Witt
metric that defines the form quadratic in Kij which appears

in the kinetic term (see [3]).
In general relativity, the requirement of invariance under

all spacetime diffeomophisms forces � ¼ 1. In our theory
with DiffF ðMÞ gauge invariance, � represents a dynami-

cal coupling constant, susceptible to quantum corrections.
It is interesting to note that the kinetic term SK is

universal, and independent of both the desired value of z
and the dimension of spacetime. The only place where the
value of z shows up in SK is in the scaling dimension of the
integration measure (20), which in turn determines the
dimension (21) of �. The main difference between theories
with different zwill be in the pieces of the action which are
independent of time derivatives.

2. The potential

The logic of effective field theory suggests that the
complete action should contain all terms compatible with
the imposed symmetries, which are of dimension equal to
or less than the dimension of the kinetic term, ½KijK

ij� ¼
2z. In addition to SK, which contains the two independent
terms of second order in the time derivatives of the metric,
the general action will also contain terms that are indepen-
dent of time derivatives. Since our framework is funda-
mentally nonrelativistic, we will refer to all terms in the
action which are independent of the time derivatives (but
do depend on spatial derivatives) simply as the ‘‘potential.’’

There is a simple way to construct potential terms in-
variant under our gauge symmetry DiffF ðMÞ: Starting

with any scalar function V½gij� which depends only on

the metric and its spatial derivatives, the following poten-
tial term,

SV ¼
Z

dtdDx
ffiffiffi
g

p
NV½gij�; (23)

will be invariant under DiffF ðMÞ.
Throughout this paper, our strategy is to focus first on

the potential terms of the same dimension as ½KijK
ij�, at

first ignoring all possible relevant terms of lower dimen-
sions in V. This is equivalent to focusing first on the high-
energy limit, where such highest-dimension terms domi-
nate. Once the high-energy behavior of the theory is under-
stood, one can restore the relevant terms, and study the
flows of the theory away from the UV fixed point that such
relevant operators induce in the infrared.
With our choice of D ¼ 3 and z ¼ 3, there are many

examples of terms in V of the same dimension as the
kinetic term in (19). Some such terms are quadratic in
curvature,

rkRijrkRij; rkRijriRjk; R�R; Rij�Rij;

(24)

they will not only add interactions but also modify the
propagator. Other terms, such as

R3; Ri
jR

j
kR

k
i ; RRijR

ij; (25)

are cubic in curvature, and therefore represent pure inter-
acting terms. Some of the terms of the correct dimension
are related by the Bianchi identity and other symmetries of
the Riemann tensor, or differ only up to a total derivative.
Additional constraints on the possible values of the cou-
plings will likely follow from the requirements of stability
and unitarity of the quantum theory. However, the list of
independent operators appears to be prohibitively large,
implying a proliferation of couplings which makes explicit
calculations rather impractical.

C. UV theory with detailed balance

In order to reduce the number of independent coupling
constants, we will impose an additional symmetry on the
theory. The reason for this restriction is purely pragmatic,
to limit the proliferation of independent couplings men-
tioned in the previous paragraph. The way in which this
restriction will be implemented, however, is very reminis-
cent of methods used in nonequilibrium critical phe-
nomena and quantum critical systems. As a result, it is
natural to suspect that there might also be conceptual
reasons behind restricting the general class of classical
theories to conform to this framework in systems with
gravity as well.
Wewill require the potential term to be of a special form,

SV ¼ �2

8

Z
dtdDx

ffiffiffi
g

p
NEijGijk‘E

k‘; (26)

and will further demand that Eij itself follow from a varia-
tional principle,
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ffiffiffi
g

p
Eij ¼ �W½gk‘�

�gij
(27)

for some action W. The two copies of Eij in (26) are
contracted by Gijk‘, the inverse of the De Witt metric

(22). Loosely borrowing terminology from nonequilibrium
dynamics, we will say that theories whose potential is of
the form (26) with (27) for some W satisfy the ‘‘detailed
balance condition.’’

In the context of condensed matter, the virtue of the
detailed balance condition is in the simplification of the
renormalization properties. Systems which satisfy the de-
tailed balance condition with some D-dimensional action
W typically exhibit a simpler quantum behavior than a
generic theory inDþ 1 dimensions. Their renormalization
can be reduced to the simpler renormalization of the asso-
ciated theory described by W, followed by one additional
step—the renormalization of the relative couplings be-
tween the kinetic and potential terms in S. Examples of
this phenomenon include scalar fields [17] or Yang-Mills
gauge theories [9,18]. Investigating the precise circum-
stances under which this ‘‘quantum inheritance principle’’
holds for gravity systems will be important for understand-
ing the quantum properties of gravity models with non-
relativistic values of z.

Since we are primarily interested in theories which are
spatially isotropic, W must be the action of a relativistic
theory in Euclidean signature. (Obvious generalizations to
theories with additional spatial anisotropies are clearly
possible, but will not be pursued in this paper.) In [3], a
theory of gravity in Dþ 1 dimensions satisfying the de-
tailed balance condition was constructed, with W the
Einstein-Hilbert action

W ¼ 1

�2
W

Z
dDx

ffiffiffi
g

p ðR� 2�WÞ: (28)

The potential SV of this theory takes the form

SV ¼ �2

8�4
W

Z
dtdDx

ffiffiffi
g

p
N

�
Rij � 1

2
Rgij þ�Wg

ij

�

� Gijk‘

�
Rk‘ � 1

2
Rgk‘ þ�Wg

k‘

�
: (29)

At short distances, the curvature term inW dominates over
�W , and the resulting potential SV is quadratic in the
curvature tensor: The theory exhibits anisotropic scaling
with z ¼ 2 in the UV. Turning on �W inW leads to lower-
dimension terms in SV which dominate at long distances,
and the theory undergoes a classical flow to z ¼ 1 in the
IR. The anisotropic scaling in the UV shifts the critical
dimension of this theory, which is now renormalizable by
power counting in 2þ 1 dimensions. In dimensions higher
than 2þ 1, the theory with potential (29) is merely a low-
energy effective field theory, and can be expected to break
down at the scale set by the dimensionful coupling �W .

