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Why is quantum gravity so difficult (compared to QCD)?

Hidenori Fukaya∗

Department of Physics, Osaka University, Toyonaka 560-0043, Japan

Abstract

Gravity is difficult to quantize. This is a well-known fact but its reason is given
simply by non-renormalizability of the Newton constant and little is discussed why
among many quantum gauge theories, gravity is special. In this essay1, we try to treat
the gravity as one of many gauge theories, and discuss how it is special and why it is
difficult to quantize.

1 Introduction

The author of this article is mainly working on numerical simulations of lattice QCD. His
ordinary target is a many-body system of quarks and gluons at energy of a few GeV, and
there is no chance for gravity to appear. But he was asked to teach general relativity to
senior students in a seminar class in 2014 and he needed a lot of study to recover what he
all forgot. In fact, it turned out that no student entered the high-energy theory lab, which
had never happened in his lab for more than 80 years, and the class was not opened.

Since the class was not opened, the author could have stopped his study on gravity and
forget all of them again. But he took this one hour and half in a week as a good chance
to compare it to QCD and understand how gravity is different and why it is difficult
to quantize. The difficulty of quantization of gravity is a well-known fact and it is well
explained by the negative mass dimension of the Newton constant. However, little is found
in the textbooks why only gravity is special and difficult among many other gauge theories.
As a result of the study in one semester, the author reached some conclusions and gave a
presentation in his lab. Then his colleague, Kin-ya Oda persuaded him to write an article
and submit it to Soryushiron Kenkyu, which is a Japanese web journal on high energy
particle theory.

General relativity is a gauge theory with general covariance (and local Lorentz symme-
try). Quantum chromo dynamics (QCD) is a gauge theory with the color SU(3) invariance.
Both theories are based on the gauge principle, in which the theory is invariant under lo-
cal gauge transformations. These two theories, therefore, share similar properties at the
classical level. For example, their Lagrangians are both expressed by the curvature tensor,
which is defined by the connection gauge field.

∗E-mail address: hfukaya[at]het.phys.sci.osaka-u.ac.jp (replacing [at] by @.)
1 This essay is an English translation (with some additional discussion) of a Japanese article [1] originally

published in Soryushiron Kenkyu.
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There are, however, some differences. In QCD, the gauge potential or connection Aµ

is the fundamental degrees of freedom (d.o.f.) of the theory, while in general relativity,
the metric gµν rather than connection, describes physics. There is also a big difference in
their equation of motion (EOM). In QCD, the solutions to EOM tend to be a static or
stationary against the time evolution, while in general relativity, many solutions show a
dynamic and strong time dependence, like inflation, unless we fine-tune the cosmological
constant. In QCD, we can not find counterpart to vierbein or torsion in general relativity.
Above all, QCD is known to be renormalizable, while gravity is, at least, perturbatively
non-renormalizable. Similarities/differences are summarized in Tab. 1.

Table 1: Similarities/differences of QCD and gravity
gravityGR QCD

connection Γρ
µν Aµ

curvature Rσ
µνρ Fµν

fundamental d.o.f. gµν Aµ

Lagrangian
√
gR TrFµνF

µν

basic solutions static/stationary? No. Yes.
vierbein and torsion? Yes. No.
renormalizability No ! Yes !

The author started this study by reading a textbook by Utiyama [2], who was one of
great professors in Osaka university. In his old work, his first attempt for a unified under-
standing of the gravity and Yang-Mills theory is clearly written. Utiyama also noticed that
his attempt is equivalent to fiber bundle in mathematics, which happened to be developed
almost in parallel at that time. Then, the author read the textbook by Nash and Sen
[3]. This book indicates that the Riemannian manifold is a special case of fiber bundles
where the connection is given by the metric. In the Kobayashi and Nomizu’s textbook
[4], it is written why and how the Riemannian manifold is special. By translating these
known facts in mathematics into physics language, we may be able to explain the differ-
ence between general relativity and other gauge theories. This essentially corresponds to
considering the first order formalism or Palatini formalism of general relativity [5, 6, 7],
where we use the connection and vierbein as fundamental fields, rather than the metric.

In this article, we discuss why and how the special features of gravity appear in terms
of fiber bundles, comparing the first order formalism of general relativity and other gauge
theories. Then we will reach a conclusion that the difficulty of gravity, including its non-
renormalizability, is caused by a fact:

The frame bundle is parallelizable.

