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Abstract

We consider the conformal group of a space of dim n = p + q, with SO(p,q) metric. The quotient of
this group by its homogeneous Weyl subgroup gives a principal fiber bundle with 2n-dim base manifold
and Weyl fibers. The Cartan generalization to a curved 2n-dim geometry admits an action functional
linear in the curvatures. Because symmetry is maintained between the translations and the special
conformal transformations in the construction, these spaces are called biconformal; this same symmetry
gives biconformal spaces overlapping structures with double field theories, including manifest T-duality.
We establish that biconformal geometry is a form of double field theory, showing how general relativity
with integrable local scale invariance arises from its field equations. While we discuss the relationship
between biconformal geometries and the double field theories of T-dual string theories, our principal
interest is the study of the gravity theory. We show that vanishing torsion and vanishing co-torsion
solutions to the field equations overconstrain the system, implying a trivial biconformal space. Wih
co-torsion unconstrained, we show that (1) the torsion-free solutions are foliated by copies of an n-dim
Lie group, (2) torsion-free solutions generically describe locally scale-covariant general relativity with
symmetric, divergence-free sources on either the co-tangent bundle of n-dim (p,q)-spacetime or the torus
of double field theory, and (3) torsion-free solutions admit a subclass of spacetimes with n-dim non-
abelian Lie symmetry. These latter cases include the possibility of a gravity-electroweak unification. It
is notable that the field equations reduce all curvature components to dependence only on the solder
form of an n-dim Lagrangian submanifold, despite the increased number of curvature components and
doubled number of initial independent variables.
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1 Introduction

1.1 Biconformal spaces and the biconformal action

It was shown in the 1950s and 1960s that general relativity may be cast as a Lorentz [1] or Poincaré [2] gauge
theory. Subsequent approaches [3, 4, 5, 6, 7, 8, 9] refined the methods and extended the initial symmetry to
Weyl, deSitter and conformal. A systematic approach to the resulting gauge theories of gravity shows that
it is possible to formulate general relativity in several ways [10].

1.1.1 Conformally based theories of gravity

Generally, the use of conformal symmetries for gravity theories (and in the MacDowell-Mansouri case, de
Sitter) leads to actions functionals which are quadratic in the curvature and apply only to 4-dimensional
spacetimes. This is because conformal scaling by eφ changes the volume form by enφ in n-dimensions. In
four dimensions this factor may be offset by two factors of the curvature, but in even dimension n = 2k,
we require k factors of the curvature to make the action dimensionless. Various techniques allow these
quadratic theories to nonetheless reduce to general relativity [4, 8, 9, 11]. The most studied case is that
of Weyl (conformal) gravity, in which the difficulty of higher order field equations has been alternatively
exploited and overcome. When only the metric is varied, the field equations are fourth order, and include
solutions not found in general relativity [12, 13, 14]. Mannheim [15] attempts to use the additional scaling
properties to explain galactic rotation curves (but also see [16]). Alternatively, it has been shown in [17]
that by reformulating Weyl gravity as a gauge theory and varying all of the gauge fields, the additional field
equations give the integrability conditions needed to reduce the order and exactly reproduce locally scale
invariant general relativity.

There are two exceptions to these higher-order curvature requirements, which have actions linear in the
curvature and can be formulated in any dimension. In the first of the two approaches, Dirac [3] builds on
previous work with scalar-tensor theories [18, 19, 20, 21], achieving a curvature-linear action by including
a scalar field to help offset the scaling of the volume form. Dirac considers a Weyl geometry in which the
curvature is coupled to the Weyl vector and a scalar field. Generalizing his action functional to n-dimensions,
it takes the form

S =

ˆ

(

κ2gαβRαβ − β

2
κ2(n−4

n−2 )gαµgβνΩαβΩµν − 4 (n− 1)

n− 2
gαβDακDβκ− λκ

2n
n−2

)√−gdnx

where κ is a scalar field of conformal weight wκ = −n−2
2 and Ωαβ = Wα,β−Wβ,α is the dilatational curvature.

The only occurrence of the Weyl vector is in the dilatational curvature, Ωαβ , which must vanish or be
unmeasurably small to avoid unphysical size changes. Dirac interpreted Ωαβ as the electromagnetic field and
the time dependence of the scalar field κ as a time-dependent gravitational constant. The electromagnetic
interpretation is untenable, but solutions with Ωαβ = 0 or with other interpretations remain to be explored.

The second curvature-linear action arises when the volume element is like that of a phase space, since the
“momentum” directions have opposite conformal weight from the “space” dimensions. Such a space arises
naturally from the quotient of the conformal group by its Weyl subgroup (SO (p, q) and dilatations), with
the most general curvature-linear action built from the SO (p, q) and dilatational curvatures [11] being

S =

ˆ

e be···f
ac···d (αΩa

b + βδabΩ+ γea ∧ fb) ∧ e
c ∧ · · · ∧ e

d ∧ fe ∧ · · · ∧ ff (1)

Here, Ωa
b is the curvature of the SO (p, q) gauge field, Ω is the dilatational curvature, and α, β and γ are

dimensionless constants. The differential forms ea and fa are the gauge fields of translations and special con-
formal transformations, respectively. Together the latter give an orthonormal frame field on a 2n-dimensional
manifold. Because of the symmetry maintained between the translations of the conformal group and the
special conformal transformations, these spaces are called biconformal. Here we explore the large class of
torsion-free biconformal spaces, showing that they reduce to general relativity on Lagrangian submanifolds.
It is the consequences of the action, Eq.(1) that will occupy our present inquiry.
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1.1.2 The biconformal gauging

The construction of a biconformal space begins with a flat, n-dimensional space with SO (p, q) invariant
metric, p + q = n. Compactifying this space by adding an appropriate point or null cones at infinity (See
Appendix A) allows us to define its conformal group, SO (p+ 1, q + 1). The biconformal quotient [8, 9] is
then SO (p+ 1, q + 1) /SO(p, q) × SO (1, 1), where SO (1, 1) transformations represent dilatations and the
full subgroup W ≡ SO(p, q)×SO (1, 1) is the homogeneous Weyl group. The quotient gives rise to a principal
fiber bundle with 2n dimensional base manifold and homogeneous Weyl fibers. The connection of this flat
biconformal space is then generalized, giving rise to conformal Lie algebra-valued 2-form curvatures. These
are required to be horizontal and the resulting Cartan equations integrable. The 2n-dimensional curved
base manifolds are biconformal spaces while local SO (p, q) and dilatational invariance remain, together
comprising the biconformal bundle.

Biconformal gravity is the gravity theory following from variation of the action, Eq.(1), with respect to
each of the conformal gauge fields, together with the Cartan structure equations to define the curvatures
in terms of the connection, and the generalized Bianchi identities arising as integrability conditions. The
construction of these models is described in full detail in [22]. See also [8, 9, 11, 23].

1.2 Relationship to double field theory

Biconformal spaces share many features in common with double field theories.
Double field theory is a means of making the O (d, d) symmetry of T -duality manifest. By introducing

scalars to produce an additional d dimension, Duff [27] doubled the X(σ, τ) string variables to make this
O (d, d) symmetry manifest. Siegel brought the idea to full fruition by deriving results from superstring theory
[24, 25, 26]. Allowing fields to depend on all 2d coordinates, Siegel introduced generalized Lie brackets, gauge
transformations, covariant derivatives, and a section condition on the full doubled space, thereby introducing
torsions and curvatures in addition to the manifest T-duality.

There has been substantial subsequent development. Much of this development is reviewed in [28];
the introduction to [29] gives a concise summary. Briefly, double field theory arises by making T -duality
manifest in string theory. When we compactify n dimensions on a torus, the windings of string about the
torus can be interpreted as momenta. T -duality is a mapping between the original spatial directions and
these momenta. Double field theory arises when these two n-spaces are kept present simultaneously, making
T -duality manifest and leading to an overall O (n, n) symmetry. The T -duality is identified with the Weyl
group of O (n, n), consisting of permutations of the distinct circles of the maximum torus and interchange
of phases.

1.2.1 Invariant tensors in double field theory and biconformal spaces

In double field theory, doubled coordinates are introduced, extending the spacetime coordinate xα by an
equal number of momenta,

xM =

(
xα

yβ

)

where M,N, · · · = 1, · · · , 2n and α, β, · · · = 1, · · · , n are coordinate indices. There are at least two important
invariant tensors identified in [29]. Defining the O (n, n) symmetry, there is the 2n× 2n quadratic form

KAB =

(
0 δab
δba 0

)

with A,B, · · · , L = 1, · · · , 2n and lower case Latin indices, a, b, · · · = 1, · · · , n orthonormal. The second
invariant object is the spacetime/dual generalized metric, Mab, built from the spacetime metric and the
Kalb-Ramond potential, which takes the orthonormal form

MAB =

(
ηab 0
0 ηab

)

5



where ηab is either Euclidean or Lorentzian, depending on the model considered.
These are only half the invariant structures in biconformal spaces, all of which arise from natural invari-

ances of the conformal group. Again letting ηab be Euclidean or Lorentzian (or in our main development,
any (p, q) metric), we make use of the Killing form of the conformal group of a compactified (p, q) space,

KΣ∆ =







δab δ
c
d − ηacηbd 0 0 0

0 0 δab 0
0 δba 0 0
0 0 0 1







where the upper left block is the norm on Lorentz or Euclidean transformations, the next n rows and columns
arise from tranlations and the next n from special conformal transformations. The final 1 in the lower right
gives the Killing norm on dilatations. Upper case Greek indices run over the dimension of the conformal
group. When KΣ∆ is restricted to the biconformal manifold, we have only the translations and special
conformal portion, and this is precisely the O (n, n) metric,

KAB =

(
0 δab
δba 0

)

Use of the Killing form as metric was first mentioned in [9] with explicit use in biconformal spaces in
[30, 31, 22] where the orthonormal basis (ea, fb) is taken to satisfy

〈
e
a, eb

〉
= 0 (2)

〈ea, fb〉 = δab (3)

〈fa, fb〉 = 0 (4)

General linear changes of the original (ea, fb) basis are allowed,

χa = Aa
be

b +Bab
fb (5)

ψa = Cabe
b +D b

a fb (6)

These become O (n, n) transformations when they are required to preserve the inner product given in Eqs.(2)
- (4). These basis forms (χa,ψb) are local, but may be defined globally when the structure equations and
field equations provide an appropriate involution. Such alternative choices of basis have been explored in
[31, 22, 32].

There are further objects, discussed in detail in [31] and more comprehensively in [22], where it is shown
that there exists a Kähler structure on biconformal space. The complex structure arises from the symmetry of
the conformal Lie algebra given by interchanging translation and special conformal transformation generators
and changing the sign of the dilatation generator. This is essentially an inversion, and when carried through
to its effect as a linear operation on the basis forms, may be written as

JA
B =

(
0 −ηab

ηab 0

)

Further, it has long been recognized that the Maurer-Cartan equation of dilatations and, generically, its
Cartan generalization describe a symplectic form,

dω = e
a ∧ fa

The symplectic character is manifest since the left side shows the 2-form to be closed while the right shows
it to be non-degenerate. As a matrix in this basis, the symplectic form is

SAB =

(
0 δab

−δba 0

)

6



The two of these may be used to define a Kähler metric via

MAB ≡ SACJ
C
B

=

(
0 δca

−δac 0

)(
0 −ηcb

ηcb 0

)

=

(
ηab 0
0 ηab

)

which is exactly the MAB of double field theory. All of these objects arise from properties of the conformal
group. We note that the Killing metric KAB is not the metric defined by the almost Kähler structure.

The change of basis of Eq.(5) and Eq.(6) will be restricted further depending on which of these objects
the change is required to preserve. For example, the time theorem of [31] requires invariance of the inner
product, Eqs.(2) - (4), and preservation of the symplectic form, SAB, reducing the allowed change of basis
to the form (

A B
C D

)

=

(
A 0

0 (At)
−1

)

This is simply an instance of spontaneous symmetry breaking. Solutions typically do not preserve the full
symmetry of a system of equations.

1.2.2 Connection and action

The principal differences between the usual treatment of double field theories and biconformal gravity lie
in the connection, the action, and the means by which the doubled dimension is reduced back to an n-
dimensional spacetime.

There have been multiple proposals for a connection in dual field theory [29], including the Weitzenböch
connection, ΓA

BC = e A
M ∂Be

M
C . While this is compatible with the double field theory structures, it leads to

vanishing curvature and nonvanishing torsion. Even its generalization has vanishing curvature. Constructing
an action becomes problematic. One proposal, given in [29], is an action on the full doubled space given by

S =

ˆ

dxdye−2dL

where d = Φ− 1
2 ln (|deg gij |) generalizes the dilaton Φ and L is given by

L =
1

8
MAB∂AM

CD∂BMCD − 1

2
MAB∂AM

CD∂CMBD + 4MAB∂A∂Bd− 2∂A∂BM
AB

−4MAB∂Ad∂Bd+ 4∂AM
AB∂Bd+

1

2
ηABηCD∂Ae

M
C ∂BeDM

There are also multiple proposals in double field theory for finding a condition that will reduce the full
space back to an n-dimensional spacetime. One proposal [33], due to Scherk and Schwarz, proposes requiring
the functional dependence of fields to be of the form

V A
B (X,Y ) =

(
W−1

)A

Â
(Y )W B̂

B (Y )
[

V̂ (x)
]Â

B̂

with the scalar field additively separable, d (X,Y ) = d̂ (X) + λ (Y ). Here the hatted indices, Â, refer to the
gauged double field theory while unhatted A,B are associated to the double field theory before applying the
Scherk-Schwarz reduction. Alternatively, Berman et al. [29] propose additive separability with the “section
condition” ηAB∂A∂B = 0 acting on all fields.

Faced with these divergent approaches, the authors of [29] summarize a set of desirable properties for a
connection on double field theory. We quote (replacing their notation with ours and numbering the points
for convenient reference below):

7



“. . . we might want it to

1. define a covariant derivative that maps generalised tensors into generalised tensors,

2. be compatible with the generalised metric MAB,

3. be compatible with the O (n, n) structure KAB,

4. be completely determined in terms of the physical fields, in particular the vielbein and its derivatives,

5. be torsion-free,

6. lead to a curvature that may be contracted with the metric to give the scalar which appears in the
action.”

Their proposal satisfies conditions 1− 4.
The situation is quite different in biconformal geometry because it has been developed first as a gravity

theory, and all the relevant structures are present from the Cartan construction. In particular, the connection
is automatically given by the SO (p, q) spin connection and the Weyl vector, and these are compatible with
not only the generalized metric (the biconformal Kähler metric) MAB and the O (n, n) structure KAB present
as the restricted conformal Killing form, but also the almost complex structure JA

B and symplectic form
SAB. This satisfies points 1, 2 and 3.

While an O (n) rather than an O (n, n) connection may seem restrictive, O (n, n) transformations of the
orthonormal basis still retain the larger symmetry. Moreover, the spin connection and Weyl vector start as
general 1-forms on a 2n-dimensional space,

ωa
b = ωa

bc (x
α, yβ) e

c (xα, yβ) + ωa c
b (xα, yβ) fc (x

α, yβ) (7)

ω = Wc (x
α, yβ) e

c (xα, yβ) +W c (xα, yβ) fc (x
α, yβ) (8)

It is because the spin connection performs the same O (n) rotation simultaneously on each subspace that it
is able to preserve the multiple structures. In fact, Eq.(7) displays far more generality than we ultimately
want: we would like for all fields to be determined purely the the spacetime solder form, e

c (xα), and
this will require reduction of both components (e.g., (ωa

bc, ω
a c
b ) → ωa

bc) and of independent variables
((xα, yβ) → xα). Accomplishing this will satisfy point 4 above, and this is the central accomplishment of
the current presentation.

The only assumption we make, beyond the Cartan biconformal construction and the the field equations
following from the action (1), is vanishing torsion. This is a natural constraint for a spacetime gravity theory,
is consistent with existing measurements in general relativity, and satisfies point 5.

Point 6 is satisfied by the action, (1), which despite retaining scale invariance, is linear in the biconformal
curvatures. Notice that the α term in Eq.(1) is completely analogous to the Einstein-Hilbert action written
in similar language, i.e., SEH =

´

R
ab ∧ e

c ∧ . . . ∧ e
dεabc···d.

We therefore claim that the reduction presented here satisfies all six desired conditions.

1.3 Additional potential advantages

There are further potential advantages of biconformal models.
The biconformal theory developed here also overlaps strongly with calculations in twistor space. Twistor

space, in arbitrary dimension, is the space of spinors of the conformal group, up to projection by an overall
factor. Witten showed in [34] (see also [35, 36, 37]) that when a topological string theory is formulated
in twistor space it is equivalent to N = 4 supersymmetric Yang-Mills theory. Most notably, twistor string
theory provided a string/gauge theory equivalence that allowed remarkably efficient calculations of scatter-
ing amplitudes for gauge theory, reducing months of supercomputer calculations to fewer than two dozen
integrals. The effort slowed considerably when it was thought that it would necessarily lead to fourth order
Weyl gravity instead of general relativity. While a few alternative formulations were found, Mason was led
to conclude [37]:
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Clearly, more work is required to discover what other twistor–string theories can be constructed.
In particular, one would like to have twistor–string theories that give rise to Poincaré supergrav-
ities, or to pure super-Yang–Mills, or that incorporate other representations of the gauge and
Lorentz groups.

Biconformal gravity might be an ideal ground state for twistor string since it arises from conformal symmetry,
maintains scale invariance, and reduces to general relativity. It is therefore of interest to formulate twistor
string theory in a biconformal space. These will naturally use the spinor representation, as in the supergravity
extension of biconformal space [38].

Biconformal spaces also seem well suited to string compactification. In the present work, we show that
these 2n-dimensional gravity theories reduce via their field equations to n-dimensional general relativity. As a
result, a string theory written in a 10-dimensional biconformal background will require only two dimensional
compactification to describe 4-dimensional general relativity. There are only a countable number of 2-
dimensional topologies, compared to the truly huge number of 6-dimensionsal compact spaces available
when going from 10 directly to 4-dimensions.

The situation is even more restrictive than all 2-dimensional compact spaces because the compactification
is required to go between two biconformal spaces. It therefore must include one basis direction of each
conformal weight. This necessarily restricts the compactification to a 2-torus or possibly a 2-sphere.

1.4 Organization

The organization of the paper begins with the basic equations of biconformal gravity, including some no-
tational conventions and ending with the field equations. In Section 3, we show the effects of vanishing
torsion on the remaining curvatures, using the Bianchi identites and field equations to reduce the number of
components. From the effect of vanishing torsion on the curvtures, it is immediate to see by symmetry that
if the co-torsion were also to be set to zero, the additional constraints would force the solution to be trivial.
We begin solving for the connection in Section 4 by making use of the Frobenius theorem on the involution
of the solder form. This clarifies the meaning of the doubled dimension, showing that the biconformal space
is foliated by an n-dimensional Lie group. This foliation may be interpreted as the translation group of the
co-tangent bundle, the torus of double field theory, or as a new, nonabelian internal symmetry.