Here we are interested in constructing a theory which
satisfies detailed balance, and exhibits the short-distance
scaling with z ¼ 3 leading to power-counting renormaliz-
ability in 3þ 1 dimensions. Therefore, Eij must be of third
order in spatial derivatives. As it turns out, there is a unique
candidate for such an object: the Cotton tensor

Cij ¼ "ik‘rkðRj
‘ � 1

4R�
j
‘Þ: (30)

This tensor not only exhibits all the required symmetries, it
also follows from a variational principle.

1. Properties of the Cotton tensor

The Cotton tensor enjoys several symmetry properties
which may not be immediately obvious from its definition
in (30):
(i) It is symmetric and traceless,

Cij ¼ Cji; gijC
ij ¼ 0: (31)

(ii) It is transverse (or covariantly conserved),

riC
ij ¼ 0: (32)

(iii) It is conformal, with conformal weight�5=2. More
precisely, under local spatial Weyl transformations

gij ! expf2�ðxÞggij; (33)

it transforms as

Cij ! expf�5�ðxÞgCij; (34)

with no terms containing derivatives of �ðxÞ.
The Cotton tensor plays an important role in geometry.

Recall that in dimensionsD> 3, the property of conformal
flatness of a Riemannian metric is equivalent to the vanish-
ing of the Weyl tensor Cijk‘, defined as the completely

traceless part of the Riemann tensor:

Cijk‘ ¼ Rijk‘ � 1

D� 2
ðgikRj‘ � gi‘Rjk � gjkRi‘

þ gj‘RikÞ þ 1

ðD� 1ÞðD� 2Þ ðgikgj‘ � gi‘gjkÞR:
(35)

In D ¼ 3, however, the Weyl tensor vanishes identically,
and another object has to take over the role in the criterion
of conformal flatness of 3-manifolds. This object is the
Cotton tensor, of third order in spatial derivatives.
The Cotton tensor also plays an important role in phys-

ics. In the initial value problem of the Hamiltonian for-
mulation of general relativity, it is natural to ask what set of
initial conditions can be freely specified for the metric and
its canonical momenta, without violating the constraint
part of Einstein’s equations. It was shown by York [19–
21] that the Cotton tensor plays a central role in answering
this question. The correct initial conditions are set by
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specifying the values of two tensors with the symmetries of
the Cotton tensor: One related to the initial value for the
conformal structure of the spatial metric, and the other
specifying the initial value of the conjugate momenta.
For this reason, Cij is often referred to as the ‘‘Cotton-
York tensor’’ in the physics literature.

Lastly, the Cotton tensor follows from a variational
principle, with action

W ¼ 1

w2

Z
�
!3ð�Þ: (36)

Here w2 is a dimensionless coupling, and

!3ð�Þ ¼ Trð� ^ d�þ 2
3� ^ � ^ �Þ

� "ijkð�m
i‘@j�

‘
km þ 2

3�
n
i‘�

‘
jm�

m
knÞd3x (37)

is the gravitational Chern-Simons term, with the
Christoffel symbols �i

jk treated as known functionals of

the metric gij, and not as independent variables. The

variation of (36) with respect to gij yields the vanishing

of the Cotton tensor as the equations of motion.
Without any loss of generality, we will assume that the

coupling w2 is positive; its sign can be changed by flipping
the orientation of the 3-manifold �. Unlike in Chern-
Simons gauge theories with a compact gauge group, the
coupling constant of Chern-Simons gravity in 2þ 1 di-
mensions is not quantized, as a result of the absence of
large gauge transformations. In our framework, however,
we are only interested in the action of a theory in three
dimensions in ‘‘imaginary time,’’ and require that this
Euclidean action be real. This is to be contrasted with the
conventional interpretation of the three-dimensional the-
ory, which involves analytic continuation to real time in
2þ 1 dimensions, and imposes slightly different reality
conditions on the action.

2. z ¼ 3 gravity with detailed balance

Having reviewed some of the properties of the Cotton
tensor, we can now write down the full action of our z ¼ 3
gravity theory in 3þ 1 dimensions:

S ¼
Z

dtd3x
ffiffiffi
g

p
N

�
2

�2
ðKijK

ij � �K2Þ � �2

2w4
CijC

ij

�

¼
Z

dtd3x
ffiffiffi
g

p
N

�
2

�2
ðKijK

ij � �K2Þ � �2

2w4

�
�
riRjkriRjk �riRjkrjRik � 1

8
riRriR

��
:

(38)

As a result of the uniqueness of the Cotton tensor, the
action given in (38) describes the most general z ¼ 3
gravity satisfying the detailed balance condition, modulo
the possible addition of relevant terms, which will be
discussed in Sec. II E.

We can demonstrate that after the Wick rotation to
imaginary time, this action can be written—up to a total
derivative—as a sum of squares,

S ¼ i
Z

d�d3x
ffiffiffi
g

p
N

�
2

�2
ðKijK

ij þ �K2Þ þ �2

2w4
CijC

ij

�

¼ 2i
Z

d�d3x
ffiffiffi
g

p
N

�
1

�
Kij � �

2w2
Cij

�

�Gijk‘

�
1

�
Kk‘ � �

2w2
Ck‘

�
; (39)

First, CijG
ijk‘Ck‘ ¼ CijC

ij because Cij is traceless. As to

the cross terms KijG
ijk‘Ck‘, they can be written as a total

derivative,

1

w2

Z
d�d3x

ffiffiffi
g

p
NKijG

ijk‘Ck‘

¼ 1

2w2

Z
d�d3x

ffiffiffi
g

p ð _gij �riNj �rjNiÞCij

¼
Z

d�d3x
ffiffiffi
g

p �
_gij

�W

�gij
þ 1

w2
riðNjC

ijÞ
�

¼
Z

d�d3x

�
_Lþ 1

w2
@ið ffiffiffi

g
p

NjC
ijÞ
�
;

where we used the transverse property (32) of Cij, andL is

the Lagrangian density of the action W in (36).
Introducing an auxiliary field Bij, it is convenient to

rewrite the imaginary-time action as

S ¼ 2i
Z

d�d3x
ffiffiffi
g

p
N

�
Bij

�
1

�
Kij � �

2w2
Cij

�

� BijGijk‘B
k‘

�
: (40)

