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Phenomenologically viable Lorentz-violating quantum gravity
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Hořava’s “Lifschitz point gravity” has many desirable features, but in its original incarnation
one is forced to accept a non-zero cosmological constant of the wrong sign to be compatible with
observation. We develop an extension of Hořava’s model that abandons “detailed balance” and
regains parity invariance, and in 3+1 dimensions exhibit all five marginal (renormalizable) and four
relevant (super-renormalizable) operators, as determined by power counting. We also consider the
classical limit of this theory, evaluate the Hamiltonian and super-momentum constraints, and extract
the classical equations of motion in a form similar to the ADM formulation of general relativity.
This puts the model in a framework amenable to developing detailed precision tests.

PACS numbers: 11.30.Cp 11.10.Kk 11.25.Db 04.60.-m
Keywords: quantum gravity; anisotropic scaling; Lifschitz point
arXiv:0904.4464 [hep-th]. Published as Physical Review Letters 102 (2009) 251601

Quantum gravity models based on the “anisotropic
scaling” of space and time have recently attracted sig-
nificant attention [1, 2, 3, 4, 5]. In particular, Hořava’s
“Lifschitz point gravity” [1] has very many desirable fea-
tures, but in its original incarnation one is forced to ac-
cept a non-zero cosmological constant of the wrong sign
to be compatible with observation (see also [5]). We out-
line a variant of Hořava’s model that appears to be phe-
nomenologically viable.

The basic idea [1] is to write the spacetime metric in
ADM form

ds2 = −N2c2dt2 + gij(dxi − N idt)(dxj − N jdt), (1)

and then, (adopting κ as a placeholder symbol for some
object with the dimensions of momentum), postulate
that the engineering dimensions of space and time are

[dx] = [κ]−1; [dt] = [κ]−z. (2)

Effectively, one is implicitly introducing a quantity Z,
with the physical dimensions [Z] = [dx]z/[dt], and using
the theorists’ prerogative to adopt units such that Z → 1.
(Ultimately we shall interpret this quantity Z in terms of
the Planck scale, and closely related Lorentz-symmetry
breaking scales.) If one prefers to characterize this quan-
tity Z in terms of a momentum ζ, then Z = ζ−z+1c
and we see that in order for dimensional analysis to be
useful one cannot simultaneously set both Z → 1 and
c → 1. (Attempting to do so forces both dx and dt to
be dimensionless, which then renders dimensional anal-
ysis impotent.) Consequently, in theoretician’s (Z → 1)
units one must have

[N i] = [c] =
[dx]

[dt]
= [κ]z−1, (3)

and one is free to additionally choose

[gij ] = [N ] = [1]; [ds] = [κ]−1. (4)

To minimize the algebraic manipulations, it is further
convenient to take the volume element to be

dVd+1 =
√

g N ddx dt; [dVd+1] = [κ]−d−z. (5)

Note the absence of any factor of c in this definition.
The resulting model will, by its very construction, vi-
olate Lorentz invariance; the payoff however is greatly
improved ultraviolet (UV) behaviour for the Feynman di-
agrams [1, 2, 3], coupled with a well-behaved low-energy
infrared (IR) limit.

We shall argue that an extension of the specific model
presented in [1] is (at least superficially) phenomenolog-
ically viable, and has a classical limit that is amenable
to analysis in an ADM-like manner. This is one of very
few quantum gravity models that has any realistic hope
of direct confrontation with experiment and observation.

The extrinsic curvature is most conveniently defined to
not include any explicit factor of c:

Kij =
1

2N
{−ġij + ∇iNj + ∇jNi} . (6)

Then [N i] = [dx]/[dt] = [κ]z−1, in agreement with the
above. Furthermore

[Kij ] =
[gij ]

[N ][dt]
= [κ]z. (7)

For the spatial slices we have

[gij ] = [1]; [Γi
jk] = [κ]; [Ri

jkl] = [κ]2, (8)

the key point being

[Rijkl ] = [κ]2; [∇Rijkl ] = [κ]3; [∇2Rijkl] = [κ]4. (9)

For the kinetic term we consider

T (K) = gK

{

(KijKij − K2) + ξK2
}

. (10)

http://arxiv.org/abs/0904.4464v3
http://arxiv.org/abs/0904.4464


2

(Standard general relativity would enforce ξ → 0.) Take
the kinetic action to be

SK =

∫

T (K) dVd+1 =

∫

T (K)
√

g N ddx dt. (11)

