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Abstract. This article reviews basic construction and cosmological implications of a

power-counting renormalizable theory of gravitation recently proposed by Hořava. We

explain that (i) at low energy this theory does not exactly recover general relativity

but instead mimic general relativity plus dark matter; that (ii) higher spatial curvature

terms allow bouncing and cyclic universes as regular solutions; and that (iii) the

anisotropic scaling with the dynamical critical exponent z = 3 solves the horizon

problem and leads to scale-invariant cosmological perturbations even without inflation.

We also comment on issues related to an extra scalar degree of freedom called scalar

graviton. In particular, for spherically-symmetric, static, vacuum configurations we

prove non-perturbative continuity of the λ → 1+0 limit, where λ is a parameter in the

kinetic action and general relativity has the value λ = 1. We also derive the condition

under which linear instability of the scalar graviton does not show up.
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1. Introduction

One of the biggest difficulties in attempts toward the theory of quantum gravity is the

fact that general relativity is non-renormalizable. This would imply loss of theoretical

control and predictability at high energies. In January 2009, Hořava proposed a

new theory of gravity to evade this difficulty by invoking a Lifshitz-type anisotropic

scaling at high energy [1]. This theory, often called Hořava-Lifshitz gravity, is power-

counting renormalizable and is expected to be renormalizable and unitary. Having a

new candidate theory for quantum gravity, it is important to investigate its cosmological

implications.

There are a number of interesting cosmological implications of Hořava-Lifshitz

gravity. For example, higher spatial curvature terms lead to regular bounce solutions in

the early universe [2, 3]. Higher curvature terms might also make the flatness problem

milder [4]. The anisotropic scaling with z = 3 solves the horizon problem and leads to

scale-invariant cosmological perturbations without inflation [5]. The anisotropic scaling

provides a new mechanism for generation of primordial magnetic seed field [6], and

also modifies the spectrum of gravitational wave background via a peculiar scaling of

radiation energy density [7]. In parity-violating version of the theory, circularly polarized

gravitational waves can also be generated in the early universe [8]. The lack of local

Hamiltonian constraint leads to dark matter as an integration “constant” [9, 10].
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The purpose of this article is to review basic construction of the theory and some

of its cosmological implications. In Sec. 2 we explain basics of Hořava-Lifshitz gravity,

such as power-counting argument, symmetry, basic quantities, action and equations of

motion. In Sec. 3 we comment on issues related to an extra scalar degree of freedom

called scalar graviton, and consider the limit in which general relativity is supposed to be

recovered. We explicitly see the known result that the naive metric perturbation breaks

down in this limit for the scalar graviton. However, this does not necessarily imply the

loss of predictability. Indeed, for spherically-symmetric, static, vacuum configurations

we shall show that the limit is non-perturbatively continuous. This result might

correspond to what is called Vainshtein mechanism [11] in theories of massive gravity [12]

and suggest that the extra scalar degree of freedom might safely decouple from the rest

of the world in the limit. In Sec. 4 we shall review some of cosmological implications: the

dark matter as an integration “constant”, bouncing and cyclic universes and generation

of scale-invariant cosmological perturbation without inflation. Finally, Sec. 5 is devoted

to a summary of this article and some discussions.

2. Hořava-Lifshitz gravity

2.1. Preliminaries

2.1.1. Power-counting Let us begin with heuristically explaining the usual power-

counting argument in field theory. As the simplest example, let us consider a scalar

field with the canonical kinetic term:
1

2

∫

dtd3~x φ̇2, (1)

where an overdot represents a time derivative. The scaling dimension of the scalar field

φ is determined by demanding that the kinetic term be invariant under the scaling

t → bt, ~x → bx, φ → b−sφ, (2)

where b is an arbitrary number and s is the scaling dimension to be determined. The

invariance of the kinetic term under the scaling leads to the condition

1 + 3− 2− 2s = 0, (3)

where 1 comes from dt, 3 from d3~x, −2 from two time derivatives and −2s from two

φ’s. Thus, we obtain s = 1. In other words, the scalar field scales like energy. With this

scaling in mind, it is easy to see that an n-th order interaction term behaves as
∫

dtd3~xφn ∝ E−(1+3−ns), (4)

where E is the energy scale of the system of interest. Here, the minus sign in the

exponent comes from −1 in E → b−1E, 1 in the parentheses comes from dt, 3 from

d3~x and −ns from φn. Now, it is expected that we have a good theoretical control of

ultraviolet (UV), i.e. high E, behaviors if the exponent is non-positive. Since s = 1,

this condition leads to n ≤ 4. This is the power-counting renormalizability condition.
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We are interested in gravity. Unfortunately, Einstein gravity is not power-counting

renormalizable. This is because the curvature is a highly nonlinear functional of the

metric and there are graviton interaction terms with n higher than 4. The non-

renormalizability is one of difficulties in attempts to quantize general relativity.

2.1.2. Abandoning Lorentz symmetry As already stated, Hořava-Lifshitz gravity is

power-counting renormalizable. How does it evade the above argument? The basic idea

is very simple but potentially dangerous: abandoning Lorentz symmetry and invoking

a different kind of scaling in the UV. The scaling invoked here, often called anisotropic

scaling or Lifshitz scaling, is

t → bzt, ~x → bx, φ → b−sφ, (5)

where z is a number called dynamical critical exponent.

Let us now see how the power-counting argument changes if the scaling is

anisotropic as in (5). Invariance of the canonical kinetic term (1) under this scaling

leads to

z + 3− 2z − 2s = 0, (6)

where z comes from dt, 3 from d3~x, −2z from two time derivatives and −2s from two

φ’s. Then we obtain

s =
3− z

2
. (7)

This of course recovers the previous result s = 1 for z = 1. What is interesting here is

that s = 0 if z = 3. This implies that, if z = 3, the amplitude of quantum fluctuations of

φ does not change as the energy scale of the system changes. The n-th order interaction

term behaves as
∫

dtd3~xφn ∝ E−(z+3−ns)/z, (8)

where −1/z in the exponent comes from −z in E → b−zE, z in the parentheses comes

from dt, 3 from d3~x and −ns from φn. For z = 3 (and thus s = 0), the exponent

is negative for any n and, therefore, any nonlinear interactions are power-counting

renormalizable. For z > 3, the theory is power-counting super-renormalizable.

From the above consideration, it is expected that gravity may become

renormalizable if the anisotropic scaling with z ≥ 3 is realized in the UV.

2.1.3. Scalar field action We would like to realize the anisotropic scaling with z ≥ 3

in the UV to construct renormalizable nonlinear theories. On the other hand, in order

to recover the Lorentz invariance in the infrared (IR), we would like to realize the usual

scaling with z = 1 at low energy. A simple example is a scalar field with the following

free-part action:

Ifree =
1

2

∫

dtd3~x
(

φ̇2 + φOφ
)

, (9)
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where

O =
∆3

M4
− κ∆2

M2
+ c2φ∆−m2

φ, (10)

M is the energy scale corresponding to the transition from the z = 1 scaling to the

z = 3 scaling, κ is a constant, cφ is the sound speed, i.e. the limit of speed in the IR,

mφ is the mass of the field, and ∆ is the Laplacian in the 3-dimensional space ‡.
In the UV, the sixth-order spatial derivative term dominates over lower-order terms

and balances with the time kinetic term which includes two time derivatives. This

naturally leads to the z = 3 scaling. On the other hand, in the IR, the second-order

spatial derivative term and the mass term are dominant and, thus, the z = 1 scaling is

realized. In this way, it is possible to realize the z = 3 scaling in the UV and the z = 1

scaling in the IR.

However, one must be aware that all “constants” in the action are subject to running

under the renormalization group (RG) flow. Of course, the sound speed is not an

exception. If we consider many fields then the sound speed for each field should run

under the RG flow [15]. We need a mechanism or symmetry to make sound speeds of

different species to be essentially the same at low energies. More generally speaking, we

need a mechanism or symmetry to suppress Lorentz violating operators at low energies.