This form of the action, with all terms at least linear in the
auxiliary field Bij and with the linear term proportional to a
gradient flow equation, is symptomatic of theories satisfy-
ing the detailed balance condition in the context of
condensed-matter systems, in particular, in the theory of
quantum and dynamical critical phenomena [4,5], stochas-
tic quantization [22,23], and nonequilibrium statistical
mechanics [24].
In that condensed-matter context, the property of de-

tailed balance often has one interesting implication. If a
quantum critical system in Dþ 1 dimensions satisfies de-
tailed balance with some W in D dimensions, the partition
function of the theory described by W yields a natural
solution of the Schrödinger equation of the theory in Dþ
1 dimensions, which plays the role of a candidate ground-
state wave function. Similarly, in nonequilibrium statistical
mechanics and dynamical critical phenomena, the corre-
sponding statement is essentially the Wick rotation of this
correspondence to imaginary time: The partition function
of the D-dimensional theory defined by W represents an
equilibrium state solution of the dynamical theory with
detailed balance in Dþ 1 dimensions.
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In our case, this correspondence formally suggests that

�0½gijðxÞ� ¼ exp

�
� 1

2w2

Z
Tr

�
� ^ d�þ 2

3
� ^ � ^ �

��
(41)

is a solution of the Schrödinger equation of the theory in
canonical quantization. One might be tempted to consider
(41) a candidate for the ground-state wave function of
quantum gravity with z ¼ 3. However, it becomes quickly
obvious that (41) is an unphysical solution: W is not
bounded from below, �0 is non-normalizable, and any
attempts to build a spectrum of excited states above this
hypothetical ground state lead inevitably to pathologies.

This is to be compared to relativistic Yang-Mills gauge
theory in 3þ 1 dimensions, which is in fact surprisingly
similar to our z ¼ 3 theory of gravity, in at least two
respects:

(i) it also satisfies detailed balance,
(ii) the corresponding action W in three dimensions is

also given by the Chern-Simons action,
R
!3ðAÞ,

with A the Yang-Mills one-form gauge field.
Similarly to (41), the candidate ground-state wave func-

tion

�0½A� � exp

�
�

Z
!3ðAÞ

�
(42)

is formally a solution of the Schrödinger equation for
Yang-Mills theory in 3þ 1 dimensions, but an equally
unphysical one. Avery clear and conclusive analysis show-
ing why (42) is unphysical can be found in [25,26]. The
fate of the formal solution (41) of the gravity theory is the
same as the fate of (42) in Yang-Mills: The failure for (41)
to be the true ground-state wave function is not a flaw of the
theory, it just means that—just as in 3þ 1 dimensional
Yang-Mills theory—the true ground-state wave function is
much harder to find.

In passing, it is amusing to note that essentially the same
expression �0 given in (41) was proposed some time ago
as a candidate ground-state wave function of loop quantum
gravity, where it is known as the ‘‘Kodama wave function.’’
Again, a long list of conclusive reasons why this cannot
possibly be the physical wave function of quantum gravity
can be found in [25].

3. Anisotropic Weyl invariance at � ¼ 1=3

The fact that the Cotton tensor is conformal suggests
that, under special circumstances, the classical action of
z ¼ 3 gravity in 3þ 1 may be invariant under suitably
defined local scale transformations. As we now show,
this is indeed the case: With � ¼ 1=3, our z ¼ 3 theory
develops a classical anisotropic Weyl invariance, similar to
that observed in [3] in the case of the z ¼ 2 theory in 2þ 1
dimensions with � ¼ 1=2.

To see that, we decompose the metric by pulling out the
overall scale factor,

gij ¼ g1=3~gij ¼ e�~gij; Ni ¼ e� ~Ni; (43)

where det~gij ¼ 1. With this decomposition, the z ¼ 3

action (38) becomes

S ¼ 1

2

Z
dtd3x

�
e3�=2

�2N
½ð _~gij � ~ri

~Nj � ~rj
~NiÞ

� ð~gik~gj‘ � �~gij~gk‘Þð _~gk‘ � ~rk
~N‘ � ~r‘

~NkÞ
þ 3ð1� 3�Þð _�� ~gij ~Ni@j�Þ2
� 4ð1� 3�Þ~ri

~Nj~g
ijð _�� ~gij ~Ni@j�Þ�

� �2

w4

N

e3�=2
~Cij~gik~gj‘ ~C

k‘

�
; (44)

where ~ri is the covariant derivative associated with ~gij, ~C
ij

is the Cotton tensor of ~gij, and we used the conformal

property ~Cij ¼ e5�=2Cij of the Cotton tensor which follows
from (34).
By inspection, the action (44) will be invariant under

local Weyl transformations of the metric

gij ! expf2�ðt;xÞggij; (45)

if we allow the Weyl rescalings to act on N and Ni by

N ! expf3�ðt;xÞgN; Ni ! expf2�ðt;xÞgNi; (46)

and if we also set � ¼ 1=3. This conformal choice of �
eliminates all terms with derivatives of� in (44). Note that,
with the addition of the new gauge symmetry (45) and (46)
to DiffF ðMÞ, the lapse field N can no longer be a project-

able function on the foliation, and must be allowed to
depend on xi as well.
It is reassuring to find that the spacetime-dependent

anisotropic Weyl transformations (45) and (46) in fact
represent the local version of the rigid anisotropic scaling
(10) with dynamical exponent z ¼ 3. To see that, recall
that N, Ni, and gij can be reassembled into a spacetime

metric in 3þ 1 dimensions, with g00 ��N2. The scaling
rules (46) that we found by requiring the Weyl invariance
of the kinetic term then imply g00 ! expf6�ðt;xÞgg00. In
the flat background given by N ¼ 1, Ni ¼ 0, and gij the

flat Euclidean metric, the Weyl transformations with con-
stant � reduce precisely to the anisotropic scaling (10)
with the value of the dynamical critical exponent z ¼ 3,
which was the starting point of our construction of gravity
at a z ¼ 3 Lifshitz point.
Quantum corrections can be expected to generate viola-

tions of local anisotropic Weyl invariance. Lessons from
relativistic models suggest that such conformal anomalies
vanish in theories with a sufficient degree of supersymme-
try, and it should be interesting to investigate the conditions
which lead to similar cancellations of conformal anomalies
in the nonrelativistic models.
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D. At the free-field fixed point

The action (38) of the z ¼ 3 theory with detailed balance
contains three dimensionless coupling constants: �, �, and
w. However, only one of them, w, controls the strength of
interactions. The noninteracting limit corresponds to send-
ing w ! 0, while keeping � and the ratio

� ¼ �

w
(47)

fixed. This limit yields a two-parameter family of free-field
fixed points, parametrized by � and �.

