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Poincaré gauge gravity: An overview

Yuri N. Obukhov∗

Russian Academy of Sciences, Nuclear Safety Institute,

B.Tulskaya 52, 115191 Moscow, Russia

Abstract

We review the basics and the current status of the Poincaré gauge theory of gravity. The general

dynamical scheme of Poincaré gauge gravity (PG) is formulated, and its physical consequences

are outlined. In particular, we discuss exact solutions with and without torsion, highlight the

cosmological aspects, and consider the probing of the spacetime geometry.
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I. INTRODUCTION: GAUGE SYMMETRIES, CURRENTS, AND FIELDS

The gauge approach in field theory has a long history, going back to the early works

of Weyl [61], Cartan [7], Fock [16], and later contributions by Utiyama [60], Sciama [52],

and Kibble [28]. The detailed review of the development of gauge gravity can be found in

[4, 19, 26, 39, 55, 58, 59], and especially complete and informative is the recent book [5].

Here we give a brief overview of the subject, presenting the basic notions and mathematical

structures and highlighting the physical consequences of the gauge theory of gravity based

on the Poincaré symmetry group G=T4⋊SO(1, 3).

It is a nontrivial problem to extend the Yang-Mills [63] approach of internal symme-

try groups to those of spacetime symmetries. Without going into technical details, one

can sketch the gauge-theoretic scheme as follows: The invariance of the action under an

N -parameter group of field transformations yields, via the Noether theorem, N conserved

currents. When the parameters are allowed to be functions of spacetime coordinates, one

needs to introduce N gauge fields, which are coupled to the Noether currents, to preserve

the invariance under the local (gauge) symmetry. In accordance with the general Yang-

Mills-Utiyama-Kibble scheme, the 10-parameter Poincaré group gives rise to the 10-plet of

the gauge potentials which are identified with the coframe ϑα = eαi dx
a (4 potentials corre-

sponding to the translation subgroup T4) and the local connection Γαβ = −Γβα = Γi
αβdxi

(6 potentials for the Lorentz subgroup SO(1, 3)). The “translational” and “rotational” field

strengths then read

T α = Dϑα = dϑα + Γβ
α ∧ ϑβ , (1)

Rαβ = dΓαβ + Γγ
β ∧ Γαγ . (2)

They are interpreted as the torsion and the curvature 2-forms, thus naturally introducing

the Riemann-Cartan geometry [22] on the spacetime manifold.

These gravitational gauge fields are coupled to the Noether currents of the Poincaré

group: the energy-momentum Tα and the spin Sαβ = −Sβα. In a similar way, one can

view Einstein’s general relativity (GR) as the gauge theory based on the translation group

T4 with the coframe ϑα as the gauge potential coupled to the energy-momentum Tα as the

physical source of gravity [9].

Our basic notation and conventions are as follows: Greek indices α, β, . . . = 0, . . . , 3,

denote the anholonomic components (for example, of a coframe ϑα), while the Latin indices
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i, j, . . . = 0, . . . , 3, label the holonomic components (dxi, e.g.). From the volume 4-form η,

the η-basis is constructed with the help of the interior products as ηα1...αp
:= eαp

⌋ . . . eα1
⌋η,

p = 1, . . . , 4. These forms are related to the θ-basis via the Hodge dual operator ∗, for ex-

ample, ηα = ∗ϑα and ηαβ = ∗ (ϑα ∧ ϑβ). The Minkowski metric gαβ = diag(+1,−1,−1,−1)

is used to lower and raise anholonomic indices: e.g., eα = gαβeβ. We do not use the natural

units, and all the fundamental constants appear explicitly. In particular, the velocity of

light c factor is needed in many key formulas for dimensional reasons.

Only a limited number of references is given here; for a more complete bibliography on

the Poincaré gauge gravity see the recent book [45].

A. Dynamical currents

Let the matter field ψA be a tensor-valued p-form. Its tensor structure is encoded in the

multi-index A, and dynamics is described by a general Lagrangian 4-form

L = L(ϑα , dϑα ,Γαβ , dΓαβ , ψA, dψA) = L(ψA, DψA, ϑα, T α, Rαβ) . (3)

The covariant derivative is defined by DψA = dψA − 1
2
Γαβ ∧ (ρAB)αβψ

B with the Lorentz

generators (ρAB)αβ = − (ρAB)βα.

The matter currents are given by

Tα := −
δL

δϑα
= −

∂L

∂ϑα
−D

∂L

∂T α
, (4)

cSαβ := − 2
δL

δΓαβ
= (ρAB)αβψ

B ∧
∂L

∂DψA
− 2ϑ[α ∧

∂L

∂T β]
− 2D

∂L

∂Rαβ
. (5)

B. Conservation laws

1. Diffeomorphism symmetry

The invariance of L under the local diffeomorphisms on the spacetime manifold yields

the first Noether identity

DTα ≡ (eα⌋T
β) ∧ Tβ +

1

2
(eα⌋R

βγ) ∧ cSβγ + Wα, (6)

where the generalized force is Wα := − (eα⌋Dψ
A) ∧ δL

δψA − (−1)p(eα⌋ψ
A) ∧ D δL

δψA , with

δL
δψA = ∂L

∂ψA − (−1)pD ∂L
∂(DψA)

. As another consequence of the translational invariance one
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finds the explicit form of the canonical energy–momentum current:

Tα = (eα⌋Dψ
A) ∧

∂L

∂DψA
+ (eα⌋ψ

A) ∧
∂L

∂ψA
− eα⌋L

−D
∂L

∂T α
+ (eα⌋T

β) ∧
∂L

∂T β
+ (eα⌋R

βγ) ∧
∂L

∂Rβγ
. (7)

2. Local Lorentz symmetry

When the Lagrangian L is invariant under the local Lorentz transformations

δϑα = εβ
α ϑβ , δΓαβ = −Dεαβ , δψA = −

1

2
εαβ (ρAB)αβ ψ

B, (8)

with εαβ = − εβα, we find the second Noether identity

cDSαβ + ϑα ∧ Tβ − ϑβ ∧ Tα ≡Wαβ . (9)

The generalized torque is defined as Wαβ := − (ρAB)αβψ
B ∧ δL

δψA .