In Section ??, we extend the partial solution for the connection from the involution back to the full
biconformal space and substitute into each structure equation to find the resulting form of the curvatures,
then use these results to reduce the field equations. From this point on, the solution divides into two cases
depending on whether the Lie group of the foliation is abelian or non-abelian. Each of these cases merits a
Section (6,??). Finally, we summarize our results in Section 8.

2 The field equations of biconformal gravity

The first construction of the biconformal quotient was carried out by Ivanov and Niederle [8], who used it to
describe a gravity theory using a curvature-quadratic action. Subsequently, the geometry was revived [9] and
a curvature-linear action was introduced [11] to give biconformal gravity. The details of the construction
are given in [22], along with a demonstration of the signature-changing properties derived in [31]. Here,
we rely on the specifics given in [22], providing only a basic description and introducing some convenient
nomenclature, then moving quickly to the Cartan structure equations, Bianchi identities, and the linear
action.

From the action, we find the field equations and study their consequences with only the assumption of
vanishing torsion. Throughout, we work in arbitrary dimension with arbitrary signature for the conformal
metric class.
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2.1 Building the structure equations

Consider a space of dimension n = p+ q, with an SO (p, q)-symmetric orthonormal metric η. We compactify
with appropriate null cones at infinity, to permit the inversions that give the space a well-defined conformal
symmetry, C = SO (p+ 1, q + 1). The homogeneous Weyl subgroup W = SO (p, q) × SO (1, 1) ⊂ C consists
of the pseudo-rotations and dilatations. The quotient C/W is a 2n-dimensional homogeneous manifold from
which we immediately have a principal fiber bundle with fiber symmetry W . We take the local structure of
this bundle as a model for a curved space à la Cartan, modifying the manifold (if desired) and altering the
connection subject to two conditions:

1. The resulting curvature 2-forms must be horizontal.

2. The resulting Cartan structure equations satisfy their integrability conditions (generalized Bianchi
identities).

Let the connection forms dual to the generators of the Lie algebra be written as ωa
b (SO (p, q) transforma-

tions), ea (translations), fa (special conformal transformations, called co-translations in the context of these
biconformal geometries), and ω (dilatations). Then the Cartan structure equations are:

dωa
b = ωc

b ∧ ωa
c + 2∆ad

cb fd ∧ e
c +Ω

a
b (9)

de
a = e

b ∧ ωa
b + ω ∧ e

b +T
a (10)

dfa = ωb
a ∧ fb + fa ∧ω + Sa (11)

dω = e
a ∧ fa +Ω (12)

Horizontality requires the curvature to be expanded in the (ea, fb) basis, giving each of the components
(Ωa

b,T
a,Sa,Ω) the general form

Ω
A =

1

2
ΩA

cd e
c ∧ e

d +ΩAc
d fc ∧ e

d +
1

2
ΩAcd

fc ∧ fd (13)

and integrability follows from the Poincaré lemma, d2 ≡ 0.
The (n−1)(n+2)

2 curvature components (Ωa
b,T

a,Sa,Ω) together comprise a single conformal curvature
tensor. However, the local symmetries of the homogeneous Weyl symmetry of the biconformal bundle do not
mix these four separate parts. Thereofore, we call the SO (p, q) part of the full conformal curvature Ω

a
b the

curvature, the translational part of the curvature T
a the torsion, the special conformal part of the curvature

the co-torsion, Sa, and the dilatational portion Ω the dilatational curvature or simply the dilatation.
Each of the curvatures each has three distinguishable parts, as seen in Eq.(13). We call the e

a ∧ e
b term

the spacetime term, the fa ∧ e
b term the cross term, and the fa ∧ fb term the momentum term. While it

may be somewhat abusive to call a signature (p, q) space “spacetime”, for the gravitational applications we
consider the name is ultimately appropriate. In the cases where the co-solder forms generate a nonabelian
Lie group, the name “momentum” is not appropriate, and we will speak of the relevant group manifold.

To avoid introducing too many symbols, the symbols for the three parts of curvatures are distinguished
purely by index position. Thus, Ωa c

b d denotes the cross-term of the SO (p, q) curvature and Ωa
bcd the

spacetime term of the SO (p, q) curvature. These are independent functions. We therefore do not raise or
lower indices unless, on some submanifold, there is no chance for ambiguity. Note also that the raised and
lowered index positions indicate the conformal weights, +1 and −1 respectively, of all definite weight objects.
Therefore, the torsion cross-term T ab

c has net conformal weight +1, the spacetime term of the co-torsion
Sabc has conformal weight −3, and the full torsion 2-form T

a has conformal weight +1.
Note the similarity between Eqs.(10) and (11). This occurs because, by taking the quotient of the

conformal group by its homogeneous Weyl subgroup instead of the more common inhomogeneous Weyl
group, symmetry is maintained between the translations and the special conformal transformations. Indeed,
in their action on the defining compactified (p, q) space, the special conformal transformations are simply
translations in inverse coordinates, yµ =

xµ

x2 . As a result, they behave near infinity exactly as translations do
at the origin; correspondingly, the effect of a simple translation expressed in inverse coordinates is the same
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as that of a special conformal transformation at the origin. In the biconformal space, the resulting gauge
field of translations, ea, and the gauge field of special conformal transformations, fa, form a cotangent basis.
Each locally spans an n-dimensional subspace of the full biconformal cotangent space, which we ultimately
show to be submanifolds. In parallel to calling e

a the solder form, we call fa the co-solder form. Similarly,
just as the field strength of the solder form is called the torsion, Ta, we refer to the field strength of the
co-solder form as the co-torsion, Sa.

2.2 Bianchi identities

The generalized Bianchi identities are the integrability conditions for the Cartan equations. They are found
by applying the Poincaré lemma, d

2 ≡ 0, to each structure equation, then using the structure equations
again to eliminate all but curvature terms. They always give covariant expressions – we are guaranteed that
all purely connection terms must cancel because when all curvatures vanish the Cartan equations reduce to
the Maurer-Cartan equations, for which the integrability conditions are the Jacobi identities, and therefore
are automatically satisfied.

Knowing that all connection terms must cancel when we replace exterior derivatives with the correspond-
ing curvatures makes it easier to derive the identities. Furthermore, every exterior derivative of a curvature
becomes a covariant derivative. Using this knowledge, we may quickly find the identities. Thus, for the
SO (p, q) curvature, we take the exterior derivative of Eq.(9),

0 ≡ d
2ωa

b

= dωc
b ∧ ωa

c − ωc
b ∧ dωa

c + 2∆ac
dbdfc ∧ e

d − 2∆ac
dbfc ∧ de

d + dΩ
a
b

0 = Ω
c
b ∧ ωa

c − ωc
b ∧Ω

a
c + 2∆ac

dbSc ∧ e
d − 2∆ac

dbfc ∧T
d + dΩ

a
b

0 = DΩ
a
b + 2∆ac

dbSc ∧ e
d − 2∆ac

dbfc ∧T
d

where we have identified the covariant exterior derivative, DΩ
a
b = dΩ

a
b+Ω

c
b∧ωa

c−ωc
b∧Ωa

c. Proceeding
through Eqs.(9) - (12), we find the full set of integrability conditions,

DΩ
a
b + 2∆ad

cb (Sd ∧ e
c − fd ∧T

c) = 0 (14)

DT
a − e

b ∧Ω
a
b +Ω ∧ e

a = 0 (15)

DSa +Ω
b
a ∧ fb − fa ∧Ω = 0 (16)

DΩ+T
a ∧ fa − e

a ∧ Sa = 0 (17)

where the covariant derivatives are given by

DΩ
a
b = dΩ

a
b +Ω

c
b ∧ ωa

c − ωc
b ∧Ω

a
c

DT
a = dT

a +T
b ∧ωa

b − ω ∧T
a

DSa = dSa − ωb
a ∧ Sb + Sa ∧ ω

DΩ = dΩ (18)

Since each Bianchi identity contains the covariant derivative of a curvature, it is typically difficult to use
them to help find solutions to the field equations. They are simply the conditions on the curvatures that
guarantee that a solution exists, and if we find a solution to the field equations, the Bianchi identities are
necessarily satisfied. However, if one of the curvatures vanishes the relations become algebraic and can be
extremely helpful.

2.3 The action functional

2.3.1 Notational conventions

The metric is ηab with pseudo-rotational invariance under SO (p, q), p + q = n. Lower case Latin indices
run a, b . . . = 1, 2 . . . , n, and refer to orthonormal frames (ea, fa). When coordinates are introduced they are
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given Greek indices. Thus, we may write

e
a = e a

µ dxµ + eµadyµ

Until we have established appropriate submanifolds, we cannot use the components of the solder form, e a
µ ,

to change basis.

An antisymmetric projection operator on type

(
0
2

)

tensors may be written as

P ed
fb =

1

2

(
δefδ

d
b − δdfδ

e
b

)

If we raise the f index and lower e, this becomes

∆ac
db ≡ ηdeη

af 1

2

(
δefδ

c
b − δcfδ

e
b

)

=
1

2
(δadδ

c
b − ηacηbd) ,

the antisymmetric projection operator on type

(
1
1

)

tensors. This symbol occurs frequently.

2.3.2 The volume form

The volume form is unusual, having two types of index. Since we can distinguish the conformal weight +1
solder forms ea from the conformal weight −1 co-solder forms, fa, we can always partially re-arrange. Thus,
while the 2n-dim volume form may be written as

e



a
·









·
d



···





b
·









·
e









c
·









·
f





= e







a
·









·
d



···





b
·









·
e









c
·









·
f









where

(
·
a

)

represents an index that contracts with ωa and

(
a
·

)

represents an index that contracts with

ωa, we can always insist that the weight +1 indices go first and the weight −1 go last,

e







a
·









b
·



···





c
·









·
d









·
e



···





·
f









≡ eab...c de...f

thereby reducing the (2n)! permutations to n!n!. Locally (and globally once submanifolds are established),
there exist distinguishable subspaces on which we may write eab...c de...f as a pair of n-dim Levi-Civita tensors,

eab...c de...f = eab...cede...f

This convention means that a contraction, eab...c ae...f is meaningful, when it would vanish immediately with
the full antisymmetrization. This is, nonetheless, correct since there exists an unambiguous local separation
by conformal weight, each with its own induced volume form. Since variation of the action is local, we may
use this to find the field equations. A single contraction gives eab...c ae...f = δb...ce...f and in general, contracting
all but k pairs of indices,

εc···de···fεa···bg···h = (−1)
q
(k − 1)! (n− k + 1)!δc···da···b (19)

The presence of this conformal separation also allows the dilatational curvature to be included as the β term
in the action. It may be argued that this is not allowed if the subspaces are not integrable. We find that
the subspaces are integrable, but have checked that setting β = 0 throughout does not alter any of our
conclusions.
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There exist conditions that guarantee that such a splitting into subspaces is integrable across the full
biconformal space. For example, the ea subspace is certainly integrable to a submanifold if the basis structure
equation,

de
a = e

b ∧ ωa
b + ω ∧ e

a +T
a

is in involution, and this is true if the torsion T
a is suitably restricted. Specifically, if the momentum term

of the torsion vanishes, T acd = 0, then the Eq.(13) for the torsion reduces to

T
a =

1

2
T a

cde
c ∧ e

d + T ac
dfc ∧ e

d (20)

and e
a is in involution. Similarly, the co-solder equation will be involute provided Sacd = 0.

We make no assumptions about the torsion or co-torsion in deriving the field equations. Though neither
occurs explicitly in the curvature-linear action, integrations by parts after variation nonetheless introduce
them into the field equations.

We define the Hodge dual of unity as a convenient volume form,

Φ ≡ ∗1

=
1

n!n!
eab...c de...fe

d ∧ e
e ∧ · · · ∧ e

f ∧ fa ∧ fb ∧ · · · ∧ fc (21)

It follows that

e
d ∧ e

e ∧ · · · ∧ e
f ∧ fa ∧ fb ∧ · · · ∧ fc = ede···fab···cΦ (22)

Eq.(22) is useful for finding the field equations. Taking a second dual,

∗
Φ ≡ ∗∗1

= ∗

(
1

n!n!
eab...c de...fe

d ∧ e
e ∧ · · · ∧ e

f ∧ fa ∧ fb ∧ · · · ∧ fc

)

=
1

n!n!
eab...c de...fηaa′ηbb; . . . ηcc′η

dd′

ηee
′

. . . ηff
′

ea
′b′...c′

d′e′...f ′

= (−1)
2q 1

n!n!
n!n!

= 1

regardless of the dimension or signature.

2.4 The action functional

Eq.(1) is the most general action linear in biconformal curvatures. It is defined on the 2n-dimensional base
manifold of the bundle, spanned by (ea, fa). The initial conformally symmetric space has metric ηab of any
dimension n > 2 and any signature (p, q).

We find the field equations by varying the full set of connection 1-forms, {ωa
b, e

a, fa,ω}. Each variation
has two parts when we expand in the (ea, fb) basis, for example,

δωa
b = δAa

bce
c + δBa c

b fc

with δAa
bc and δBa c

b independent, arbitrary variations. We therefore find eight sets of field equations. To
illustrate details of the variation technique, the variation of the spin connection ωa

b is given in Appendix B.
Carrying out each of the connection variations, we arrive at the final field equations:
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T ae
e − T ea

e − S ae
e = 0 (23)

T a
ca + S a

c a − S a
a c = 0 (24)

α∆ar
sb

(
Tmb

a − δma T eb
e − δma S bc

c

)
= 0 (25)

α∆ar
sb

(
δbcT

d
ad + S b

c a − δbcS
d

d a

)
= 0 (26)

α
(
Ωa e

e b − Ωc d
d cδ

a
b

)
+ β (Ωa

b − Ωc
cδ

a
b) + Λδab = 0 (27)

αΩc
acb + βΩab = 0 (28)

α (Ωc a
b c − Ωc e

e cδ
a
b) + β (Ωa

b − Ωc
cδ

a
b) + Λδab = 0 (29)

αΩa cb
c + βΩab = 0 (30)

where the constant Λ is defined to be Λ ≡
(
(n− 1)α− β + n2γ

)
. Ultimately, all our results depend on a

single parameter, χ = 1
n−1

Λ
(n−1)α−β

.

2.5 Biconformal spaces

The system we wish to study consists of the structure equations Eqs.(9)-(12), their associated Bianchi
identities Eqs.(14)-(17), and the field equations Eqs.(23)-(30). These have been written above with no
additional conditions, and they apply to the biconformal geometry constructed from the conformal group in
any dimension n and any signature (p, q).

Our goal is to show how the full set of biconformal curvatures in 2n-dimensions reduces to only those
required to describe n-dimensional general relativity. Assuming only vanishing torsion and the field equations,
we show in the next Section that the curvatures, each initially in the general form given in Eq. (13), reduce
to

Ω
a
b =

1

2
Ωa

bcde
c ∧ e

d + 2χ∆ac
dbfc ∧ e

d

T
a = 0

Sa =
1

2
Sacde

c ∧ e
d + S c

a dfc ∧ e
d + S cd

a fc ∧ fd

Ω = χec ∧ fc

In Sections (4) and (??), we use the structure equations to reduce the coordinate dependence to xα only,
with the exception of a few explicit terms linear in yα. There is also further reduction of the curvatures.

3 Reducing the curvatures of torsion-free biconformal spaces

We seek to reduce the field equations as far as possible. In particular, we will show that scale-invariant general
relativity emerges from the vanishing torsion field equations. As in Riemannian geometry, vanishing torsion
is a natural constraint on the full generality of a biconformal space. This has three definite consequences
corresponding to the three parts in the expansion given by Eq.(13),

T
a =

1

2
T a

cde
c ∧ e

d + T ac
dfc ∧ e

d +
1

2
T acd

fc ∧ fd

We expect the first term in this expansion to give the spacetime torsion, which is zero in general relativity.
The cross term, T ac

dfc∧ed, gives the extrinsic curvature of the spacetime submanifold in the full space, while
the final term measures the non-involution – the degree to which the solder form fails to be in involution [23].
Taking the full torsion to vanish therefore has clear geometric consequences: it guarantees the existence of a
spacetime submanifold with vanishing spacetime torsion, embeded with no extrinsic curvature in the larger
biconformal space.
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Note that it is important that we do not constrain the co-torsion. Indeed, we show at the end of this
Section that setting both torsion and co-torsion to zero is overly restrictive, forcing the full space to have at
most constant curvature and dilatation. Naturally, setting the torsion but not the co-torsion to zero breaks
some of the symmetry between the solder form and the co-solder form. It would be equivalent to break the
symmetry the other way, setting the co-torsion to zero and not the torsion.

We begin with the consequences of vanishing torsion in the Bianchi identities.

3.1 Consequences of the Bianchi identities

If the torsion vanishes, Ta = 0, then the second Bianchi identity, eq.(15), becomes an algebraic condition on
the curvature and dilatation:

e
b ∧Ω

a
b = Ω ∧ e

a

Expanding each of the curvatures in components,

e
b ∧
(
1

2
Ωa

bcde
c ∧ e

d +Ωa c
b dfc ∧ e

d +
1

2
Ωa cd

b fc ∧ fd

)

=

(
1

2
Ωcde

c ∧ e
d +Ωc

dfc ∧ e
d +

1

2
Ωcd

fc ∧ fd

)

∧ e
a

This breaks into three independent equations, with components related by

Ωa
[bcd] = δa[bΩcd] (31)

Ωa c
[b d] = δa[bΩ

c
d] (32)

Ωa cd
b = δabΩ

cd (33)

Note in particular that since Ωa cd
b is antisymmetric on ab, the trace gives Ωa cd

a = 0, and the final
condition requires

Ωcd = 0 (34)

and therefore, the momentum space component of the SO (p, q) curvature vanishes,

Ωa cd
b = 0 (35)

The cross-term Bianchi may be used to express the cross curvature in terms of the cross dilatation.
Expanding the antisymmetry in Eq.(32),

Ωa c
b d − Ωa c

d b = δabΩ
c

d − δadΩ
c

b

we formally lower the a index to e,

0 = ηeaΩ
a c
b d − ηeaΩ

a c
d b − ηebΩ

c
d + ηedΩ

c
b

and cycle the b, e, d indices. Then adding the first two permutations and subtracting the third, we get

0 = ηeaΩ
a c
b d − ηeaΩ

a c
d b + ηbaΩ

a c
d e − ηbaΩ

a c
e d − ηdaΩ

a c
e b + ηdaΩ

a c
b e

−ηebΩ
c

d + ηedΩ
c

b − ηbdΩ
c

e + ηbeΩ
c

d + ηdeΩ
c

b − ηdbΩ
c

e

Now use the antisymmetry ηeaΩ
a c
b d = −ηbaΩ

a c
e d to solve,

Ωa c
b d = −2∆ae

dbΩ
c

e (36)

Vanishing torsion also affects the remaining Bianchi identities, but the effects are most pronounced when
those are combined with the field equations. Therefore, we turn next to the simplification of the field
equations.
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3.2 Simplifications of the torsion and co-torsion equations

Of the torsion and co-torsion equations, the first two relate various traces. Equations (23) and (24) identify
two relationships between these traces. When the torsion vanishes, these become

S ca
a = 0 (37)

S a
c a = S a

a c (38)

Using these in the next pair, Eqs.(25) is now identically satisfied while (26) determines the antisymmetric
part of the cross-terms of the co-torsion, in terms of its trace,

∆ar
sbS

b
c a = ∆ar

scS
e

a e (39)

The rc trace fixes the remaining possible contraction,

ηacS b
c a = − (n− 2) ηbcS e

c e

There is only one independent contraction of the cross-term, and it determines the antisymmetric part of
the full cross-term.