The frame bundle is a kind of a parent of the Riemannian manifold.
The following discussion is, except a few remarks by the author, not an original con-

sideration but known results in mathematics or physics. The above conclusion is not an
original one either, but was already given by Heller in Ref. [8]. The purpose of this article
is to draw an attention of the readers to some non-trivial background behind the explicit
fact that the Newton constant is non-renormalizable.
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2 Fiber bundles

Many textbooks on fiber bundles are available and even those specially written for physi-
cists exist [3, 9]. Among them, we recommend the one by Nash & Sen [3], which is
physicist-friendly, and has nothing written about the Riemannian manifold, before the
fiber bundle is introduced in its section 7. Here, we do not rephrase the mathematically
precise definition of the fiber bundles but briefly give a rough sketch of it using the language
of physics, especially of high energy particle theory.

A fiber bundle is a united manifold E, which consists of the base manifold M repre-
senting the space-time, and the fiber space F denotes the space of fields. The situation
of physics (in 4-dimensions), where the field is defined on each point of the space-time, is
locally expressed by a direct product of R4×F . If this direct product is globally extended,
the total space of the fiber bundle E is just M ×F and is not very interesting, but this is
not true in general, having a non-trivial structure.

In the definition of the fiber bundles, we have a structure group G, which generates
the coordinate transformation in the fiber space F . Although not very stressed in the
textbooks, this G is limited to those linearly acting on the fiber. This linearity is important
as we will discuss later. For instance, if we take F to be a complex plane, and G to be
U(1) group, then the coordinate transformation of φ(x) ∈ F by g(x) ∈ G on x ∈ M is
given by

φ′(x) = g(x)φ(x). (1)

As clearly seen in this explicit example, the coordinate transformation in the fiber is just
what physicists call the gauge transformation.

We identify a class of fiber bundles which are connected by the coordinate transfor-
mations (both in base and fiber directions). Its non-trivial structure arises from the con-
sistency condition among the coordinates (transition function) on different open patches
Ui covering M . The instanton configuration in physics is a typical example of non-trivial
fiber bundles. If we take the base manifold to be a four-dimensional sphere M = S4, and
a fiber space transformed by G = SU(2), we need two patches containing north and south
poles of S4, respectively. The overlap region of the two patches can be identified as S3,
and the two “coordinates” are related by the gauge transformation, which maps S3 → G.
If this map is non-trivial, we cannot express the total fiber bundle as the direct product
E =M × F .

We can take the structure group G itself as a fiber, F = G. In this case, we call
this fiber bundle a principal bundle, often denoted by P . From P , we can construct
fiber bundles with a fiber FG, taken in any representation space of G, which is called the
associated bundles. The associated bundle is given by a quotient E = P × FG/G. The
construction of a principal bundle and its associated bundles, corresponds to the gauge
principle in physics that the space-timeM and the gauge group G are enough to construct
a quantum field theory, where the fields in various representations are naturally introduced
as the associated vector spaces.

We can give a local structure to a principal bundle by the so-called connection. The
connection of P is given by a decomposition of the tangent space at a point u ∈ P : Tu(P )
into the one vertical to the base space (or parallel to the fiber space) Vu(P ), and the other
horizontal Hu(P ). This decomposition can be smoothly done at any u ∈ P , and the total

3



tangent bundle of P becomes T (P ) = V (P )⊕H(P ) 2.
More concretely, the connection of P is obtained by a differential form known as the

connection one-form. Let us denote the local coordinate on P as u = (x, g) [x ∈ R
4,

g ∈ G]. Then the connection one form is given by

ω = g−1dg + g−1Ag, A = Aa
µ(x)Tadx

µ, (2)

where Aa
µ(x) is our familiar vector potential, and Ta are the generators of G. The decom-

position of T (P ) is achieved by requiring any vector X ∈ H(P ) to satisfy

〈ω,X〉 = 0. (3)

Here, the degrees of freedom of ω is the same as the dimension of G. In a sense, ω plays
a role like a normal vector to Hu(P ).

ω does not change under the coordinate transformation g → hg in fiber’s direction,
since we require the gauge field to transform as

A→ hdh−1 + hAh−1. (4)

This is nothing but the gauge transformation. From the connection one-form ω, we can
define the curvature two-form Ω by

Ω = dω + ω ∧ ω = g−1(dA+A ∧A)g = g−1Fg, (5)

where F denotes the field strength.
As a final remark of this section, we introduce a cheap analogy found on the internet.