In preparation for the study of the full interacting theory,
it is useful to first investigate the properties of this family of
free-field fixed points. The linearization of the z ¼ 3 the-
ory is performed in exactly the same way as in [3] for the
analogous case of the z ¼ 2 gravity and we will therefore
be relatively brief, referring the reader to [3] for further
details.

We expand the theory in small fluctuations hij, n, and ni
around the flat background,

gij � �ij þ whij; N � 1þ wn; Ni � wni:

(48)

The reference background is a solution of the equations of
motion of the z ¼ 3 theory (38). Keeping only quadratic
terms in the action, n drops out from the theory. A natural
gauge choice is

ni ¼ 0: (49)

This fixes most of the DiffF ðMÞ gauge symmetry, leaving

time-independent spatial diffeomorphisms Diffð�Þ un-
fixed. The residual Diffð�Þ gauge symmetry can be con-
veniently fixed by setting

@ihij � �@jh ¼ 0; (50)

where h � hii. Imposing this condition at some fixed time
slice t ¼ t0 effectively fixes the residual Diffð�Þ invari-
ance. The Gauss constraint

@i _hij � �@j _h ¼ 0 (51)

(which follows from varying the original action with re-
spect to ni) then ensures that (50) stays valid at all times.

In order to diagonalize the linearized equations of mo-
tion and read off the dispersion relation of the propagating
modes implied by our gauge choice (49) and (50), it is
convenient to first redefine the variables by introducing

Hij � hij � ��ijh; (52)

the gauge condition (50) implies that Hij is transverse. We

then decompose the transverse tensorHij into its transverse

traceless part ~Hij and its trace H,

Hij ¼ ~Hij þ 1

2

�
�ij �

@i@j

@2

�
H: (53)

This choice of variables diagonalizes the equations of
motion in our gauge. Since the kinetic term is universal,
its analysis in the z ¼ 3 theory is identical to that presented
for z ¼ 2 in Sec. 4.5 of [3]. In our gauge and in terms of the
new variables, the kinetic term takes the form

SK � 1

2�2

Z
dtd3x

�
_~Hij

_~Hij þ 1� �

2ð1� 3�Þ
_H2

�
: (54)

It would appear that the dependence of the kinetic term of
H on � can be absorbed into a rescaling of H, but we
choose not to do so, because it would obscure the geomet-
ric origin of H in the full nonlinear theory.
On the other hand, the potential term of the z ¼ 3 theory

reduces to

SV � ��2

8

Z
dtd3x ~Hijð@2Þ3 ~Hij: (55)

Because of the conformal properties of the Cotton tensor,
the potential term in the Gaussian approximation depends
only on ~Hij and not on H.

As pointed out in [3], the kinetic term (54) indicates that
two values of � play a special role. At � ¼ 1=3, the theory
becomes compatible with the local anisotropic Weyl in-
variance discussed in Sec. II C 3 above. At that value of �,
the scalar mode H is a gauge artifact. The kinetic term for
H also appears singular at � ¼ 1. As explained in [3], this
happens because at this special value of �, the linearized
theory exhibits an extra gauge invariance, which can be
used to eliminate physical excitations of H as well.
The transverse traceless tensor ~Hij contains two prop-

agating physical polarizations. These gravitons satisfy a
nonrelativistic gapless dispersion relation,

!2 ¼ �4

4
ðk2Þ3: (56)

For values of � outside of the two special values 1 and
1=3, the scalar mode H will represent a physical degree of
freedom, with its linearized equation of motion given
simply by €H ¼ 0. When the theory is deformed by relevant
operators, the equation of motion for H will contain terms
with spatial derivatives up to fourth order, which is not
enough to yield a propagator with good ultraviolet proper-
ties. It appears that, in order to make the theory power-
counting renormalizable at generic values of � not equal to
1 or 1=3, either the scalar mode would have to be elimi-
nated by an extra gauge symmetry, or super-renormalizable
terms which give short-distance spatial dynamics to the
scalar mode need to be added to the potential. We will
briefly return to this point in Sec. III B.
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E. Relevant deformations and the infrared flow to z ¼ 1

So far we have concentrated on terms of the highest-
dimension terms in S. These terms will dominate the short-
distance dynamics. At long distances, relevant deforma-
tions by operators of lower dimensions will become im-
portant, in addition to the renormalization-group (RG)
flows of the dimensionless couplings.

One could relax the condition of detailed balance, and
simply ask that the action S in 3þ 1 dimensions be a
general combination of all marginal and relevant terms.
The action of the theory would then take the form

S ¼
Z

dtd3x
ffiffiffi
g

p X
½OJ�¼6

�JOJ þ
Z

dtd3x
ffiffiffi
g

p X
½OA�<6

�AOA;

(57)

where the index J goes over all independent marginal
terms compatible with DiffF ðMÞ, while A parametrizes

all independent relevant operators compatible with this
symmetry. �J and �A are the corresponding coupling
constants.

It would be desirable to analyze the quantum properties,
in particular, the RG flow patterns, of this general family of
models. However, the proliferation of operators with di-
mensions � 6 makes this analysis difficult, and we will
again resort to theories which satisfy the additional prop-
erty of detailed balance.

1. Relevant deformations with detailed balance

In order for the deformed theory to satisfy the detailed
balance condition, the relevant deformations themselves
must originate from an action principle in D dimensions,
subjected to the requirement of diffeomorphism invari-
ance. Adding all possible relevant terms to the Chern-
Simons action (36), we get

W ¼ 1

w2

Z
!3ð�Þ þ�

Z
d3x

ffiffiffi
g

p ðR� 2�WÞ: (58)

This is essentially the action of topologically massive
gravity [27,28], a theory which has been argued to be
renormalizable [29,30] and possibly finite [31]. The cou-
pling constants � and �W are of dimension ½�� ¼ 1 and
½�W� ¼ 2.