3.3 Simplifications of the curvature and dilatation equations

Now consider the remaining four equations for the curvature and dilatation, Eqs.(27) - (30). Eq.(30) is
already satisfied by the consequences of the torsion Bianchi identity, Eqs.(34) and (35). The difference of
the two cross curvature equations, Eq.(27) and Eq.(29), shows the equality of the traces,

Ωa e
e b = Ωc a

b c

Eq.(27) together with Eq.(36) allows us to completely determine the cross terms of the curvature and
dilatation. Starting with the trace of Eq.(27),

αΩc d
d c + βΩc

c =
n

n− 1
Λ

and substituting this back into Eq.(27), we find

αΩa e
e b + βΩa

b =
1

n− 1
Λδab (40)

Now, using the (ad) trace of Eq.(36)

Ωa c
b a = − (n− 1)Ωc

b

the equality of the cross curvature traces allows us to substitute into Eq.(40)

− (n− 1)αΩa
b + βΩa

b =
1

n− 1
Λδab

to show that
Ωa

b = −χδab (41)

where we define

χ ≡ 1

n− 1

1

((n− 1)α− β)
Λ

The cross-term of the cuvature is now given by Eq.(36),

Ωa c
b d = 2χ∆ac

db (42)
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Next, we examine the remaining vanishing torsion Bianchi identity, Eq.(31). Expanding the antisymmetry
and taking the ad trace,

Ωa
bcd +Ωa

cdb +Ωa
dbc = δabΩcd + δacΩdb + δadΩbc

Ωa
cab − Ωa

bac = (n− 2)Ωbc

Combining this with the field equation, Eq.(28), for the corresponding components, Ωa
bac = − β

α
Ωbc, we have

((n− 2)α− 2β)Ωbc = 0

so the spacetime dilatation generically vanishes. The field equation then implies

Ωab = 0 (43)

Ωc
acb = 0 (44)

The special case when ((n− 2)α− 2β) = 0 allows a non-integrable Weyl geometry and, likely being unphys-
ical, will not concern us further.

Because of the constant form of the components of the dilatation, Eq.(41), the dilatation Bianchi identity
gives constraints on the co-torsion. Starting with Eq.(17) with vanishing torsion and the complete dilatation
now given by Ω = χeafa, Eq.(17) gives

0 = D (χea ∧ fa)− e
a ∧ Sa

= − (1 + χ) ea ∧ Sa

with components

(1 + χ)S[abc] = 0

(1 + χ)
(
S b
a c − S b

c a

)
= 0

(1 + χ)S bc
a = 0 (45)

For generic constants in the action we may cancel the 1+χ factor, but the χ = −1 case permits the presence
of a non-abelian internal symmetry.

3.4 A theorem: Vanishing torsion and co-torsion

We digress briefly to prove a useful result. From our results so far, we can easily prove the following theorem.
We start with the definition of a flat and trivial biconformal space. Because of the “cosmological constant”
term Λ in Eqs.(27) and (29), we cannot, in general, set all curvatures to zero unless Λ = 0 as well. We therefore
define a flat biconformal space [9] to have vanishing curvatures and Λ = 0, and a trivial biconformal space
to have vanishing curvatures except for constant curvature and dilatation cross-terms, which then have the
Λ-dependent forms given in Eqs.(41) and (42). That these constant values of the curvatures yield solutions
to the field equations follows as a special case of the generic torsion free solution below.

Triviality Theorem : Biconformal spaces in which both the torsion and the co-torsion vanish are trivial
biconformal spaces.

Proof: With vanishing torsion, we have already seen that the momentum curvature and dilatation vanish.
By the symmetry of biconformal spaces, zero co-torsion requires the spacetime curvature and dilatation
to vanish as well. Since, by assumption we have both T

a = 0 and Sa = 0, the only nonvanishing
curvature components are the dilatation and curvature cross-terms, shown above to necessarily have
the forms given in Eqs.(41) and (42),

Ωa
b = −χδab

Ωa c
b d = 2χ∆ac

db

vanishing if and only if χ ≡ 1
n−1

1
α(n−1)−β

Λ is zero. The biconformal space is therefore trivial.
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There are interesting properties to trivial biconformal spaces. These homogeneous manifolds have been shown
to be Kähler [22], and allow time to emerge as part of the solution from the properties of the underlying
conformal group [31, 22].

Still, there can be no spacetime or momentum space curvature if both the torsion and the co-torsion
vanish completely, and therefore no local gravity. To achieve a meaningful gravity theory it is necessary that
at least part of either the torsion or the co-torsion remains nonzero.

3.5 Summary of curvatures and remaining field equations

Initially, the four curvatures (“curvature”, torsion, co-torsion, and dilatation) have the three independent
terms displayed in eq.(13). Using the assumption of vanishing torsion, we have now reduced these to

Ω
a
b =

1

2
Ωa

bcde
c ∧ e

d + 2χ∆ac
dbfc ∧ e

d

T
a = 0

Sa =
1

2
Sacde

c ∧ e
d + S c

a dfc ∧ e
d + S cd

a fc ∧ fd

Ω = χec ∧ fc (46)

together with the remaining field equations

sc ≡ S a
c a = S a

a c

∆ar
sbS

b
c a = ∆ar

sc sa

S ac
c = 0

Ωc
acb = 0

and remaining Bianchi conditions,

(1 + χ)S[abc] = 0

(1 + χ)
(
S b
a c − S b

c a

)
= 0

(1 + χ)S bc
a = 0

Ωa
[bcd] = 0

Even when 1 + χ 6= 0, the equations involving the co-torsion cross-term do not determine the co-torsion
further; we must turn to the structure equations to proceed.

While the severe restrictions evident in Eqs.(46) reduce the space considerably toward an n-dimensional
theory, the remaining fields are still functions of all 2n coordinates. It is only by using the structure equations
that we fully reduce the theory to n-dimensional scale-covariant general relativity.

4 The meaning of the doubled dimension

With T
a = 0, the torsion Eq.(10) is in involution. This lets us first solve the structure equations on a

submanifold and results in a substantial restriction of the connection forms. Extending back to the full
space, we then work through the full structure equations to determine the final form of each connection
form.

4.1 The involution

The involution of the solder form,
de

a = e
b ∧ ωa

b + ω ∧ e
a
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allows us to apply the Frobenius theorem, which tells us that there exist n functions on the manifold, xµ,
such that

e
a = e a

µ dxµ

Furthermore, holding those functions constant, xµ = xµ
0 , so that dxµ = 0 and e

a = 0, the remaining structure
equations describe submanifolds of a foliation of the full space. These remaining equations are

dω̃a
b = ω̃c

b ∧ ω̃a
c + Ω̃

a

b

df̃a = ω̃b
a ∧ f̃b + f̃a ∧ ω̃ + S̃a

dω̃ = Ω̃ (47)

where the tilde indicates the restriction to vanishing solder form, e.g.,

ω̃a
b ≡ ωa

b|xµ=x
µ
0

We will also examine the restriction of the integrability (i.e., the Bianchi identity) of the co-solder equation,

0 = d
2
f̃a

= Ω̃
a

b ∧ f̃b − ω̃b
a ∧ S̃b + S̃a ∧ ω̃ − f̃a ∧ Ω̃+ dS̃a

D̃S̃a = f̃a ∧ Ω̃− Ω̃
a

b ∧ f̃b (48)

When e
a = 0, the curvature, co-torsion, and dilatation simplify to Ω̃

a

b =
1
2Ω

a cd
b f̃c∧f̃d, S̃a = 1

2S
cd

a f̃c∧f̃d,
and Ω̃ = 1

2Ω
cd
f̃c∧f̃d. In the previous section we showed that these components of the curvature and dilatation,

Ωa cd
b and Ωcd, vanish. Therefore, the structure equations and basis integrability reduce to

dω̃a
b = ω̃c

b ∧ ω̃a
c

dω̃ = 0

df̃a = ω̃b
a ∧ f̃b + f̃a ∧ ω̃ +

1

2
S cd
a f̃c ∧ f̃d

D̃S̃a = 0

Let this submanifold be spanned by coordinates yµ. The first two equations show that the spin connection,
ω̃a

b, and Weyl vector, ω̃, are pure gauge on the submanifold,

ω̃a
b (x0, y) = −F̄ a

c (x
µ
0 , yν)dF

c
b (x

µ
0 , yν)

ω̃ (x0, y) = df (xµ
0 , yν)

where at each xµ
0 we are free to choose a local SO (p, q) transformation Λa

c (y) and a local dilatation φ (y).
This allows us to gauge both ω̃a

b (x0, y) and ω̃ (x0, y) to zero if desired. It proves convenient to rename
the restriction of the basis, ha ≡ f̃a and the restriction of the spin connection as ξa b ≡ ω̃a

b (x0, y), while
gauging the Weyl vector to zero. The basis ha must span the co-tangent space to the submanifold, so it
must be nondegenerate. The submanifold is then described by

dξa b = ξc b ∧ ξa c (49)

dha = ξ
b
a ∧ hb +

1

2
S cd
a hc ∧ hd (50)

D̃S̃a = 0 (51)

To continue, we examine a manifold with these conditions, Eqs.(49-51). Notice that Eqs.(49)-(51) describe
a differentiable manifold with flat connection for which the momentum part of the co-torsion 1

2S
cd

a hc ∧ hd

is the torsion of the submanifold. This submanifold torsion is constrained by Eq.(45),

(1 + χ)S bc
a = 0 (52)

The importance of these properties will be seen in this and the following Sections.
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4.2 Foliation by a Lie group

We quote a well-known theorem due to Auslander and Markus [49]:

THEOREM 5. Let M be a differentiable manifold with complete, flat, affine connection Γ and
holonomy group H(M; Γ) = 0. Then M is a complete Riemann space with Christoffel connection
Γ and M is diferentiably isometric with a torus space.

F. W. Kamber and Ph. Tondeur generalize this theorem [50], introducing their proof with the following:

Consider a linear connection on a smooth manifold. The connection is flat, if the curvature
tensor R is zero. If the torsion tensor T has vanishing covariant derivative, the torsion is said
to be parallel. A linear connection is complete, if every geodesic can be defined for any real
value of the affine parameter. In this note the following structure theorem for smooth manifolds
admitting a complete flat connection with parallel torsion is proved: Any such manifold is the
orbit space of a simply connected Lie group G under a properly discontinuous and fixed-point free
action of a subgroup of the affine group of G. This Theorem includes the classical cases of flat
Riemannian manifolds and flat affine manifolds (Auslander and Markus), where the torsion is
assumed to be zero and G turns out to be R

n, and also generalizes a theorem of Hicks [Theorem
6] for complete connections with trivial holonomy group and parallel torsion tensor, stating that
a manifold with such a connection is homogeneous. We consider the case where the curvature
vanishes, without requiring the holonomy group to be trivial.

As noted above, our equations, Eqs.(49-51), exactly describe a manifold with flat connection ξa b but with
torsion satisfying only DS̃a = 0. This torsion conditions is weaker than those of the theorems above.
Moreover, the additional conditions may or may not hold. Spacetime, and the more general SO (p, q)
spaces we consider may be pseudo-Riemannian rather than Riemannian. Further, we know that spacetimes
are generically incomplete [46, 47, 48] and that our physical spacetime contains black hole singularities
and initial time incompleteness; the corresponding properties of the momentum subspace depend on the
manifold chosen during the quotient construction. Finally, with our general considerations we cannot be
certain of the remaining specifications regarding holonomy present in both theorems. Therefore, we do not
attempt to apply Auslander-Markus or Kamber-Tondeur theorems, but derive our results directly, making
our assumptions explicit.

We consider the two possible solutions to Eq.(52):

Case 1: S bc
a = 0. In Sec.(6) below, we show that with no further assumptions, generic biconformal spaces

(i.e., those with χ 6= −1) are foliated by an abelian Lie group. They therefore describe either the
co-tangent bundle or torus space foliations over SO (p, q) spaces. Generically, therefore, the conclusion
of Theorem 5 of Auslander and Markus holds for the momentum submanifolds of biconformal space.

Case 2: χ = −1. In Sec.(7) below, we show that the subclass of biconformal spaces with 1+χ = 0 allows the
possibility of foliation by a nonabelian Lie group. The result is consistent with the claim of Kamber
and Tondeur. To make further progress, we too assume vanishing covariant derivative of the torsion
rather than vanishing covariant exterior derivative.

In the remainder of this Section and in Sec.(5), we show results that hold for either Case 1 or Case 2 by
assuming S bc

a constant and placing no condition on χ. This is sufficient to show foliation by a Lie group; we
leave detailed topological discussion to subsequent studies. In Sec.(5) we extend back to the full biconformal
space, substituting the form of the connection into the structure equations to continue the reduction of the
system toward general relativity. The program is completed in two different ways for Case 1 and Case 2, in
Sections (6) and (7) respectively.

4.2.1 Co-torsion Bianchi

We have seen that the vanishing torsion, T
a = 0, combined with the dilatation Bianchi identity gives

Eqs.(52). For the remainder of this Section, we will place a weaker constraint on the momentum co-torsion
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and χ consistent with both Cases above. Thus, the conclusions of this Section for the discussions of both
Sec.(6) and Sec.(7).

The integrability condition for the submanifold co-torsion, Eq.(51) is

0 = D̃S̃a

=
1

2
S [αβ;µ]
a dyα ∧ dyβ ∧ dyµ (53)

so the covariant exterior y-derivative of 1
2S

cd
a hc∧hd vanishes. Choosing the yα-dependent part of the gauge

so that the submanifold spin connection and Weyl vector vanish, the covariant derivative reduces to a partial
derivative,

0 = d̃S̃a

and therefore for some 1-form, ξa

S̃a = ˜dξa

In coordinate components,
S αβ
a = ξ α,β

a − ξ β,α
a

However, instead of such a general potential ξ̃a, we assume

∂µS αβ
a = 0 (54)

This is one of the assumptions of the Kamber-Tondeur Theorem.
With the momentum co-torsion independent of yµ the structure equation on the e

a = 0 submanifolds
becomes

dha =
1

2
S cd
a (x0)hc ∧ hd (55)

In terms of the basis ha the integrability condition for eq.(55) is

0 ≡ d
2
ha

=
1

2
S cd
a (x0)hc ∧ hd

= S cd
a (x0)dhc ∧ hd

=
1

2
S cd
a (x0)S

ef
c (x0)he ∧ hf ∧ hd

and therefore,
S c[d
a S ef ]

c = 0

With S bc
a (xµ

0 ) constant, we set c bc
a ≡ −S bc

a , and observe that the pair

dha = −1

2
c bc
a hb ∧ hc (56)

c c[d
a c ef ]

c = 0 (57)

form the Maurer-Cartan equations and the Jacobi identity (in the adjoint representation) for an n-dimensional
Lie algebra. The field equation for the momentum co-torsion, Eq.(37) shows that the adjoint generators are
traceless, so when the adjoint representation is faithful the Lie group elements will have unit determinant.
With the observation that ha has an n-dimensional SO (p, q) or Spin (p, q) index (depending on which
representation we have chosen for the beginning group), we have therefore proved the following theorem:

Theorem: In any 2n-dimensional, torsion-free biconformal spaces with ∂µS αβ
a = 0, there exists an n-

dimensional foliation by a Lie group. If the adjoint representation is faithful, the group is special.
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We conjecture that the theorem holds for all torsion free biconformal spaces.
This is one of our most important new results, giving a definitive interpretation to the doubled dimension

of biconformal spaces.
Introducing vector fields Ga dual to the one forms ha, we have

[
Ga, Gb

]
= c ab

c Gc (58)

and

[
Ga,

[
Gb, Gc

]]
+
[
Gb, [Gc, Ga]

]
+
[
Gc,

[
Ga, Gb

]]
= 0 (59)

Let G be the Lie group generated by the Ga. Then the y-submanifold at each x0 is the group manifold.
Since ha transforms as a vector under SO (p, q), there may be constraints between SO (p, q) and G.
Acting with Λa

b ∈ SO (p, q) on the structure equation of ha,

h̃a = haΛ
a
b

invariance of the structure equation requires

dh̃a = −1

2
c̃ bc
a h̃b ∧ h̃c

dhaΛ
a
b = −1

2
c̃ bc
a hdΛ

d
b ∧ heΛ

e
c

−1

2
c de
a hd ∧ heΛ

a
b = −1

2
c̃ bc
a Λd

bΛ
e
chd ∧ he

c de
f = Λ̄a

f c̃
bc

a Λd
bΛ

e
c

so the structure constants must transform as a

(
2
1

)

tensor, consistent with Sa being a tensor. Since

SO (p, q) acts on itself, any subgroup of SO (p, q) will be allowed, but it is clear that there are additional
possibilities. For example, the vanishing structure constants of an abelian group will be preserved, as will
partly abelian combinations. We develop a concrete example.

Starting with a 3-dim representation of SO (3), we require a 3-dimensional Lie group with structure
constants that transform as a tensor under SO (3). Consider ISO (2), the two translations and one rotation
of the plane. The Lie algebra is

[R, T1] = −2T2

[R, T2] = 2T1

where we may think of R as the generator of rotations about the z-axis and Tk as translations in the xy-plane.
The nonvanishing structure constants (using the conventional index positions) are then c132 = c113 =
−c123 = −c231 = 2.

While this 3-dim picture of the group is clearly rotationally invariant, we may make the proof explicit by
defining three unit vectors

ni
(a) ≡ δia

Letting the generators in an arbitrary basis form a 3-vector G = (G1, G2, G3) we set

R = n(3) ·G
T1 = n(1) ·G
T2 = n(2) ·G
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Then the structure constants may be written in terms of the unit vectors as

ci jk = 2ni
(1)

(
n(3)jn(2)k − n(2)jn(3)k

)
− 2ni

(2)

(
n(3)jn(1)k − n(1)jn(3)k

)

which now manifestly transforms as a

(
1
2

)

tensor under rotations.

For n = 4, the electroweak group, SU (2)× U (1), naturally springs to mind. This, and other particular
cases will be explored explicitly in subsequent work.