Perhaps, embedding the theory into a larger theory is necessary. One such possibility

is related to supersymmetry [16].

2.2. Symmetry

As explained in the previous subsection, the way the power-counting renormalizability

is achieved is to violate the Lorentz invariance and to invoke the anisotropic scaling with

the dynamical critical exponent z ≥ 3. Since the Lorentz invariance is not respected,

we treat the time coordinate t and the spatial coordinates ~xi (i = 1, 2, 3) separately.

The fundamental symmetry of the theory is the invariance under space-independent

time reparametrization and time-dependent spatial diffeomorphism:

t → t′(t), ~x → ~x′(t, ~x). (11)

The time-dependent spatial diffeomorphism allows an arbitrary change of spatial

coordinates on each constant time surface. However, the time reparametrization here is

not allowed to depend on spatial coordinates. As a result, unlike general relativity, in

Hořava-Lifshitz gravity the foliation of spacetime by constant time hypersurfaces is not

just a choice of coordinates but is a physical entity. Indeed, the foliation is preserved

by the symmetry transformation (11). For this reason, the map (11) is called foliation

preserving diffeomorphism.

In addition to the foliation preserving diffeomorphism invariance, we assume that

the theory is invariant under the spatial parity ~x → −~x [17] and the time reflection

t → −t.

‡ If photons have this kind of dispersion relation with κ = O(1), cφ = 1 and mφ = 0 then experiments

such as Fermi GBM/LAT [13] and MAGIC [14] set a lower bound on M as M > 1011GeV .
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Finally, in order to render the theory power-counting renormalizable, we would like

to realize the anisotropic scaling with z ≥ 3 at high energy. In the present article, for

concreteness, we mainly focus on the case with z = 3.

2.3. Basic quantities and projectability condition

Basic quantities of Hořava-Lifshitz gravity are

lapse : N(t), shift : N i(t, ~x), 3d metric : gij(t, ~x), (12)

from which we can construct a four-dimensional spacetime metric of the ADM form as

ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt). (13)

While the shift N i and the 3d metric gij depend on both the time coordinate t and the

spatial coordinates ~x, the lapse N is assumed to be a function of the time only. This

condition on the lapse is called the projectability condition.

The projectability condition stems from the foliation preserving diffeomorphism.

The lapse represents a gauge freedom associated with the space-independent time

reparametrization t → t′(t) and, thus, it is fairly natural to restrict it to be space-

independent §. Of course, the projectability condition is compatible with the foliation

preserving diffeomorphism. The transformation of the basic quantities (12) under the

infinitesimal foliation preserving diffeomorphism,

δt = f(t), δ~xi = ξi(t, ~x), (14)

is defined as follows.

δN = ∂t(Nf),

δN i = ∂t(N
if) + ∂tξ

i + LξN
i,

δ(Ni) = ∂t(Nif) + gij∂tξ
j + LξNi,

δgij = f∂tgij + Lξgij, (15)

where Ni = gijN
j . Note that δN is independent of spatial coordinates since f and N

are functions of time only. Thus the projectability condition is compatible with the

foliation preserving diffeomorphism: the foliation preserving diffeomorphism maps a

space-independent N to a space-independent N .

The equation of motion for the lapse corresponds to the generator of the time

reparametrization and is called the Hamiltonian constraint. Since the lapse is

independent of spatial coordinates, its variations are also space-independent. This

means that the Hamiltonian constraint in Hořava-Lifshitz gravity is not a local equation

but an equation integrated over a whole space. In subsection 4.1 we shall discuss

cosmological implication of the global nature of the Hamiltonian constraint.

§ Abandoning the projectability condition leads to phenomenological obstacles [18] and theoretical

inconsistency [19]. On the other hand, the criticisms made in [18, 19] do not apply if the projectability

condition is respected.
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2.4. Action

The theory should respect the foliation preserving diffeomorphism. We can then use the

following ingredients in the action:

Ndt,
√
gd3~x, gij, Di, Rij , (16)

where g is the determinant of gij , Di is the 3-dimensional covariant derivative compatible

with gij and Rij is the Ricci tensor of gij. Note that the Ricci tensor includes all

information about the Riemann tensor since Weyl tensor identically vanishes in 3-

dimensions.

2.4.1. The UV action We should include time-derivative of the 3-dimensional metric

in the action in order to make the metric dynamical. However, ġij is not covariant under

the spatial diffeomorphism and, therefore, ġij should appear in the action as a part of

the covariant quantity called extrinsic curvature,

Kij =
1

2N
(ġij −DiNj −DjNi) . (17)

The extrinsic curvature transforms as a second-rank symmetric tensor under the spatial

diffeomorphism and as a scalar under the time reparametrization. The time kinetic term

for the metric is obtained by squaring the extrinsic curvature and properly contracting

indices. There are two ways to contract indices:

Ikin =
1

16πG

∫

Ndt
√
gd3~x

(

KijKij − λK2
)

, (18)

where G and λ are constants, and K = Ki
i . In general relativity, λ is fixed to 1

because of higher symmetry. On the other hand, in Hořava-Lifshitz gravity, any value

of λ is compatible with the foliation preserving diffeomorphism invariance and thus λ

is not fixed. We shall not include terms including derivatives of the extrinsic curvature

in the action. This is consistent if the theory without those higher derivative terms

is renormalizable: those terms would be non-renormalizable and thus would not be

generated by quantum correction. For the same reason, we shall not include terms

cubic or higher order in the extrinsic curvature.

Invariant terms made of time derivatives of the shift would inevitably include second

or higher time derivatives of the spatial metric. For the reason explained above, we shall

not include those higher derivative terms in the action. Time derivative of the lapse

corresponds to the connection in 1-dimension spanned by the time but the curvature in

1-dimension is always zero. Thus, there is no invariant term made of time derivatives

of the lapse. Of course, the spatial derivative of the lapse vanishes because of the

projectability condition.

Since terms in the kinetic action (18) include two time derivatives, we should include

terms with six spatial derivatives in order to realize the z = 3 scaling in the UV. (For a

general choice of z (≥ 3) in the UV, we should include terms with 2z spatial derivatives.)
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The foliation preserving diffeomorphism invariance allows five such terms in the action,

Iz=3 =
∫

Ndt
√
gd3~x

[

c1DiRjkD
iRjk

+c2DiRDiR + c3R
j
iR

k
jR

i
k + c4RRj

iR
i
j + c5R

3
]

, (19)

where ci (i = 1, · · · , 5) are constants. Note that the other possible term DiRjkD
jRki is a

linear combination of the above terms up to total derivative and, thus, does not have to

be included explicitly. We do not include terms with more than six spatial derivatives

since they would be non-renormalizable and thus would not be generated by quantum

corrections if the theory without them is renormalizable.

2.4.2. Relevant deformations in the IR In the IR, terms with less number of spatial

derivatives in the action become important. There are two independent terms with four

spatial derivatives

Iz=2 =
∫

Ndt
√
gd3~x

[

c6R
j
iR

i
j + c7R

2
]

, (20)

one term with two spatial derivatives

Iz=1 = c8

∫

Ndt
√
gd3~x R, (21)

and a constant

Iz=0 = c9

∫

Ndt
√
gd3~x , (22)

where ci (i = 6, · · · , 9) are constants.

We have written down all possible terms consistent with the symmetry of the theory

except for terms involving more than two time derivatives and terms with more than

six spatial derivatives. As already stated, those higher-derivative terms excluded in the

above construction would be non-renormalizable and, thus, would not be generated by

quantum corrections if the theory without them is renormalizable. The theory defined

in this way is power-counting renormalizable and, thus, expected to be renormalizable

although renormalizability beyond the power-counting argument has not been proved.