3. Gravitational Lagrangian and Noether identities

The gravitational Lagrangian 4-form

V = V (ϑα, T α, Rαβ) (10)

is assumed to be an arbitrary function of the geometrical variables.

We introduce the gauge field momenta (“excitations”) 2-forms

Hα := c
∂V

∂T α
, Hαβ := 2

∂V

∂Rαβ
, (11)

the canonical energy–momentum and spin 3-forms for the Poincaré gauge fields

Eα := − c
∂V

∂ϑα
, Eαβ := − 2

∂V

∂Γαβ
= −

2

c
ϑ[α ∧Hβ] , (12)

and find the variational derivatives with respect to the gravitational field potentials

Eα :=
δV

δϑα
=

1

c
(DHα −Eα) , (13)

Cαβ :=
δV

δΓαβ
=

1

2
(DHαβ − Eαβ) . (14)
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Diffeomorphism invariance yields the Noether identities

Eα ≡ − c eα⌋V + (eα⌋T
β) ∧Hβ +

c

2
(eα⌋R

βγ) ∧Hβγ, (15)

D Eα ≡ (eα⌋T
β) ∧ Eβ + (eα⌋R

βγ) ∧ Cβγ , (16)

whereas the local Lorentz invariance results in the Noether identity

2DCαβ + ϑα ∧ Eβ − ϑβ ∧ Eα ≡ 0 . (17)

II. MATHEMATICAL INTERLUDE: IRREDUCIBLE DECOMPOSITIONS

A. Torsion decomposition

The torsion 2-form can be decomposed into the three irreducible pieces, T α = (1)T α +

(2)T α + (3)T α, where

(2)T α =
1

3
ϑα ∧ T, (3)T α =

1

3
eα⌋∗T , (18)

(1)T α = T α − (2)T α − (3)T α. (19)

Here the 1-forms of the torsion trace and axial trace are introduced:

T := eν⌋T
ν , T := ∗(T ν ∧ ϑν). (20)

For the irreducible pieces of the dual torsion ∗T α = (1)(∗T α)+ (2)(∗T α)+ (3)(∗T α), we have

the properties

(1)(∗T α) = ∗((1)T α), (2)(∗T α) = ∗((3)T α), (3)(∗T α) = ∗((2)T α). (21)

B. Curvature decomposition

The Riemann-Cartan curvature 2-form is decomposed Rαβ =
∑6

I=1
(I)Rαβ into the 6

irreducible parts

(2)Rαβ = − ∗(ϑ[α ∧Ψβ]), (4)Rαβ = −ϑ[α ∧Ψβ], (22)

(3)Rαβ = − 1
12
X ∗(ϑα ∧ ϑβ), (6)Rαβ = − 1

12
X ϑα ∧ ϑβ , (23)

(5)Rαβ = − 1
2
ϑ[α ∧ eβ]⌋(ϑγ ∧Xγ), (24)

(1)Rαβ = Rαβ −
∑6

I=1
(I)Rαβ , (25)
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where

Xα := eβ⌋R
αβ , X := eα⌋X

α, X
α
:= ∗(Rβα ∧ ϑβ), X := eα⌋X

α
, (26)

and

Ψα := Xα −
1
4
ϑαX − 1

2
eα⌋(ϑ

β ∧Xβ), (27)

Ψα := Xα −
1
4
ϑαX − 1

2
eα⌋(ϑ

β ∧Xβ). (28)

The 1-forms Xα and X
α
are not completely independent: ϑα ∧X

α = ∗(ϑα ∧X
α
).

The curvature tensor Rµν
αβ is constructed from the components of the 2-form Rαβ =

1
2
Rµν

αβ ϑµ ∧ ϑν . The Ricci tensor is defined as Ricα
β := Rγα

βγ . The curvature scalar

R = Ricα
α determines the 6-th irreducible part since X ≡ R. The first irreducible part

(25) introduces the generalized Weyl tensor Cµν
αβ via the expansion of the 2-form (1)Rαβ =

1
2
Cµν

αβ ϑµ ∧ ϑν . From (28) we learn that the 4-th part of the curvature is given by the

symmetric traceless Ricci tensor,

Ψα =
(
Ric(αβ) −

1

4
Rgαβ

)
ϑβ . (29)

Accordingly, the 1-st, 4-th and 6-th curvature parts generalize the well-known irreducible

decomposition of the Riemannian curvature tensor. The 2-nd, 3-rd and 5-th curvature parts

are purely non-Riemannian.

III. MATTER SOURCES IN POINCARÉ GRAVITY

Matter with spin is the source of gravity in PG theory. Here we specify two explicit

examples of macro- and microscopic origin.

A. Macroscopic matter: spinning fluid

Weyssenhoff’s fluid [62] represents a special case of a medium with microstructure. To

describe its dynamics, one rigidly attaches a triad bαA, A = 1, 2, 3, to matter elements. It is

orthogonal to fluid’s flow that is represented by the flow 3-form u.

The physical properties of the fluid are described by the particle density ρ, the entropy s,

the specific (per matter element) spin density µAB = −µBA, and the internal energy density
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ε = ε(ρ, s, µAB). The Gibbs law of thermodynamics is corrected by the contribution of the

spin energy:

Tds = d

(
ε

ρ

)
+ p d

(
1

ρ

)
−

1

2
ωABdµ

AB. (30)

Here T is the temperature, p is the pressure, and ωAB is the thermodynamical variable

conjugated to the specific spin density µAB.

We assume that the fluid moves such that the particle number is not changed and the

entropy and identity of fluid elements is preserved along the lines of flow:

d(ρu) = 0, u ∧ ds = 0, u ∧ dX = 0, (31)

where X is Lin’s identity variable.

The Lagrangian 4-form of the spinning fluid reads [41]

L = − εη +
1

2
ρµABgαβb

α
Au ∧Db

β
B + Lcon, (32)

where the constraints are imposed on the flow by means of the Lagrange multipliers:

Lcon = λ0(
∗u ∧ u− c2η) + λAbαAϑα ∧ u+ λAB(gαβb

α
Ab

β
B + δAB)η

− ρu ∧ dλ1 + λ2u ∧ ds+ λ3u ∧ dX. (33)

Variation with respect to λ0, λ
A, λAB, λ1, λ2, λ3 yields (31) and the orthogonality and nor-

malization constraints for the flow 3-form u and the material triad bαA.