Now consider the effect on S bc
a of allowing xµ to vary. At each value of xµ, S cd

a (x), comprises the
structure constants of a Lie group. However, while the structure constants depend on the choice of the basis
of group generator, we are limited to differentiable changes. Since Lie algebras are classified by a discrete set
of possible root diagrams, a continuous transformation as we vary xµ cannot change to structure constants
with a different root diagram. Moreover, by choosing the basis of dual 1-forms appropriately at each point,
we may bring the structure constants to a given standard form c bc

a . With S bc
a (x) = −c bc

a at each value
of xµ, there is no x-dependence. With any such choice of basis, dS bc

a = 0, and we may set

S bc
a (x, y) = −c bc

a

across the entire biconformal manifold.
If the group G is abelian, the structure constants are zero and the momentum co-torsion vanishes. In

this case, dha = 0 and we have
ha = f µ

a (x)dyµ

where the y-dependence of the coefficients must now vanish, though in this case it is useful to allow the
dependence on xµ. This describes an exact, orthonormal frame and therefore a flat space. Since we evaluate
at fixed xα = xα

0 , the coefficients f µ
a (x0) are constants on the submanifold, but may be functions of xµ when

we extend back to the full biconformal space. This is equivalent to the abelian Lie algebra of n translations,
and the G-foliation of the biconformal space may be identified as the co-tangent bundle of the remaining
SO (p, q) space. Alternatively, the abelian group may be taken as a compactification on a torus.

4.2.2 Parameterization of the group elements as coordinates

The integral of the structure equations,

dha = −1

2
c bc
a hb ∧ hc

S c[d
a S ef ]

c = 0

gives the group manifold, which is most easily coordinatized by the group elements. We may find these by
exponentiating the Lie algebra, V = {yaGa|ya ∈ Rn} where Ga satisfy the Lie algebra relations in Eqs.(58)
and (59). The group elements may be parameterized by coordinates ya, by exponentiating the Lie algebra,
g (y) = eyaG

a ∈ G.
The basis forms, ha may be explicitly turned into Lie algebra valued one forms using any desired linear

representation of the generators, ξCB ≡ −ha [G
a]

C
B . For example, using the adjoint representation we

contract a copy of the structure constants with the Maurer-Cartan equations, eq.(56), and define ξcb ≡
−ha [G

a]
c

b = −c ac
b ha. Then, using the Jacobi identity,

d (c ac
b ha) = −1

2
c ac
b c de

a hd ∧ he

−dξcb =
1

2

(
c ad
b c ec

a + c ae
b c cd

a

)
hd ∧ he

=
1

2

(
−c da

b hd ∧ c ec
a he − c ea

b he ∧ c dc
a hd

)

=
1

2
(−ξab ∧ ξca − ξab ∧ ξca)

= −ξab ∧ ξca
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or

dξcb = ξab ∧ ξca
This is the structure equation of a connection on a flat manifold, so we may write ξab as a pure gauge
connection,

ξab = −ḡcbdg
a
c

where, in the adjoint representation, gab = exp (yc [G
c]
a
b) = exp (ycc

ca
b ). We check that this solves the

structure equation,

dξcb = ξab ∧ ξca
d (−ḡebdg

c
e) = (−ḡebdg

a
e) ∧

(
−ḡfadg

c
f

)

−dḡeb ∧ dgce = −dḡebg
a
e ∧ ḡfadg

c
f

= −dḡeb ∧ dgce

as required. We note that while this construction gives an explicit form for ha, this is not the usual connection,
ωc

b ≡ − 1
2ha [G

a]
c

b , which gives constant curvature [51].

5 Returning to the full space

We have established a geometric breakdown of the 2n-dim biconformal space into an n-dimensional foliation
with a Lie group for leaves. However, the connection forms still retain their dependence on the full set of
coordinates (xα, yβ). In this Section, and for the generic χ 6= −1 case in the next Section, we show that the
structure equations further restrict this dependence so that except for certain explicit linear yα dependence,
all fields depend only on the xα, up to coordinate choices and gauge transformations. To this end, we turn
to the full space and the Cartan structure equations.

When we restore the solder form, letting xµ vary again, the connection forms must be given by their
e
a = 0 parts, Eqs.(49, 56, and the vanishing Weyl vector) plus additional parts proportional to the solder

form. Therefore,

ωa
b = ωa

bc (x, y) e
c (60)

e
a = e a

µ (x, y)dxµ (61)

fa = h µ
a (x, y)dyµ + cab (x, y) e

b

≡ ha + cabe
b

≡ ha + ca (62)

ω = Wa (x, y) e
a (63)

Eqs. (60) - (63) hold as long as we perform only x-dependent fiber transformations. While this form is
convenient for recognizing the content of the geometry, the biconformal space is unchanged by more general
transformations. General (xα, yβ)-dependent transformations on biconformal space act similarly to canonical
transformations on phase spaces. They do not change the underlying physics.

We substitute these forms into the structure equations, with the reduced curvatures as given in Eq.(46),

dωa
b = ωc

b ∧ ωa
c + 2 (1 + χ)∆ad

cb fd ∧ e
c +

1

2
Ωa

bcde
c ∧ e

d (64)

de
a = e

b ∧ωa
b + ω ∧ e

a (65)

dfa = ωb
a ∧ fb + fa ∧ω +

1

2
Sacde

c ∧ e
d + S c

a dfc ∧ e
d − 1

2
c cd
a fc ∧ fd (66)

dω = (1 + χ) ec ∧ fc (67)

where χ ≡ 1
n−1

1
(n−1)α−β

Λ and (1 + χ) factors appear where we have combined the dilatation and curvature
cross terms with matching pieces of the connection.
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5.1 The basis structure equations

First consider the solder form equation, Eq.(65). Substituting Eqs.(60), (61) and (63) for the current form
of the connection,

dxµ ∧ ∂µe
a + dyµ ∧ ∂µ

e
a = ωa

bce
b ∧ e

c +Wbe
b ∧ e

a

The sole mixed term must vanish, dyµ ∧ ∂µ
e
a = 0, and this requires the solder form to be independent of

yα. Therefore,
e a
µ (x, y) = e a

µ (x) (68)

5.1.1 Solving the solder form equation for the spin connection

The next step is to solve the solder form equation for the spin connection. In the remaining e
a∧eb part of the

reduced solder form equation, Eq.(61) we may separate the connection into the familiar metric compatible
piece, and a Weyl vector piece. Let αa

b be chosen as the e
a-compatible connection, so that

de
a = e

b ∧αa
b (69)

We note that as a consequence of Eqs.(68) and (69), αa
b = αa

b (x). Then writing ωa
b = αa

b + β
a
b with

antisymmetry on each piece, αa
b = −ηacηbdα

d
c and βa

b = −ηacηbdβ
d
c, we must have

0 = e
b ∧ βa

b + ω ∧ e
a

Since the solution is unique up to local Weyl transformations, we need only find an expression that works.

Using the antisymmetric

(
1
1

)

projection operator ∆ac
bd to impose antisymmetry, and requiring linearity in

the Weyl vector and the solder form, we guess that

βa
b = −2∆ac

dbWce
d (70)

and check

e
b ∧ βa

b + ω ∧ e
a = −2∆ac

dbWce
b ∧ e

d + ω ∧ e
a

= − (δadδ
c
b − ηacηbd)Wce

b ∧ e
d + ω ∧ e

a

= −Wbe
b ∧ e

a + ω ∧ e
a

= 0

as required. Therefore, the spin connection is

ωa
b = α

a
b + β

a
b = α

a
b − 2∆ac

dbWce
d (71)

where αa
b is the connection compatible with e

a. Any y-dependence must come from the Weyl vector.

5.1.2 Coordinate form of the connection

We can also find the coordinate form of the connection. Starting from the solder form equation we expand,

0 = de
a − e

b ∧ωa
b − ω ∧ e

a

=
(
∂µe

a
ν + e b

ν ωa
bµ −Wµe

a
ν

)
dxµ ∧ dxν

As the antisymmetric part of the coefficient expression in parentheses must vanish, it must equal a symmetric
object, i.e.,

Σa
νµ ≡ ∂µe

a
ν + e b

ν ωa
bµ −Wµe

a
ν
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where Σa
νµ = Σa

µν . Writing Σa
νµ = e a

α Σα
νµ the equation takes the form of a vanishing covariant derivative,

Dµe
a

ν = ∂µe
a

ν − e a
α Σα

νµ + e b
ν ωa

bµ −Wµe
a

ν = 0

We easily check that Σα
νµ is indeed the expected connection. First, contract with ηabe

b
β ,

0 = ηabe
b

β ∂µe
a

ν − ηabe
b

β e a
α Σα

νµ + ηabe
b

β e c
ν ωa

cµ − ηabe
b

β Wµe
a

ν

Now symmetrize on βν and use gαβ = ηabe
a

α e b
β ,

0 = ηabe
b

β ∂µe
a

ν − gαβΣ
α
νµ + e b

β e c
ν ηabω

a
cµ − ηabe

b
β e a

ν Wµ

+ηabe
b

ν ∂µe
a

β − gανΣ
α
βµ + e b

ν e c
β ηabω

a
cµ − ηabe

b
ν e a

β Wµ

= ∂µgνβ − gαβΣ
α
νµ − gναΣ

α
βµ − 2gνβWµ

This is precisely the conformal metric compatibility of gνβ with Σα
βµ in a Weyl geometry. Solving for the

connection by the usual cyclic permution of µνβ, adding the first two permutations and subtracting the
third, we recover the explicit form of the compatible connection of a Weyl geometry [39]:

Σνβµ =
1

2
(∂µgνβ + ∂βgµν − ∂νgβµ)− (gνβWµ + gµνWβ − gβµWν)

= Γνβµ − (gνβWµ + gµνWβ − gβµWν) (72)

where Γνβµ is the Christoffel connection. This connection is compatible with the conformal class of metrics,
{
gαβe

2φ
∣
∣ all φ (x, y)

}
.

5.1.3 The covariant derivative of the solder form

The Weyl covariant derivative is compatible with the component matrix of the solder form,

Dµe
a

ν = ∂µe
a

ν − e a
α Σα

νµ + e b
ν ωa

bµ −Wµe
a

ν = 0 (73)

For the inverse component matrix, we contract with e β
a and use the product rule to express the result as

e a
ν Dµe

β
a , recognizing the covariant derivative of the inverse,

Dµe
β

a = ∂µe
β

a + e α
a Σβ

αµ − e β
b ωb

aµ + e β
a Wµ = 0 (74)

Knowing the coordinate form of the covariant derivative lets us compute the covariant derivative of ya.
Notice that multiplying by e µ

a changes the conformal weight.

Dya = dya − ybω
b
a + yaω

= de β
a yβ + e µ

a dyµ − ybω
b
a + yaω

=
(

−e α
a Σβ

αµdx
µ + e β

b ωb
aµdx

µ − e β
a Wµdx

µ
)

yβ + e µ
a dyµ − ybω

b
a + yaω

= ybω
b
a − e α

a yβΣ
β
α − yaω + e µ

a dyµ − ybω
b
a + yaω

= e α
a

(

dyµ − yβΣ
β
αµdx

µ
)

This will be of use shortly.

5.2 Curvature equation

We next study the curvature equation, Eq.(64). We begin with its integrability condition, which places
strong constraints on the co-torsion. Then, substituting the connection forms from Eqs.(60)-(62), we impose
the curvature field equation, Ωc

acb = 0.
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5.2.1 Curvature Bianchi

Expanding the curvature Bianchi identity, Eq.(14), and substititing the reduced curvatures, it becomes

0 = d

(
1

2
Ωa

bcde
c ∧ e

d

)

+
1

2
Ωc

befe
e ∧ e

f ∧ωa
c −

1

2
Ωa

cefe
e ∧ e

f ∧ωc
b

+2 (1 + χ)∆ad
cb

(
1

2
Sdefe

e ∧ e
f ∧ e

c + S e
d f fe ∧ e

f ∧ e
c − 1

2
c ef
d fe ∧ ff ∧ e

c

)

(75)

To find the independent parts, we must break the exterior derivative into d(x) and d(y). This also requires
separating the independent parts of the co-solder form,

fa = h µ
a (x, y)dyµ + cab (x, y) e

b

= ha + ca

where the solder form already lies only in the x-sector, eb = e b
α dxα. Then the only term proportional to

ha ∧ hb ∧ e
c is the final one, so 0 = 2 (1 + χ)∆ad

cb c
ef

d he ∧ hf ∧ e
c. Since the structure constants are already

antisymmetric we may drop the basis forms. Then the ac contraction shows that

0 = (1 + χ) c bc
a

Dropping this factor from the remaining parts of Eq.(75), we move to the ha ∧e
b ∧e

c components, antisym-
metrizing to remove the basis forms

0 = ∂αΩa
bfc + 2 (1 + χ)∆ad

cb S
e

d fh
α

e − 2 (1 + χ)∆ad
fbS

e
d ch

α
e (76)

Taking the af trace and using the field equation, Ωa
bac = 0,

0 = (1 + χ)
(
(n− 2)S e

b c + ηbcη
adS e

d a

)

A further contraction with ηbc shows that (1 + χ) (n− 1) ηadS e
d a = 0 and therefore, 0 = (1 + χ)S a

b c.
Substitutinng this back into Eq.(76) shows that the spacetime curvature is independent of yα, ∂αΩa

bcd = 0.
Finally, defining the x-covariant derivative of the spacetime component of the curvature,

D(ω,x)

(
1

2
Ωa

bcde
c ∧ e

d

)

≡ d(x)

(
1

2
Ωa

bcde
c ∧ e

d

)

+

(
1

2
Ωc

befe
e ∧ e

f

)

∧ ωa
c −

(
1

2
Ωa

cefe
e ∧ e

f

)

∧ ωc
b

we conclude

0 = D
(ω,x)
[e Ωa

|b|cd] + 2 (1 + χ)∆af

[e|bSf |cd] (77)

0 = (1 + χ)S b
a c (78)

0 = (1 + χ) c bc
a (79)

along with the further consequence of Eq.(78),

∂µΩa
bcd = 0 (80)

5.2.2 The curvature structure equation

We next find the components of the curvature, Ωa
bcd, in terms of the connection, and impose the field

equation.
Substituting Eq.(62) for fa and expanding the exterior derivatve dωa

b = d(x)ω
a
b − 2∆ac

dbd(y)Wce
d in

the structure equation, Eq.(64), allows separation of the e
c ∧ e

d and e
c ∧ hd parts into two equations

d(x)ω
a
b = ωc

b ∧ωa
c + 2 (1 + χ)∆ac

dbccee
e ∧ e

d +
1

2
Ωa

bcde
c ∧ e

d (81)

0 = 2∆ac
db (∂

µWc + (1 + χ)h µ
c )dyµ ∧ e

d (82)
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The ad trace of Eq.(82) requires
0 = (n− 1) (∂µWb + (1 + χ) h µ

b )

which solves the full cross-term equation. This same condition is also required by the dilatation equation
below. For the e

c
e
d terms, notice that we may still have some yµ dependence.

5.2.3 The spacetime equation

It is convenient to define the curvature 2-form of the connection compatible with the solder form,

R
a
b (x) ≡ d(x)α

a
b −αc

b ∧αa
c (83)

This is the Riemann curvature built from αa
b (x), not the full scale-invariant curvature of the biconformal

space. Writing the spin connection as

ωa
b = αa

b + β
a
b

where βa
b (x, y) = −2∆ac

dbWce
d, we substitute into Eq.(81),

d(x)α
a
b + d(x)β

a
b = αc

b ∧αa
c +α

c
b ∧ βa

c + β
c
b ∧αa

c + β
c
b ∧ βa

c

+2 (1 + χ)∆ac
dbccee

e ∧ e
d +

1

2
Ωa

bcde
c ∧ e

d

Solving for 1
2Ω

a
bcde

c ∧ e
d, using Eq.(83), and recognizing the α-covariant derivative of βa

b as

D(α,x)β
a
b ≡ d(x)β

a
b + β

a
c ∧αc

b − βc
b ∧αa

c

this becomes

1

2
Ωa

bcde
c ∧ e

d = R
a
b +D(α,x)β

a
b − βc

b ∧ βa
c − 2 (1 + χ)∆ac

dbccee
e ∧ e

d

Recalling that D(α,x)e
a = 0 the covariant exterior derivative of βa

b becomes

D(α,x)β
a
b = D(α,x)

(
−2∆ac

dbWce
d
)

= −2∆ac
db

(
D(α,x)Wc

)
∧ e

d

The βc
b ∧ βa

c term may be simplified considerably. With W 2 ≡ ηabWaWb,

βc
b ∧ βa

c = 2∆ce
db2∆

af
gcWeWfe

d ∧ e
g

=
(

δagδ
f
d δ

e
b − ηefηbdδ

a
g − ηafηgdδ

e
b + δegηbdη

af
)

WeWfe
d ∧ e

g

= −
(
δacWbWd + ηbdη

afWcWf − ηbdδ
a
c η

efWeWf

)
e
c ∧ e

d

= −
(

δac δ
e
bWeWd −

1

2
ηedδ

e
bδ

a
cW

2 + ηbdη
aeWcWe −

1

2
ηbdη

aeηceW
2

)

e
c ∧ e

d

= −
(

δac δ
e
b

(

WeWd −
1

2
ηedW

2

)

− ηbcη
ae

(

WdWe −
1

2
ηdeW

2

))

e
c ∧ e

d

= −2∆ae
cb

(

WeWd −
1

2
ηedW

2

)

e
c ∧ e

d

Therefore,

1

2
Ωa

bcde
c ∧ e

d = R
a
b − 2∆ae

db

(

D(α,x)
c We +WeWc −

1

2
ηecW

2 + (1 + χ) cec

)

e
c ∧ e

d
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It is convenient to define the curvature 2-form of the full spin connection as well,

R
a
b = d(x)ω

a
b − ωc

b ∧ ωa
c

= R
a
b − 2∆ae

db

(

D(α,x)
c We +WeWc −

1

2
ηecW

2

)

e
c ∧ e

d (84)

where ωa
b = αa

b − 2∆ac
dbWce

d. This may be recognized as the curvature tensor of an n-dim Weyl geometry
[39].

We also identify the Schouten tensor

Ra = Rabe
b ≡ 1

(n− 2)

(

Rab −
1

2 (n− 1)
ηabR

)

e
b (85)

In any dimension greater than two, knowing the Schouten tensor is equivalent to knowing the Ricci tensor,
since we may always invert, Rab = (n− 2)Rab + ηabR. In terms of the Schouten tensor, the decomposition
of the Riemann curvature into the traceless Weyl conformal tensor, Ca

b and its Ricci parts, takes the simple
form [39],

R
a
b = C

a
b − 2∆ae

dbRe ∧ e
d (86)

Using this decomposition, the Ricci parts of the curvature combine with the additional terms from the
scale covariance,

1

2
Ωa

bcde
c ∧ e

d = C
a
b − 2∆ae

db

(

Rec +D(α,x)
c We +WeWc −

1

2
ηecW

2 + (1 + χ) cec

)

e
c ∧ e

d (87)

To impose the field equation, set Pec ≡ Rec +D
(α,x)
c We +WeWc − 1

2ηecW
2 + (1 + χ) cec. Then substituting

Ωa
bcd = Ca

bcd − 2∆ae
dbPec + 2∆ae

cbPed into Eq.(44),

Cc
bcd − 2∆ae

dbPec + 2∆ae
cbPed = 0

Since Cc
bcd = 0, this has the component form, for any Pab, 0 = ∆ce

dbPec − ∆ce
cbPed, which, expanding the

projections and combining result with the further contraction with ηbd, is seen to be true if and only if
Pab = 0.