Also, the theory is expected to be unitary since the action does not include more than

two time derivatives. Note that the constants G, λ and ci (i = 1, · · · , 9) are subject to

running under the RG flow.

2.4.3. IR action with z = 1 In the UV the theory naturally exhibits the z = 3 scaling

as the second time derivative terms Ikin and the sixth spatial derivative terms Iz=3

balance with each other.

On the other hand, in the IR the forth and sixth spatial derivative terms, Iz=2

and Iz=3, are unimportant. We therefore have the following action describing the IR

behavior of the theory:

IIR = Ikin + Iz=1 + Iz=0

=
M2

P l

2

∫

Ndt
√
gd3~x

(

KijKij − λK2 +R− 2Λ
)

, (23)
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where M2
P l ≡ 1/(8πG) and Λ ≡ −8πGc9, and we have set 16πGc8 to unity by rescaling

of the time coordinate. This IR action naturally exhibits the z = 1 scaling. Moreover,

the action looks identical to the Einstein-Hilbert action in the ADM formalism if λ → 1.

There are however two important differences: (i) λ does not have to be 1 and is subject

to running under the RG flow; (ii) the projectability condition restricts the lapse N to

be a function of the time only. Regarding (i), the RG flow of the theory has not been

investigated and, thus, we do not know whether λ = 1 is an IR fixed point of the RG

flow or not. On the other hand, we shall discuss cosmological implication of the point

(ii) in subsection 4.1.

2.5. Equations of motion

Adding the matter action Im, the total action is

I = Ig + Im, (24)

Ig =
M2

P l

2

∫

Ndt
√
gd3~x(KijKij − λK2 + Λ +R + Lz>1), (25)

M2
P l

2
Lz>1 = (c1DiRjkD

iRjk + c2DiRDiR + c3R
j
iR

k
jR

i
k

+ c4RRj
iR

i
j + c5R

3) + (c6R
j
iR

i
j + c7R

2). (26)

Here, we have rescaled the time coordinate to set 16πGc8 to unity. Note that not only

the gravitational action Ig but also the matter action Im should be invariant under the

foliation-preserving diffeomorphism.

By variation of the action with respect to the lapse N(t), we obtain the Hamiltonian

constraint

Hg⊥ +Hm⊥ = 0, (27)

where

Hg⊥ ≡ −δIg
δN

=
∫

d3~xHg⊥, Hm⊥ ≡ −δIm
δN

, (28)

and

Hg⊥ =
M2

P l

2

√
g(Kijpij − Λ− R− Lz>1), pij ≡ Kij − λKgij. (29)

Variation with respect to the shift N i(t, x) leads to the momentum constraint

Hgi +Hmi = 0, (30)

where

Hgi ≡ − δIg
δN i

= −M2
P l

√
gDjpij , Hmi ≡ − δIm

δN i
. (31)

Note that the gravitational part of the momentum constraint is determined solely by the

kinetic terms and thus is totally insensitive to the structure of higher spatial curvature

terms. In particular, for λ = 1 the momentum constraint agrees with that in general

relativity.

9



For comparison, let us consider the case in which the matter sector recovers

spacetime diffeomorphism invariance. In this case it makes sense to define the stress-

energy tensor Tµν of matter and then

Hm⊥ =
∫

d3~x
√
g Tµνn

µnν , Hmi =
1√
g
Tiµn

µ, (32)

where

nµdx
µ = −Ndt, nµ∂µ =

1

N
(∂t −N i∂i). (33)

As in general relativity, the gravitational action can be written as the sum of kinetic

terms and constraints up to boundary terms:

Ig =
∫

dtd3~x
[

πij∂tgij −N iHgi

]

−
∫

dtNHg⊥ + (boundary terms), (34)

where πij is momentum conjugate to gij given by

πij ≡ δIg
δ(∂tgij)

= M2
P l

√
gpij, pij ≡ gikgjlpkl. (35)

The Hamiltonian corresponding to the time t is the sum of constraints and boundary

terms as

Hg[∂t] = NHg⊥ +
∫

d3~xN iHgi + (boundary terms). (36)

Finally, by variation with respect to gij(t, x), we obtain the dynamical equation

Egij + Emij = 0, (37)

where

Egij ≡ gikgjl
2

N
√
g

δIg
δgkl

, Emij ≡ gikgjl
2

N
√
g

δIm
δgkl

= Tij . (38)

Note that the matter sector (as well as the gravity sector) should be invariant under

spatial diffeomorphism (as a part of the foliation preserving diffeomorphism) and thus

it makes sense to define Tij in general. The explicit expression for Egij is given by

Egij = M2
P l

[

− 1

N
(∂t −NkDk)pij +

1

N
(pikDjN

k + pjkDiN
k)

−Kpij + 2Kk
i pkj +

1

2
gijK

klpkl +
1

2
Λgij −Gij

]

+ Ez>1ij, (39)

where Ez>1ij is the contribution from Lz>1 and Gij is Einstein tensor of gij .

The invariance of Iα under the infinitesimal transformation (15) leads to the

following conservation equations, where α represents g or m.

0 = N∂tHα⊥ +
∫

d3~x
[

N i∂tHαi +
1

2
N
√
gE ij

α ∂tgij

]

, (40)

0 =
1

N
(∂t −N jDj)

(

Hαi√
g

)

+K
Hαi√
g
− 1

N

Hαi√
g
DiN

j −DjEαij. (41)
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3. Scalar graviton and the λ → 1 + 0 limit

3.1. Propagating degrees of freedom

In order to identify propagating degrees of freedom, let us consider linear perturbations

around a flat background without matter. We can decompose the perturbation into

scalar, vector and tensor parts, according to the transformation under infinitesimal

spatial diffeomorphism. Thus, we have

N = 1 + A, Ni = ∂iB + ni,

gij = (1 + 2ζ)δij + 2∂i∂jhL + ∂ihj + ∂jhi + hij, (42)

where ni and hi are transverse and hij is transverse traceless: δij∂inj = δij∂ihj = 0,

δij∂ihjk = 0 and δijhij = 0. Also, A depends only on t because of the projectability

condition. By fixing the gauge degrees of freedom f(t) and ξi(t, ~x) as f = − ∫ Adt and
ξi = −∂ihL − hi, the gauge transformation (15) leads to

N = 1, Ni = ∂iB + ni, gij = (1 + 2ζ)δij + hij. (43)

In this gauge, the momentum constraint (30) without matter is

∂i
[

(3λ− 1)ζ̇ − (λ− 1)∂2B
]

+
1

2
∂2ni = 0, (44)

leading to

B =
3λ− 1

λ− 1

ζ̇

∂2
, ni = 0, (45)

where ∂2 ≡ δij∂i∂j is the spatial Laplacian. We do not have to solve the Hamiltonian

constraint since it is an equation integrated over a whole space and thus does not reduce

the number of local physical degrees of freedom. The scalar physical degree of freedom

ζ is often called scalar graviton while the tensor perturbation hij represents the two

physical degrees of freedom of usual tensor graviton.