The canonical energy-momentum and spin currents (4) and (5) are found as

Tα = uPα − p
(
ηα −

1

c2
uαu

)
, (34)

cSαβ = uSαβ. (35)

Here uα = eα⌋
∗u, and the 4-momentum density and the covariant spin density of the medium

are introduced by

Pα =
1

c2

[
εuα − uβ

∗D(uSαβ)
]
, Sαβ = − ρµABbαAb

β
B. (36)

The covariant spin density satisfies the Frenkel supplementary condition uβSαβ = 0 (by

construction) and its dynamics is governed by the equation of motion

D(uSαβ)−
1

c2
uβu

γD(uSαγ)−
1

c2
uαu

γD(uSγβ) = 0. (37)

Note that the quadratic spin scalar invariant is conserved,

d(Su) = 0, S2 =
1

2
SµνS

µν , (38)

which is an immediate consequence of (37).
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B. Microscopic matter: Dirac spinor field

The Dirac spin 1
2
field is most conveniently discussed in the formalism of Clifford algebra-

valued exterior forms, when the basic objects are the matrix-valued one- or three-forms

γ = γα ϑ
α and ∗γ = γα ηα. Unlike the usual 1-forms, such objects do not anticommute; in

particular, i
4!
γ ∧ γ ∧ γ ∧ γ = γ5η.

The Lagrangian 4-form of a Dirac field Ψ is given by

LD = −
i

2
~c

{
Ψ ∗γ ∧DΨ+DΨ ∧ ∗γΨ

}
− ∗mc2ΨΨ . (39)

The Dirac-conjugate spinors are denoted by Ψ. Geometrically, Dirac fields are local sections

of the spinor SO(1, 3)-bundle associated with the principal bundle of orthonormal frames,

so that the spinor covariant derivative reads DΨ = dΨ + i
4
Γαβ ∧ σαβ Ψ, where the Lorentz

algebra generators are σαβ = iγ[αγβ].

The Dirac wave equation is derived from the variation of the action with respect to the

spinor field:

i~∗γ ∧ (DΨ− 1

2
T Ψ) + ∗mcΨ = 0. (40)

For the canonical energy-momentum and spin currents (7) and (5) we find

Tα =
i~c

2

(
Ψ ∗γDαΨ−DαΨ

∗γΨ
)
, (41)

Sαβ =
~

4
Ψ (σαβ

∗γ + ∗γ σαβ) Ψ =
~

2
ϑα ∧ ϑβ ∧Ψγγ5Ψ. (42)

Hereafter Dα := eα⌋D. A characteristic feature of the Dirac fermion is the completely

antisymmetric spin (42). This means that only an axial part of the spacetime torsion

interacts with the Dirac spinor field.

IV. POINCARÉ GRAVITY FIELD EQUATIONS

The field equations for the system of interacting matter and gravitational fields are derived

from the total Lagrangian

V (ϑα, T α, Rαβ) +
1

c
L(ψA, DψA, ϑα, T α, Rαβ). (43)
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Independent variation with respect to ψA, ϑα, and Γαβ yields

∂L

∂ψA
− (−1)pD

∂L

∂(DψA)
= 0 , (44)

DHα −Eα = Tα , (45)

DHαβ −Eαβ = Sαβ . (46)

The factor 1/c in (43) is explained by the dimensional reasons.

By expanding the currents with respect to the η-basis, we find the energy-momentum

tensor and the spin density tensor: Tα = Tα
µηµ, and Sαβ = Sαβ

µηµ.

A. Einstein-Cartan model

The Einstein-Cartan theory [59] is based on the Hilbert-Einstein Lagrangian

VHE =
1

2κc
ηαβ ∧ R

αβ . (47)

Here κ = 8πG
c4

is Einstein’s gravitational constant with the dimension of [κ] =N−1 =

s2 kg−1m−1. Newton’s gravitational constant is G = 6.67× 10−11 m3 kg−1 s−2. The velocity

of light c = 2.9× 108 m/s.

For the Lagrangian (47) we find from (11), (12) and (15):

Hα = 0, Hαβ =
1

κc
ηαβ , Eα = −

1

2κ
ηαβγ ∧ R

βγ, Eαβ = 0. (48)

As a result, the Einstein-Cartan field equations read

1

2
ηαβγ ∧ R

βγ = κTα, ηαβγ ∧ T
γ = κcSαβ. (49)

Substituting Rαβ = 1
2
Rµν

αβ ϑµ ∧ ϑν and T α = 1
2
Tµν

α ϑµ ∧ ϑν into (49), we find the

Einstein-Cartan field equations in components

Ricα
β −

1

2
δβα R = κTα

β, (50)

Tαβ
γ − δγαTµβ

µ + δγβTµα
µ = κcSαβ

γ. (51)
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B. Quadratic Poincaré gravity models

The general quadratic model is described by the Lagrangian 4-form that contains all

possible quadratic invariants of the torsion and the curvature:

V =
1

2κc

{(
a0ηαβ + a0ϑα ∧ ϑβ

)
∧Rαβ − 2λ0η

−T α ∧

3∑

I=1

[
aI

∗((I)Tα) + aI
(I)Tα

] }

−
1

2ρ
Rαβ ∧

6∑

I=1

[
bI

∗((I)Rαβ) + bI
(I)Rαβ

]
. (52)

The Lagrangian has a clear structure: the first line is linear in the curvature, the second

line collects torsion quadratic terms, whereas the third line contains the curvature quadratic

invariants. Furthermore, each line is composed of the parity even pieces (first terms on

each line), and the parity odd parts (last terms on each line). The dimensionless constant

a0 = 1
ξ
is inverse to the so-called Barbero-Immirzi parameter ξ, and the linear part of the

Lagrangian – the first line in (52) – describes what is known in the literature as the Einstein-

Cartan-Holst model. A special case a0 = 0 and a0 = 0 describes the purely quadratic model

without the Hilbert-Einstein linear term in the Lagrangian. In the Einstein-Cartan model,

one puts a0 = 1 and a0 = 0.