Suppose your head as the base manifold M then the fiber F is your hair, and the total
space of the fiber bundle E is your hair style. We do not know how much nontrivial
topological structures are allowed on your hair bundle.

3 A fiber bundle view of QCD

In this section, we discuss how QCD is described by a fiber bundle. Here we take the base
manifold M as a four dimensional flat Euclid space, which is familiar to the author as
a hep-lat person, and the gauge group SU(3). These are enough to define the principal
bundle P and introduce its connection. Here we have not given the metric yet.

How is quantum field theory described with the set-up? Let us consider a situation
where P with a given connection A appears according to a kind of probability ρ. This
statistical approach, which is familiar to the author as a hep-lat person, matches the
functional integral in physics. Here we assume ρ to be a scalar quantity. The almost
unique scalar without using metric is

Sθ =
θ

4

∫

M

TrF ∧ F, (6)

2 The connection is not given by the principal bundle P itself but by the tangent bundle T (P ), whose
base space is P . The notion of bundles of bundles is difficult to imagine for a beginner like the author.
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which is the θ term, and it is natural to assign ρ = exp(iSθ) up to a constant. It is
interesting to note that Sθ does not require the metric3, we cannot write down any non-
renormalizable action without metric, and we usually omit Sθ in QCD, as it is known to
be very small.

We should, of course, assign the metric gµν = diag(1, 1, 1, 1) to our base manifold M .
This allows us to define the Hodge dual of the curvature two-form,

∗Fµν =
1

2
Fαβg

αγgβδǫγδµν . (7)

Then we can construct the usual gauge action,

Sg =
1

4g2

∫

M

TrF ∧ ∗F + · · · , (8)

where · · · represents infinitely many types of actions including non-renormalizable terms.
Now let us introduce the quark field. As mentioned above, from the principal bundle

P , we can construct an associated vector bundle Q as

Q = P × F/G. (9)

For the quark field, we choose F in the fundamental representation of SU(3). Using the
Dirac operator D, one can define its action by a gauge invariant scalar as

Sq =

∫

M

d4x
√
gq̄Dq. (10)

It is interesting to note that the (section of) fiber F is reflected in Sq, while that of G,
which is the gauge degrees of freedom, is absent in Sg.

The dynamics of QCD is, thus, described by the statistical mechanics, where the
principal bundle P and the associated bundle Q, which are freely deformed, according to
a probability ρ = exp(−Sg + iSθ−Sq). The fact that ρ takes an exponential function may
be related to the extensive property of the action or cluster decomposition principles, but
here we do not consider further details.

As a final remark of this section, we would like to note that lattice gauge theory has
a similar structure to fiber bundles. It is defined on a discretized lattice space-time, but
the structure group remains the continuum, and therefore, the fiber space is continuous.
Assigning the gauge degrees of freedom to the lattice sites corresponds to giving the fiber
space G. The link variables literally gives the “connection” between the sites. In fact,
even “subtraction-form” and its cohomology can be defined on the lattice [10], which plays
an important role in a formulation of lattice chiral gauge theories.

4 Gravity in terms of fiber bundles and solder one-form

Now let us discuss the (first-order formalism of) general relativity in terms of fiber bundles.
We consider a four dimensional manifold M , to which we have not given the metric, and
take the real general linear group as the gauge group G = GL(4,R). This defines a
principal bundle called the frame bundle F (M).

3A theory with ρ = exp(iSθ) corresponds to a topological field theory.

5



The frame bundle has a special property which is not shared by the other general
bundles. It is parallelizable, or equivalently, T (F (M)) is always trivial. A parallelizable
manifold is a manifold on which we can give a globally defined tangent vector space.

For instance, let us consider a two dimensional manifold. If it is parallelizable, we can
globally define the directions north-south, and east-west. On a two-dimensional sphere,
this is not possible and we need two singular points: north and south poles. On a torus,
however, it is possible to draw parallel lines covering the whole torus, as it is viewed as a
flat parallelogram, whose opposing sides are identified.

The frame bundle on a four-dimensional base manifold M is a 4+42 = 20-dimensional
manifold, and it is difficult to imagine its parallelizability but we can show it as follows.