Applying this general result to the field equation by replacing Pec, we have

Rec +D(α,x)
c We +WeWc −

1

2
ηecW

2 + (1 + χ) cec = 0 (88)

This determines cab unless 1 + χ = 0. The symmetric part of the first four terms on the left side is the
Weyl-Schouten tensor,

Ra ≡ Ra +

(

W(a;b) +WaWb −
1

2
W 2ηab

)

e
b

and we see that there is an antisymmetric part to the trace of the Riemann-Weyl tensor,

Rbd ≡ R
c
bcd = Rbd + (n− 2)

(

D
(α,x)
d Wb +WbWd −

1

2
ηbdW

2

)

− ηbdη
ce

(

D(α,x)
c We +WeWc −

1

2
ηecW

2

)

R[bd] = (n− 2)W[b;d]

This agrees with the trace of the corresponding term of the torsion-free Bianchi identity arising from Eq.(65),
and shows that cab may have both symmetric and antisymmetric parts.

Returning to the full spacetime curvature after satisfying the field equation,

Ωa
bcd = Ca

bcd (α) (89)
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so the spacetime piece of the biconformal curvature reduces to the Weyl (conformal) curvature of the metric
compatible connection. This part of the curvature is independent of yµ as required by Eq.(80), since the only
yµ-dependence of the connection must arise from the Weyl vector, and as seen in Eq.(87) the Weyl vector is
only present in the trace terms of the curvature. The full SO (p, q) curvature may now be written as

Ω
a
b =

(
1

2
Ca

bcd + 2χ∆ae
dbcec

)

e
c ∧ e

d + 2χ∆ac
dbhc ∧ e

d

= C
a
b −

2χ

1 + χ
∆ae

dbRe ∧ e
d + 2χ∆ac

dbhc ∧ e
d

with ha = h α
a dyα. The second expression holds only when 1 + χ 6= 0.

5.2.4 Form of the spacetime Bianchi identity

When we combine this solution for Ω
a
b with the spacetime part of the curvature Bianchi identity, we have

Eq.(77)

D
(ω,x)
[e Ωa

|b|cd] + 2 (1 + χ)∆af

[e|bSf |cd] = 0

With 1
2Ω

a
bcde

c ∧ e
d = 1

2C
a
bcde

c ∧ e
d = C

a
b, the covariant exterior derivative of the Weyl curvature is

D(ω,x)C
a
b ≡ d(x)C

a
b +C

a
b ∧ ωa

c −C
a
b ∧ωc

b

= D(α,x)C
a
b +C

a
b ∧ βa

c −C
a
c ∧ βc

b

where we have expanded ωa
c = αa

c + β
a
c. But C

a
b is the usual traceless part of the Riemann curvature,

which satisfies

0 ≡ D(α,x)R
a
b

= D(α,x)C
a
b − 2∆ae

dbD(α,x)Re ∧ e
d

and we may rewrite the covariant exterior derivative of the Weyl curvature in terms of the derivative of
the Schouten tensor. Making this replacement and setting βa

c = −2∆ae
dcWee

d, the Bianchi identity may be
written as

0 = 2∆ge
df

(

δfb δ
a
gD(α,x)Re − δagWeC

f
b + δcgδ

f
bWeC

a
c + (1 + χ) δag δ

f
b S

(ee)
e

)

∧ e
d

where we set S(ee)
b ≡ 1

2Semne
m∧e

n. Now we expand the ∆-projections, distribute and re-collect terms, then
use the first Riemannian Bianchi Cdb ∧ e

d = 0, to show that

0 = ∆ac
db

(

D(α,x)Rc −WeC
e
c + 2 (1 + χ)S(ee)

c

)

∧ e
d (90)

Expanding both the ∆-projection and the triple antisymmetrization, we show that for all n > 3, Eq.(90)
holds if and only if

2 (1 + χ)Sbfg = D(α,x)
g Rbf −D

(α,x)
f Rbg +WeC

e
bfg

Restoring two basis forms, we may write this as

D
(α,x)

Rb −WeC
e
b + 2 (1 + χ)S

(ee)
b = 0 (91)

which solves the full Bianchi relation, Eq.(90). From Eq.(91) it follows that:

Theorem: In any torsion-free biconformal space with integrable Weyl vector, Wα = ∂αφ, and 1 + χ 6= 0,
the spacetime co-torsion is the obstruction to conformal Ricci flatness.

Complete details of the algebra leading to Eq.(90) are given in Appendix C.
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5.3 The dilatation and co-torsion structure equations

Expanding the dilatation equation, Eq.(67), using Eqs.(61)-(63), to display the independent parts

d(x)ω + d(y)ω = (1 + χ) ec ∧ hc + (1 + χ) ec ∧ cc

we find two independent equations,

d(x)ω = (1 + χ) c (92)

d(y)ω = (1 + χ) ec ∧ hc (93)

where we have set c ≡ e
c ∧ cc. The Bianchi identity reduces to 0 ≡ d

2ω = (1 + χ)d (ea ∧ fa) =
(1 + χ)D (ea ∧ fa) = − (1 + χ) ea ∧ Sa, which reproduces Eqs.(78) and (79) and shows that

(1 + χ)S[abc] = 0

The dilatation structure equations may be integrated exactly, but the result depends crucially on whether
or not (1 + χ) = 0. The two cases will be handled separately in the next two Sections.

The co-torsion structure equation also depends on the case considered. In addition to the structure
equations (66), we still have the field equations

sc ≡ S a
c a = S a

a c

∆ar
sbS

b
c a = ∆ar

sc sa

S ac
c = 0 (94)

and constraints from the curvature and dilatation Bianchi identities,

(1 + χ)S[abc] = 0

D
(ω,x)
[e Ωa

|b|cd] + 2 (1 + χ)∆af

[e|bSf |cd] = 0

(1 + χ)S b
a c = 0

(1 + χ)S bc
a = 0 (95)

To complete the reduction of the biconformal space, we turn to the 1 + χ 6= 0 and 1 + χ = 0 cases.

6 Generic case: 1 + χ 6= 0

In this Section, we consider the final reduction to spacetime for generic values of the constants α, β, γ in the
original action, assuming

1 + χ 6= 0 (96)

It follows that we must have S bc
a = 0 and therefore on the e

a = 0 submanifold,

d(y)ha = 0

ha = d(y)ya

where the functions ya may be written as coordinates with an x0-dependent linear transformation,

ha (x
µ
0 , yµ) = h µ

a (xµ
0 ) (yµ + βµ (x

µ
0 ))

When we return to the full biconformal space, the linear coefficients h µ
a (x) and βµ (x) remain as arbitrary

coordinate choices. The full co-solder form, Eq.(62), then satisfies

fa = h µ
a (x)dyµ + cab (x, y) e

b

= h µ
a (x)dyµ + h µ

a (x)dβµ (x) + cab (x, y) e
b
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Thus, the coordinate choice of the origin for yµ at each xα changes cab. We continue to define the co-basis
ha as only the dyµ part,

ha ≡ h µ
a (x)dyµ (97)

The momentum space is therefore foliated by abelian group manifolds. The foliation may be identified as Rn

or a toroidal compactification of all or part of Rn. Being principally interested in the underlying presence
of general relativity, we take it to be Rn and eventually identify it with the cotangent space at each xα.
However, it may also be taken as the torus T d of double field theory for other applications to string theory.

Given the form Eq.(97) of the co-basis ha, it is useful to begin with the natural inner product arising from
the conformal Killing form together with our freedom to choose the x-coordinates. The coordinate freedom
allows us to conveniently choose the functions h a

µ to be the inverse solder form, enabling us to integrate the
dilatation equation for the Weyl vector.

6.1 The Killing metric

The field h µ
a (x) lets us choose a convenient orthonormal basis for the yα space at each point of the xα

space. Taking the restriction of the conformal Killing form to the biconformal manifold,

(
0 δab
δdd 0

)

, as the

biconformal metric lets us usefully control this coordinate freedom. The Killing metric gives the orthonormal
inner product of (ea, fb) basis,

〈
e
a, eb

〉
= 0

〈ea, fb〉 = δab

〈fa, fb〉 = 0

Choosing arbitrary coordinates, x̃µ as the complement to yµ, the first of these three relations,
〈
e
a, eb

〉
= 0,

shows that 〈dx̃µ,dx̃ν〉 = 0. Substituting fa = ha + cabe
b into 〈ea, fb〉 and expanding in coordinates,

δab = 〈ea,hb + cbce
c〉

= 〈ea,hb〉
= h µ

b (x̃) e a
ν (x̃) 〈dx̃ν ,dyµ〉

e ν
b (x̃) = h µ

b (x̃) 〈dx̃ν ,dyµ〉 (98)

Using 〈ea,hb〉 = δab in the 〈fa, fb〉 inner product, we find 〈ha,hb〉,

0 = 〈fa, fb〉
=

〈
ha + cace

c,hb + cbde
d
〉

〈ha,hb〉 = − (cab + cba) = −2c(ab) (99)

We see from Eq.(98) that the inner product of dyµ with dx̃ν cannot depend on yµ,

〈dx̃ν ,dyµ〉 = kνµ (x̃)

Moreover, like e ν
b (x̃) and h µ

b (x̃), kνµ (x̃) must be invertible. Let xα = xα (x̃) be any coordinate transfor-
mation of x̃α. Then in the new x-coordinates the inner product becomes

〈dxα,dyµ〉 =

〈
∂xν

∂x̃α
dx̃α,dyµ

〉

=
∂xν

∂x̃α
kαµ (x̃)

32



Since ∂xν

∂x̃α is an arbitrary general linear transformation at each point and kνµ is invertible, we may choose
∂xν

∂x̃α to be its inverse. Then
〈dxν ,dyµ〉 = δνµ

Writing eq.(98) in these new coordinates, we have

h µ
b (x) = e µ

b (x)

showing that in these coordinates h µ
b (x) is just the inverse matrix to e a

µ (x). This fixes

ha = e µ
b (x)dyµ (100)

6.2 The dilatation equation

With the change of x-coordinate, the basis forms are now given by

e
a = e a

µ (x)dxµ (101)

fa = e α
a (dyα + dβα + cανdx

ν) (102)

with the spin connection and Weyl vector given by Eq.(60) and Eq.(63). The x-dependent translation βµ

remains an arbitrary coordinate choice.
Using the coefficients e a

µ to change basis in the usual way to convert between coordinate and orthonormal
indices, we expand ca = e α

a cανdx
ν and the Weyl vector ω = Wae

a = Wµdx
µ in Eq.(67) in coordinates.

dxµ ∧ ∂µ (Wνdx
ν) + dyµ ∧ ∂µ (Wνdx

ν) = (1 + χ)
(
e a
µ dxµ

)
∧ (e α

a (dyα + βα,νdx
ν + cανdx

ν))

Equating independent parts,

W[µ,ν] = − (1 + χ)
(
β[µ,ν] + c[µν]

)
(103)

∂µWν = − (1 + χ) δµν (104)

Eq.(104) is integrated immediately,

Wµ = (1 + χ) (−yµ + αµ (x)) (105)

This must satisfy both equations, so substituting into Eq.(103),

c[µν] = −
(
α[µ,ν] + β[µ,ν]

)
(106)

Before making the obvious coordinate choice, βµ = −αµ, it is suggestive to comment on the form
of Eq.(105). The integration “constant” αµ (x) is a potential for the antisymmetric part of cµν and the
antisymmetric part is independent of yµ. Since an x-dependent rescaling does not affect the vanishing of
the fa component of the Weyl vector, we may perform a dilatation to modify αµ (x). This is precisely the
form of the gauge transformation of the electromagnetic potential, but as with the failed Weyl theory of
electromagnetism, it may lead to unphysical size changes since the dilatational curvature, Ωµν does not
necessarily vanish. However, notice that biconformal space has a symplectic form. Eq.(67) describes a
manifestly nondegenerate 2-form, ea ∧ fa, which is exact and therefore closed. This means we may interpret
the full biconformal space as a relativistic particle phase space with canonical coordinates (xα, yβ). In
this view, yµ is a momentum and the Weyl vector (105) has exactly the form and gauge properties of the
electromagnetic conjugate momentum if αµ is taken proportional to the vector potential. Moreover, the
previous well-known conflict with observation is avoided. The transformation by βµ to remove αµ is then
the cannonical transformation between the conjugate electromagnetic momentum, πµ = pµ − eAµ and the
simple particle momentum pµ.

The original ill-fated attempt by Weyl to identify the Weyl vector of a Weyl geometry as the vector
potential of electromagnetism, Wµ = eAµ, leads to nonvanishing dilatation in the presence of electromagnetic
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fields, Ωµν = eFµν . Einstein immediately observed that this conflicts with experiment, and it is easy to show,
for example, that two hydrogen atoms moving to produce a closed path that encloses some electromagnetic
flux would emerge with different sizes, and therefore very different spectra. The precision of atomic spectra
therefore disproves the simplest version of the theory. The situation is completely different in the biconformal
setting. Because of the extra e

a
fa term in the dilatation equation, it is possible to have vanishing dilatational

curvature and retain the interpretation of αµ (rather than Wµ) as the vector potential. The idea has been
explored to some extent in [9]. Here, the form of the dilatation is given by

Ω = Ωa
bfa ∧ e

a

= χea ∧ fa

= χδµν e
ν

a e a
µ dxµ ∧ dyν + χcµνe

a
µ dxµ ∧ dxν

or since we may also write Ω = 1
2Ωµνdx

µ
dxν +Ωµ

νdyµdx
ν +Ωµν

dyµdyν we have coordinate components

Ωµν = χ (cµν − cνµ)

Ωµ
ν = −χδµν

Ωµν = 0

Therefore, while the space spanned by fa = 0 shows no unphysical size changes, Ωab = 0, the space defined
by setting yµ = 0 has Ωµν given by the antisymmetric part of cµν .

It is possible to avoid dilatational curvature altogether by setting χ = 0. In this case, the full dilatational
curvature is identically zero. There is still a symplectic form in this subclass of theories, since we still have
dω = e

a∧ fa. This permits the consistent interpretation of the Weyl vector as the conjugate electromagnetic
momentum according to Eq.(105).

Notice that setting χ = 0 is inconsistent with the 1 + χ = 0 cases to be studied in the next Section.
The possibility of a geometric graviweak theory with 1 + χ = 0 is more appealing than this χ = 0 case,
since the success of the standard model strongly suggests that the electromagnetic and weak interactions
should arise together. We continue with the generic picture, but eventually choose the ya coordinate to be
offset by βµ (x) = −αµ (x). This makes Ωµν = χc[µν] vanish without restricting the action, while it leaves
the cross-dilatation nonzero and cµν symmetric. There is no effect of this on spacetime, but, identifying
yµ = i

~
pµ as argued in [41, 42] it leads to a non-integrability in phase space of the form i

~

¸

pµdx
µ 6= 0

arising from the interesting conjunction of the dilatational curvature with the symplectic form. The result
might be consistent with a quantum interpretation. This idea has been explored in [42, 41, 30].

Without further conjecture on the interpretation of the geometry, we continue with the generic case
of the reduction toward general relativity. Without loss of generality, we choose the yµ coordinate so that
αµ = α̃ (x)+βµ (x) = 0, but this is merely a convenient coordinate choice. The solution retains full coordinate
covariance.

Collecting the forms for the connection and basis established in Eqs.(71) and (101), and writing the
gauged form of the Weyl vector co-solder form, we now have

ωa
b = αa

b (x)− 2∆ac
dbWce

d (107)

Wα = − (1 + χ) yα (108)

e
a = e a

α (x)dxα (109)

fa = e α
a dyα + cab (x, y) e

b = ha + ca (110)

where

ca = − 1

1 + χ

(

Ra +D(α,x)Wa +Waω − 1

2
ηabW

2
e
b

)

(111)

c = −dα = 0
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The dilatation may now be written as

Ω = χea ∧ fa = χea ∧ ha = χdxµ ∧ dyµ (112)

6.3 The co-solder equation

Now consider the co-solder equation, Eq.(66), with the co-torsion constrained by the Bianchi identities,
Eqs.(95)

dfa = ωb
a ∧ fb + fa ∧ ω +

1

2
Sacde

c ∧ e
d (113)

First, note that the the Bianchi identity S[abc] = 0 is identically satisfied, since contraction with the solder
form vanishes identically:

1

2
S[acd]e

a ∧ e
c ∧ e

d = e
a ∧ dfa − e

a ∧ωb
a ∧ fb − e

a ∧ fa ∧ ω

= −d (ea ∧ fa) +
(
de

b − e
a ∧ ωb

a − ω ∧ e
b
)
∧ fb

= 0

Now, solving Eq.(113) for the co-torsion and substituting for the connection forms

Sa = dfa − ωb
a ∧ fb − fa ∧ ω

= D(ω)fa

= D(ω)

(
e α
a dyα + cab (x, y) e

b
)

= e α
a D(ω) (dyα) +D(ω)ca

= e α
a

(
d (dyα) + dyβ ∧ Σβ

αµdx
µ
)
+
(
dca + cb ∧ ωb

a − ω ∧ ca

)

= e α
a Σβ

αµdyβ ∧ dxµ +
(
dca + cb ∧ ωb

a + ω ∧ ca

)

We first need the dyβ dependent pieces of dca, where ca is given by Eq.(111). Since the only y-dependence
is in the Weyl vector,

dca = d(x)ca −
1

1 + χ
d(y)

(

D(α,x)Wa +Waω − 1

2
ηabW

2
e
b

)

Expanding the x-dependent, α-covariant derivative of the Weyl vector,

D(α,x)Wb = e
ae µ

a D(α,x)
µ (e µ

b Wµ)

= (1 + χ) eae µ
a e ν

b D(α,x)
µ (−yν)

= (1 + χ) eae µ
a e ν

b

(
yαΓ

α
νµ (x)

)

the y-derivatives become

d(y)ca = − 1

1 + χ
d(y)

(

D(α,x)Wa +Waω − 1

2
ηabW

2
e
b

)

= − 1

1 + χ
e µ
b e ν

a d(y)

(

(1 + χ) yαΓ
α
νµ +WµWν − 1

2
gµνg

αβWαWβ

)

∧ e
b

= −e µ
b e ν

a

(
dyαΓ

α
νµ − dyµWν −Wµdyν + gµνg

αβWαdyβ
)
∧ e

b

= −e µ
b e ν

a

(
Γβ

νµ − δβµWν − δβνWµ + gµνg
αβWα

)
dyβ ∧ e

b

= −e ν
a Σβ

νµdyβ ∧ dxµ
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Substituting, the dyα terms cancel identically, leaving

Sa = e α
a Σβ

αµdyβ ∧ dxµ +
(
d(x)ca + cb ∧ ωb

a + ω ∧ ca

)
− e ν

a Σβ
νµdyβ ∧ dxµ

= d(x)ca + cb ∧ ωb
a + ω ∧ ca

This shows once again that the cross-term of the co-torsion vanishes, S c
a b = 0. Now we expand the spin

connection, rewriting all of the derivatives as x-dependent, α-covariant, D(α,x).