Besides that, the general PG model contains a set of the coupling constants which deter-

mine the structure of quadratic part of the Lagrangian: ρ, a1, a2, a3 and a1, a2, a3, b1, · · · , b6

and b1, · · · , b6. The overbar denotes the constants responsible for the parity odd interaction.

We have the dimension [1
ρ
] = [~], whereas aI , aI , bI and bI are dimensionless. Moreover, not

all of these constants are independent: we take a2 = a3, b2 = b4 and b3 = b6 because some

of terms in (52) are the same,

T α ∧ (2)Tα = T α ∧ (3)Tα = (2)T α ∧ (3)Tα, (53)

Rαβ ∧ (2)Rαβ = Rαβ ∧ (4)Rαβ = (2)Rαβ ∧ (4)Rαβ , (54)

Rαβ ∧ (3)Rαβ = Rαβ ∧ (6)Rαβ = (3)Rαβ ∧ (6)Rαβ . (55)

For the Lagrangian (52) from (11)-(12) we derive the gravitational field momenta

Hα = −
1

κ
hα , Hαβ =

1

κc
(a0 ηαβ + a0ϑα ∧ ϑβ)−

2

ρ
hαβ, (56)
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and the canonical energy-momentum and spin currents of the gravitational field

Eα = −
1

κ

(a0
2
ηαβγ ∧ R

βγ + a0Rαβ ∧ ϑ
β − λ0ηα + q(T )α

)
−
c

ρ
q(R)α , (57)

Eαβ =
1

c
(Hα ∧ ϑβ −Hβ ∧ ϑα) . (58)

For convenience, we introduced here the 2-forms which are linear functions of the torsion

and the curvature, respectively, by

hα =

3∑

I=1

[
aI

∗((I)Tα) + aI
(I)Tα

]
, hαβ =

6∑

I=1

[
bI

∗((I)Rαβ) + bI
(I)Rαβ

]
, (59)

and the 3-forms quadratic in the torsion and in the curvature, respectively:

q(T )α =
1

2

[
(eα⌋T

β) ∧ hβ − T β ∧ eα⌋hβ
]
, (60)

q(R)α =
1

2

[
(eα⌋R

βγ) ∧ hβγ − Rβγ ∧ eα⌋hβγ
]
. (61)

By construction, the first 2-form in (59) has the dimension of a length, [hα] = [ℓ], whereas the

second one is obviously dimensionless, [hαβ ] = 1. Similarly, we find for (60) the dimension

of length [q
(T )
α ] = [ℓ], and the dimension of the inverse length, [q

(R)
α ] = [1/ℓ] for (61).

The resulting Poincaré gravity field equations (13) and (14) then read:

a0
2
ηαβγ ∧R

βγ + a0Rαβ ∧ ϑ
β − λ0ηα

+ q(T )α + ℓ2ρ q
(R)
α −Dhα = κTα, (62)

a0 ηαβγ ∧ T
γ + a0 (Tα ∧ ϑβ − Tβ ∧ ϑα)

+ hα ∧ ϑβ − hβ ∧ ϑα − 2ℓ2ρDhαβ = κcSαβ. (63)

The contribution of the curvature square terms in the Lagrangian (52) to the gravitational

field dynamics in the equations (62) and (63) is characterized by the new coupling parameter

with the dimension of the area (recall that [1
ρ
] = [~]):

ℓ2ρ =
κc

ρ
. (64)

The parity-odd sector in PG gravity has been recently analysed in [2, 3, 8, 11, 23, 24], with

a particular attention to the cosmological issues.
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V. CLASSICAL SOLUTIONS OF PG THEORY

Although numerous classical exact and approximate solutions are known in Poincaré

gravity theory (see [21, 34, 42] for a review), their existence and structure depend essentially

on the choice of the Lagrangian. Instead of analyzing special models on the case by case

basis, we discuss here the results which are established for the general quadratic PG model

(52).

A. Generalized Birkhoff theorem

Spherically symmetric solutions are of particular interest in field-theoretic models. In

Einstein’s GR the Schwarzschild solution is unique, which is a remarkable theoretical result

known as the Birkhoff theorem. The validity of this theorem is very important since the

fundamental gravitational experiments in our Solar system are perfectly consistent with the

Schwarzschild geometry.

In contrast to GR, a spherically symmetric solution is not unique in a general quadratic

PG gravity theory. However, certain classes of models do admit the generalized Birkhoff

theorem which can be formulated as follows: the Schwarzschild spacetime without torsion is

unique vacuum spherically symmetric solution of Poincaré field equations.

This theorem is available in two versions. In the weak version, the spherical symmetry

is understood as the form-invariance of the geometrical variables under the SO(3) group of

rotations, whereas in the strong O(3) version one assumes the invariance under the rotations

and spatial reflections.

The analysis of the validity of the generalized Birkhoff theorem in PG is based on the

appropriate ansatz for the metric and the torsion. In the local coordinates (t, r, θ, ϕ), the

most general spherically symmetric spacetime interval reads

ds2 = A2dt2 − B2dr2 − C2(dθ2 + sin2 θdϕ2), (65)

so that the coframe can be chosen in the form

ϑ0̂ = Adt, ϑ1̂ = Bdr, ϑ2̂ = Cdθ, ϑ3̂ = C sin θdϕ. (66)

The three functions A = A(t, r), B = B(t, r), C = C(t, r), may depend arbitrarily on the

time t and the radial coordinate r.
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Let us divide the anholonomic indices, α, β, . . . , into the two groups: A,B, · · · = 0, 1 and

a, b, · · · = 2, 3. Then the spherically symmetric torsion ansatz for its three irreducible parts

can be written as follows:

(1)TA = 2ϑA ∧ V + 2eA⌋∗V , (1)T a = −ϑa ∧ V − ea⌋∗V , (67)

(2)T α =
1

3
ϑα ∧ T, (3)T α =

1

3
eα⌋∗T . (68)

Here the torsion trace 1-form T and the axial torsion 1-form T are

T = uAϑ
A, T = uAϑ

A, (69)

whereas the traceless 1st irreducible torsion is constructed from the 1-forms

V = vAϑ
A, V = vAϑ

A. (70)

All together, the general spherically symmetric ansatz for the torsion thus includes eight

variables – the components of the 1-forms T, T , V, V :

uA(t, r), uA(t, r), vA(t, r), vA(t, r), A = 0, 1. (71)

As usual, the overline denotes the parity-odd objects. All 8 torsion functions (71) are allowed

in the discussion of the weak SO(3) version of the generalized Birkhoff theorem, however, in

the strong O(3) version the parity-odd variables uA = vA = 0 (hence T = V = 0), reducing

the number of nontrivial torsion components to 4.