The tangent vector space TxM at x ∈M is R4 and so does the associated fiber in the
fundamental representation to GL(4,R) principal bundle. There exists a one-to-one map
e between v ∈ V and t ∈ TxM such that

va = eaµt
µ. (11)

The four-component one-form e = (e1µdx
µ, e2µdx

µ, e3µdx
µ, e4µdx

µ) is the so-called solder
one-form. This solder form is nothing but the vierbein in physics. In the frame bundles,
the associated vector space happens to be isomorphic to the tangent space of the base
manifold, and the solder form is automatically introduced.

To be precise, we should not call e as the solder form. e is a one-form on M but it is
not invariant under coordinate transformations. The coordinate-independent definition of
the solder form θ is given as a one-form on F (M) as

θ = g−1e. (12)

Note that under the gauge transformation g → hg, e transform as e → he so that θ
remains invariant. Here we take the local coordinate of F (M) as u = (x, g)4.

The solder form θ is a one-form on F (M), but it has non-zero components only in x’s
directions. If a tangent vector X at u is in the direction of fiber or X ∈ Vu(F (M)), we
can show 〈θ,X〉 = 0.5. As shown in Eq. (3), the inner-product between the connection
one-form and any vector in Hu(F (M)) is zero. Therefore, for any X ∈ Tu(F (M)), we can
conclude that

〈ω,X〉 = 0 & 〈θ,X〉 = 0 ⇐⇒ X = 0. (14)

This means that X 6= 0 has non-zero inner product at least, either with ω or θ. Namely,
any X can be given by ω and θ as the (dual) basis. In fact, the degrees of freedom for ω
is 4 × 4 = 16 and θ has 4, and their total 20 matches with the dimension of (the tangent

4 Eq. (12) uses a specific coordinate u = (x, g). A definition without choosing the coordinate basis is
given by requiring θ for any X ∈ T (F (M)) to satisfy

〈θ,X〉 = 〈e, π∗(X)〉. (13)

Here, π∗ is the induced map π∗ : T (F (M)) → T (M) of the so-called projection π : F (M) → M (which
indicates which point of F (M) corresponds to which point of M whose fiber extends.). Now e is a pull-back
of θ. This definition looks more difficult than Eq. (12) but it is clearer that θ is defined on F (M).

5 In the definition without choosing the coordinate, this can be shown from the fact π∗(X) = 0 for
X ∈ Vu(F (M)).
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space of) F (M). Since both of ω, θ are smoothly defined on F (M), any tangent vector
field X can be smoothly defined on F (M). Thus, F (M) is parallelizable.

This situation where we can define not only the connection form but also the solder
form is simply due to parallelizability of F (M). This tells us why gravity is special: the
theory of gravity requires not only the gauge field but also the vierbein as its ingredients.
We also introduce the torsion 2-form,

Θ = dθ + ω ∧ θ, (15)

and it is now clear that the notion of “torsion” is special for the frame bundle F (M).
Now our mathematical set-up is ready to make a gravity theory. Let us start by

counting the degrees of freedom. The gauge connection field, as an elements of GL(4,R)
generators in four different directions, has 42 × 4 = 64. The vierbein has 4× 4 = 16. We
have thus 80 in total, which looks quite many compared to two physical modes of graviton
we eventually need. In the following, we will see how these many degrees of freedom are
dramatically reduced by various physical conditions.

First, we need a reduction of the frame bundle F (M). The general linear group can
be written as GL(4,R) = O(4) × C, where C is a component smoothly contractable to a
point. To ignore C and take the reduced structure group O(4) for the principal bundle is
called the reduction of the principal bundle. O(4) corresponds to the (Euclidean version
of) local Lorentz group. This reduction allows us to define a Riemannian metric by

gµν = eaµe
b
νηab, ηab = diag(1, 1, 1, 1), (16)

as ηab becomes an invariant tensor underO(4). We can also introduce the Affine connection

Γλ
µν =

[

AA
ν

]a

b
ηcae

b
µe

c
σg

σλ + (differential term). (17)

Details of (differential term) will be given later. Here, AA
ν is the reduced O(4) gauge field.