The time kinetic term expanded up to quadratic order is

Ikin = M2
P l

∫

dtd3~x

[

3λ− 1

λ− 1
ζ̇2 +

1

8
δikδjlḣijḣkl

]

+O(ǫ3), (46)

where we have introduced a small expansion parameter ǫ and considered ζ and hij as

O(ǫ). In order to avoid ghost instability, thus λ must be either larger than 1 or smaller

than 1/3 [1]. Since general relativity has λ = 1 and we would like to recover something

similar to general relativity in the IR, we should consider the regime λ > 1. Although

the RG flow of the theory has not yet been analyzed, a hope is that the RG flow may

have a UV fixed point at λ = +∞ and an IR fixed point at λ = 1 + 0 so that λ runs

from +∞ in the UV to 1 + 0 in the IR.
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3.2. Dispersion relation

Expanding the potential terms up to the second order and adding them to (46), we

obtain

Ig = M2
P l

∫

dtd3~x

[

3λ− 1

λ− 1

(

ζ̇2 + ζOsζ
)

+
1

8
δikδjl

(

ḣijḣkl + hijOthkl

)

]

+O(ǫ3), (47)

where

Os =
λ− 1

3λ− 1

(

∆3

M4
s

− κs∆
2

M2
s

−∆

)

, Ot =
∆3

M4
t

− κt∆
2

M2
t

+∆. (48)

Here, we have introduced M2
P l ≡ 1/(8πG), set 16πGc8 to unity by rescaling of the time

coordinate, set Λ = 0 in order to allow the flat spacetime as a consistent background,

and defined Ms,t and κs,t as

M−4
s = − 2(3c1 + 8c2)M

−2
P l , M−4

t = −2c1M
−2
P l ,

κsM
−2
s = − 2(3c6 + 8c7)M

−2
P l , κtM

−2
t = −2c6M

−2
P l . (49)

Thus the dispersion relation is

ω2 =
λ− 1

3λ− 1

(

k6

M4
s

+
κsk

4

M2
s

− k2

)

(50)

for scalar graviton, and

ω2 =
k6

M4
t

+
κtk

4

M2
t

+ k2 (51)

for tensor graviton.

As we have already seen, the absence of ghost requires λ > 1. The dispersion

relation (50) then implies that the scalar graviton is unstable for k lower than ∼
M [20, 21, 22] and that the time scale of this linear instability is

tL ∼ 1

k

√

√

√

√

∣

∣

∣

∣

∣

3λ− 1

λ− 1

∣

∣

∣

∣

∣

, (52)

As we shall see in subsection 4.1, the lack of local Hamiltonian constraint leads to “dark

matter as an integration constant”, a non-dynamical component which behaves like

pressure-less dust. As in the standard cold dark matter (CDM) scenario, the dust-like

component exhibits Jeans instability and forms large-scale structures in the universe.

The timescale of Jeans instability is

tJ ∼ MP l√
ρ
, (53)

where ρ is the energy density at the position of interest. Note that this instability is

necessary for structure formation if we consider the dust-like component as an alternative

to CDM. Thus, as far as

tL > tJ , (54)
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the linear instability of the scalar graviton does not show up. Also, the linear instability

is tamed by Hubble friction if

tL > H−1, (55)

where H is the Hubble expansion rate at the time of interest. If either (54) or (55) is

satisfied then the linear instability of the scalar graviton does not show up [23]. For

length scales shorter than ∼ 0.01mm, we do not experimentally know how gravity

behaves and, thus, the linear instability at shorter length scales would not contradict

with any experiments. Also, modes with k higher than ∼ Ms are stable, provided that

3c1 + 8c2 < 0.

In summary, the condition under which linear instability of the scalar graviton does

not show up is

0 <
λ− 1

3λ− 1
< max

[

H2

k2
, |Φ|

]

for H < k < min
[

Ms,
1

0.01mm

]

, (56)

where we have introduced Newton potential Φ by M2
P lk

2Φ ∼ −ρ. Note that λ is subject

to running under the RG flow and thus should depend on k, H and Φ in general.

Therefore, the condition (56) should be considered as a phenomenological constraint on

properties of the RG flow.

3.3. Breakdown of metric perturbation

Basically, the condition (56) says that λ (> 1) must be sufficiently close to 1 at low

energy, while λ − 1 (> 0) can be of O(1) or larger at high energy. In the following we

shall show that a naive metric perturbation breaks down when λ is close to 1. Non-

perturbatively, however, the theory is described by a finite number of parameters, MP l,

λ, Λ and ci (i = 1, 2, · · · , 7) if renormalizable.

A natural nonlinear extention of (43) is

N = 1, Ni = ∂iB + ni, gij = e2ζ
[

eh
]

ij
, (57)

where ni is transverse and hij is transverse traceless: δij∂inj = 0, δij∂ihjk = 0 and

δijhij = 0. We shall consider ζ and hij as O(ǫ) and perform perturbative expansion

with respect to ǫ.

In order to calculate the action up to cubic order, it suffices to solve the momentum

constraint up to the first order. Thus, by substituting (45), we obtain

Ikin = M2
P l

∫

dtd3~x

{

(1 + 3ζ)

[

3λ− 1

λ− 1
ζ̇2 +

1

8
ḣij ḣij

]

+
1

2
ζ∂i(∂iB∂2B + 3∂jB∂i∂jB) +

1

2
(∂khij∂kB − 3ḣijζ)∂

i∂jB

−1

4
(ḣij∂khij)∂

kB
}

+O(ǫ4), (58)

where B is given by (45), and spatial indices are raised and lowered by δij and δij . Note

that, when written in terms of ζ and hij, each term in Ikin includes exactly two time

derivatives.
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In order to calculate the action up to the (n + 2)-th order (n = 1, 2, · · ·), we need

to solve the momentum constraint up to n-th order. By expanding B and ni as

B = B1 +B2 + · · · , ni = n
(1)
i + n

(2)
i + · · · , (59)

where Bn and n
(n)
i are O(ǫn), and solving the momentum constraint perturbatively, we

see that Bn (and n
(n)
j ) is a sum of various terms with negative powers of (λ− 1) up to

(λ− 1)−n (and up to (λ− 1)−(n−1), respectively) and each term includes just one time

derivative. This means that Ikin expanded up to O(ǫn+2) includes various terms with

negative powers of (λ−1) up to (λ−1)−(n+1) ‖ and each term includes exactly two time

derivatives. On the other hand, terms in Iz=3,···,0 do not include time derivatives at all

and are totally independent of λ.

Therefore, while all coefficients of potential terms for ζ and hij remain finite, many

coefficients of their kinetic terms diverge in the limit λ → 1 + 0. The divergence is

worse for terms of higher order in the perturbative expansion. This means that the

naive perturbative expansion breaks down in this limit. Here, let us stress again that

the theory is still non-perturbatively described by a finite number of parameters, MP l,

λ, Λ and ci (i = 1, 2, · · · , 7) if renormalizable.

3.4. Non-perturbative continuity at λ = 1 + 0

Since the naive metric perturbation breaks down in the limit λ → 1 + 0 , nonlinear

analysis is required. In the following, for simplicity we consider spherically symmetric,

static, vacuum configurations and show the non-perturbative continuity of the limit.

In this discussion we consider macroscopic objects and, thus, neglect higher spatial

derivative terms Iz=3 and Iz=2. Anyway, Iz=3 and Iz=2 have well-behaved perturbative

expansion and, thus, would not spoil the continuity even if they were included. We set

the cosmological constant to zero, Iz=0 = 0, just for simplicity.

The lapse is required to be independent of spatial coordinates by the projectability

condition. Hence, by a space-independent time reparametrization, we can set the lapse

to unity. Then, by fixing the gauge freedom associated with the spatial diffeomorphism,

a spherically symmetric, static configuration can be expressed as

N = 1, Nidx
i = β(x)dx, gijdx

idxj = dx2 + r(x)2dΩ2
2, (60)

where dΩ2
2 is the line element of the unit sphere. The momentum constraint and the

xx-component of the dynamical equation are written as

βr′′

r
+ (λ− 1)

[

β ′′

2
+

β ′r′

r
+

βr′′

r
− β(r′)2

r2

]

= 0,

1− (r′)2 + 2ββ ′rr′ + 2β2rr′′ + β2(r′)2

+(λ− 1)
[

ββ ′′r2 + 2β2rr′′ + 4ββ ′rr′ +
1

2
(β ′)2r2

]

= 0, (61)

where a prime denotes derivative w.r.t. x. The θθ-component of the dynamical equation

follows from the above two equations unless r′ = 0, and it is easy to show that r′ = 0

‖ Terms proportional to (λ − 1)−(n+2) cancel after integration by parts.
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is incompatible with the above two equations for λ > 1. We shall not impose the

global Hamiltonian constraint since we are currently interested in physics in a finite

region: either staticity or spherical symmetry is not a globally valid assumption and

thus the equation integrated over a whole space (including e.g. regions far outside the

cosmological horizon) with these assumptions at face value is not valid. For β = 0, the

second equation leads to r′ = ±1 and thus allows only a trivial solution. For this reason,

hereafter we assume that β 6= 0 at least in a neighborhood of a point of interest.