The relevant operators in the action W of (58) induce
relevant terms in the potential term SV of our z ¼ 3 theory.
The full action in 3þ 1 dimensions which satisfies detailed
balance with respect to (58) is given by

S ¼
Z

dtd3x
ffiffiffi
g

p
N

�
2

�2
KijG

ijk‘Kk‘

� �2

2

�
1

w2
Cij ��

2

�
Rij � 1

2
Rgij þ�Wg

ij

��

�Gijk‘

�
1

w2
Ck‘ ��

2

�
Rk‘ � 1

2
Rgk‘ þ�Wg

k‘

���
:

(59)

It is useful to organize the terms in (59) in the order of their
descending dimensions,

S ¼
Z

dtd3x
ffiffiffi
g

p
N

�
2

�2
ðKijK

ij � �K2Þ � �2

2w4
CijC

ij

þ �2�

2w2
"ijkRi‘rjR

‘
k �

�2�2

8
RijR

ij

þ �2�2

8ð1� 3�Þ
�
1� 4�

4
R2 þ�WR� 3�2

WÞ
�
: (60)

At long distances, the potential is dominated by the last two
terms in (60): the spatial curvature scalar and the constant
term. These leading terms in the potential combine with the
kinetic term, and as a result, the theory flows in the infrared
to z ¼ 1.
This infrared limit of the deformed theory should be

compared to general relativity. As is well known, the
Einstein-Hilbert (EH) action in 3þ 1 dimensions can be
rewritten in the ADM formalism (up to a total derivative)
as

SEH ¼ 1

16	GN

Z
d4x

ffiffiffi
g

p
NfðKijK

ij � K2Þ þ R� 2�g:
(61)

In order to compare these two theories, it is natural to
express our model in relativistic coordinates by rescaling t,

x0 ¼ ct; (62)

with the emergent speed of light given by

c ¼ �2�

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�W

1� 3�

s
: (63)

Here we have assumed that �W=ð1� 3�Þ is positive,
which is also required in order for the sign in front of the
scalar curvature term in (60) to match general relativity.
Note that, from the perspective of the z ¼ 3 theory at short
distances, the dimension of c is

½c� ¼ 2; (64)

resulting in ½x0� ¼ �1, in accord with the expected rela-
tivistic scaling in the infrared.
In the rescaled coordinates ðx0; xiÞ suitable at long dis-

tances, the infrared limit of (60) then takes the general
relativistic form (61), up to higher-derivative corrections
which are suppressed at low energies. The effective
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Newton constant is given by

GN ¼ �2

32	c
; (65)

and the effective cosmological constant

� ¼ 3
2�W: (66)

It is intriguing that the effective speed of light c, the
effective Newton constant GN , and the effective cosmo-
logical constant � of the low-energy theory all emerge
from the relevant deformations of the deeply nonrelativis-
tic z ¼ 3 theory which dominates at short distances.

In theories satisfying the detailed balance condition, the
quantum properties of the Dþ 1 dimensional theory are
usually closely related to the quantum properties of the
associated theory in D dimensions, with action W. It is
interesting that in our case of 3þ 1 dimensional gravity
theory with detailed balance, both the Newton constant and
the cosmological constant originate from the couplings in
the action of topologically massive gravity in three
Euclidean dimensions, a theory with excellent ultraviolet
properties.

2. Soft violations of the detailed balance condition

There is another possibility that leads to a broader
spectrum of relevant deformations of the z ¼ 3 theory,
without completely abandoning the simplifications implied
by the detailed balance condition. Starting with the z ¼ 3
theory at short distances, we can add relevant operators
directly to the short-distance action S given in (38),

S ! Sþ
Z

dtd3x
ffiffiffi
g

p ð�M6 þ�4Rþ � � �Þ; (67)

with M and � arbitrary couplings of dimension 1, and
‘‘� � �’’ denote other relevant terms with more than two
spatial derivatives of the metric.

This step will break the detailed balance condition, but
only softly, by relevant operators of lower dimension than
those appearing in the action at short distances as defined
in (38). In the UV, the theory still satisfies detailed balance.
At long distances, the theory described by (67) again flows
to z ¼ 1.

III. OTHER DIMENSIONS AND VALUES OF z

Even though the main focus of the present paper is on
the theory of gravity with z ¼ 3 in 3þ 1 spacetime di-
mensions, the ideas are applicable in a broader context.
One application of the z ¼ 2 gravity in 2þ 1 dimensions,
as a candidate membrane world-volume theory, was dis-
cussed in [3]. Here we take at least a brief look at a list of
other interesting values of z and spacetime dimensions.

A. Gravity with z ¼ 4 in 4þ 1 dimensions

Power-counting renormalizability in 4þ 1 dimensions
requires z ¼ 4. Theories with z ¼ 4 satisfying the detailed
balance condition in 4þ 1 dimensions can be constructed
from Euclidean gravity actions W quadratic in curvature,
familiar from the study of higher-derivative theories in 3þ
1 dimensions. (See, e.g., [2] for a review of higher-
derivative gravity and supergravity.) As in the case of z ¼
3, we begin with first listing all terms of highest order in
spatial derivatives, as these are expected to dominate at
short distances, near the hypothetical z ¼ 4 fixed point that
we are attempting to construct. The four-dimensional
Euclidean action quadratic in curvature is given by

W ¼
Z

d4x
ffiffiffi
g

p ð
Cijk‘C
ijk‘ þ �R2Þ: (68)

This theory has two independent dimensionless couplings

 and �. Modulo topological invariants, this is the most
general four-derivative action for relativistic gravity in four
dimensions. There is no independent RijR

ij term in the

action, becauseZ
d4x

ffiffiffi
g

p ðRijk‘R
ijk‘ � 4RijR

ij þ R2Þ (69)

is a topological invariant (measuring the Euler number of
the spatial slices�), as a consequence of the Gauss-Bonnet
theorem in four dimensions.
We use W to construct the potential SV of quantum

gravity with z ¼ 4 in 4þ 1 dimensions. The high-energy
limit of this theory will again be described by