It is important to note that O(4) indices a, b are completely contracted so that gµν and
Γλ
µν are both O(4) invariant. These objects never appear in QCD, which does not have

vierbein to achieve these contractions.
Here, the general covariance appears as an emergent gauge symmetry. As is well-

known, the general covariance preserves the inner-product of two vector fields,

gµν(x)X
µ(x)Y ν(x), (18)

under a “local” translation, which is achieved by a condition on gµν (metricity condition),

∇ρgµν ≡ ∂gµν
∂xρ

− gµσΓ
σ
νρ − gνσΓ

σ
µρ = 0. (19)

It is interesting to notice that the general covariance, the fundamental property of general
relativity appears as a secondary or emergent invariance of the theory. It is also interesting
that the original GL(4,R) or O(4) gauge invariance is completely hidden unless we consider
spinor fields.

One may be confused by counting the degrees of freedom. After the reduction of the
frame bundle, the O(4) gauge field has 6 × 4 = 24, gµν has 10, and that of vierbein
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which keeps gµν unchanged is 6. We have thus 40 in total. But the metricity condition in
Eq. (19) apparently imposes 40 conditions. If these are independent, the physical degrees
of freedom is 80− 40− 40 = 0. Actually, there should remain 40 here, which means that
the frame bundle reduction must be equivalent to imposing the metricity condition.

The concrete description of equivalence of the frame bundle reduction and the metricity
condition is hardly found in the literature. It should be given by some equation which
achieves the fiber bundle reduction and satisfies the metricity condition at the same time.
In fact, we find that the “equation of motion(EOM)” of the vierbein

[Dνeµ]
a = (∂νδ

a
b + [Aν ]

a
b )e

b
µ = 0, (20)

is what we require here. Aν is the original GL(4,R) gauge field and Dν denotes its
covariant derivative.

Let us decompose the gauge field into its symmetric part AS
ν (10 × 4 = 40 d.o.f.) and

anti-symmetric part AA
ν (6× 4 = 24 d.o.f.): Aν = AS

ν +AA
ν . Then the above EOM reads

(∂νδ
a
b + [AA

ν ]
a
b )e

b
µ = −[AS

ν ]
a
be

b
µ. (21)

The left-hand side has 40 d.o.f. in total (eaµ(16 d.o.f.) and AA
ν (24)), while the right-hand

side has 40 in AS
ν . This equation freezes AS as a function of eaµ and AA

ν , being the generator
of the reduced O(4) group, and achieves the frame bundle reduction from GL(4,R) to O(4)
bundles.

Moreover, if we define

Γρ
µν = −[AS

ν ]
a
be

b
µ[e

−1]ρa, (22)

Eq. 21is rewritten to an equation known as the vierbein postulate,

[D̄νeµ]
a ≡ (∂νδ

a
b + [AA

ν ]
a
b )e

b
µ = Γρ

µνe
a
ρ, (23)

where D̄ν the covariant derivative with respect to the O(4) gauge field. From this postu-
late, the metricity condition is automatically obtained,

∂

∂xρ
(gµν) =

∂

∂xρ
(eaµe

b
νηab) = [D̄ρeµ]

aebνηab + eaµ[D̄ρeν ]
bηab = Γλ

µρgλν + Γλ
νρgµλ, (24)

Now we have confirmed by Eq. (20) that the GL(4,R) frame bundle is reduced to O(4)
bundle with the metric which satisfies Eq. (19). The remaining degrees of freedom is 40.
The Affine connection is given by

Γλ
µν = [e−1]λa[D̄νeµ]

a =
[

AA
ν

]a

b
ηcae

b
µe

c
σg

σλ + (∂νe
a
µ)ηcae

c
σg

σλ. (25)

We need to introduce another important principle of gravity. It is the equivalence
principle, in which we can locally make the Affine connection zero by the coordinate
transformation. Its necessary and sufficient condition is Γλ

µν = Γλ
νµ, or equivalently that

the torsion T λ
µν = Γλ

µν − Γλ
νµ is zero. From Eq. (23), we can express it by

[D̄νeµ]
a − [D̄µeν ]

a = 0. (26)
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As it is a two-form, being a pull-back of the torsion two-form of Eq. 15), the equivalence
principle indicates Θ = 0, too. The torsion has 24 degrees of freedom, which happens to
be the same as those of O(4) gauge field. Hence, we can totally eliminate the O(4) gauge
field Aµ from the theory, where only the vierbein (16 d.o.f.) is enough to describe it. The
theory looks completely different from the usual Yang-Mills theory. There is no wonder
why gravity is difficult already at this classical level.