It is easy to show the continuity of the λ → 1 + 0 limit explicitly. By introducing

a new variable R(x) by

R ≡ β(λ−1)/(2λ)r, (62)

we can rewrite equations (61) as

R′′ +
λ− 1

λ

[

(3λ− 1)(β ′)2R

4λ2β2
+

(λ− 1)β ′R′

λβ
− (R′)2

R

]

= 0, (63)

β ′

β
− (λ− 1)R

4λR′

(

β ′

β

)2

+
λ

RR′

β(λ−1)/λ + [(2λ− 1)β2 − 1](R′)2

(3λ− 1)β2 + (λ− 1)
= 0. (64)

The second equation can be solved w.r.t. β ′/β and there are two branches:

β ′

β
=

1±
√
1 + 4AB

2A
, (65)

A ≡ (λ− 1)R

4λR′
, B ≡ λ

RR′

β(λ−1)/λ + [(2λ− 1)β2 − 1](R′)2

(3λ− 1)β2 + (λ− 1)
.

The two equations (63) and (65) provide expressions of highest-order derivatives of R

and β, i.e. R′′ and β ′, as functions of (R, R′, β). For the ‘−‘ branch, i.e. if we choose

the ‘−‘ sign in (65), the limit λ → 1+0 of the expressions of R and β is well-defined as:

lim
λ→1+0

R′′ = 0, lim
λ→1+0

β ′

β
= lim

λ→1+0

(1− β2)(R′)2 − 1

2RR′β2
. (66)

These coincide with the equations obtained by simply setting λ = 1 in (63) and (64).

Thus, for the ‘−‘ branch, the limit λ → 1 + 0 is continuous.

For comparison, let us consider general relativity with the metric ansatz

ds2 = −dt2 + [dx+ β(x)dt]2 + r(x)2dΩ2
2. (67)

Non-vanishing components of the vacuum Einstein equation Gµν = 0 are

βr′′ = 0, ββ ′ =
(1− β2)(r′)2 − 1

2rr′
. (68)

Remember that we have assumed β 6= 0 in a neighborhood of a point of interest. Thus,

the limit λ → 1 + 0 of the ‘−‘ branch shown in (66) agrees with the Einstein equation

(68). We have thus proved that, for the ‘−‘ branch, the limit λ → 1 + 0 is continuous

and recovers general relativity for the metric ansatz (67).
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3.5. Schwarzschild solution and Newtonian limit

The continuity shown above, combined with Birkhoff’s theorem in general relativity,

implies that the spherically symmetric, static, vacuum solution in the ’−’ branch

approaches a 3 + 1 decomposition of the Schwarzschild spacetime in the λ → 1 + 0

limit. This argument neglects higher order spatial curvature terms, Iz=3 and Iz=2, but

this is a fairly good approximation for macroscopic objects.

If we include Iz=3 and Iz=2 then in the λ → 1 + 0 limit we have

r′ = r1,
d

dr
(rr21β

2) = (r21 − 1)−
3
∑

z=2

αz(r1)

r2z
, (69)

where r1 is a constant and αz(r1) (z = 2, 3) are constants depending on r1 and the

parameters in Iz=3 and Iz=2. Since the spatial metric is flat for r1 = 1, we have

αz(1) = 0, (z = 2, 3). (70)

Integrating (69), we obtain

r21β
2 = (r21 − 1) +

2µ

r
+

3
∑

z=2

αz(r1)

2z − 1

1

r2z
, (71)

where µ is an integration constant [23]. For a macroscopic object and thus for large r,

only the first two terms are important and, as expected, a 3 + 1 decomposition of the

Schwarzschild spacetime with mass µ is recovered ¶:

r′ = r1, r21β
2 ≃ (r21 − 1) +

2µ

r
. (72)

The 3 + 1 decomposition is characterized by the constant r1. It is noteworthy that for

r1 = 1, the solution is not just approximately but exactly the Schwarzschild spacetime

in the Painlevé-Gullstrand coordinate system. This is because the spatial metric is flat

for r1 = 1 and thus higher spatial curvature terms do not contribute to the equations of

motion (see (70)).

In general relativity the Newtonian limit is usually taken after going to a gauge

in which the space-dependent part of the lapse is the Newtonian potential. How can

we express the Newtonian potential in Hořava-Lifshitz gravity with the projectability

condition? Actually, all information about the Newtonian potential can be included

in the shift and the spatial metric. See the Schwarzschild solution (72) as an example.

Even in general relativity, we can choose a gauge in which the lapse is space-independent

at least locally, and in this gauge the Newtonian potential is encoded in the shift and

the spatial metric.

In Hořava-Lifshitz gravity, the same spacetime metric (in the sense of general

relativity) with different foliations are physically different. Nonetheless, they are

experimentally and observationally indistinguishable from each other at low energies

for the following reason. As we all know, Lorentz invariance is a good symmetry of the

¶ The Kerr spacetime in a coordinate system with a unit lapse (see e.g. [24]) is also a good approximate

solution for a macroscopic rotating object.
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matter sector at least at low energy. It is for this reason that we need a mechanism

or symmetry to suppress Lorentz violating operators at low energies, as already stated

at the end of subsubsection 2.1.3. Therefore, although such a mechanism or symmetry

has not yet been developed and should be explored in detail in the future, we must at

the very least admit the necessity of recovery of Lorentz symmetry in the matter sector

at low energy. With this minimal (but challenging) requirement, it is not possible to

construct low energy observables which can distinguish different foliations of the same

spacetime through motion of matter.

In summary, in Hořava-Lifshitz gravity with the projectability condition, the

Newtonian potential is encoded in the shift and the spatial metric, but matter at low

energy behaves as if the Newtonian potential were expressed as the space-dependent

part of the lapse in the “usual” way. Therefore, the projectability condition is not an

obstacle to expressing the Newtonian potential and taking the Newtonian limit.

4. Cosmological implications

There are a number of interesting cosmological implications of Hořava-Lifshitz gravity.

In this section we shall review some of them: dark matter as an integration “constant”

(subsection 4.1), bouncing and cyclic universes (subsection 4.2) and generation of scale-

invariant cosmological perturbation from z = 3 scaling (subsection 4.3).

4.1. Dark matter as an integration “constant”

4.1.1. Structure of GR and FRW universe General relativity has the four-dimensional

diffeomorphism invariance as its fundamental symmetry. As a result, there are four

local constraints: one Hamiltonian constraint and three momentum constraints at each

spatial point and at each time. The constraints are preserved by dynamical equations.

Thus, we can solve dynamical equations without worrying about constraints, provided

that constraints are satisfied at initial time.

Now, let us consider the flat FRW spacetime

ds2 = −dt2 + a2(t)d~x2, (73)

as a simple example. It is supposed that this metric approximates overall behavior of

our patch of the universe inside the Hubble horizon. The Hamiltonian constraint leads

to the Friedmann equation

3H2 = 8πGρ, (74)

where G is Newton’s constant, H ≡ ȧ/a is the Hubble expansion rate and ρ is the total

energy density of matter contents of the universe. Equations of motion of matter lead

to the conservation equation

ρ̇+ 3H(ρ+ P ) = 0, (75)
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where P is the total pressure of the matter contents. The momentum constraint is

trivial because of the symmetry of the FRW spacetime. The dynamical equation

− (2Ḣ + 3H2) = 8πGP (76)

follows from the Friedmann equation and the conservation equation, and thus we do not

consider it as an independent equation.