Sa = d(x)ca + cb ∧
(

αb
a + β

b
a

)

+ ω ∧ ca

= D(α,x)ca + cb ∧ βb
a + ω ∧ ca

= − 1

1 + χ
D(α,x)

(

Ra +D(α,x)Wa +Waω − 1

2
ηabW

2
e
b

)

− 1

1 + χ

(

Rb +D(α,x)Wb +Wbω − 1

2
ηbcW

2
e
c

)

∧ βb
a

− 1

1 + χ

(

ω ∧Ra + ω ∧D(α,x)Wa −
1

2
ηabW

2ω ∧ e
b

)

After distributing the covariant derivative and expanding βb
a, we separate curvature terms and simplify,

Sa = − 1

1 + χ

(
D(α,x)Ra +D(α,x) ∧D(α,x)Wa −WbRa ∧ e

b + ηbdηeaWdRb ∧ e
e
)

− 1

1 + χ

(
D(α,x)Wa ∧ω + ωD(α,x)Wa + ηbdηeaWd

(
D(α,x)Wb

)
∧ e

e − ηabη
cdWc

(
D(α,x)Wd

)
∧ e

b
)

− 1

1 + χ

(

ηeaW
2ω ∧ e

e − 1

2
ηeaW

2ω ∧ e
e − 1

2
ηabW

2ω ∧ e
b

)

= − 1

1 + χ

(
D(α,x)Ra +D(α,x) ∧D(α,x)Wa −Wb

(
δdaδ

b
e − ηbdηea

)
Rd ∧ e

e
)

Using the partition of the Riemann tensor, Eq.(86), and the Ricci identity,

D(α,x) ∧D(α,x)Wa = −WbR
b
a

we see that Sa is

Sa = − 1

1 + χ

(
D(α,x)Ra −WbC

b
a

)
(114)

If Wa were the gradient of a function of xµ, then Eq.(114) would be the condition for the spacetime to be
conformal to a Ricci-flat spacetime. Since

d(x)ω = d(x) (− (1 + χ) yαdx
α)

= 0

this is the case, but only at constant yα.

Sµαβ = − 1

1 + χ
D(α,x)

α Ra + ybC
b
a

This is in agreement with our conclusion, Eq.(91), from the spacetime Bianchi equation combined with the
usual Riemannian Bianchi identity. The result means that for vanishing co-torsion and constant yα there
exists an x-dependent gauge transformation to a Ricci flat spacetime. This form is not unfamiliar, the
same expression having been noted in another context in [17]. The remaining y-dependence is the only
obstruction to the Triviality Theorem: if a conformal transformation could make Sabc vanish for all yα, then
the biconformal space would necessarily be trivial.

Note that the field equations Eqs.(94) and the Bianchi identities Eqs.(95) for the co-torsion are now all
satisfied for any allowed Sa.
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6.4 Collecting the results (1 + χ) 6= 0

We have now solved for the full connection and satisfied all of the field equations.

ωa
b = αa

b (x)− 2∆ac
dbWce

d

e
a = e a

α (x)dxα

fa = e α
a dyα − 1

1 + χ

(

Ra +D(α,x)Wa +Waω − 1

2
ηabW

2
e
b

)

= ha −
1

1 + χ
Ra

ω = − (1 + χ) yαdx
α

where χ ≡ 1
n−1

1
(n−1)α−β

Λ. Notice that dω = (1 + χ) ecfc defines a symplectic form.
The curvatures follow from the structure equations as

Ω
a
b = C

a
b + 2 (1 + χ)∆ac

dbhc ∧ e
d (115)

T
a = 0 (116)

Sa = − 1

1 + χ
D(α,x)Ra + ybC

b
a (117)

Ω = χea ∧ ha (118)

The combination χea ∧ ha = χdxα ∧ dyα is also non-degenerate and closed, and therefore symplectic.

6.5 The Lagrangian submanifold of spacetime

The basis forms ha = e µ
a dyµ are manifestly involute. Holding yµ constant so that ha = 0, the resulting

vanishing of the symplectic form shows that the ha = 0 submanifold is Lagrangian. The structure equations
for the resulting Lagrangian submanifold are

dωa
b = ωc

b ∧ωa
c + 2 (1 + χ)∆ac

dbcc ∧ e
d +C

a
b (α) (119)

de
a = e

b ∧ ωa
b + ω ∧ e

a (120)

dω = 0

and the remaining part of the co-solder equation is,

Sa = dca − ωb
a ∧ cb − ca ∧ ω = D(ω,x)ca (121)

With yµ = y0µ constant, the form of the connection is

ωa
b = αa

b (x) + 2 (1 + χ)∆ac
dbe

α
c y0αe

d

e
a = e a

α (x)dxα

Wα = − (1 + χ) y0α

Notice that the Weyl vector is now the gradient of − (1 + χ) y0αx
α with respect to xα. There is one further

consequence of the curvature field equation,

ca = − 1

1 + χ

(

Ra +D(α,x)Wa +Waω − 1

2
ηabW

2
e
b

)

= − 1

1 + χ
Ra

and the curvatures are as given in Eqs.(115)-(117) with yµ = y0µ, together with Ω = 0.
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6.5.1 Interpreting ca

Combining Eq.(117) at constant yµ with Eq.(121), we expand the derivatives and replace the Weyl curvature
using the partition of the Riemann tensor, Eq.(86),

Sa = − 1

1 + χ

(
D(α,x)Ra + (1 + χ) y0bC

b
a

)

D(α,x)ca −Wb2∆
bc
dacc ∧ e

d = − 1

1 + χ

(
D(α,x)Ra −WbR

b
a −Wb2∆

bc
daRc ∧ e

d
)

− (1 + χ)D(α,x)ca + 2 (1 + χ)Wb∆
bc
dacc ∧ e

d = D(α,x)Ra −WbR
b
a −Wb2∆

bc
daRc ∧ e

d

and therefore

0 = D(α,x) (Ra + (1 + χ) ca)−WbR
b
a −Wb2∆

bc
da (Rc + (1 + χ) cc) ∧ e

d (122)

This is exactly the condition for the existence of a conformal transformation to a spacetime satisfying the
Einstein equation with matter sources, found in [39], where the matter source (1 + χ) cab is given in terms
of the energy-momentum tensor Tab by

(1 + χ) cab = − 1

n− 2

(

Tab −
1

n− 1
ηabT

)

(123)

Therefore, there exists an xα-dependent rescaling of the solder form – the Riemannian gauge – such that the
co-torsion equation becomes

Ra = − (1 + χ) ca (124)

which, in turn, is the Einstein equation with source given by Tab. Explicitly, substituting the definition of
the Schouten tensor from Eq.(85) and the form of cab from Eq.(123),

1

(n− 2)

(

Rab −
1

2 (n− 1)
ηabR

)

=
1

n− 2

(

Tab −
1

n− 1
ηabT

)

we substitute for the trace of the energy momentum, T = − 1
2 (n− 2)R. Solving for the energy-momentum

tensor, we find the usual form of the Einstein equation,

Rab −
1

2
ηabR = Tab

The ha = 0 submanifold is therefore a spacetime satisfying the locally scale-covariant Einstein equation,
including phenomenological matter sources. Study is underway to determine whether the energy-momentum
of fundamental source fields automatically enter in this way in place of cab, or if special couplings to matter
are required in the Lagrangian. Notice that in the Riemannian gauge Eq.(122) reduces to

WbR
b
a = 0

For a single vector to annihilate the curvature tensor can happen only in the simplest Petrov type spacetimes
(O and N , and these are already conformally Ricci flat; see [17]) and we conclude that, generically, the gauge
transformation that makes the spacetime Riemannian is simultaneously the one which makes the Weyl vector
vanish.

6.5.2 Contractions of the Bianchi identity for the curvature on the Lagrangian submanifold

In components, the Bianchi identity for the Riemann-Weyl curvature on the spacetime submanifold, Eq.(91)
becomes

D(α,x)
a Rbc −D(α,x)

c Rba −WeC
e
bac + (1 + χ)Sbac = 0
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Taking the bc contraction,

D(α,x)
a R−Dc

(α,x)Rca + (1 + χ) ηbcSbac = 0

In the Riemannian gauge, and therefore any gauge, the first two terms cancel since

D(α,x)
a R = Dc

(α,x)Rca

follows from the Bianchi identity for the Riemannian curvature. Therefore,

ηbcSbac = 0

Now, expanding the co-torsion using Eq.(121)

Sa = D(ω,x)ca

= D(α,x)ca − 2∆bc
daWbcc ∧ e

d

In components, this is Sabc = D
(α,x)
b cac −D

(α,x)
c cab, so that

0 = ηbcSbac = c;b − cab;a

and substituting for cab from Eq.(123) in

0 =
1

(n− 1) (n− 2)
T;b +

1

n− 2

(

T a
b;a −

1

n− 1
T;a

)

=
1

n− 2
T a

b;a

and we have established cab to be both symmetric and conserved on spacetime, in agreement with the
requirments for the energy momentum tensor. Naturally, this last condition also follows directly from the
vanishing divergence of the Einstein tensor.

6.5.3 Metric on the Lagrangian submanifold

While we have used the Killing form to motivate the choice of h µ
a (x) in the basis form on the cotangent

spaces, Eq.(100), the use of the Killing form is not necessary. Indeed, when general relativity is developed
as a gauge theory from the Poincaré group, the Killing form vanishes when restricted to the base manifold.
Instead, the spacetime metric may be motivated by the spin connection, which is compatible with Lorentzian
signature. Ultimately, there is no inherent group structure that requires the choice except this compatibility.
Similarly, in the biconformal gauging, we may introduce an SO (p, q) compatible metric by hand on the
Lagrangian submanifolds where the restriction of the Killing form vanishes. For Lorentzian cases, with an
original SO (n− 1, 1) spin connection, it is natural to introduce the corresponding Minkowski metric on each
Lagrangian submanifold.

This choice is sufficient for the generic case, but since the restriction of the conformal killing form to
biconformal space is non-degenerate, there are alternatives that trace their origin to the conformal group.
These have been explored in a variety of ways ([41, 31, 22, 44, 32]) but these considerations take us too far
beyond the scope of this class of solutions.

7 Non-abelian case: 1 + χ = 0

We note that the condition 1 + χ = 0 becomes, in terms of the parameters of the original action,

0 = nγ − ((n− 1)α− β)
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and this does not coincide with any other special conditions.
We now return to the form of the connection, structure equations, and curvatures established at the end

of Sec.(5), and set 1 + χ = 0. The connection forms still take the form,

ωa
b = αa

b − 2∆ac
dbWce

d

e
a = e a

µ (x)dxµ

fa = h µ
a (x, y)dyµ + cab (x, y) e

b

≡ ha + ca

ω = Wa (x, y) e
a

The form of the spin connection immediately gives the solution for Ωa
bcd as the Riemann-Weyl curvature

tensor of an integrable Weyl geometry, given by Eq.(84). The field equation is the vanishing of the Weyl-
Schouten tensor,

0 = Ωa
bac

= Rbc

= Rbc + φ(b;c) + φbφc −
1

2
ηbcη

adφaφd

and therefore vanishing Weyl-Ricci tensor. The field equation reduces the full spacetime curvature to the
Weyl curvature

Ωa
bcd = Ca

bcd (α)

with αa
b the metric compatible connection.

The dilatation structure equation is now simply

dω = 0

so to simplify the form of the field equations, we may gauge to ω = 0. In the Wa = 0 gauge, the Weyl
connection becomes Riemannian, ωa

b = α
a
b and the curvature is

1

2
Ωa

bcde
c ∧ e

d = dαa
b −αc

b ∧αa
c = R

a
b (125)

where αa
b is the metric compatible connection, dea = e

b ∧αa
b. The curvature field equation is simply the

vacuum Einstein equation. The dilatation and curvature cross terms are now of unit magnitude,

Ωa c
b d = 2∆ac

db

Ωa
b = δab

The only remaining field equations are those describing the co-torsion, and the only remaining structure
equation is the co-solder equation,

dfa = αb
a ∧ fb +

1

2
Sacde

c ∧ e
d + S c

a dfc ∧ e
d − 1

2
c cd
a fc ∧ fd

When 1 + χ = 0, the remaining structure equation on the xµ = constant, ea = 0 submanifold is given
by Eq.(56),

dha = −1

2
c cd
a hc ∧ hd (126)

which is precisely the Maurer-Cartan equation for a Lie group G with structure constants c cd
a .

Here we see the realization of one of the motivations for the use of the conformal group as the starting
point for Poincaré gravity, and the subsequent motivation for the biconformal gauging. One anticipates
that by starting with the larger conformal group and taking the quotient by the inhomogeneous Weyl group
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C/IW that the resulting additional symmetry might account for some known or new fundamental interaction
beyond gravity. This hope is frustrated by the finding that the additional special conformal gauge fields fa are
always auxiliary, and determined by the Ricci tensor [43]. When these auxiliary gauge fields are substituted
back into the rest of the model, they serve to turn the Riemann curvature tensor into the Weyl curvature
tensor. As a result, though they enforce conformal symmetry, they never provide an additional interaction.
As a way to avoid the elimination of fa, we are led to the biconformal gauging, C/W , the idea being that
if both e

a and fb together are required to span the base manifold, then fb cannot possibly be removed as
auxiliary [8, 9]. Although considerable subsequent work continues to find fa serving to turn R

a
b to C

a
b as

in subsection (5.2.3), the emergence of an additional symmetry group is now realized in the 1 + χ subclass
of cases.

The biconformal space comes equipped with the SO (p, q) pseudo-rotation group of an n-dimensional
space, but these rotations and boosts acts on a 2n-dimensional manifold. This is much less than the SO (n, n)
one might expect. Indeed, as seen above, the generic torsion-free solution dictates that half the space is flat,
so there is no curvature corresponding to the dyµ part of the spin connection. The spin connection reduces,
essentially, to the metric compatible connection of ea,

ωa
b = ωa

bµ (x, y)dx
µ + ωa µ

b (x, y)dyµ ⇒
(
αa

bµ (x) + 2∆ac
µbyc

)
dxµ

which is fully expressed on the n-dimensional, constant yµ Lagrangian submanifolds. This reduction of the
spin connection reduces the number of physical fields, but when 1+χ = 0 the extra translational gauge fields
– the co-solder form – make up for it by providing a new connection and field strength: there is necessarily
an n-dimensional Lie group G acting at each xµ. Since the n-dimensions of this group are labeled by an
SO (p, q) index, SO (p, q) must act on G. We show in this section that this internal symmetry group is
gauged.

For a particularly pertinent example, suppose we have started with Euclidean 4-space. This does not
preclude a spacetime Lagrangian submanifold, for it has been shown in [31] that time emerges uniquely from a
Euclidean starting point, while [22] shows that this emergence arises purely from properties of the conformal
group. With the 4-dim Euclidean starting point, the spin connection has symmetry SO (4) = SU (2)×SU (2).
The obvious 4-dimensional subgroup is the electroweak symmetry, SU (2)×U (1). In this case, the symmetry
breaking from a left-right symmetric electroweak theory to left-handed representations of SU (2) is forced
by the requirement of an n-dimensional subgroup. In a spinor representation of the conformal group, the Pa

and Ka (xµ and yµ submanifolds) are left- and right-handed, respectively. Details of this case are currently
under investigation.

It is important to note that although this symmetry G is restricted to be acted on by SO (p, q) the con-
nection gauge field, structure constants and field strength arise completely independently. The biconformal
gauging has the additional fields required for this further symmetry.

While a fiber bundle gives us a foliation, the converse is not always the case. The central requirment
to have a principal fiber bundle is the existence of a projection from the bundle to the base manifold. We
establish this by showing a second involution. Separating the co-solder equation into independent parts,

d(x)ca = αb
a ∧ cb +

1

2
Sacde

c ∧ e
d + S c

a dcc ∧ e
d − 1

2
c cd
a cc ∧ cd

d(y)ca + d(x)ha = αb
a ∧ hb + S c

a dhc ∧ e
d − c cd

a hc ∧ cd

d(y)ha = −1

2
c cd
a hc ∧ hd

we observe that the exterior yα-derivative of ca must be linear in dyα, and so linear in ha. We may therefore
write d(y)ca = C b

a hb ∧ e
a and solve for dha on the full biconformal space,

dha = d(x)ha + d(y)ha = αb
a ∧ hb + S c

a dhc ∧ e
d − c cd

a hc ∧ cd − C b
a hb ∧ e

a − 1

2
c cd
a hc ∧ hd

This shows that ha is in involution. Setting ha = 0 constitutes a projection to an n-dimensional submanifold
spanned by e

a.

41



7.1 Gauging G
We compare our usual gauging of G with the structures already present in the biconformal geometry.

Our usual gauging of a symmetry is to take the Cartan generalization of the Maurer-Cartan equation
for G, eq.(126). For this we replace the Maurer-Cartan connection ha with a general connection, leading to
the introduction of a field strength. Taking Aa to be the generalization of ha, the Maurer-Cartan equation
becomes the Cartan equation,

dAa = −1

2
c cd
a Ac ∧Ad + Fa (127)

where the field strength Fa is required to be horizontal and the equation integrable. Horizontality demands

Fa =
1

2
Facde

c ∧ e
d (128)

while integrability requires

0 ≡ d
2
Aa

= c cd
a Ac ∧ dAd + dFa

= −1

2
c

[ef
d c c]d

a Ac ∧Ae ∧Af + c cd
a Ac ∧ Fd + dFa

= D(G)Fa

since c
[ef

d c
c]d

a = 0 by the Jacobi identity for G.
Within the biconformal solution, we interpret the co-solder forms fa as these generalized potentials Aa

for the G-connection. The full structure equation for fa, however, is not exactly what we expect for a typical
gauging. Instead we have

dfa = ωb
a ∧ fb + fa ∧ ω +

1

2
Sacde

c ∧ e
d + S c

a dfc ∧ e
d − 1

2
c cd
a fc ∧ fd

The situation appears to be similar to what Kibble encountered in writing general relativity as a gauge theory
of the Poincaré group [2]. Kibble introduced Poincaré fibers over spacetime, then “soldered” the translational
gauge fields of the fiber symmetry to the cotangent basis of the bundle. This identification avoided double
counting the translations. With the quotient method, such identification is no longer needed since the
quotient of the Poincaré group by the Lorentz group automatically changes the translational symmetry into
the base manifold.