Fixing the local Lorentz gauge (6 d.o.f. are lost), we obtain the conventional form (the
second order formalism) of general relativity, where we need the metric (10) only. Γλ

µν

becomes the Christoffel symbol, which is given as a function of the metric. Further gauge
fixing of the general covariance (4) and four Gauss’s law constraints, we can see that the
physical degrees of freedom of gravity is just two.

How can we construct the action to describe the dynamics of gravity? In the GL(4,R)
gauge theory, we may have the θ term

Sθ =
θ

4

∫

M

TrF ∧ F. (27)

This time, the GL(4,R) group is non-compact and we do not know if it is still a topological
action or not. It looks that F = 0 is a solution of the Euler-Lagrange equation of motion.
After the fiber bundle reduction from GL(4,R) to O(4), and the base manifoldM is closed,
this term is related to the Hirzebruch’s Signature, which is an integer.

Since we also have the vierbein, we may define a one-form σba = (e−1)µa [Dνeµ]
bdxν and

construct an action,
∫

M

Tr [σ ∧ σ ∧ F ] . (28)

Although the EOM looks consistent with the least action principle of this action, it is not
found in the literature.

Once the EOM in Eq. (21) is realized by some dynamics the gauge group is reduced
from GL(4,R) to O(4), and the metric is given, we can write infinitely many actions.
Assuming the conventional dimensional analysis that the less derivatives in the action
indicates the less ultra-violet divergences, the leading terms would be the cosmological
constant term,

SΛ = ΛM2
pl

∫

M

ea ∧ eb ∧ ec ∧ edǫabcd, (29)

and the next-to-leading one is the Einstein-Hilbert action,

SEH =M2
pl

∫

M

ea ∧ eb ∧ [D̄AA]cdη
deǫabce, (30)

where Mpl is the Planck scale. Note again that existence of these curvature independent
and linear terms is special for gravity. Compared to QCD, where the terms in even
products of D̄AA are allowed, the gravity action looks unstable, which explains why many
non-stationary solutions exist for the Einstein equation. Also, we can construct the matter
field action such as

Sm =

∫

M

d4xψ̄gµνγae
a
µ(∂ν + [AA

ν ]
b
cη

cdγbγd)ψ(x), (31)
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where γa are 4× 4 Dirac matrices.
Let us assume that the other possible higher derivative terms are all negligible, and

consider the least action principle of S = SΛ + SEH + Sm. From the variation of AA
µ

(where we further assume that the fermion field does not have non-scalar condensate), the
torsionless condition (26) is derived. In a sense, the equivalence principle is not needed
to be given a priori, but can be realized by the dynamics of the Affine connection. The
variation of eaµ leads to the conventional Einstein equation or the second order formalism
of the general relativity6. We summarize the above discussion in Tab 2.

Table 2: How to obtain the conventional general relativity from the 1st order formalism.
(g.c. denotes general covariance)

conditions equations gauge sym. fields d.o.f.

frame bundles — GL(4,R) [Aµ]
a
b , [eµ]

a 80
↓
bundle reduction

(metricity) [Dνeµ]
a = 0 O(4)+ g.c.

[AA
µ ]

a
b , [eµ]

a

(gµν) 40
↓
equivalence principle

(zero torsion) [D̄νeµ]
a − [D̄µeν ]

a = 0 O(4)+ g.c.

[eµ]
a

(gµν) 16
↓
O(4) gauge fixing many ways g.c. gµν 10

5 Frame bundle reduction and Higgs mechanism

In this section7, we discuss that the fiber bundle reduction can be in general viewed as
the Higgs mechanism. In gravity theory at our hand, if we identify the vierbein as a Higgs
field [7], the EOM (21) is naturally obtained.

Let us start with summarizing the argument in Kobayashi and Nomizu’s textbook [4]
on how the principal bundle is reduced. It is given in the following two steps.

1. A principle bundle P (G,M) (where G is its structure group and M is the base
manifold) is reducible to P (H,M) where H is a sub-group of G, if and only if the
associated bundle E(G/H,M,G) admits a section.

2. The connection of P (H,M) is uniquely given by the condition of the section of
E(G/H,M,G) to be parallel to the connection of P (G,M).

Here E(G/H,M,G) is a fiber bundle associated to the original principal bundle, whose
fiber space is the quotient G/H.