S ¼ SK � SV

¼ 1

2

Z
dtd4x

ffiffiffi
g

p
N

�
4

�2
ðKijK

ij � �K2Þ

� �2

4

�W

�gij
Gijk‘

�W

�gk‘

�
; (70)

with W now given by (68). � is dimensionless, as are the
two couplings 
 and � inherited from W. This action can
be modified by relevant operators, of dimension <8. If we
insist that the deformed theory satisfy detailed balance,
such relevant terms in S are generated by adding relevant
operators of dimension<4 to W. Either way, the theory in
4þ 1 dimensions will be dominated at long distances by
the lowest-dimension operators in S, which are again given
by the scalar curvature R and the cosmological constant
term. The theory flows naturally to z ¼ 1, with an emer-
gent speed of light, Newton constant, and cosmological
constant.
The z ¼ 4 theory in 4þ 1 dimensions is power-counting

renormalizable. If the ‘‘quantum inheritance principle’’
holds for the class of models satisfying the detailed balance
condition described in (70), the renormalization of 
 and�
would be the same as in the four-dimensional relativistic
higher-derivative theory described by (68), which is be-
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lieved to be asymptotically free [32–34]. As we mentioned
in the Introduction, the asymptotic freedom of (68) would
seem to make this theory an excellent candidate for solving
the problem of quantum gravity in 3þ 1 dimensions, were
it not for one persistent flaw: After theWick rotation to 3þ
1 dimensions, the spectrum of physical states contains
ghosts which violate unitarity in perturbation theory.

Our construction of z ¼ 4 theory in 4þ 1 dimensions
benefits from the asymptotic freedom of the four-
dimensional higher-curvature theory (68), but avoids the
pitfall of its perturbative nonunitarity. Indeed, we are only
interested in the four-dimensional action W in the
Euclidean signature, in order to construct the 4þ 1 dimen-
sional action (70).

The only remaining coupling-constant renormalization
in the high-energy limit of the theory in 4þ 1 dimensions
is the renormalization of �. However, � is not an indepen-
dent coupling associated with interactions; instead, it sur-
vives in the noninteracting limit, and parametrizes a family
of free-field fixed point as 
 and � are sent to zero. In this
respect, the quantum behavior of this theory would be very
similar to the behavior in quantum critical Yang-Mills
studied in [9], which inherits asymptotic freedom from
relativistic Yang-Mills in four dimensions.

Setting � ¼ 0 in (68) and � ¼ 1=4 in (70) would lead to
a theory which exhibits an additional gauge invariance,
acting on the fields as

gij ! expf2�ðt;xÞggij; N ! expf4�ðt;xÞgN;

Ni ! expf2�ðt;xÞgNi:
(71)

These are the local anisotropic Weyl transformations with
z ¼ 4.

B. z ¼ 4 gravity in 3þ 1 dimensions

In three dimensions, the action of Euclidean gravity
quadratic in the curvature tensor is

W ¼ 1

M

Z
d3x

ffiffiffi
g

p ðRijR
ij þ �R2Þ: (72)

As in four dimensions, there are again only two indepen-
dent terms in W, but for a different reason: When D ¼ 3,
the Riemann tensor is determined in terms of the Ricci
tensor, and the Weyl tensor vanishes identically. The two
couplingsM andM=� are now dimensionful, of dimension
1. In power counting, this makes the theory described by
(72) super-renormalizable. When we useW to generate the
potential term SV for z ¼ 4 gravity in 3þ 1 dimensions,
we consequently end up with a theory whose action again
has the form (70), now with W given by (72) and in 3þ 1
dimensions, where it is super-renormalizable by power
counting. As in all the previous examples with various
values of z, relevant deformations flow the theory to z ¼
1 in the infrared.

Such super-renormalizable terms can also be added to
our z ¼ 3 theory of gravity described in (38). These terms
will give spatial dynamics to the conformal factor of the
spatial metric, improving the short-distance properties of
the propagator for the scalar mode H of the metric, restor-
ing power-counting renormalizability in the case whenH is
present as a physical field.

C. The case of z ¼ 0: Ultralocal gravity

In the Hamiltonian formulation of general relativity, the
Hamiltonian is given by a sum of constraints,

H ¼
Z

dDxðNH? þ NiH iÞ: (73)

Notably, the algebra of the Hamiltonian constraints
H?ðxÞ and H iðxÞ in general relativity is not a true Lie
algebra—in particular, the constraints do not form the
naively expected algebra of spacetime diffeomorphisms.
Instead, the structure ‘‘constants’’ of the commutator of
H?ðxÞ with H?ðyÞ are field dependent, because they
contain the components of the spatial metric.
In [35], an alternative theory of gravity was proposed, in

which the constraints do form a Lie algebra. In this theory,
the commutators ofH i with themselves and withH? are
the same as in general relativity, but the problematic field-
dependent commutator of H?ðxÞ with H?ðyÞ is simply
replaced by zero. This symmetry can be viewed either as a
contraction of the symmetries formed by the Hamiltonian
constraints of general relativity, or as a contraction of the
algebra of infinitesimal spacetime diffeomorphisms. The
contracted symmetry algebra respects a dimension-one
foliation of spacetime by a congruence of timelike curves.
This congruence can be used to identify the points of space
at different times; as a result, the spacetime in this theory of
gravity carries a preferred structure of absolute space.
The theory of gravity that realizes this symmetry struc-

ture is known as the ‘‘ultralocal theory’’ of gravity. It is
interesting to note that ultralocal gravity fits naturally into
our framework of gravity models with anisotropic scaling
and nontrivial dynamical exponents z � 1. As shown in
[35], the required symmetries force the action of the ultra-
local theory to be of the same form S ¼ SK � SV as the
theories considered here, with the potential term contain-
ing only the cosmological constant,

SV ¼
Z

dtdDx
ffiffiffi
g

p
�; (74)

and no curvature-dependent terms. There is a clear way to
interpret (74) in our framework of gravities with aniso-
tropic scaling: The value of z can be read off as one-half of
the number of derivatives appearing in SV . This is equiva-
lent to declaring (74) to be of the same dimension as the
kinetic term SK. Either way, this approach suggests that the
ultralocal theory corresponds formally to the limiting case
of z ! 0.
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Historically, the ultralocal theory of gravity has been
studied for at least two additional reasons, besides the
context of [35]:

(i) Ultralocal gravity was proposed by Isham in [36], in
an attempt to introduce a new formal expansion
parameter into general relativity. In [36], the sug-
gested expansion parameter was the coefficient in
front of the scalar curvature term in SV , equal to one
in the potential of general relativity and set equal to
zero in the ultralocal theory.