Here, we already have an SO (p, q) symmetry on the fibers and find that the base manifold has a similar,
but restricted symmetry. It is this latter, emergent symmetry we would like to use. The present situation
differs from the Poincaré case since it is the connection and not the frame field that is doubled, with ωd

a ∧ fd

and
(
− 1

2c
cd

a fc

)
∧ fd both acting on the same index of fd. We cannot simply solder the two together because

they produce covariance with respect to different symmetries. Moreover, we still need the original symmetry
to act on the remaining gauge fields in the usual way. There are a number of possible resolutions to the
difficulty. First, it might be possible to build the gauging of the co-solder form into the original quotient.
However, though closer examination may reveal a natural way to do this, it would seem to lose the appealing
feature of an emergent internal symmetry. A second approach is suggested by [22, 23, 44], in which an
initially SO (n) connection is written as a Lorentz connection plus additional terms, which then introduce
physical fields. If a similar technique is applied here, perhaps along with the transformation of [22], it is
possible that the restriction of the connection can occur directly.

A third approach is to keep both connections but keep careful track of which fields transform under which
symmetry. This actually causes no problem for additional fields we might wish to introduce, since these will
enter as representations of either the SO (p, q) transformations, the G transformations, or both, leaving no
ambiguity about their transformations. The only potential conflict arises with fa ⇔ fA itself. Thinking
of G as a subgroup of SO (p, q), we must wonder whether a full SO (p, q) transformation would introduce
sensible but distinct copies of the gauge potential. In the case of electroweak symmetry, we could construct
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a theory with SO (4) breaking to SU (2)× U (1) on the fibers while the full SO (4) is written following [22],
as a Lorentz connection plus additional scalar field and cosmological constant. It is not clear whether the
resulting weak fields would violate the causal structure of the Lorentz sector.

However, these conjectures will require–and are the subject of–further study.
For the present we content ourselves with the following. First, we satisfy the final field equation for the

cross-term of the co-torsion,
∆ar

sbS
b

c a = ∆ar
scS

b
a b

by the sufficient condition S b
c a = 0. The only remaining field equation is S ba

a = −c ba
a = 0, the

tracelessness of the structure constants. This leads to unit determinant for elements of G.
Having solved the field equations, we identify fa as the gauge field Aa, we modify the indices to make it

clear which gauge group applies. For fields that transform under SO (p, q), we retain the lower case Latin
indices, while for fields that transform under G we replace the relevant indices by upper case Latin. Both
sets range from 1 to n. The connection becomes a pair,

αa
b ⇒

(
αa

b 0
0 0

)

1

2
c cd
a fc ⇒

(
0 0
0 − 1

2c
CA

B fC

)

so in the new notation, αA
B = 0 and 1

2c
cd

a fc = 0.
The curvature and solder form equations are unchanged, but the co-torsion equation becomes

dfA = αB
A ∧ fB +

1

2
SAcde

c ∧ e
d − 1

2
c CA
B fC ∧ fD

or, since αB
A = 0,

1

2
SAcde

c ∧ e
d = dfA +

1

2
c CA
B fC ∧ fD (129)

This exactly reproduces the form of a Yang-Mills field, Eqs.(127) and (128).
Consistency of this restriction is now immediate because in the full set of structure equations,

dαa
b = αc

b ∧αa
c +

1

2
Ra

bcde
c ∧ e

d

de
a = e

b ∧αa
b

dfA +
1

2
c CD
A fC ∧ fD =

1

2
SAcde

c ∧ e
d

the internal symmetry G has fully decoupled from the spactime geometry.

7.1.1 Metric on the submanifolds in the nonabelian case

The nonabelian case still allows us to simply choose the spacetime metric as is done in general relativity
and was used in the generic case above. For the group submanifold, it is natural to choose the Killing form
of G if it is nondegenerate. While this assignment is certainly possible for semisimple G, the details depend
on the particular group and will be discussed elsewhere. As with the generic case, the considerations of
[41, 31, 22, 44, 32] may be relevant.

7.2 Remaining issues

While we have arrived at a satisfactory separation of a new internal symmetry, we still lack both the field
equation for SA and the contribution of this additional field to the Einstein equation. We consider three
possible resolutions:
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1. The absence of a source for gravity arising from G is not surprising given the restriction of the action to
linear curvature terms. Including up to quadratic curvature terms in the original action could provide
both field equation and gravitational coupling.

2. Allow nonvanishing cross-term to the torsion. This preserves the involution of the solder form and
avoids spacetime torsion. The cross-term gives extrinsic curvature to the embedding of the submanifolds
into the full biconformal space, and allows curvature of the group manifold as in [51]. The cross-term
of the torsion, driven by the internal symmetry, then enters the spacetime curvature quadratically and
might supply the required gravitational source.

3. The gravitational instanton has been shown to introduce both field equations and gravitational source
in the usual form [52, 53].

Leaving these considerations to further work, we make only the following observation. It would be natural
to introduce a quadratic term such as

´

T
a ∧ ∗

Sa into the action. With vanishing torsion, only the variation
δTa = Dδea yields nonvanishing contributions

δe

ˆ

T
a ∧ ∗

Sa =

ˆ

δea ∧D
∗
Sa + surface term+ terms proportional to torsion

This term leads to a divergence of Sa in the curvature equation, but it because of the presence of fa in
the volume form also gives terms quadratic in the components of Sa. However, with vanishing co-torsion
cross-term the quadratic terms added to the spacetime curvature field equations involve only products of the
spacetime and the momentum components,

δe2S ∼ n (n− 2)

12

(
SacdS

cd
b + SbcdS

cd
a + SabcS

cd
d + SabcS

cd
d

)

= −n (n− 2)

12

(
Sacdc

cd
b + Sbcdc

cd
a

)

and these are not in the form of energy momentum tensor. This suggests that a combination of this quadratic
term and nonvanishing cross-term for torsion may provide a solution.

8 Conclusions

We have shown how general relativity emerges from the torsion-free solutions to biconformal gravity. The
derivations involve field equation driven dimensional reduction and may therefore have relevance to dimen-
sional reduction of twistor string, or the reduction of Drinfeld doubles.

8.1 Results in biconformal gravity

We began with the conformal group Cp,q of a compactified space with (p, q)-signature metric in n = p+ q di-
mensions. The quotient of Cp,q by its homogeneous Weyl subgroup W gives a 2n-dimensional Kahler manifold
with local SO (p, q) and scale invariance. Generalizing this local structure leads to a curved geometry charac-
terized by SO (p, q) curvature, torsion, co-torsion and dilatational curvature corresponding to the generators
of the conformal group. Throughout, SO (p, q) may be replaced by Spin (p, q) when a spinor representation
is desired. This biconformal space admits a scale invariant action functional linear in the Cartan curvatures,
Eq.(1). Varying the action yields a gravity theory in 2n dimensions. All models with (n− 2)α− 2β nonzero
are considered. The special case when ((n− 2)α− 2β) = 0 may include non-integrable Weyl geometries
and, likely being unphysical, these are not considered in detail.

We established the following distinct results for this model.

1. Triviality with vanishing torsion and co-torsion. If, in addition to vanishing torsion, the co-
torsion (the field strength of special conformal transformations) is taken to vanish, the biconformal
space takes a trivial form, with the only nonvanishing components of the SO (p, q) and dilatational
curvatures being constant cross-terms.
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2. Foliation by a Lie subgroup. We prove that half of the biconformal space is foliated by an n-
dimensional Lie group G with structure constants lying in a representation of SO (p, q). This result
follows from the involution guaranteed by vanishing torsion, together with the field equations. When

α, β and γ are chosen such that χ = 1
n−1

(

1 + n2γ
(n−1)α−β

)

= −1, G may be non-abelian, otherwise it is

abelian.

3. Generic solution. The generic solution assumes only that 1 + χ is nonzero, together with vanishing
torsion, T

a = 0. The field equations reduce the only nontrivial dependence of all the remaining
curvatures – the SO(p, q) curvature, co-torsion, and dilatation – from 2n independent variables (xα, yβ)
down to n variables (xα) and reduce the number and form of the independent components. Explicitly,
the form and dependency of each curvature Ω

A ∈ {Ωa
b,Sa,Ω} begins as three distinct tensors

dependent on 2n coordinates,

Ω
A =

1

2
ΩA

cd (x
α, yβ) e

c ∧ e
d +ΩAc

d (x
α, yβ) fc ∧ e

d +
1

2
ΩAcd (xα, yβ) fc ∧ fd

and after application of the field equations, each is reduced as follows:

Ω
a

b =
1

2
Ca

bcd (x) e
c ∧ e

d + 2 (1 + χ)∆ac
cb fc ∧ e

d

Sa = − 1

1 + χ

(

D(x)
c Rad (x)−

1

2
(1 + χ) ybC

b
acd (x)

)

e
c ∧ e

d

Ω = χ e
c ∧ fc

where χ = 1
n−1

(

1 + n2γ
(n−1)α−β

)

. The resultant curvatures, 1
2C

b
acd (x) e

c ∧ e
d and Rab (x) are

the Weyl and Schouten parts of the Riemann curvature tensor computed from the connection
compatible with the n-dimensional solder form, ea (x). Each of the 2-forms

dω = (1 + χ) ec ∧ fc

Ω = χea ∧ ha = χdxα ∧ dyα

is closed and non-degenerate, hence symplectic on the full biconformal space.
The basis forms e

a, fb are given by

e
a = e a

α (x)dxα

fa = e α
a dyα −

(
1

1 + χ
Rab −D

(α,x)
b ya + (1 + χ)

(

yayb −
1

2
ηabη

cdycyd

))

e
b

= ha −
1

1 + χ
Ra

and the manifest involution of ha = e α
a dyα shows that setting yα = constant gives a Lagrangian

submanifold for spacetime. Conversely, setting xα = constant gives conjugate Lagrangian sub-
manifolds, each the leaf of a foliation by flat manifolds. The entire 2n-dimensional biconformal
spaces is therefore interpreted as the cotangent bundle of spacetime. The spin connection and
Weyl vector are given by

ωa
b = αa

b (x) + 2 (1 + χ)∆ac
dbyce

d

Wα = − (1 + χ) yα

where αa
b (x) is the metric compatible connection, dea = e

b∧αa
b (x). Here the orthonormal frame

field and spin connection pair (ea,αa
b) is equivalent to the metric and Christoffel connection pair,

(
gµν ,Γ

α
µν

)
.
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The sole remaining constraint on the system is the locally scale covariant Einstein equation
with source cab, Eq.(122):

0 = D(α,x) (Ra + (1 + χ) ca)−WbR
b
a −Wb2∆

bc
da (Rc + (1 + χ) cc) ∧ e

d

which has been shown in [39] to be the condition for the existence of a conformal transformation
to the sourced Einstein equation when the source ca = cabe

b is written as

cab = − 1

n− 2

1

1 + χ

(

Tab −
1

n− 1
ηabT

)

We showed from the properties of cab that Tab is symmetric and divergence free, and in the
Riemannian gauge (in which the Weyl vector vanishes),

Rab −
1

2
ηabR = Tab

We conclude that the generic case describes the locally scale covariant n-dimensional Einstein
equation sourced by a symmetric, divergence free tensor and formulated on the co-tangent bundle
of spacetime. The reduction to n-dimensions is accomplished using only the field equations with
vanishing torsion.

4. The non-abelian cases. When α, β and γ are chosen such that χ = 1
n−1

(

1 + n2γ
(n−1)α−β

)

= −1,

G may be non-abelian, and there are substantial differences in the Cartan structure equations.
For these cases, we again showed the reduction to dependence on the spacetime solder form,
e
a (x) , but now the final forms of the curvature and dilatation are

Ω
a
b =

1

2
Ca

bcd (α) e
c ∧ e

d + 2∆ac
dbfc ∧ e

d

Ω = e
a ∧ fa

The curvature is subject to the scale-covariant vacuum Einstein equation,

Rec +D(x)
c φe + φeφc −

1

2
ηecφ

dφd = 0

For the co-torsion, Lorentz transformations are suppressed while the appearance of the G-connection
is automatic. This leads to the co-solder form becoming the G gauge field and the spacetime co-
torsion becoming the usual Yang-Mills field strength,

1

2
SAcde

c ∧ e
d = D(W )fA +

1

2
c CD
A fC ∧ fD

where D(W )fA = dfA − fA ∧ ω is the dilatation-covariant derivative. The biconformal space
becomes a principal G-bundle over spacetime.

Effectively, the total principal bundle has homogeneous Weyl and G symmetry, W ×G. This
is not what occurs if the original quotient is of the conformal group by inhomogeneous Weyl,
C(p,q)/IW , which essentially gives Poincaré fibers over spacetime [43, 17]. The emergence of
non-abelian symmetry from the degrees of freedom of the special conformal gauge fields of the
conformal group is a new result. In 4-dimensions, with SO (p, q) = SO (4), the maximal G is the
electroweak symmetry with necessary parity violation.

8.2 A note on the metric and signature change

To formulate general relativity as a gauge theory using the Cartan techniques, we take the quotient of the
Poincaré group by the Lorentz group. The only guidance as to the metric is the presence of the Lorentzian
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connection, which will leave the usual orthonormal metric, ηab = diag (−1, 1, 1, 1) invariant. We then
introduce the metric by hand using the orthonormal frame field, gαβ = e a

α e b
β ηab. The situation is different

in biconformal space, where there are natural metric structures present. Of course, there is the SO (p, q)
connection, making it possible to introduce a (p, q) signature metric by hand, just as we do in general
relativity. However, the Killing form of the conformal group has a non-degenerate restriction to biconformal
space, and we may use this instead. The resulting metric on spacetime depends not only on the original
signature, but also on what submanifold is taken as spacetime.

Using the restricted Killing form, the metric is

KAB =

(
0 δab
δba 0

)

and the restriction to the e
a or fb subspaces has vanishing restriction. It is shown in [31], however, that

if we seek orthogonal Lagrangian submanifolds on which the Killing metric is non-degenerate, there are
limited possibilities, with initial spaces of signature (n, 0) ,

(
n
2 ,

n
2

)
or (0, n) being the only consistent starting

points, and the two Euclidean cases leading uniquely to Lorentzian signature, (n− 1, 1) or (1, n− 1). This
development of a time direction from an initially Euclidean space is appealing.

There are other possibilities. If we drop the orthogonality requirement from the theorem of [31], it becomes
possible to have different signature on the two Lagrangian submanifolds. This too has its advantages, as
we might arrange for Lorentzian signature on one submanifold and Euclidean on the other, enabling an
additional compact internal symmetry.

Some of these avenues have been explored. The Euclidean starting point leading to Lorentzian signature
on both Lagrangian submanifolds is studied in [22], in which all the results are seen to depend only on
structures inherent in the conformal group. In [32] connections of both types are introduced, and some
possibilities are explored in [45]. Work is currently underway to examine a 4 + 4 dimensional model with
mixed signatures, to take advantage of the potential graviweak theory.

There is still another metric possibility, because the metric compatible with the Kähler structure is
different, having signature (2p, 2q) while the the Killing metric has signature (n, n).

For the present results, it seems best to simply impose the metric we choose. If we let the original
SO (p, q) be Lorentzian, SO (n− 1, 1) then the natural choice for spacetime is Lorentzian (but see [22]).

8.3 Discussion

Biconformal spaces with appropriate signature give rise to general relativity, generically formulated on the
cotangent bundle of spacetime. In a subclass of cases there may be an additional non-abelian internal
symmetry. While this internal symmetry ultimately arises from the special conformal transformations, no
previous gauging of the conformal group has shown the direct possibility of a non-abelian symmetry. This
opens the possibility of a graviweak unification, which, while still requiring additional structure for the
strong force, holds out the hope of a deeper understanding of parity violation and the breaking of a left-right
symmetric SU (2)× SU (2) model. This possibility is under current investigation.

As described in the introduction, these gravity models may provide new insights into string theory. The
existence of a conformal route to general relativity, as opposed to fourth-order Weyl gravity, allows for the
consistent use of twistor string models. In addition, the doubled dimension makes possible a compactifi-
cation from 10-dimensionsal superstring theory to an 8-dimensional biconformal space with an immediate
interpretation as 4-dimensional general relativity. In this way, the myriad 6-dimensional compact spaces are
avoided, to be replaced by compactification of only 2-dimensions and possibly uniquely to a torus if other
structures are to be maintained.

Finally, this reduction of the biconformal gauging shares many features with Drinfeld doubles. The match
between the Killing form and the symmetric form of the Drinfeld product may suggest systematic ways of
reducing the doubles to their half-dimension.
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Appendix A: Compactification of spacetimes

Consider a flat space S of signature (p, q), i.e., with indefinite metric

ηab = diag




1, . . . , 1
︸ ︷︷ ︸

p

,−1, . . . ,−1
︸ ︷︷ ︸

q






This space is noncompact due to curves heading off to infinite distance. We complete the space by appending
an inverse to every vector from the origin.

Let N be the set of null vectors from the origin, N =
{
xα|xβxβ = 0, xα ∈ V

}
, and CN its complement,

CN =
{
xα|xβxβ 6= 0, xα ∈ V

}
.

For all points in CN , we consider the set,

W0 =

{

wα|wα = − xα

|x|2

}

where |x|2 = ηαβx
αxβ . Notice that W0 contains no null vectors since this would require |x|2 = 0. Inverting

the transformation we have

xα = − wα

|w|2
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so we see the mapping between xα and wα is a bijection.
We extend W0 by taking the union with a new set Ŵ of points ŵα satisfying

Ŵ =
{
wα| ηαβŵαŵβ = 0

}

Clearly Ŵ ∩W0 = φ. We suggest that
W ≡ Ŵ ∪W0

provides a compactification of the space.
If the signature is Euclidean, (p, q) = (n, 0), then N consists of the origin alone, and Ŵ is the 1-point

compactification of Rn.
More generally, a detailed proof of compactness must rely on the specification of a topology on indefinite

spaces. For general spacetimes this relies on introducing ideal points [46, 47, 48]. While such methods should
meet no obstruction in the flat, nonsingular spaces considered here, the definition of the conformal group
requires only the existence of inverses. This much has already been accomplished with the definition of W .
We therefore content ourselves by defining a suitable extension and indicating compactness by studying the
resulting extensions of spacetime curves.