Again, note that for convenience it is most useful to ar-
range the absence of any explicit factors of c. Then

[SK ] = [gK ][κ]z−d. (12)

But since the kinetic action is (by definition) chosen to
be dimensionless, we have

[gK ] = [κ](d−z). (13)

Note that the kinetic coupling constant gK is dimension-
less exactly for d = z, which is exactly the condition
that was aimed for in [1]. In a simplified model based on
scalar field self interactions, this is exactly the condition
for well-behaved UV behaviour derived in [3]. Once we
have set d = z to make gK dimensionless, then provided
gK is positive one can without loss of generality re-scale
the time and/or space coordinates to set gK → 1.

Now consider the potential term

SV = −
∫

V (g) dVd+1 = −
∫

V (g)
√

g N ddx dt,

(14)
where V (g) is some scalar built out of the spatial metric
and its derivatives. Then

[SV ] = [V (g)][κ]−d−z, (15)

whence

[V (g)] → [κ]d+z. (16)

But to keep the kinetic coupling gK dimensionless we
needed z → d. Therefore

[V (g)] → [κ]2d. (17)

But V (g) must be built out of scalar invariants calculable
in terms of the Riemann tensor (Rm) and its derivatives,
which tells us it must be constructible from objects of
the form

{

(Rm)d, [(∇Rm)]2(Rm)d−3, etc...
}

. (18)

In general, in d+1 dimensions this is a long but finite list.
All of these theories should be well-behaved as quantum
field theories [1, 3]. (In particular, certain key aspects
of [1] generalize nicely to d+1 dimensions.) In the specific
case d = 3 we have

[V (g)] → [κ]6, (19)

and so obtain the short and rather specific list:
{

(Rm)3, [∇(Rm)]2, (Rm)∇2(Rm),∇4(Rm)
}

. (20)

But in 3 dimensions the Weyl tensor automatically van-
ishes, so we can always decompose the Riemann tensor
into the Ricci tensor (Rc), Ricci scalar, plus the metric.
Thus we need only consider the much simplified list:

{

(Rc)3, [∇(Rc)]2, (Rc)∇2(Rc),∇4(Rc)
}

. (21)

We now consider a model that generalizes that of
Hořava [1] by containing all possible terms of this type,
eliminating redundant terms using: (i) Integration by
parts and discarding surface terms; (ii) Commutator
identities; (iii) Bianchi identities; (iv) Special relations
appropriate to 3 dimensions. (Weyl vanishes; properties
of Cotton tensor.) We do not need explicit parity viola-
tion, and for simplicity we choose to exclude it.

Hořava’s prescription for keeping the calculation
tractable was to impose two simplifications: (i) a “pro-
jectability condition” on the lapse function [1], (this ef-
fectively is the demand that the lapse N(t) is a function
of t only, not a function of position), and (ii) a condition
Hořava referred to as “detailed balance” [1]. We shall
retain the “projectability condition” but abandon “de-
tailed balance”. We consider “detailed balance” to be
too restrictive and physically unnecessary.

It should be remarked that in standard general rela-
tivity the “projectability condition” can always be en-
forced locally as a gauge choice; furthermore for phys-
ically interesting solutions of general relativity (though
not necessarily for perturbations around those solutions)
it seems that this can always be done globally. For in-
stance, for the Schwarzschild spacetime this “projectabil-
ity condition” holds globally in Painlevé–Gullstrand co-
ordinates [6], while in the Kerr spacetime this condition
holds globally (for the physically interesting r > 0 region)
in Doran coordinates [7]. Furthermore FLRW cosmolo-
gies also automatically satisfy this “projectability condi-
tion”.

However, there is a price to pay for enforcing it at the
level of the action (and before any functional variation):
the theory we are considering is not necessarily the most
general theory with all possible terms of dimension six.
(But it is still general enough to be a significant general-
ization with respect to Hořava’s model [1]).