4.1.2. Structure of HL gravity and FRW universe The fundamental symmetry of

Hořava-Lifshitz gravity is the invariance under the foliation preserving diffeomorphism

(11), which is 3-dimensional spatial diffeomorphism plus space-independent time

reparametrization. Consequently, contrary to general relativity, the theory has 3 local

constraints and 1 global constraint: 3 momentum constraints at each spatial point at

each time and 1 Hamiltonian constraint integrated over a whole space at each time.

Of course, the constraints are preserved by dynamical equations. Thus, we can solve

dynamical equations without worrying about constraints, provided that constraints are

satisfied at initial time.

Now let us consider the flat FRW spacetime (73), or

N = 1, N i = 0, gij = a(t)2δij, (77)

in Hořava-Lifshitz gravity. Again, the FRW spacetime is supposed to approximate

overall behavior of our patch of the universe inside the Hubble horizon. This means

that the global Hamiltonian constraint, which is an integral over a whole space including

regions far outside the Hubble horizon, does not apply to our system within the horizon.

Thus, the lack of local Hamiltonian constraint implies that there is no Friedmann

equation and that we should consider the dynamical equation

− 3λ− 1

2
(2Ḣ + 3H2) = 8πGP (78)

as an independent equation. Here, note that higher spatial curvature terms do not

contribute to the equation because of the spatial flatness. Equations of motion for

matter leads to the conservation equation (75) at least at low energy, provided that

the local Lorentz invariance is restored in the matter sector at low energy as required

by many experimental and observational data (see discussion in the second-to-the-last

paragraph of subsection 3.5). At high energy, however, the matter sector does not have

to satisfy the conservation equation and thus the equation of motion for matter generally

leads to

ρ̇+ 3H(ρ+ P ) = −Q, (79)

where Q represents the amount of energy non-conservation. Note that Q → 0 at low

energy. The two equations (78) and (79) are sufficient to describe the evolution of our

system. Indeed, it is easy to obtain the first integral of the dynamical equation:

3(3λ− 1)

2
H2 = 8πG

[

ρ+
C(t)

a3

]

, (80)
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where

C(t) ≡ C0 +
∫ t

t0
Q(t′)a3(t′)dt′, (81)

and C0 = C(t0) is an integration constant. Since Q → 0 at low energy,

C(t) → const. at low energy. (82)

The first integral (80) looks like Friedmann equation but, intriguingly, the extra term

(∝ C(t)/a3) behaves like dark matter at low energy. This term is not real matter

but gravitationally behaves like pressure-less dust. Thus, in Hořava-Lifshitz gravity,

something like dark matter emerges as an integration “constant” at least in flat FRW

background at low energy. Note that (81) describes how the “dark matter” is generated

in the early universe: even with C0 = 0 and t0 = −∞, we have non-vanishing C(t) at

late time.

4.1.3. General case in the IR We now show that the dark matter as an integration

“constant” emerges at low energy in more general situation.

Low energy behavior of the theory is described by the IR action (23). This looks

like the Einstein Hilbert action with the ADM decomposition if λ = 1. Hence, we set

λ = 1 in the discussion below, hoping that in the near future we can show that λ = 1 is

a stable IR fixed point of the RG flow.

The Hamiltonian constraint is then of the form
∫

d3~x
√
g
[

G(4)
µν + Λg(4)µν − 8πGTµν

]

nµnν = 0, (83)

where g(4)µν is the four-dimensional spacetime metric defined in (13), G(4)
µν is the Einstein

tensor of g(4)µν , n
µ is the unit vector normal to the constant time hypersurface defined in

(33), and Tµν is the energy momentum tensor of matter. This is an equation integrated

over a whole space including regions far outside the cosmological horizon, and thus does

not restrict physics inside our patch of the universe. On the other hand, the momentum

constraint
[

G
(4)
iµ + Λg

(4)
iµ − 8πGTiµ

]

nµ = 0, (84)

and dynamical equations

G
(4)
ij + Λg

(4)
ij − 8πGTij = 0, (85)

are local equations.

Interestingly, it is possible to give a general solution to these local equations. For

this purpose let us define T dark
µν by

T dark
µν ≡ (8πG)−1

[

G(4)
µν + Λg(4)µν − 8πGTµν

]

. (86)

The momentum constraint (84) and the dynamical equations (85) are rewritten as

T dark
iµ nµ = 0, T dark

ij = 0, (87)
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meaning that the time-space components and the space-space components of T dark
µν

vanish. Only the time-time component remains and thus T dark
µν should be proportional

to nµnν :

T dark
µν = ρdarknµnν , (88)

where the scalar ρdark can in general depend on both time and spatial coordinates. This

is exactly of the form of pressure-less dust and thus behaves like dark matter. It is easy

to show that the vector nµ defined in (33) follows the geodesic equation

nν∇νn
µ = 0. (89)

Also, by taking the divergence of the definition (86) of T dark
µν , we can show that ρdark

satisfies the conservation equation

nµ∂µρdark +Kρdark = 0, (90)

provided that the real matter sector recovers the local Lorentz invariance in the IR

and thus satisfies the energy conservation nµ∇νTµν = 0 at low energy. In more general

cases the right hand side of (90) obtains non-vanishing contributions from higher spatial

curvature terms, deviation of λ from unity, and energy non-conservation of matter.

As a consistency check, let us apply the conservation equation (90) to the flat

FRW spacetime (77). In this case, (90) is reduced to ∂tρdark + 3Hρdark = 0 and thus

ρdark ∝ a−3. This reproduces the scale factor dependence of the last term in (80) with

C(t) = const.

In summary, we have shown that gravity equations of motion in Hořava-Lifshitz

gravity at low energy with λ = 1 is written as

G(4)
µν + Λg(4)µν = 8πG [Tµν + ρdarknµnν ] . (91)

This modified Einstein equation includes a built-in component which behaves like dark

matter, as an inevitable consequence of the projectability condition. The “dark matter

velocity vector” nµ follows the geodesic equation (89) and the “dark matter energy

density” ρdark satisfies the conservation equation (90). In the Newtonian limit the

modified Einstein equation (91) reduces to the Poisson equation with the built-in “dark

matter” included. Note that, as already discussed in subsection 3.5, the Newtonian

potential is encoded not in the lapse but in the shift and the spatial metric.

4.2. Bouncing and cyclic universes

Higher curvature terms in the action are expected to play important roles in the early

universe. In this section we consider the FRW universe with spatial curvature

N = 1, N i = 0, gijdx
idxj = a(t)2

[

dr2

1−Kr2
+ r2dΩ2

2

]

, (92)

and see that higher curvature terms drastically change the evolution of the early

universe. In particular, bouncing universes and cyclic universes are allowed as regular

solutions in Hořava-Lifshitz gravity.
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4.2.1. Modified Friedmann equation with higher curvature terms As already stated in

subsubsection 4.1.2, the FRW spacetime is just an approximation to describe overall

behavior of our patch of the universe inside the Hubble horizon, and thus the global

Hamiltonian constraint does not restrict the dynamics of our approximate FRW universe

inside the horizon. (This is evident in the presence of superhorizon fluctuations.)