To prove the generalized Birkhoff theorem, one needs to plug the spherically symmetric

ansatz (65)-(70) into the field equations (62)-(63) and to find the conditions under which

these field equations yield the vanishing torsion and the reduction of the metric to the

Schwarzschild form. Some of these conditions may impose constraints on the coupling con-

stants, other conditions may impose constraints on the geometric structure. Among the

latter assumptions are: (i) the asymptotic flatness condition which requires that the metric

(65) approaches the Minkowski line element, i.e. A −→ 1, B −→ 1, C −→ r in the limit of

r −→ ∞, or (ii) the vanishing scalar curvature X = R = eα⌋eβ⌋R
αβ = 0 condition.

In the literature [42, 49, 50], only the parity-even class of models was analyzed with

aI = 0, bJ = 0. The available results are summarized in Fig. 1.
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b =b =b =−b =−b = b1        3       5            2            4         6&{                                   }

b =b =b =−b =−b = b1        3       5            2            4         6&{                             /     }a = 0&{       }3

(2a + 1) = 03&{             /    }  scalar curvature = 0&{                               }
b =b =b =−b =−b = b1        3       5            2            4         6&{                             /     }

a = a = 01          2{              }

(a + 1)(a − 2) = 01                  2{                      /   }

b =b1        5&{        }

b =−b4            5&{          }

asymptotic flatness&{                           }

b =b =b =−b1        5       6            4&{                    }

a , bI       J{       }

O(3)

SO(3)

FIG. 1. The sufficient conditions for the generalized Birkhoff theorem – in the weak SO(3) version

or in the strong O(3) version. The simultaneously imposed conditions are linked by the symbol

“&” and by the arrows.

B. Torsion-free vacuum solutions

Let us consider the vacuum solutions with vanishing torsion in the general quadratic

models (52). In vacuum, the matter sources vanish, Tα = 0 and Sαβ = 0, and for T α = 0

we find, after some straightforward algebra, that the curvature scalar is constant,

R̃ = −
4λ0
a0

, (72)

whereas the general field equations (62) and (63) reduce to

(b1 + b4)
∗(1)R̃αβ ∧ Ψ̃β + (b1 − b4)

(1)R̃αβ ∧ Ψ̃β = â0
∗Ψ̃α, (73)

[
(b1 + b4)

2 + (b1 − b4)
2
]
D̃ Ψ̃α = 0. (74)

The tilde denotes the torsion-free Riemannian objects and operators. Here we defined

â0 = a0 −
2λ0
3a0

(b4 + b6). (75)

The 1-form Ψα introduced in (27), determines the structure of the fourth irreducible part

of the curvature (4)Rαβ = −ϑ[α ∧Ψβ]; its components coincide with the symmetric traceless

Ricci tensor (29).
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Clearly, all Einstein spaces, i.e., the solutions of the vacuum Einstein equations with a

cosmological term

Ψ̃α = 0, (76)

recall (29), are vacuum torsion-free solutions of (73)-(74) in the general quadratic Poincaré

gauge models. Actually, a stronger result can be demonstrated.

Theorem. The Einstein spaces (76) are the only torsion-free vacuum solutions of (73)-(74)

for all values of the coupling constants except for the three very specific degenerate choices:

b6 −
3a20
2λ0

=





b1,

−b4,

−2b1 − 3b4.

(77)

To begin the proof, we notice that if b1 + b4 = 0 and b1 − b4 = 0, the system (73) and (74)

reduces to (76). Now, we assume that b1 + b4 6= 0 and b1 − b4 6= 0. Taking the covariant

exterior derivative of (74), we then find D̃D̃ Ψ̃α = − R̃α
β ∧ Ψ̃β = − (1)R̃α

β ∧ Ψ̃β = 0.

Consequently, the second term on the left-hand side of (73) disappears and the system (73)

and (74) is recast into

∗(1)R̃αβ ∧ Ψ̃β = Λ ∗Ψ̃α, D̃ Ψ̃α = 0, (78)

where we put

Λ =
â0

b1 + b4
. (79)

The final step is technically nontrivial, and the value of Λ is crucial. A direct analysis

making use of the Newman-Penrose technique [42] (see also the earlier works [10, 14, 15])

shows that (76) is the only solution of the system (78) for all values of Λ, except for the

three cases when 3Λ/2 = {0, R̃/4,−R̃/2}. Using then (75), (79) and (72), we prove (77).

C. Gravitational planes waves in Poincaré gravity

Gravitational waves are of fundamental importance in physics, and recently the purely

theoretical research in this area was finally supported by the first experimental evidence.

The plane-fronted gravitational waves represent an important class of exact solutions which

generalize the basic properties of electromagnetic waves in flat spacetime to the case of

curved spacetime geometry.

To streamline the presentation, we put the cosmological constant λ0 = 0 here.
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1. Electromagnetic plane waves

The key for the description of a plane wave on a spacetime manifold is the null shear-free

geodetic covector field. More exactly, one talks of the wave 1-form k = dϕ which arises from

the phase function ϕ (so that the wave covector is kα = eα⌋k) with the properties

k ∧ ∗k = 0, k ∧ ∗Dkα = 0, (80)

k ∧ ∗F = 0, k ∧ F = 0, F ∧ ∗F = 0. (81)

Here F is the electromagnetic field strength 2-form. The actual structure of the wave

configurations depends on the Lagrangian of the electromagnetic field. For example, in

Maxwell’s theory in the flat Minkowski spacetime (specializing to the case eαi = δαi ,Γi
αβ = 0)

the electromagnetic plane wave is given by

F = k ∧ a, k ∧ ∗a = 0. (82)

Here the wave covector is constant, dk = 0, whereas the polarization 1-form a depends only

on the phase, ai = ai(ϕ) and satisfies the above orthogonality relation.