After a brief calculation, we find that there are only
five independent terms of dimension [κ]6:

R3, RRi
jR

j
i, Ri

jR
j
kRk

i; R ∇2R, ∇iRjk ∇iRjk.
(22)

These terms are all marginal (renormalizable) by power
counting [1, 3]. In Hořava’s article [1] only a particu-
lar linear combination of these five terms is considered:
Phrased in terms of the Cotton tensor, Hořava considers
the single [κ]6 term Ci

jC
j
i.

If we now additionally add all possible lower-dimension
terms (relevant operators, super-renormalizable by
power-counting) we obtain four additional operators:

[κ]0 : 1; [κ]2 : R; [κ]4 : R2; RijRij . (23)



3

This now results in a potential V (g) with nine terms
and nine independent coupling constants. In contrast,
Hořava [1] chooses a potential V (g) containing six terms
with only three independent coupling constants, of the
form (g̃2 Cotton + g̃1 Einstein + g̃0 metric)2.

Assembling all the pieces we now have

S =

∫

[T (K) − V (g)]
√

g N d3x dt, (24)

with

V (g) = g0 ζ6 + g1 ζ4 R + g2 ζ2 R2 + g3 ζ2 RijR
ij

+g4 R3 + g5 R(RijR
ij) + g6 Ri

jR
j
kRk

i

+g7 R∇2R + g8 ∇iRjk ∇iRjk, (25)

where we have introduced suitable factors of ζ to ensure
the couplings ga are all dimensionless. Now assuming
g1 < 0, we can without loss of generality re-scale the time
and space coordinates to set both gK → 1 and g1 → −1.
The Einstein–Hilbert piece of the action is now

SEH =

∫

{

(KijKij − K2) + ζ4R − g0 ζ6
}√

g N d3x dt,

(26)
and the “extra” Lorentz-violating terms are

SLV =

∫

{

ξ K2 − g2 ζ2 R2 − g3 ζ2 RijR
ij

−g4 R3 − g5 R(RijR
ij) − g6 Ri

jR
j
kRk

i

−g7 R∇2R − g8 ∇iRjk ∇iRjk
}√

g N ddx dt. (27)

This perfectly reasonable classical Lorentz-violating the-
ory of gravity certainly deserves study in its own right.

While these Z → 1 units have been most useful for
power counting purposes, when it comes to phenomeno-
logical confrontation with observation it is much more
useful to adapt more standard “physical” (c → 1) units,
in which [dx] = [dt]. The transformation to physical
units is most easily accomplished by setting (dt)Z=1 →
ζ−2(dt)c=1. In these physical units the Einstein–Hilbert
piece of the action becomes

SEH = ζ2

∫

{

(KijKij − K2) + R − g0 ζ2
}√

g N d3x dt,

(28)
and the “extra” Lorentz-violating terms become

SLV = ζ2

∫

{

ξ K2 − g2 ζ−2 R2 − g3 ζ−2 RijR
ij

−g4 ζ−4 R3 − g5 ζ−4 R(RijR
ij)

−g6 ζ−4 Ri
jR

j
kRk

i − g7 ζ−4 R∇2R

−g8 ζ−4 ∇iRjk ∇iRjk
}√

g N ddx dt. (29)

From this normalization of the Einstein–Hilbert term, we
see that in physical (c → 1) units

(16πGNewton)−1 = ζ2; Λ =
g0 ζ2

2
; (30)

so that ζ is identified as the Planck scale. The cosmolog-
ical constant is determined by the free parameter g0, and
observationally g0 ∼ 10−123 (renormalized after includ-
ing any vacuum energy contributions). In particular, the
way we have set this up we are free to choose the Newton
constant and cosmological constant independently (and
so to be compatible with observation). In contrast, in
the original model presented in [1], a non-zero Newton
constant requires a non-zero cosmological constant, and
as long as Hořava’s “detailed balance” symmetry is pre-
served, this will be of the wrong sign to be compatible
with cosmological observations.