Instead, we should consider the dynamical equation as an independent equation,

− 3λ− 1

2
(2Ḣ + 3H2) = 8πGP − α3K

3

a6
− α2K

2

a4
+

K

a2
− Λ, (93)

where

α3 = 192πG(c3 + 3c4 + 9c5), α2 = 32πG(c6 + 3c7). (94)

By using the definition (79) of energy non-conservation Q, we can easily obtain the

first integral of the dynamical equation,

3(3λ− 1)

2
H2 = 8πG

[

ρ+
C(t)

a3

]

− α3K
3

a6
− 3α2K

2

a4
− 3K

a2
+ Λ, (95)

where C(t) is defined in (81). This is a straightforward generalization of (80) and

includes contributions from the spatial curvature K. As in (80), the term proportional

to C(t)/a3 behaves like dark matter at low energy as C(t) → const. In the early

universe, i.e. for small a, the curvature cubic term (∝ K3/a6) plays important roles.

In order to see qualitative behavior of the system, let us rewrite the first integral

(95) in the form of the energy conservation equation for a non-relativistic particle moving

in a 1-dimensional potential as

1

2
ȧ2 +

2

3λ− 1
V (a) = 0, (96)

where

V (a) =
α3K

3

6a4
+

α2K
2

2a2
+

K

2
− Λ

6
a2 − 4πG

3

[

ρa2 +
C(t)

a

]

. (97)

The shape of the potential V (a) completely determines the behavior of the system.

4.2.2. Simple examples Let us now consider some simple examples. For simplicity we

set α3 = 1, α2 = 0, K = 1, ρ = 0, C = const. We still have freedom to choose values

of Λ and C. We show four examples of the 1-dimensional potential (97): a bouncing

universe (Figure 1), a cyclic universe (Figure 2), an unstable static universe (Figure 3)

and a stable static universe (Figure 4). See [25] for more examples with ρ = 0 and

C = const.

4.3. Scale-invariant cosmological perturbations from z = 3 scaling

One of the essential ingredients of Hořava-Lifshitz gravity is the anisotropic scaling with

the dynamical critical exponent z ≥ 3. Indeed, it is this property that makes the theory

power-counting renormalizable and attractive as a candidate for the theory of quantum

gravity. There are interesting cosmological implications of the anisotropic scaling. In
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Figure 1. V (a) for

Λ = 0.4 and 8πGC =

10. If the universe is

initially contracting then

it bounces and expands.

Figure 2. V (a) for Λ = 0

and 8πGC = 10. This

allows a series of expansion

and contraction, i.e. a

cyclic universe.

Figure 3. V (a) for

Λ = 15/64 and 8πGC =

17/4. This allows a static

universe at a = 2 but it

is unstable. A bouncing

universe is also allowed.

Figure 4. V (a) for Λ = 0

and C = 4. This allows

a stable static universe at

a = 1.
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this section we show that the anisotropic scaling with the minimal z, i.e. z = 3, leads

to a new mechanism for the generation of scale-invariant cosmological perturbations.

Intriguingly, this mechanism works even without inflation.

4.3.1. Usual story with z = 1 Before explaining the new mechanism, let us remind

ourselves of the usual story with z = 1.

Cosmological perturbations are analyzed by perturbative expansion around a FRW

background. In the linearized level, perturbations are Fourier expanded and the

evolution of each mode is characterized by the frequency ω defined by the dispersion

relation

ω2 = c2s
k2
c

a2
, (98)

where cs is the sound speed, kc is the comoving wave number and a is the scale factor

of the universe. For simplicity we assume that the time dependence of cs, if any, is

slow compared with the cosmological time scale H−1, where H = ȧ/a is the Hubble

expansion rate. (For example, cs is identically 1 for a canonical scalar field with any

potential.)

If a mode of interest satisfies ω2 ≫ H2 then the evolution of the mode is not affected

by the expansion of the universe and the mode just oscillates. When ω2 ≪ H2, on the

other hand, the expansion of the universe is so rapid that the Hubble friction freezes the

mode and the mode stays almost constant. Generation of cosmological perturbations

from quantum fluctuations is nothing but the oscillation followed by the freeze-out.

Therefore, the condition for generation of cosmological perturbations is

d

dt

(

H2

ω2

)

> 0. (99)

With the z = 1 dispersion relation (98), this condition is equivalent to ä > 0 for

expanding universe (ȧ > 0). Therefore, if z = 1 then generation of cosmological

perturbations from quantum fluctuations requires accelerated expansion of the universe,

i.e. inflation. For example, for power law expansion a ∝ tp, p > 1 is required.

Observational data of the cosmic microwave background strongly indicates that

the primordial cosmological perturbations have an almost scale-invariant spectrum. It

is easy to see that the scale-invariance also requires inflation. From the scaling (2) with

s = 1, the amplitude of quantum fluctuations of the scalar field should be proportional

to the energy scale of the system. In cosmology the energy scale is set by the Hubble

expansion rate H . Thus, we expect that

δφ ∝ H. (100)

Since cosmological perturbations with different scales are generated at different times,

the scale-invariance is nothing but the constancy of the right hand side of (100). Noting

that H = ȧ/a, this implies the exponential expansion of the universe a ∝ exp(Ht),

namely inflation.
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We have seen that, for z = 1, both the generation of cosmological perturbations and

the scale-invariance of generated perturbations require the existence of an inflationary

epoch in the early universe.

4.3.2. The story in the UV with z = 3 The condition (99) for generation of cosmological

perturbations is valid irrespective of the dispersion relation. In Hořava-Lifshitz gravity,

to realize the anisotropic scaling (5), the dispersion relation for a physical degree of

freedom in the UV should be

ω2 = M2 ×
(

k2
c

M2a2

)z

, (101)

where M is some energy scale. By substituting this to the condition (99) we obtain

d2(az)/dt2 > 0 for expanding universe (ȧ > 0). Since z ≥ 3 in Hořava-Lifshitz gravity at

high energy, generation of cosmological perturbations from quantum fluctuations does

not require accelerated expansion of the universe, i.e. inflation. For example, power law

expansion a ∝ tp with p > 1/z satisfies the condition.

In this way, the anisotropic scaling provides a solution to the horizon problem.

Essential reason for this is that perturbations freeze-out not at the Hubble horizon but

at the sound horizon, defined by ω ∼ H . The physical radius of sound horizon is thus

∼ (Mz−1H)−1/z. In the UV epoch (H ≫ M), the sound horizon is far outside the

Hubble horizon and can therefore accommodate scales much longer than the Hubble

horizon size. In order to stretch microscopic scales to cosmological scales, we just need

to have a long enough expansion history (satisfying the condition d2(az)/dt2 > 0) in

the UV epoch. Note that M is not a cutoff scale of a low energy effective theory but

is just the scale at which the theory starts exhibiting the anisotropic scaling, provided

that Hořava-Lifshitz gravity is UV complete.

For general z, the formula (7) implies that the amplitude of quantum fluctuations

of φ should be

δφ ∼ M ×
(

H

M

)

3−z

2z

, (102)

where M is defined through the dispersion relation (101). This is of course consistent

with the well-known result (100) for z = 1 and the result in ghost inflation δφ ∼
(M3H)1/4 [26, 27] for z = 2. On the other hand, in Hořava-Lifshitz gravity with the

minimal value of z ,i.e. z = 3, (102) is reduced to δφ ∼ M , implying that the amplitude

of quantum fluctuations does not depend on the Hubble expansion rate. This means

that the spectrum of cosmological perturbations in Hořava-Lifshitz gravity with z = 3

is automatically scale-invariant even without inflation.

4.3.3. A simple model We have shown that the anisotropic scaling with z = 3 naturally

leads to a new mechanism for generation of scale-invariant cosmological perturbations.
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As a simple implementation of the mechanism, let us consider a free scalar field described

by the action

I =
1

2

∫

dtd3~xN
√
g
[

1

N2
(∂tφ−N i∂iφ)

2 + φOφ
]

, (103)

where

O =
∆3

M4
− κ∆2

M2
+ c2φ∆−m2

φ, ∆ = gijDiDj (104)

This is a covariantized version of (9).