First, consider a straight line that runs off to infinity in spacetime at half the speed of light,

C (λ) =
{

xα =

(

λ,
λ

2
, 0, 0

)}

This curve starts at the origin and reaches no endpoint in the original space, but in the compactification we
may continue the curve to some finite value of λ = λ0 then change to wα coordinates,

C (λ0) =

{

xα =

(

λ0,
λ0

2
, 0, 0

)}

=

{

wα =
4

3

(
1

λ0
,

1

2λ0
, 0, 0

)}

Define a new parameter, ξ = 1
λ

and continue the curve

C (ξ) =

{

wα =
4

3

(

ξ,
1

2
ξ, 0, 0

)}

We continue the curve through wα (0) and continue ξ to negative values. At some finite value, ξ = −ξ0 < 0,
we are at the point

wα = −4

3

(

ξ0,
1

2
ξ0, 0, 0

)

corresponding to

xα = −
(

1
(
16
9

) (
−ξ20 + 1

4ξ
2
0

)

)

− 4

3

(

ξ0,
1

2
ξ0, 0, 0

)

= −4

3

(
1

4
3ξ

2
0

)(

ξ0,
1

2
ξ0, 0, 0

)

= −
(

1

ξ0
,
1

2

1

ξ0
, 0, 0

)

This is a point in the past light cone. Letting λ′ = 1
ξ
, we continue the path back to the origin as

xα = −
(

λ′,
1

2
λ′, 0, 0

)

and the curve is closed.
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As an example of a curve reaching null infinity (hence some nonzero null vector |w|2 = 0), consider the
accelerating curve

C (λ) = {xα = (a coshλ, a sinhλ, 0, 0)}
with timelike norm

|x|2 = −a2

For this we choose a new parameter,
σ = tan−1 (sinhλ)

which approaches π
2 as λ → ∞. The curve takes the form

xα = a
(√

1 + tan2 σ, tanσ, 0, 0
)

At a value σ = π
2 we now have a null vector. We need to reparameterize the curve before this happens, so

set

wα =
a

tanσ

(√

1 + tan2 σ, tanσ, 0, 0
)

Now as σ approaches π
2 , wα is given by

wα (σ) = a

(√

1

tan2 σ
+ 1, 1, 0, 0

)

→ a (1, 1, 0, 0)

Let the parameterization of the curve in wα coordinates be ξ = 1
tanσ

so that

wα (ξ) = a
(√

1 + ξ2, 1, 0, 0
)

As ξ → 0 this approaches a null vector, wα = (a, a, 0, 0), so we may now identify the limit σ → ∞ with the
null vector wα = (a, a, 0, 0). This vector is in the space, and we may again continue the curve to negative ξ.

Appendix B: Variation of the spin connection

Here we give details of the variation of the spin connection, since some of the steps are novel. Because many
of the expressions are long, we introduce some notational conventions to make expressions more compact and
transparent. Specifically, since all differential forms are rendered in boldface, there is no loss of information
if we assume wedge products between all adjacent forms, dropping the explicit wedge. We further define a
multi-index form,

ωc···d ≡ ωcωc1 . . .ωd ≡ ωc ∧ ωc1 ∧ . . . ∧ ωd

for any number of basis 1-forms ωc. It is always possible to deduce the correct number of indices from the
Levi-Civita tensor.

The spin connection occurs only in the SO (p, q) curvature, Ωa
b, so the spin connection variation affects

only the α term of the action,

δωa
b
S = δωa

b

ˆ

(αΩa
b + βδabΩ+ γeafb) e

e···f
fc···de

bc···d
ae···f

= α

ˆ

δωa
b

(
dωa

b − ωc
bω

a
c − 2∆ad

cb fde
c
)
e
e···f

fc···de
bc···d

ae···f

= α

ˆ

(dδωa
b − δωc

bω
a
c − ωc

bδω
a
c) e

e···f
fc···de

bc···d
ae···f

= α

ˆ

D (δωa
b) e

e···f
fc···de

bc···d
ae···f
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Integrating the covariant derivative by parts and discarding the surface term,

0 = α

ˆ

δωa
bD
(
e
e···f

fc···de
bc···d

ae···f

)

= α

ˆ

δωa
b

(

T
e
e
e1···f fcc1···de

bcc1···d
aee1···f

+ (−1)
n−1

e
ee1···fScfc1···de

bcc1···d
aee1···f

)

= α

ˆ

(δAa
bce

c + δBa c
b fc)

(

T
e
e
e1···f fcc1···de

bcc1···d
aee1···f

+ (−1)
n−1

Sce
ee1···f fc1···de

bcc1···d
aee1···f

)

The covariant derivatives of the basis forms divide naturally into two tensors, the torsion, Ta = De
a and

the co-torsion, Sa = Dfa. We show below that if both of these vanish, the solution must be trivial (i.e.,
non-gravitating) so it is important to realize when considering torsion-free solutions that the co-torsion Sa

remains non-zero.
The variation must preserve the antisymmetry, ηbcηadωc

d = −ωa
b, of the spin connection, so , δωa

b∆
ar
sb =

δωr
s,. Therefore, the coefficients of the variation, δAa

bc and δBa c
b , are antisymmetric on the first pair of

indices. As a result, only the antisymmetric part of the rest of the integrand vanishes, so we require the
projection operator, ∆ac

db ≡ 1
2 (δ

a
dδ

c
b − ηacηbd) =

1
2η

anηmd (δ
m
n δcb − δcnδ

m
b ) with ∆ar

sb∆
sm
nr = ∆am

nb . This acts to

antisymmetrize

(
1
1

)

tensors, ∆ac
dbT

d
c =

1
2η

an (Tnb − Tbn).

With δAa
bc and δBa c

b independent we find two equations,

0 = α∆ar
sb e

m
(

T
e
e
e1···f fcc1···de

bcc1···d
aee1···f

+ (−1)
n−1

e
ee1···fScfc1···de

bcc1···d
aee1···f

)

0 = α∆ar
sb fm

(

T
e
e
e1···f fcc1···de

bcc1···d
aee1···f

+ (−1)n−1
e
ee1···fScfc1···de

bcc1···d
aee1···f

)

Next, we substitute the expansion of the torsion Eq.(20) and use Eq.(13) to write the co-torsion, finding the
one term of each which completes the volume form. Rearranging the basis forms in standard order, we use
the volume form replacement of eq.(22):

0 = α∆ar
sb

(

T
e
e
me1···f fcc1···de

bcc1···d
aee1···f

+ (−1)
n−1

e
mee1···fScfc1···de

bcc1···d
aee1···f

)

= α∆ar
sb

(

T eu
vfue

v
e
me1···f fcc1···de

bcc1···d
aee1···f

+ (−1)n−1 1

2
S uv
c fufve

mee1···f fc1···de
bcc1···d

aee1···f

)

= α∆ar
sb

(

(−1)
n
T eu

ve
vme1···f fucc1···de

bcc1···d
aee1···f

+ (−1)
n−1 1

2
S uv
c e

mee1···f fuvc1···de
bcc1···d

aee1···f

)

= α∆ar
sb

(

(−1)
n
T eu

ve
vme1···f

ucc1···d
ebcc1···daee1···f + (−1)

n−1 1

2
S uv
c emee1···f

uvc1···d
ebcc1···daee1···f

)

Φ

Then, taking the dual to eliminate the forms and replacing the resulting double Levi-Civita tensor using
eq.(19) we arrive at the final field equation.

0 = α∆ar
sb

(

T eu
ve

vme1···f
ucc1···d

ebcc1···daee1···f − 1

2
S uv
c emee1···f

uvc1···d
ebcc1···daee1···f

)

= (n− 2)! (n− 1)!α∆ar
sb

(

T eu
v (δ

v
aδ

m
e − δma δve ) δ

b
u − 1

2
S uv
c δma

(
δbuδ

c
v − δbvδ

c
u

)
)

= (n− 2)! (n− 1)!α∆ar
sb

(
Tmb

a − δma T eb
e − δma S bc

c

)

so that
0 = α∆ar

sb

(
T cb

a − δcaT
eb

e − δcaS
be

e

)
(130)
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For the second equation, the same steps yield,

0 = α∆ar
sb

(

(−1)
n
T

e
e
e1···f fmcc1···de

bcc1···d
aee1···f

+ e
ee1···fScfmc1···de

bcc1···d
aee1···f

)

= α∆ar
sb

(

(−1)n
1

2
T e

uve
uve1···f fmcc1···de

bcc1···d
aee1···f

+ S u
c vfue

v
e
ee1···f fmc1···de

bcc1···d
aee1···f

)

= α∆ar
sb

(

(−1)
n 1

2
T e

uve
uve1···f fmcc1···de

bcc1···d
aee1···f

+ (−1)
n
S u
c ve

vee1···f fumc1···de
bcc1···d

aee1···f

)

= (−1)
n
α∆ar

sb

(
1

2
T e

uve
uve1···f

mcc1···d
ebcc1···daee1···f + S u

c ve
vee1···f

umc1···d
ebcc1···daee1···f

)

Φ

Then

0 = α∆ar
sb

(
1

2
T e

uve
uve1···f

mcc1···d
ebcc1···daee1···f + S u

c ve
vee1···f

umc1···d
ebcc1···daee1···f

)

= (n− 2)! (n− 1)!α∆ar
sb

(
1

2
T e

uvδ
b
m (δuaδ

v
e − δvaδ

u
e ) + S u

c vδ
v
a

(
δbuδ

c
m − δbuδ

c
m

)
)

= (n− 2)! (n− 1)!α∆ar
sb

(
T e

aeδ
b
m + S b

m a − δbmS u
u a

)

so finally,
α∆ar

sb

(
δbcT

e
ae + S b

c a − δbcS
e

e a

)
= 0 (131)

Appendix C: The curvature Bianchi identity

Here we give details of the development of the curvature Bianchi identity leading from Eq.(77) to Eq.(90).
When we combine the solution for Ω

a
b with the spacetime part of the curvature Bianchi identity, we

have Eq.(77),

D
(ω,x)
[e Ωa

|b|cd] + 2 (1 + χ)∆af

[e|bSf |cd] = 0

D(ω,x)
e Ca

bcd +D(ω,x)
c Ca

bde +D
(ω,x)
d Ca

bec = −2 (1 + χ)
(

∆af
eb Sfcd +∆af

cb Sfde +∆af
dbSfec

)

With 1
2Ω

a
bcde

c ∧ e
d = 1

2C
a
bcde

c ∧ e
d = C

a
b, the covariant exterior derivative of the Weyl curvature is

D(ω,x)

(
1

2
Ca

bcde
c ∧ e

d

)

≡ d(x)

(
1

2
Ca

bcde
c ∧ e

d

)

+

(
1

2
Cc

befe
e ∧ e

f

)

∧ ωa
c −

(
1

2
Ca

cefe
e ∧ e

f

)

∧ ωc
b

= D(α,x)

(
1

2
Ca

bcde
c ∧ e

d

)

+

(
1

2
Cc

befe
e ∧ e

f

)

∧ (αa
c + β

a
c)−

(
1

2
Ca

cefe
e ∧ e

f

)

∧ (αc
b + β

c
b)

= D(α,x)C
a
b +C

a
b ∧ βa

c −C
a
c ∧ βc

b

But C
a
b is the usual traceless part of the Riemann curvature, which satisfies

0 ≡ D(α,x)R
a
b

= D(α,x)C
a
b − 2∆ae

dbD(α,x)Ree
d

Restoring the basis, the Bianchi identity is

0 = D(ω,x)C
a
b + 2 (1 + χ)∆ad

cbS
(ee)
d ∧ e

c

= D(α,x)C
a
b +C

c
b ∧ βa

c −C
a
c ∧ βc

b + 2 (1 + χ)∆ad
cbS

(ee)
d ∧ e

c

= 2∆ae
dbD(α,x)Ree

d +C
c
b ∧
(
−2∆ae

dcWee
d
)
−C

a
c ∧
(
−2∆ce

dbWee
d
)
+ 2 (1 + χ)∆ad

cbS
(ee)
d ∧ e

c

= 2∆ae
dbD(α,x)Ree

d − 2∆ae
dcC

c
b ∧Wee

d + 2∆ce
dbC

a
c ∧Wee

d + 2 (1 + χ)∆ae
dbS

(ee)
e ∧ e

d

= 2∆ge
df

(

δfb δ
a
gD(α,x)Re − δagWeC

f
b + δcgδ

f
bWeC

a
c + (1 + χ) δagδ

f
b S

(ee)
e

)

∧ e
d
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Now expand ∆ projections and carry out the simplifications

0 = 2∆ae
dbD(α,x)Ree

d − 2∆ae
dcC

c
b ∧Wee

d + 2∆ce
dbC

a
c ∧Wee

d + 2 (1 + χ)∆ae
dbS

(ee)
e ∧ e

d

= (δadδ
e
b − ηaeηbd)D(α,x)Ree

d − (δadδ
e
c − ηaeηcd)C

c
b ∧Wee

d + (δcdδ
e
b − ηceηbd)C

a
c ∧Wee

d + (1 + χ) (δadδ
e
b − ηaeηbd)S

(ee)
e ∧ e

d

= D(α,x)Rb ∧ e
a − ηbdD(α,x)R

a ∧ e
d −WeC

e
b ∧ e

a + ηaeW a
Cdb ∧ e

d

+WbC
a
c ∧ e

c + ηcaηbdWeC
e
c ∧ e

d + 2 (1 + χ)S
(ee)
b ∧ e

a − (1 + χ) ηaeηbdS
(ee)
e ∧ e

d

=
(

D(α,x)Rb −WeC
e
b + 2 (1 + χ)S

(ee)
b

)

∧ e
a − ηbdη

ac
(

D(α,x)Rc −WeC
e
c + (1 + χ)S(ee)

c

)

∧ e
d

= δadδ
c
b

(

D(α,x)Rc −WeC
e
c + 2 (1 + χ)S(ee)

c

)

∧ e
d − ηbdη

ac
(

D(α,x)Rc −WeC
e
c + (1 + χ)S(ee)

c

)

∧ e
d

since the first Bianchi gives Cdb ∧ e
d = 0. Then we have

0 = ∆ac
db

(

D(α,x)Rc −WeC
e
c + 2 (1 + χ)S(ee)

c

)

∧ e
d (132)

Resolving the projection

We now show that we can eliminate the ∆-projection and the wedge product with the solder form e
d.

Extracting the basis forms, we antisymmetrize,

0 = ∆ac
db

(

D
(α,x)
f Rcg −

1

2
WeC

e
cfg + (1 + χ)S

(ee)
cfg

)

e
f ∧ e

g ∧ e
d

0 = ∆ac
db

(

D
(α,x)
f Rcg −WeC

e
cfg + 2 (1 + χ)S

(ee)
cfg

)

+∆ac
fb

(

D(α,x)
g Rcd −WeC

e
cgd + 2 (1 + χ)S

(ee)
cgd

)

+∆ac
gb

(

D
(α,x)
d Rcf −WeC

e
cdf + 2 (1 + χ)S

(ee)
cdf

)

−∆ac
dbD

(α,x)
g Rcf −∆ac

fbD
(α,x)
d Rcg −∆ac

gbD
(α,x)
f Rcd

Now, contract ad,

0 = (n− 1)
(

D
(α,x)
f Rbg −WeC

e
bfg + 2 (1 + χ)S

(ee)
bfg

)

+ 2∆ac
fb

(

D(α,x)
g Rca −WeC

e
cga + 2 (1 + χ)S(ee)

cga

)

+2∆ac
gb

(

D(α,x)
a Rcf −WeC

e
caf + 2 (1 + χ)S

(ee)
caf

)

− (n− 1)D(α,x)
g Rbf − 2∆ac

fbD
(α,x)
a Rcg − 2∆ac

gbD
(α,x)
f Rca

= (n− 1)D
(α,x)
f Rbg − (n− 1)WeC

e
bfg + 2 (n− 1) (1 + χ)S

(ee)
bfg

+
(

D(α,x)
g Rbf −WeC

e
bgf + 2 (1 + χ)S

(ee)
bgf

)

− ηacηbfD
(α,x)
g Rca − 2 (1 + χ) ηacηbfS

(ee)
cga

+D(α,x)
g Rbf −WeC

e
bgf + 2 (1 + χ)S

(ee)
bgf − ηacηbgD

(α,x)
a Rcf − 2 (1 + χ) ηacηbgS

(ee)
caf

− (n− 1)D(α,x)
g Rbf −D

(α,x)
f Rbg + ηbfη

acD(α,x)
a Rcg −D

(α,x)
f Rbg + ηacηbgD

(α,x)
f Rca

= − (n− 3)WeC
e
bfg + 2 (1 + χ)

(

(n− 3)S
(ee)
bfg − ηbfη

acS(ee)
cga + ηbgη

acS
(ee)
cfa

)

+(n− 3)D
(α,x)
f Rbg − (n− 3)D(α,x)

g Rbf + ηbfη
acD(α,x)

a Rcg − ηbgη
acD(α,x)

a Rcf + ηbgD
(α,x)
f R− ηbfD

(α,x)
g R

Write this as

(n− 3)
(

D(α,x)
g Rbf −D

(α,x)
f Rbg +WeC

e
bfg

)

= 2 (1 + χ)
(

(n− 3)S
(ee)
bfg − ηbfη

acS(ee)
cga + ηbgη

acS
(ee)
cfa

)

+ηbfη
acD(α,x)

a Rcg − ηbgη
acD(α,x)

a Rcf + ηbgD
(α,x)
f R− ηbfD

(α,x)
g R
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If we trace bg,

(n− 3) ηbg
(

D(α,x)
g Rbf −D

(α,x)
f Rbg

)

= 2 (1 + χ)
(

(n− 3) ηbgS
(ee)
bfg − ηacS

(ee)
cfa + nηacS

(ee)
cfa

)

+ηacD(α,x)
a Rcf − nηacD(α,x)

a Rcf + nD
(α,x)
f R−D

(α,x)
f R

4 (1 + χ) (n− 2) ηbgS
(ee)
bfg = 2 (n− 2) ηacD(α,x)

a Rcf − 2 (n− 2)D
(α,x)
f R

2 (1 + χ) ηbgS
(ee)
bfg = ηacD(α,x)

a Rcf −D
(α,x)
f R

Substituting back into the original,

(n− 3)
(

D(α,x)
g Rbf −D

(α,x)
f Rbg +WeC

e
bfg

)

= 2 (1 + χ)
(

(n− 3)S
(ee)
bfg − ηbfη

acS(ee)
cga + ηbgη

acS
(ee)
cfa

)

−ηbg

(

ηacD(α,x)
a Rcf −D

(α,x)
f R

)

+ ηbf

(

ηacD(α,x)
a Rcg −D(α,x)

g R
)

= 2 (1 + χ)
(

(n− 3)S
(ee)
bfg − ηbfη

acS(ee)
cga + ηbgη

acS
(ee)
cfa

)

−ηbg2 (1 + χ) ηbgS
(ee)
bfg + ηbf2 (1 + χ) ηbcS

(ee)
bgc

= 2 (1 + χ) (n− 3)S
(ee)
bfg

Therefore, in dimensions greater than 3,

2 (1 + χ)S
(ee)
bfg = D(α,x)

g Rbf −D
(α,x)
f Rbg +WeC

e
bfg

Restoring two basis forms, we may write this as Eq.(90),

D
(α,x)

Rb −WeC
e
b + 2 (1 + χ)S

(ee)
b = 0

which solves the full Bianchi relation, Eq.(132) as desired. We note that this proves:

Theorem: In any torsion-free biconformal space with integrable Weyl vector, Wα = ∂αφ, and 1 + χ 6= 0,
the spacetime co-torsion is the obstruction to conformal Ricci flatness.
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