The extra Lorentz violating terms consist of one kinetic
and seven higher-curvature terms. The Lorentz violating
term in the kinetic energy leads to an extra scalar mode
for the graviton [1], with fractional O(ξ) effects at all mo-
menta. Phenomenologically, this behaviour is potentially
dangerous and should be carefully investigated. In con-
trast the various Lorentz-violating terms in the potential
become comparable to the spatial curvature term in the
Einstein–Hilbert action for physical momenta of order

ζ{2,3} =
ζ

√

|g{2,3}|
; ζ{4,5,6,7,8} =

ζ
4

√

|g{4,5,6,7,8}|
. (31)

Thus the higher-curvature terms are automatically sup-
pressed as we go to low curvature (low momentum). Note
that we have also divorced the Planck scale ζ from the
various Lorentz-breaking scales ζ{2,3,4,5,6,7,8}, and that
we can drive the Lorentz breaking scale arbitrarily high
by suitable adjustment of the dimensionless couplings
g{2,3} and g{4,5,6,7,8}. It is these pleasant properties that
make the model phenomenologically viable — at least at
a superficial level — and that encourage us to consider
more detailed confrontation with experiment and obser-
vation. Since the UV dominant part of the Lorentz break-
ing is sixth order in momenta, in the absence of signif-
icant UV–IR mixing it neatly evades all current bounds
on Lorentz symmetry breaking [8, 9, 10]. The potentially
risky issue of UV–IR mixing should also be carefully in-
vestigated in this model [11]. That UV–IR mixing is not
invariably fatal can be inferred from the fact that obser-

vationally many condensed-matter analogue systems ex-
hibit emergent Lorentz symmetry in the IR [6], and that
certain specific systems exhibit a “natural” suppression
of Lorentz violating effects [12].

Varying with respect to the lapse N(t) one obtains the
Hamiltionian constraint

H =

∫ √
g H d3x =

∫ √
g {T (K) + V (g)} d3x = 0.

(32)
The difference compared to standard general relativity
lies in (i) the ξ term in the kinetic energy, (ii) the more
complicated form of the potential V (g), and (iii) because
of the assumed “projectability condition” on the lapse
N(t) one cannot derive a super-Hamiltonian constraint,
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and must remain satisfied with this spatially integrated

Hamiltonian constraint.
Varying with respect to the shift N i one obtains the

super-momentum constraint

∇iπ
ij = 0, (33)

where the super-momentum is

πij =
∂[N T (K)]

∂ġij

= −
{

Kij − Kgij + ξKgij
}

. (34)

The difference compared to standard general relativity is
utterly minimal and lies solely in the ξ term.

By varying with respect to gij one now obtains the
dynamical equation

1√
g

∂t(
√

g πij) = −2N
{

(K2)ij − KKij + ξKKij
}

+
N

2
T (K) gij + (∇mNm) πij

+[L ~N
π]ij +

N√
g

δSV

δgij

. (35)

This is very similar to standard general relativity: There
is a straightforward extra contribution coming from the
ξ term in the kinetic energy, but the only real subtlety
lies in evaluating the δSV /δgij terms. This is somewhat
tedious, but since we know that SV is the most general
action one can build out of the metric using 0, 2, 4, or 6
derivatives we can deduce that the “forcing term”

F ij =
1√
g

δSV

δgij

(36)

is the most general symmetric conserved tensor one can
build out of the metric and 0, 2, 4, or 6 derivatives. (An
explicit evaluation of these terms has been performed,
but the result is too long to write down here, details are
provided elsewhere [13].) The relevance of these obser-
vations is that the classical limit has now been cast into
an ADM-like form, suitable, for instance, for detailed nu-
merical investigations.

The model so far only considers pure gravity, and
seems to be very well-behaved. It is a very definite
proposal with a small number of adjustable parameters,
(many fewer adjustable parameters than the standard
model of particle physics), making it worthwhile to put in
the additional effort to develop precision tests that would
confront this model with experimental and observational
bounds. The most obvious tests would come from the ob-
servational limits on Lorentz violations [8, 9, 10, 11]. By
inspection the model should also fall into the PPN frame-
work, and specifically be subject to “preferred frame” ef-
fects [14] — this should lead to stringent limits on the
size of the Lorentz breaking parameters ζa arising from
solar system physics. Up to this stage we have not had to

make any specific commitment as to how matter couples
to the gravitational field: this is a key open problem for
future investigations.

In conclusion, while there is certainly a tremendous
amount of work still to be done, we would argue that
this model could very well in its own right be a promis-
ing candidate for quantum gravity, or alternatively for
the effective field theory resulting from some more fun-
damental theory. Last but certainly not least, the model
discussed above is one of very few quantum gravity mod-
els that has any realistic hope of direct confrontation with
experiment and observation, and so is well worth a very
careful look.
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