In the UV, the first term in O is dominant and the scalar field action exhibits

the z = 3 scaling. In this regime it is easy to find the mode function in a flat FRW

background as [5]

φ~kc
=

ei
~kc·~x

(2π)3
× 2−1/2k−3/2

c M exp

(

−i
k3
c

M2

∫

dt

a3

)

, (105)

where a is the scale factor, t is the proper time, ~kc is the comoving wave number

and kc = |~kc|. Note that this is not just WKB approximation but actually exact and

applicable to both subhorizon and superhorizon scales in any background a(t), provided

that the first term in O is dominant. The mode function approaches a constant value in

the a → ∞ limit if and only if the integral
∫

∞ dt/a3 converges. For power-law expansion

a ∝ tp, this condition is satisfied if p > 1/3, and agrees with the condition for the freeze-

out after oscillation discussed after (101). Provided that the integral converges, the

power-spectrum is calculated as

Pφ =
k3
c

2π2

∣

∣

∣(2π)3φ~kc

∣

∣

∣

2
=
(

M

2π

)2

. (106)

This is manifestly scale-invariant in accord with the general argument after (102). In

this way, scale-invariant cosmological perturbations of the scalar field can be generated

even without inflation.

After scales of interest exit the sound horizon, cosmological perturbations of the

scalar field can be converted to curvature perturbations by either curvaton mechanism or

modulated decay of heavy particles or/and oscillating fields. For example, it is possible

to suppose that the scalar field φ itself plays the role of a curvaton [5]. When the Hubble

expansion rate becomes as low asmφ, φ starts rolling and eventually decays to radiation.

Perturbations of φ are converted to those of radiation energy density and thus curvature

perturbations.

In the IR, the first two terms in O can be neglected and the usual z = 1 scaling is

recovered. In this epoch, unless the universe is in an inflationary phase, physical scales

re-enter the horizon as usual.

5. Summary and discussions

We have reviewed basic construction and cosmological implications of a power-counting

renormalizable theory of gravitation recently proposed by Hořava. While there are

25



many fundamental issues to be addressed in the future, it is interesting to investigate

cosmological implications.

Since the high energy behavior of Hořava-Lifshitz gravity is very different from

general relativity, there is a possibility that the theory does not exactly recover general

relativity at low energy. As reviewed in subsection 4.1, this is indeed the case and the

theory can instead mimic general relativity plus dark matter. The constraint algebra in

this theory is smaller than general relativity since the time slicing is synchronized with

the “dark matter rest frame” in the theory level. In subsection 4.2 we have shown that

higher spatial curvature terms in the action drastically change the evolution of the early

universe. We have derived modified Friedmann equation with higher spatial curvature

terms and have shown some simple examples, including bouncing and cyclic universes.

The anisotropic scaling at high energy is one of essential ingredients of the theory since

the power-counting renormalizability stems from it. In subsection 4.3 we have reviewed

a new mechanism for generation of cosmological perturbations based on the anisotropic

scaling. This mechanism can solve the horizon problem and generate scale-invariant

cosmological perturbations even without inflation.

In Sec. 3 we have commented on some issues related to the scalar graviton and the

λ → 1 + 0 limit, where λ is a parameter in the kinetic action. We have explicitly seen

that the naive metric perturbation breaks down for the scalar graviton in the λ → 1+0

limit. However, this does not necessarily imply the loss of predictability. Actually, for

spherically-symmetric, static, vacuum configurations we have proved that the limit is

non-perturbatively continuous and safely recovers general relativity.

Now let us compile a list of some important open questions.

• Renormalizability must be shown beyond power-counting argument. (See [28]

for discussion about renormalizability of the theory with the detailed balance

condition.)

• The RG flow of the theory must be analyzed. In particular, it is very important to

see whether λ = 1 is an IR fixed point or not. If it is the case then we would like

to know whether the RG flow can satisfy the condition (56) or not.

• We have to develop mechanisms or symmetries to suppress Lorentz violating

operators in the matter sector at low energies. Perhaps, embedding into a larger

theory is needed. One such possibility is related to supersymmetry [16].

• Is there an analogue of Vainshtein effect [11]? In subsection 3.4, non-perturbative

continuity of the λ → 1 + 0 limit was shown only for spherically-symmetric, static,

vacuum configurations. We need to consider more general situations in order to see

how general the non-perturbative continuity is.

• In [10], based on exact results in some simple cases, it was conjectured that there

is no caustic for constant time hypersurfaces. We need to provide evidences for

this conjecture in more general situations if a proof is difficult. Perhaps, numerical

simulations similar to those in [29] are necessary.
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• In [23] it was proved that a spherically-symmetric solution should include a time-

dependent region near the center. On the other hand, as shown in Sec. 3 of

the present article, the vacuum region far from the center recovers the standard

Schwarzschild geometry. Since the size of the dynamical region is expected to

be of the fundamental scale, the dynamical nature of the central region is not

really relevant for macroscopic objects such as astrophysical stars. Microscopically,

however, this could be rather significant . We would like to know, e.g. the typical

size of the dynamical region and the motion of its boundary.

• As already stressed in [10], we need to know if microscopic lumps of “dark matter

as an integration constant” can play the role of particles in usual dark matter

models from macroscopic viewpoint. Interactions among them such as collisions

and bounces need to be understood. At astrophysical scales, we need to see if

collective behavior of a group of large number of microscopic lumps can more or

less mimic behavior of a cluster of particles with velocity dispersion and vorticity.

Clearly, detailed investigation is necessary to understand rich dynamics of “dark

matter” from microscopic to macroscopic scales.

• As shown in (81), “dark matter as an integration constant” is generated in

the early universe even if it vanishes initially. This formula can be applied to

superhorizon perturbations. Given a concrete model of the matter sector, therefore,

it is straightforward to estimate the typical amplitude and spectrum of the “dark

matter”. If a single physical degree of freedom is responsible for both the source

term Q in (81) and generation of curvature perturbations then it should be possible

to realize adiabatic initial conditions for the late time evolution of perturbations.

(See [30] for classical late time evolution.) It is worthwhile investigating this

possibility in details.

• The mechanism reviewed in subsection 4.3 generates scale-invariant cosmological

perturbations without a need for inflation. It would be interesting to see whether

renormalization effects such as anomalous dimension can break the exact scale-

invariance and explain the observed spectral tilt.

• In the early universe, it is expected that λ should deviate from 1 under the RG flow

and that the scalar graviton can be treated perturbatively. Since the scalar graviton

has the z = 3 anisotropic scaling in the UV, it should also obtain the scale-invariant

cosmological perturbations [31]. Provided that λ = 1 is a stable IR fixed point of

the RG flow, as the universe expands and the Hubble expansion rate decreases,

λ approaches 1 and the perturbative treatment of the scalar graviton becomes

invalid +. However, the result in subsection 3.4 suggests that the λ → 1 + 0 limit

may be non-perturbatively continuous. A natural question is then “how to convert

the scale-invariant cosmological perturbations of the scalar graviton to observables

+ Thus, the conventional cosmological perturbation scheme [32] probably breaks down for the scalar

graviton in the λ → 1+0 limit. Again, this does not necessarily imply loss of predictability but requires

nonlinear analysis.
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such as cosmic microwave background anisotropies and matter power spectrum?”

Since Hořava’s original proposal in January 2009, several extensions appeared in the

literature. Blas, et.al. [21] proposed an extension without the projectability condition by

including spatial derivatives of the lapse in the action. More recent proposal by Hořava

and Melby-Thompson [33] respects the projectability condition but the fundamental

symmetry of the theory is larger than the original one.

Throughout this article, we have considered the minimal theory, i.e. the original

theory with the projectability condition but without extension of the symmetry.

Whether this minimal theory is viable is still an open question and crucially depends

on non-perturbative nature of the scalar graviton (see subsection 3.4) and properties of

the RG flow (see the condition (56) ).
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