2. Gravitational plane waves

In order to discuss the gravitational wave solutions in Poincaré gravity theory, we start

with the flat Minkowski geometry described by the coframe and connection ϑ̂α = dxα,

Γ̂αβ = 0. Introducing the phase variable σ = x0 − x1, we construct the wave 1-form

k = dσ = ϑ̂0̂ − ϑ̂1̂. The gravitational wave ansatz then reads

ϑα = ϑ̂α +
1

2
U kαk, (83)

Γαβ = Γ̂αβ + (kαW β − kβW α)k. (84)

Importantly, this ansatz does not change the wave 1-form which is still defined by

k = dσ = ϑ0̂ − ϑ1̂. (85)

By construction, we have k∧∗k = 0. The wave covector is constructed as usual as kα = eα⌋k,

so that its (anholonomic) components are kα = (1,−1, 0, 0) and kα = (1, 1, 0, 0). Hence, this

is a null vector field, kαk
α = 0.
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The two unknown variables U and Wα determine the wave profile, and we choose them

as functions U = U(σ, xA) and W α = W α(σ, xA). Here xA = (x2, x3), from now on the

indices from the beginning of the Latin alphabet a, b, c... = 0, 1, whereas the capital Latin

indices run A,B,C... = 2, 3. In addition, we assume the orthogonality kαW
α = 0, which is

guaranteed if we choose

W α =




W a = 0, a = 0, 1,

WA = WA(σ, xB), A = 2, 3.
(86)

The resulting line element then reads (with ρ = x0 + x1)

ds2 = dσdρ+ Udσ2 − δABdx
AdxB. (87)

In view of the properties of the objects defined above, we verify that the wave 1-form is

closed, and the wave covector is constant:

dk = 0, dkα = 0, Dkα = 0. (88)

Taking this into account, we straightforwardly compute the torsion and the curvature 2-

forms:

T α = k ∧ aα, Rαβ = k ∧ aαβ , (89)

where we introduced the 1-forms

aα = − kαΘ, Θ :=
1

2
dU +Wαϑ

α, (90)

aαβ = − 2k[αΩβ], Ωα := dW α. (91)

The differential d acts in the transversal 2-space spanned by xA = (x2, x3).

It is worthwhile to notice that the 2-forms of the gravitational Ponicaré gauge field

strengths (89) have the same structure as the electromagnetic field strength (82) of a plane

wave. Now aα and aαβ play the role of the gravitational (translational and rotational, re-

spectively) “polarization” 1-forms. In complete analogy to the polarization 1-form a in (82),

we notice that the gravitational polarization 1-forms satisfy the orthogonality relations

k ∧ ∗aα = 0, k ∧ ∗aαβ = 0. (92)
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Clearly, the gravitational field strengths of a wave have the properties

k ∧ ∗T α = 0, k ∧ T α = 0, T α ∧ ∗T β = 0, (93)

k ∧ ∗Rαβ = 0, k ∧Rαβ = 0, Rαβ ∧ ∗Rρσ = 0, (94)

in complete analogy to the electromagnetic plane wave (81).

In addition, however, the gravitational Ponicaré gauge field strengths satisfy

kα T
α = 0, kαR

αβ = 0. (95)

The explicit gravitational wave solution is constructed as follows. The wave profile vector

variable is expressed in terms of potentials

WA =
1

2
δAB∂B(U + V ) +

1

2
ηAB∂BV , (96)

where ηAB = − ηBA is the totally antisymmetric Levi-Civita tensor on the 2-dimensional

space of the wave front. Substituting the wave ansatz (83), (84) and (96) into (62) and (63),

the highly nonlinear system of the gravitational field equations quite remarkably reduces to

the system of three linear differential equations

∆V −M V = 0, (97)

for the wave profile potentials which are conveniently assembled in a column “3-vector”

variable V =




U

V

V


. Here ∆ = δAB∂A∂B is the 2-dimensional Laplacian on the (x2, x3)

space, and the 3× 3 matrix M is constructed from the coupling constants aI , aI , bJ , bJ . One

can straightforwardly solve the system (97) by diagonalizing M .

Remarkably, eigenvalues of M coincide [6, 40] with the masses of the particle spectrum

of the propagating torsion modes in quadratic PG models [18, 27, 30, 37, 38, 53, 54]. The

results above can be further generalized to λ0 6= 0 by using a modified ansatz (83)-(84) with

(ϑ̂α, Γ̂αβ) describing the de Sitter geometry [6].

VI. COSMOLOGY IN POINCARÉ GRAVITY

Taking into account the spin of matter (as a new physical source of gravity) and the

torsion (as an additional geometrical property of spacetime), leads to modifications of early
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and late stages of universe’s evolution [33, 35, 46, 47, 57]. This potentially contributes to

the solution of the two important issues of the modern cosmology: the singularity problem

and the dark energy problem.

The cosmological evolution in the Einstein-Cartan theory (47) and in the most general

quadratic models (52) are qualitatively different. This is due to the fact that in the former

case the torsion is not dynamical and can be eliminated.

Let us consider the Friedman-Robertson-Walker (FRW) geometry with the spacetime

interval

ds2 = (dx0)2 −
a2

(
1 + r2

4ℓ2

)2
{
(dx1)2 + (dx2)2 + (dx3)2

}
. (98)

The local coordinates are xi = {x0, x1, x2, x3}, and r2 = (x1)2+(x2)2+(x3)2. Here the scale

factor depends on the cosmological time, a = a(x0), and the parameter ℓ2 determines the

geometry of the 3-space. The latter is the space of constant curvature k = 1
ℓ2

which can be

zero (k = 0: flat space), positive (k > 0: closed space) or negative (k < 0: open space).

The geometry of this 3-space is described by the coframe and the Riemannian local Lorentz

connection

ϑa =
dxa

1 + r2

4ℓ2

, Γab =
1

2ℓ2
(
xaϑb − xbϑa

)
. (99)

The Latin indices from the beginning of the alphabet run a, b, c, · · · = 1, 2, 3 and they are

raised and lowered with the help of the Euclidean metric δab and δ
ab. For example, xb = δabx

a

and ϑb = δabϑ
a.