In fact, this principal bundle reduction is nothing but the Higgs mechanism in physics.
The first step is interpreted as a Higgs field taking a vacuum expectation value (VEV) in
G/H. We know in this case, the original G gauge symmetry is broken down to H. The

6 From Eq. (25), one obtains the Riemannian tensor as Rλ
µνρ = [e−1]λa [D̄ρA

A
ν ]

a
b e

b
µ.

7This section is new and not contained in the original Japanese version.
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second condition determines which part of the original gauge field remains as the H gauge
field.

Following [11], let us confirm the above argument taking a simplest example, G =
SO(3) gauge theory with a Higgs, or equivalently, SU(2) gauge theory with an adjoint
Higgs field. In the standard gauge, we take a constant Higgs VEV h0 = (0, 0, v)T but if
we allow its gauge transformation, we can have a x-dependent VEV

h(x) = g(x)h0, (32)

which, in fact, determines a section of G/H bundle, since g(x) ∈ SO(2) keeps h0 invariant.
Here, the first step of Kobayashi and Nomizu is done.

Next let us identify the remaining SO(2) gauge field. The second step of Kobayashi
and Nomizu tells us that the section of E(G/H,G,M) or the Higgs field should be parallel
to the original connection of G gauge theory. Namely, the condition is simply given as the
Higgs “EOM”8,

DSO(3)
µ h(x) = 0, (33)

where D
SO(3)
µ is the covariant derivative with respect to the original SO(3) gauge field.

Under this condition, two components of the original SO(3) gauge fields are frozen, be-
coming functions of h and the remaining SO(2) (or U(1)) gauge field, which is given
by

ASO(2)
µ =

ĥT
[

Aµ + ĥ× ∂µĥ
]

ĥT ĥ
, (34)

where Aµ is the original SO(3) gauge field, and ĥ = h/v is dimensionless expression of the
Higgs.

For the simplest case ĥ(x) = (0, 0, 1)T , A
SO(2)
µ is just the third component of Aµ, while

other two components become zero (W bosons are not excited in classical theory). If the
Higgs field has a singular point, h(x0) = 0, then on a two-dimensional sphere S2 around x0
makes a map: S2 → SO(3)/SO(2) = S2, labeled by an integer, which gives the magnetic
charge of the ’tHooft-Polyakov monopole.

In this way, the reduction of the principal bundles can be interpreted as the Higgs
mechanism in physics. Now let us get back to the gravity theory and discuss how the
frame bundle reduction is realized in terms of the Higgs mechanism.

One immediately finds that the Higgs EOM Eq. (33) in SO(3) theory looks like that
of the vierbein in Eq. (21). Moreover, the vierbein can be written as eaµ(x) = [g′(x)ēµ]

a,
where ē is a constant fixed back-ground, and g′(x) is the GL(4,R) gauge transformations,
and the metric

gµν = [g′ēµ]
a[g′ēν ]

bηab, (35)

determines a section of E(G/H,G,M) bundle where G = GL(4,R) and H = O(4). Note
that if g′ ∈ O(4), the metric is unchanged. Namely, it is the vierbein that reduces the
frame bundle from GL(4,R) to O(4) via the Higgs mechanism, and the metric is the Higgs
VEV9. Eq. (21) is the correct equation for achieving this.

8 This condition is stronger than the usual EOM gµνD
SO(3)
µ D

SO(3)
ν h(x) = 0.

9 The idea of metric as the Higgs VEV is not new but found in the literature.
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In the conventional Higgs mechanism from G → H, we can easily construct a G-
invariant Higgs action, which spontaneously produces a VEV of the Higgs field. But for
gravity, as discussed in the previous section, it looks difficult to make a G-invariant action,
since we cannot use the metric, which breaks the original G = GL(4,R) symmetry. The
non-compactness of GL(4,R) may also be a problem in constructing a quantum theory.

6 Why is quantum gravity difficult?

Finally let us consider why quantization of gravity is difficult. As seen in the previous
sections, gravity theory differs from other gauge theories very much already at classical
level. There is thus little doubt that quantization of gravity is very difficult, too. The dif-
ficulty of gravity at classical level is due to the fact that the frame bundle is parallelizable,
introducing the vierbein in the theory. Here, we see that the vierbein is also a obstacle
for quantization. The focus of this article is to shed light on the difficulty of gravity, thus
we do not review many previous attempts to quantize gravity.