(ii) Ultralocal theory is relevant for early universe cos-
mology in general relativity, because it captures the
dynamics of Friedmann-Robertson-Walker solu-
tions in the so-called ‘‘velocity dominated’’ early
stages after the big bang, as was first shown by
Belinsky, Khalatnikhov, and Lifshitz [37,38].

Unfortunately, the z ! 0 limit is rather singular, and the
program outlined in (i) was never very successful. As to
(ii), the embedding of ultralocal gravity into our frame-
work of gravity with anisotropic scaling raises the possi-
bility of interpreting the cosmological evolution as a flow,
from z � 1 in the early universe to z ¼ 1 observed now.

It is remarkable that, even though the action of ultralocal
theory is not invariant under all spacetime diffeomor-
phisms, the theory exhibits ‘‘general covariance’’ [35,39]:
In particular, the number of local symmetry generators per
spacetime point is Dþ 1, i.e., the same as in general
relativity.

D. Bulk-boundary correspondence in gravity at a
Lifshitz point

The availability of gravity models with nontrivial values
of the dynamical critical exponent z can enhance the
spectrum of examples of dualities between gravity in the
bulk and field theory on the boundary. This could be
particularly relevant for understanding gravity duals of
nonrelativistic CFTs.

After the Wick rotation of the z ¼ 3 theory in 3þ 1
dimensions to imaginary time �, the action of this theory
was rewritten in a simple form (40) with the use of an
auxiliary field Bij. The same rewriting applies to a much
broader class of gravity models which satisfy detailed
balance with some D-dimensional action W, such as the
z ¼ 4 models discussed above. Using this formalism, we
can find a large class of classical solutions of such theories,
simply by noting that if the following equation holds,

1

N
ð@�gij �riNj �rjNiÞ � �2

2
ffiffiffi
g

p Gijk‘

�W

�gk‘
¼ 0; (75)

the full equations of motion are automatically satisfied.
While the full equations of motion are of second order in
time derivatives and of order 2z in spatial derivatives, the
simpler equation (75) has its degree reduced by half. (This
argument is reminiscent of the BPS condition in super-
symmetric theories.) A simple class of solutions to (75) can

now be obtained by setting N ¼ 1, Ni ¼ 0, and taking
gij ¼ gijðxÞ to be an arbitrary (�-independent) solution

of the equations of motion,

�W

�gij
¼ 0; (76)

of the D-dimensional theory whose action is W. Clearly,
this solution can be trivially continued back to real time,
and represents a real static solution of the full theory.
In particular, let us assume that the Euclidean action W

is such that it has the Euclidean AdSD as a solution. This
situation is rather generic, and does not pose a very strong
restriction on W. With this assumption, the Dþ 1 dimen-
sional theory will have a classical solution which is the
direct product of the time dimension and AdSD,

N ¼ 1; Ni ¼ 0;

gijdx
idxj ¼ d�2 þ sinh2�d�2

D�1:
(77)

The boundary of this solution is SD�1 �R. The isometries
of the EuclideanAdSD induce conformal symmetries in the
boundary. In addition, there is one more bulk isometry,
given by time translations. Thus, the full symmetries are

SOðD; 1Þ �R: (78)

These symmetries suggest that such a gravity theory in the
bulk can serve as a possible holographic dual of dynamical
field theories which are already critical in the static limit.
Such problems are often encountered in the theory of
dynamical critical phenomena. Starting with a universality
class of a static critical system in D� 1 spatial dimen-
sions, the time-dependent dynamics of the system in D
dimensions can also exhibit criticality, with the character-
istic property of ‘‘critical slowing down’’ of time-
dependent correlation functions. One given static univer-
sality class can belong to several different dynamical uni-
versality classes. In particular, one universal characteristic
of the dynamics is given by the critical exponent z.
If we study such a dynamical critical system on RD,

it will exhibit the anisotropic scaling symmetry given by
(10), with i ¼ 1; . . .D� 1. Another possibility is to put
this system on SD1 �R, with the spatial slices of the
foliation given by SD�1 of a fixed radius. On such a
foliation, the scale symmetry (10) is absent, since it would
change the radius of the sphere. However, the system still
exhibits the symmetries of conformal transformations of
SD�1 and time translations. Thus, the conformal symme-
tries left unbroken by the foliation are precisely the bulk
isometries (78) of theAdSD �R solution of gravity theory
with anisotropic scaling.
Following [40,41], a nonrelativistic version of the AdS/

CFT correspondence has indeed received a lot of attention
recently. The focus in this area has been primarily on the
CFTs with nontrivial values of z which exhibit conven-
tional relativistic gravity duals. It is natural to broaden this
framework, and free the gravity side of the duality of the
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constraints imposed by relativistic invariance. The gravity
models with z � 1 whose study is initiated in this paper
(and in [3]) are potential candidates for describing inter-
esting universality classes on the CFT side, and it would
seem unwise to limit the attention to CFTs with relativistic
gravity duals.

IV. CONCLUSIONS

In this paper, we presented a class of gravity theories
with deeply nonrelativistic scaling at short distances, char-
acterized by dynamical critical exponent z. In particular,
we constructed a theory which satisfies the detailed bal-
ance condition with z ¼ 3 in 3þ 1 dimensions. This an-
isotropy between space and time improves the UV
behavior of the models, compared to general relativity.
Moreover, such theories flow naturally at long distances
to an effective theory with relativistic scaling and z ¼ 1,
and can therefore serve as candidates for a short-distance
completion of general relativity or its infrared
modifications.

In this picture, Lorentz invariance is only emergent at
long distances, while the fundamental description of the
theory is deeply nonrelativistic. At short distances, the
spacetime manifold is equipped with an extra structure,
of a fixed codimension-one foliation by slices of constant
time. This preferred foliation of spacetime defines a global
causal structure. The existence of such a preferred causal
structure puts some of the fundamental puzzles of general
relativity and quantum gravity into a new perspective. In
particular, various aspects of the ‘‘problem of time’’
[42,43] traditionally associated with the attempts to quan-
tize general relativity are eliminated: The preferred folia-
tion of spacetime leads to an invariant notion of time,
susceptible only to time-dependent reparametrizations.