A. Einstein-Cartan cosmology

In cosmology, it is common to use the hydrodynamic description of matter. An appro-

priate model is Weyssenhoff spinning fluid with the canonical energy-momentum and spin

currents (34) and (35). Since the second field equation (51) is algebraic, we can use it to

express the torsion as a linear function of spin. Substituting the torsion into the first field

equation (50), we then recast it into the Einstein equation 1
2
ηαβγ ∧ R̃βγ = κTeff

α with the

effective energy-momentum current

T
eff
α = − peff

(
ηα −

1

c2
uαu

)
+
εeff

c2
ηα +

(
gνλ +

1

c2
uνuλ

)
D̃ν

(
u(µSα)λ

)
ηµ, (100)

where the effective pressure and energy density depend on spin:

peff = p−
κc2S2

4
, εeff = ε−

κc2S2

4
. (101)
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In order to have a qualitative understanding of the Einstein-Cartan cosmology, let us

specialize to the case of the flat model (with k = 0) for the dust equation of state p = 0.

For the FRW ansatz (98), the effective Einstein equation then reduces to the generalized

Friedman equation

3
ȧ2

a2
= εeff , εeff = ε−

κc2S2

4
. (102)

The conservation laws of the energy-momentum (6) and spin (38) yield

ε =
ε0
a3
, S =

S0

a3
. (103)

The equation (102) can be straightforwardly integrated, and we observe that the cosmological

evolution is nonsingular [57]. At the time of a bounce, the universe occupies a minimal

volume, when the energy density is maximal:

a3min =
κc2S2

0

4ε0
, εmax =

ε0
a3min

=
4ε20
κc2S2

0

. (104)

One can evaluate the latter by assuming that the cosmological dust matter is composed of

fermions with a mass m and spin ~/2. Then the ratio of the energy density per spin density

is ε0/S0 = 2mc2/~. As a result, we find

εmax =
16m2c2

κ~2
. (105)

For the mass of a nucleon, the corresponding maximal mass density is thus εmax

c2
= 2m2c4

πG~2
≈

1057 kg/m3. At the late stage, when the first term ∼ 1/a3 on the right-hand side of the

generalized Friedman equation (102) becomes dominating over the second ∼ 1/a6 term,

the evolution of the scale factor approaches the usual law a(x0) ∼ (x0)
2

3 of the dust FRW

cosmology.

B. Cosmology in general Poincaré gauge gravity

In contrast to the Einstein-Cartan theory, in the general quadratic Poincaré gauge gravity

models (52) the torsion degrees of freedom are propagating. Accordingly, one has to come

up with an appropriate description of the torsion.

We construct the generalized FRW cosmology (98) in the Poincaré gauge gravity theory

with the help of the ansatz for the coframe ϑα and connection Γαβ :

ϑ0̂ = dx0, ϑa = a ϑa, (106)

Γ0̂a = b ϑa, Γab = Γab − σ ǫabcϑ
c. (107)
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This configuration is described by the three functions of the cosmological time

a = a(x0), b = b(x0), σ = σ(x0). (108)

For the torsion we then find (1)T α = 0, whereas

(2)T a = v ϑ0̂ ∧ ϑa, (3)T a = v ǫabc ϑ
b ∧ ϑc, (109)

where we denoted

v =
ȧ− b

a
, v =

σ

a
. (110)

One can show that the field equations (62)-(63) allow only for a spinless matter with

Sαβ = 0, and thus the Weyssenhoff medium reduces to the ideal fluid. In order to compare

the resulting dynamics to the Einstein-Cartan cosmology, we specialize to the case when

the cosmological constant vanishes λ0 = 0, the spatial geometry is flat k = 0, and the

cosmological matter has the equation of state of a dust p = 0. To simplify computations, we

also assume a2 = 0 and limit ourselves to the class of parity-even models with aI = 0, bJ = 0.

Then we find that the axial torsion vanishes v = 0, whereas v turns out to be proportional

to the Hubble function ȧ/a, and the system (62)-(63) reduces to the generalized Friedman

equation

3a0
ȧ2

a2
= κεeff , εeff = ε

(
1− ε

εℓ

)(
1− ε

2εℓ

)

(
1 + ε

εℓ

)2 , εℓ :=
12a20

κℓ2ρ(b4 + b6)
. (111)

Taking into account the explicit dependence of the energy density on the scale factor (103),

we can integrate the generalized Friedman equation, and the solution for a = a(x0) is

expressed in terms of the elliptic integrals. The qualitative result is as follows. The cosmo-

logical evolution is again non-singular [35, 36], with the minimal value of the scale factor

and the highest energy density:

a3min =
κε0ℓ

2
ρ(b4 + b6)

12a20
, εmax =

ε0
a3min

=
12a20

κℓ2ρ(b4 + b6)
. (112)

At the late stages of the cosmological evolution, when the universe expands to sufficiently

large values of the scale factor so that the condition ε
εℓ

= ε0
εℓa

3 ≪ 1 is satisfied, eq. (111)

reduces to the usual Friedman equation for the dust matter, and the evolution law asymp-

totically is approximated by the law a(x0) ∼ (x0)
2

3 .
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Let us make a blitz comparison of the Einstein-Cartan model and the general quadratic

PG model. Both models predict a non-singular cosmological scenario which at the later

stage approaches the standard Friedman evolution. However, the values of amin and εmax are

determined differently: whereas in the Einstein-Cartan theory the parameters of the bounce

(104) depend on the spin of matter, in the general quadratic model the properties of matter

are irrelevant and the values (112) are determined by the universal strong gravity coupling

constant 1/ρ and the corresponding new length scale ℓ2ρ.

Including odd-parity terms in the Lagrangian (with the nontrivial constants aI and bJ),

and allowing for the odd-parity torsion v, the cosmological equations are extended to a

highly nontrivial system for the the scale factor a, and the torsion functions v and v. In

general, the space of solutions for this system encompasses both the non-singular and singular

cosmological scenarios, see [8, 23, 24], e.g.