We start with agreeing Nakanishi’s claim (in [12]) that it is not appropriate to quantize
the metric gµν . As seen in the previous sections, from the fiber bundle picture, the metric
is not a fundamental field but a composite of the vierbein. It is analogous to the pions in
QCD. The effective theory of pions is known as chiral perturbation theory, which is not
renormalizable. But we never worry about the renormalizability of QCD itself.

Clearly, the vierbein is a vector field, having spin 1. It is almost obvious that spin 1
particle is easier to treat than higher spin particles. In our textbooks, we usually treat
spin 0,1/2 and 1, only [13]. The cosmological constant term in Eq. (29) and the Einstein-
Hilbert action in Eq. (30) in terms of vierbein look different from the conventional action
with metric, which looks hopelessly non-renormalizable. Since there is, apparently at least,
no coefficient with negative mass dimensions, we may consider the former as four-point
self interactions of vierbein, and the latter as the 3-point interaction with the gauge field.
One may feel like that if we introduce an appropriate kinetic term of vierbein and gauge
connections, we may construct a renormalizable quantum field theory of them.

However, our life is not so easy. The above situation is analogous to the one where we
add a charged vector field (like ρmeson) to QED. It is well-known that we cannot construct
a renormalizable field theory with the charged vector field, as its longitudinal modes
produces a UV divergence. This divergence can be removed only when the additional
charged vector fields are the gauge fields of another gauge symmetry (like the weak bosons
of SU(2) theory, whose mass is given by the Higgs mechanism). This observation suggests
that we cannot quantize gravity unless we find another gauge symmetry, in which the
vierbein becomes its gauge connection.

In fact, there are many attempts to formulate a theory containing the vierbein as a
gauge field in the literature. A successful example is the three-dimensional gravity. Witten
showed that it is renormalizable [14], where the dreibein plays a role of gauge bosons. In
three-dimensional gravity, we can treat the dreibein as a generator of local translation,
which differs from general coordinate transformation, and the action has a form of a Chern-
Simons term, which is invariant under the new translation symmetry. There happens to
be an extended gauge symmetry, where the dreibein is treated as its gauge field, and we
can make the theory renormalizable.
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However, this is not the case in four or higher dimensional gravity. The Einstein-Hilbert
type actions cannot be invariant under this local translation. There is a fundamental
difficulty in mathematics, too. As mentioned in Sec. 2, the structure group is required to
act linearly on the fibers. The local translation, acting non-linearly on fibers, cannot be a
structure group. We need an extended mathematical set-up beyond fiber bundles.

It is also non-trivial to figure out which steps in Tab. 2 are given as fundamental
principles of the theory, and which are given by dynamics, during the reduction from the
first order formalism to the second order. The lower parts, like torsion less condition,
look easer to be embedded as dynamical consequences in the theory, while it is difficult to
imagine how the upper parts, especially, the Higgs mechanism is realized.

7 Conclusion

The difficulty of gravity lies in the fact that its basic mathematical object, frame bundle,
is parallelizable. This parallelizability introduces the vierbein field, in addition to the
conventional gauge field. The vierbein introduces unfamiliar physical observables, such as
torsion, Affine connections, and make different types of the gauge invariant actions. In
particular, the Einstein-Hilbert action, which is linear in the curvature, originates from
the contraction of the two vierbein fields and a curvature field.

The vierbein is a spin 1 particle, which cannot be treated as a gauge particle. This
explains why the renormalization is difficult. An exception is the three-dimensional gravity,
where dreibein can be treated as a gauge field of local translation. However, it looks just a
lucky coincidence where the action happens to be a Chern-Simons term. In general, there
is a difficulty in mathematics: the local translation cannot be incorporated as a structure
group of fiber bundles.

These are our conclusions. As being a non-expert, the author’s discussion may be too
naive and simple. It may be totally wrong to start with the frame bundle, as a target to
quantize the gravity. Or our arguments above may be trivial for some experts. There may
be more fundamental problems in this article. However, the author is, at least, satisfied
by understanding that QCD would never have something corresponding to the vierbein.

The author thanks Kin-ya Oda for suggesting to write this article, Shigeki Sugimoto
for discussion about the physical meaning of vierbein, Norihiro Tanahashi for checking
this article from a view by a gravity expert, Akinori Tanaka for teaching why three-
dimensional sphere is parallelizable, and Satoshi Yamaguchi for helping the author in
reading mathematical textbooks.
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