The existence of the preferred foliation of spacetime
also changes the concept of black holes, and consequently
the role of the information paradox and the holographic
principle. In general relativity, black holes are defined as
objects with an event horizon, a notion associated with the
full causal structure of the entire spacetime history.
Theories of gravity with anisotropic scaling and z > 1 at
short distances are still expected to have solutions that
describe compact objects. Since such theories generically
flow at large distances to the relativistic value of z ¼ 1,
such compact solutions will likely resemble the black hole
solutions of general relativity (or its infrared modifica-
tions). However, the notion of an event horizon for such
solutions is emergent, and holds only approximately in the
low-energy regime where the higher-derivative corrections
to the equations of motion can be neglected. At short
distances, the spacetime is equipped with a preferred
time foliation and a causal structure, which precludes the
existence of event horizons, at least for foliations without
singularities [44].

If the notion of an event horizon is an emergent low-
energy concept, the interpretation of the holographic prin-
ciple also changes. The holographic principle is often
interpreted as a stringent bound of the number of degrees
of freedom in a given volume of a gravitating system, as
implied by the Bekenstein-Hawking entropy carried by
black holes of the same size. In a theory which is well
approximated by general relativity with z ¼ 1 at long
distances, but changes its scaling to z > 1 with a preferred
spacetime foliation at high energies, the notion of a holo-
graphic entropy bound applies only to degrees of freedom
carrying sufficiently low energies, and should be viewed as
an emergent feature of the low-energy dynamics. The high-
energy degrees of freedom can evade the bound.
There is an intuitive way to understand the possibility

that the holographic bound might be an emergent low-
energy bound. Recall that in the Bekenstein-Hawking
(BH) entropy formula, the entropy of black holes is given
in terms of the area A of the horizon and the fundamental
constants c, GN and @ by

SBH ¼ c3A

4GN@
: (79)

In particular, the speed of light appears in the numerator. If
the speed of light is effectively going to infinity at short
distances (which is the behavior found in our anisotropic
gravity models), the holographic entropy bound becomes
less constraining at higher energies: It only limits the
number of possible low-energy degrees of freedom, in
the regime where the behavior of the system is approxi-
mately relativistic.
This behavior, leading to a radical reduction of the

number of degrees of freedom at low energies, is very
reminiscent of a similar phenomenon, sometimes referred
to as ‘‘rigidity,’’ in ordered phases of condensed-matter
systems (see for example [45]). Notably, in various ex-
amples studied in condensed matter, this rigidity at low
energies is often accompanied by an emergent relativistic
dispersion relation for the low-energy excitations.
Another aspect of gravity which might be strongly af-

fected by the anisotropic scaling at short distances is
cosmology. In the high-energy regime relevant at early
times, the effective speed of light in gravity models with
anisotropic scaling approaches infinity, and the spacetime
manifold exhibits the preferred foliation by constant time
slices. This modification of the laws of gravity changes the
notion of locality and causality in the early stages of the
universe, and can lead to new perspectives on the puzzles
usually solved by inflationary scenarios.
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[16] I. Moerdijk and J. Mrčun, Introduction to Foliations and

Lie Groupoids (Cambridge University Press, Cambridge,
England, 2003).

[17] J. Zinn-Justin, Nucl. Phys. B275, 135 (1986).
[18] J. Zinn-Justin and D. Zwanziger, Nucl. Phys. B295, 297

(1988).
[19] J.W. York, Phys. Rev. Lett. 26, 1656 (1971).
[20] J.W. York, Phys. Rev. Lett. 28, 1082 (1972).
[21] J.W. York, J. Math. Phys. (N.Y.) 13, 125 (1972).
[22] G. Parisi and Y.-S. Wu, Sci. Sin. 24, 483 (1981).
[23] M. Namiki, Stochastic Quantization (Springer, New York,

1992).
[24] M. Le Bellac, F. Mortessagne, and G. Batrouni,

Equilibrium and Non-Equilibrium Statistical Thermo-
dynamics (Cambridge University Press, Cambridge,
England, 2004).

[25] E. Witten, arXiv:gr-qc/0306083.
[26] In contrast, for some theories with detailed balance,

�0 � expf�W=2g does represent a physical normalizable
ground-state wave function. Examples include the Lifshitz
scalar theory (as discussed, for example, in [10]), and the
quantum critical Yang-Mills with z ¼ 2 in 4þ 1 dimen-
sions [9].

[27] S. Deser, R. Jackiw, and S. Templeton, Phys. Rev. Lett. 48,
975 (1982).

[28] S. Deser, R. Jackiw, and S. Templeton, Ann. Phys. (N.Y.)
140, 372 (1982).

[29] S. Deser and Z. Yang, Classical Quantum Gravity 7, 1603
(1990).

[30] B. Keszthelyi and G. Kleppe, Phys. Lett. B 281, 33 (1992).
[31] The main difference between (58) and topologically mas-

sive gravity stems from the fact that here we are only
interested in the Euclidean-signature version of (58), with
the real action W. In topologically massive gravity, the
Euclidean action W is interpreted as the Wick rotation of
the real action from the physical signature 2þ 1, leading
to a slightly different reality condition on W, with w2

purely imaginary. There has been a recent resurgence of
interest in topological massive gravity, initiated by [47];
see also [48].

[32] K. S. Stelle, Phys. Rev. D 16, 953 (1977).
[33] E. S. Fradkin and A.A. Tseytlin, Nucl. Phys. B201, 469

(1982).
[34] E. S. Fradkin and A.A. Tseytlin, Nucl. Phys. B203, 157

(1982).
[35] C. Teitelboim, in General Relativity and Gravitation,

edited by A. Held (Plenum Press, New York, 1980), Vol. 1.
[36] C. J. Isham, Proc. R. Soc. A 351, 209 (1976).
[37] V. A. Belinsky, I.M. Khalatnikov, and E.M. Lifshitz, Adv.

Phys. 19, 525 (1970).
[38] V. A. Belinsky, I.M. Khalatnikov, and E. Lifshitz, Adv.

Phys. 31, 639 (1982).
[39] M. Henneaux, Bull. Soc. Math. Belg. 31, 47 (1979).
[40] D. T. Son, Phys. Rev. D 78, 046003 (2008).
[41] K. Balasubramanian and J. McGreevy, Phys. Rev. Lett.

101, 061601 (2008).
[42] C. J. Isham, arXiv:gr-qc/9210011.
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