VII. MOTION OF TEST BODIES IN POINCARÉ GAUGE GRAVITY

Before discussing the dynamics of massive extended bodies in the gravitational field, it

is useful to recall the electromagnetism. An electrically charged body is characterized by

the electric current density Jα which describes how the charges and currents are distributed

inside this body. When the size of the body is much smaller than the typical length over

which the electric and magnetic fields change significantly, it can be treated as a test particle.

Choosing a reference point yα inside the body, one interprets the curve yα = yα(τ) as the

world line of the body with the velocity uα = dyα/dτ , and introduces a set of the multipole

moments as integrals
∫
Σ
δxµ1 · · · δxµnJα over a spatial cross-section Σ of the world tube

swept by the body through its motion in the spacetime, where δxµ = xµ − yµ gives the

position of charged material elements relative to the reference point. The lowest moments

are the total electric charge of a body, its electric dipole moment and so on.

Qualitatively, in this approach an extended body is replaced by a test particle charac-

terized by (infinite number of) multipoles which describe the internal structure of the body

and contain all the information which was encoded in the electric current Jα. In a similar

way, in order to analyse the motion of a massive body in the gravitational field, one needs

to take the corresponding gravitational matter currents and to construct the multipole mo-

ments for them. This technique has a long history going back to Einstein, Weyl, Infeld,
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Mathisson, Papapetrou, Dixon (for the historic introduction and key references, see [43, 48],

for example). Remarkably, the equations of motion of the multipole moments should not be

postulated, but they follow directly from the conservation laws of the Noether currents.

In Einstein’s GR, the gravitational field couples to the energy-momentum current of

the structureless matter. This corresponds to the group of spacetime translations (diffeo-

morphisms) which underlies GR. The Poincaré gauge gravity takes into account a possible

nontrivial microstructure of matter and extends the theory to the Poincaré current (Tα,Sαβ)

which includes the translational and Lorentz currents, i.e., the canonical energy-momentum

and the spin of matter. Accordingly, we will have two types of multipoles.

There exist many multipole expansion schemes (both noncovariant and covariant) in

gravity theory. Among them, the most convenient one is the covariant expansion technique

based on Synge’s world-function formalism [56], first used by Dixon [12] to define a set of

moments characterizing the test body. The world-function σ(x, y) measures the length of the

geodesic curve connecting the spacetime points x and y. Using a condensed notation when

tensor indices are labeled by spacetime points to which they are attached, we denote by

σy := ∇̃yσ a covariant derivative of the world-function. The parallel propagator by gyx(x, y)

describes the parallel transport of objects along the unique geodesic that links the points x

and y, e.g.: given a vector V x at x, the corresponding vector at y is obtained by means of

the parallel transport along the geodesic curve as V y = gyx(x, y)V
x. For more details, see

[43, 56]. In PG theory, we define the multipole moments of arbitrary order:

cpy1...yny0:=(−1)n
∫

Σ(τ)

σy1 · · ·σyngy0
x0Tx0

x1dΣx1 , (113)

sy2...yn+1y0y1:=(−1)n
∫

Σ(τ)

σy2 · · ·σyn+1
gy0

x0gy1
x1Sx0x1

x2dΣx2 , (114)

qy3...yn+2y0y1
y2:=(−1)n

∫

Σ(τ)

σy3 · · ·σyn+2
gy0

x0gy1
x1gy2x2Sx0x1

x2wx3dΣx3. (115)

With these definitions, the equations of motion of test bodies are derived by integrating

the conservation laws of the energy-momentum (6) and angular momentum (9) over the

cross-section of the world tube. The resulting system describes the dynamics of multipole
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moments (113) and (114) of any order. In the pole-dipole approximation, we find

D̃Pα
dτ

=
1

2
R̃αβ

µνuβJµν −
1

2
Qµν

β∇̃αTµν
β, (116)

D̃Jαβ
dτ

= Pαuβ − Pβuα −Qµν[αT
µν
β] − 2Q[α|µν|Tβ]

µν . (117)

Here D̃
dτ

= uα∇̃α is the Riemannian covariant derivative with respect to the proper time τ ,

uα is body’s 4-velocity. We defined the generalized total energy-momentum 4-vector and

the generalized total angular momentum (with the contortion tensor Ki
αβ := Γ̃i

αβ − Γi
αβ)

by

Pα := pα −
1

2
Kα

µνsµν , Jαβ := pαβ − pβα + sαβ. (118)

and introduced Qαβµ := 1
2
(qαβµ + qαµβ − qβµα).

In the monopole approximation, the equations of motion are simplified to

D̃Pα
dτ

= 0, Pαuβ − Pβuα = 0. (119)

Hence we find Pα =Muα, where Mc2 = Pαu
α, and therefore (119) reduces to the Rieman-

nian geodesic D̃uα

dτ
= uβ∇̃βu

α = 0.

VIII. CONCLUSION: PROBING SPACETIME GEOMETRY

Einstein [13] underlined: “...The question whether this continuum has a Euclidean, Rie-

mannian, or any other structure is a question of physics proper which must be answered by

experience, and not a question of a convention to be chosen on grounds of mere expediency.”

How can one probe a possible deviation of the spacetime structure from the Riemannian

geometry?

One needs matter (particles, bodies, continua, fields) with microstructure, i.e., with in-

trinsic spin [48, 64]. This is most clearly seen from the equations of motion above. Contrary

to some unfortunate statements in the literature: (i) only the spin –not the orbital rotation–

couples to the non-Riemannian geometry and hence only from observations of the spin

dynamics one can measure (or set bounds on) the spacetime torsion, (ii) a massive test

point (monopolar body) always moves along the Riemannian geodesic and not along the

non-Riemannian autoparallel.
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So far, there is no evidence of the torsion in nature. Following the early theoretical

work [1, 17, 51] on the precession of spin in the Riemann-Cartan spacetime, the upper limit

| T | < 10−15 1
m
was established for the torsion from Huges-Drever type experiments [31], from

the analysis of the Lorentz violations in Standard Model extensions [29], from the search of

spin-spin interaction using Earth as a test body [25], as well as from the study of the nuclear

spin dynamics [44]; milder constraints | T | < 10−2 1
m

were derived from the precession of

neutron’s spin in liquid 4He.
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mology with even and odd parity modes: Analytic part, Phys. Rev. D 83 (2011) 024001 (23

pages).
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